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Precocious Infant Gut Microbiome Accelerates Triglyceride Absorption                            

and Promotes Childhood Obesity Risk 

Germaine Jia Min Yong 

 

Abstract 

The composition and metabolic activity of the gut microbiome are implicated in 

childhood obesity, though etiology of the disease remains unclear. Using 16S bacterial 

and ITS2 fungal biomarker sequencing, we identify a precocious gut microbiota in more 

frequently formula fed 1-month-old infants that relates with higher relative risk for 

overweight or obesity (OW/OB) phenotypes at two years of age. Integrated shotgun 

metagenomic and untargeted metabolomic profiling revealed that higher-risk infant 

microbiomes exhibited accelerated functional maturation and broad-ranging metabolic 

reprogramming, including evidence for increased fermentation and amino acid 

catabolism. In vitro, exposure of enterocytes to cell-free fecal extracts of higher-risk 

infants who became OW/OB at 2-years reprogrammed transcription and cellular 

function, promoting obesity-associated gene expression and increasing triglyceride 

absorption. Of several microbial species screened, Candida albicans recapitulated 

accelerated triglyceride trafficking by enterocytes, via a small, secreted polar molecule 

in an infant formula-dependent manner. Thus, appropriately paced early life 

development of microbiome function and metabolism appear crucial determinants of 

childhood obesity. 
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Introduction 

One in three children in the United States experience overweight or obesity [defined as 

body mass index (BMI) ≥85th percentile for age and gender] and as a result are at 

increased risk of co-morbidities including heart and fatty liver disease, diabetes and 

asthma1. In adults, gut microbiome perturbation is characteristic of patients with 

obesity2–5 and its functional contribution to disease pathology has been confirmed in 

humanized gnotobiotic mouse models6,7. Notably, the gut microbiome has been 

demonstrated to increase energy harvest6, alter neural8 and metabolic signaling9,10 and 

control inflammation11. 

Early life environmental exposures alter the gut microbiome and host development, and 

are related to subsequent adiposity phenotypes in childhood. In humans, early life 

microbiota disruption, either due to delivery by Caesarian12 or antibiotics, is associated 

with increased risk of subsequent overweight phenotypes in childhood13,14. Diet plays a 

significant role in shaping the gut microbiome15, which in turn influences the metabolic 

fate of ingested nutritional substrates and the production of bioactive molecules that 

influence host physiology16–19. Of note, formula feeding in infancy has been associated 

with obesity in childhood20, though the mechanism(s) by which it contributes to disease 

remain unclear. Breastfeeding, which protects against the development of overweight 

and obesity phenotypes in childhood, is a primary factor that shapes microbiome 

development in infancy21. 

Early life gut microbiome development progresses along a temporal gradient21–23 and is 

often influenced by priority effects, in which the order and timing of species arrival 
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determine inter-species relationships24. Alterations to the composition and rate of 

microbial accumulation during this critical developmental window are related to risk of 

childhood diseases, including impaired growth25,26, Kwashiorkor (protein malnutrition)27 

and asthma28,29. Although several studies have correlated early life gut microbiota 

perturbation with subsequent adiposity26,30–34, none have provided direct evidence for a 

functional role of the infant gut microbiome in the development of childhood obesity, or 

identified factors that promote obesogenic features of infant microbiomes. 

In an attempt to understand the origins of childhood obesity, we focus on very-early 

infancy and identify a compositionally and functionally precocious gut microbiome 

associated with increased rates of formula feeding and increased risk for overweight or 

obese phenotypes (OW/OB) in early childhood. We provide in vitro evidence that the 

products of these higher-risk infant gut microbiomes transcriptionally reprogram 

enterocytes and enhance triglyceride uptake, offering a plausible mechanism by which 

interactions between early life nutrition and the infant gut microbiome promotes 

obesogenic phenotypes in childhood. 
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Results 

Distinct infant gut microbiota associates with OW/OB at age two years 

Fecal samples (n=349) collected in early postnatal life (median age 35 days; range 21-

58 days) were subjected to parallel 16S rRNA and ITS2 sequencing. Dirichlet 

Multinomial Mixture (DMM) modeling, which implements an unsupervised Bayesian 

approach to class discovery35, was applied to the 16S rRNA dataset to sub-group 

participants based on fecal bacterial community composition. Three distinct gut 

microbiota classes (GMC1, GMC2 and GMC3) represented the best model fit (Fig. 1a, 

Extended Fig. 1a; PERMANOVA; R2=0.11, p=1e-4). 

Distinct early life GMCs significantly related to BMI and OW/OB outcomes at age two 

years; BMI Z-scores of GMC3 infants were significantly greater than either GMC1 

(adjusted β=0.47; 95% CI 0.15-0.80; p=0.005; Fig. 1b and Supplementary Table 2B) 

or GMC2 groups (adjusted β=0.38; 95% CI 0.05-0.71; p=0.023; Fig. 1b and 

Supplementary Table 2B). Relative risk (RR) for OW/OB at age two was also 

significantly greater in GMC3 compared with GMC1 subjects (unadjusted RR=2.34; 

95% CI 1.3-4.21; p=0.005; Supplementary Table 2A), despite no significant difference 

in age at stool sample collection in GMC3 compared to GMC1 infants (p=0.176; 

Extended Fig. 1b). GMC3 infants were more likely to have parents with a shorter 

duration of formal education and to have been formula fed, while GMC1 had the 

greatest proportion of exclusively breastfed infants (Supplementary Table 1). The 

relationship between GMC3 and OW/OB phenotypes remained significant and was 

strengthened following adjustment for these and additional confounding factors 
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(Supplementary Table 2A), regardless of infant feeding status (interaction p=0.80). In 

a multivariable model adjusting for exact age at stool sample collection, prenatal 

antibiotic and antifungal use, mode of delivery, and breastfeeding status at 1-month, 

GMC3 subjects had 2.63 times higher risk of experiencing OW/OB than GMC1 subjects 

(95% CI 1.45-4.76; p=0.002; Table 1). DMM modeling applied to older infant samples 

(median age 206 days; range 174-238 days; n=287) identified four additional fecal 

microbiota structures (GMC4-7; Unweighted UniFrac; PERMANOVA, R2=0.15, p=0.001; 

Extended Fig. 1e-g), however these were not significantly related to OW/OB or BMI Z-

score at age two years (Supplementary Table 3) indicating the importance of the very-

early life period for risk of disease development in childhood. 

Infants at higher risk for OW/OB exhibit precocious gut microbial development 

Despite exhibiting increased bacterial species richness (p<2e-16, Extended Fig. 1c) 

and phylogenetic diversity (Faith’s, p<2e-16, Extended Fig. 1d), GMC3 microbiota were 

depleted of key genera (e.g. Bifidobacterium, Clostridium and Malassezia) typical of this 

stage of postnatal development22,36 (Fig. 1d-e, Extended Fig. 1h-i, Supplementary 

Table 4-5). Instead, GMC3 microbiota exhibited relative enrichment of 

Lachnospiraceae, Ruminococcaceae, Saccharomyces and Candida, genera typically 

associated with later stages of infant gut microbiome development22,36 (Fig. 1d-e, 

Extended Fig. 1h-i, Supplementary Table 4-5) and, in human adult populations, with 

greater visceral fat mass4,37,38 and insulin resistance4. These microbial enrichments 

were consistent irrespective of the lower-risk comparison group used (Supplementary 

Table 6-7) and included top age-discriminatory bacterial taxa (Extended Fig. 1j-k) 

associated with more mature infant gut microbiomes22,39. Consistent with this 
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observation, random forest predictive modeling revealed that GMC3 infants exhibited 

older microbiota-for-age z-scores (MAZ) (p<2e-16, Fig. 1c), indicating precocious 

microbial development in these infants at higher-risk for OW/OB in early childhood.  

Enhanced fermentation and protein metabolism distinguish infants at higher risk 

of OW/OB status 

Parallel shotgun metagenomic sequencing and untargeted mass spectrometry were 

performed on a microbiologically representative subset of infant feces based on 

posterior probability of GMC membership, BMI classification and feeding practices 

(n=60; Supplementary Table 8). Integrated comparative analyses indicated distinct 

substrate preferences for energy biogenesis between lower- and higher-risk GMCs (Fig. 

2a). GMC3 microbiomes were enriched for gene pathways involved in degradation of 

glucarate, galactarate and myo-inositol (PFDR=0.12 for all; Extended Fig. 2a-b and 

Supplementary Table 9), generating products that feed into central carbon metabolism 

(Fig. 2b), and for fermentation of pyruvate and glycerol to 1-butanol (PFDR=0.12 for both; 

Extended Fig. 2c-d and Supplementary Table 9), the latter previously associated with 

soy formula feeding16 and hepatic steatosis40. In contrast, GMC1 metagenomes were 

enriched for methylglyoxal degradation (PFDR=0.12; Extended Fig. 2e), a detoxification 

pathway that produces lactate and pyruvate (Fig. 2b), both of which were detected in 

significantly elevated concentrations by parallel mass spectrometry in feces of these 

infants (PFDR=0.047 and PFDR=0.029 respectively; Extended Fig. 3b-c). GMC1 also 

exhibited enhanced energy biogenesis via glycol and ketogluconate degradation 

(PFDR=0.13; Extended Fig. 2f and PFDR=0.04; Extended Fig. 2g), indicating that lower-

risk infant gut microbiomes exhibit alternative microbial strategies for energy harvest. 
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Consistent with more GMC1 infants receiving any breastmilk (89.3%) compared to 

GMC3 infants (65.6%; Supplementary Table 8), GMC1 fecal metabolomes exhibited 

significantly elevated concentrations of human milk oligosaccharides (Extended Fig. 3a 

and Supplementary Table 10). GMC1 was also enriched in a large range of distinct 

lipids, including fatty acid esters of hydroxy fatty acids (FAHFAs) and acylcarnitines 

(Extended Fig. 3a and Supplementary Table 10), the latter indicative of enhanced 

capacity for mitochondrial fatty acid β-oxidation. Metabolic profiling also indicated 

differences in oxidizing potential between GMC1 and GMC3 feces. While the former 

exhibited relatively higher concentrations of the antioxidant bilirubin (PFDR=0.021, Fig. 

2c), the latter was enriched for the microbially reduced heme catabolism product 

urobilinogen (PFDR=0.011, Fig. 2d), which is associated with obesity41 and older 

chronological age42.  

GMC3 microbiomes were also depleted of amino acid and vitamin production pathways 

(Fig. 2a, Extended Fig. 2h-k) as well as allantoin degradation (PFDR=0.12; Fig. 2e, 

Extended Fig. 2l), which recycles nitrogen necessary for their synthesis. Notably, the 

amino acid neurotransmitter gamma-aminobutyrate acid (GABA), which regulates 

neuro-endocrine body weight control43,44, obesity-induced inflammation and insulin 

sensitivity45, was depleted in the feces of higher-risk GMC3 infants (PFDR=0.041; Fig. 

2f). Despite microbial deficiencies in these synthesis pathways, mass spectrometry 

analyses indicated significantly increased concentrations of a number of vitamins and 

amino acid derivatives in GMC3 infant feces (Extended Fig. 3a and Supplementary 

Table 10), likely attributable to a dietary surplus in these infants who were more likely 

formula fed. While GMC1 and GMC3 metagenomes exhibited few differences in protein 
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degradation capacity, mass spectrometry revealed that GMC3 feces were highly 

enriched for a range of catabolic amino acid by-products (Extended Fig. 3a), including 

phenylacetate (PFDR=0.002, Fig. 2g) that triggers hepatic steatosis10, and modulators of 

GABAergic signaling, such as the GABA precursor glutamine (PFDR=0.006; Extended 

Fig. 3d) and weak GABA agonist 5-aminovalerate (PFDR=0.024; Extended Fig. 3e), 

implicating altered enteroendocrine signaling in higher-risk infants.  

Fecal extracts from higher-risk infants reprogram enterocyte physiology and 

accelerate triglyceride absorption 

To determine the functional consequences of altered gut microbiome productivity in 

infants at higher- versus lower-risk for OW/OB, enterocyte transcriptional and 

physiological (triglyceride uptake) responses to cell-free GMC1 and GMC3 fecal 

products (n=17 with sufficient remaining material) were assessed in the presence of 

oleic acid, the most abundant unsaturated fatty acid found in human and formula milk. 

Variance in enterocyte transcription associated significantly with GMC (PERMANOVA 

R2=0.18, p=0.005; Extended Fig. 4a) and OW/OB status (PERMANOVA R2=0.12, 

p=0.046; Extended Fig. 4b), and was greatest between GMC3 OW/OB (n=7) and 

GMC1 Normal BMI (n=4) samples (Extended Fig. 4c). This latter comparison produced 

starkly different transcriptional programs (PERMANOVA R2=0.33, p=0.003; Fig. 3a) 

including transcripts involved in cell proliferation (LGALS1, WNT1), organization 

(BFSP1, LAMA1), and barrier function (GJB7, CLDN2; Fig. 3b-c and Supplementary 

Table 11). GMC3 OW/OB fecal extracts increased enterocyte expression of genes 

regulating inflammation (ALOX5, TNFSF9, CCL20, CCL22; Fig. 3c), long-chain fatty 

acid transport (SLC27A1, ACSL1, ACSL3, ACSL4; Fig. 3c and Extended Fig. 4d) and 
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those regulating vesicle maturation, transport and exocytosis (KIF5C, LGI3, TMEM59L; 

Fig. 3b). In parallel, downregulation of genes involved in fatty acid oxidation (Extended 

Fig. 4d) and mitochondrial electron transport chain genes involved in oxidative 

phosphorylation (Extended Fig. 4e) were also observed, suggesting that products of 

the higher-risk for obesity infant gut microbiome induce alterations in lipid trafficking and 

metabolism by mammalian cells. Gene set enrichment analysis further identified genes 

associated with transit amplifying cells and enteroendocrine progenitors as enriched in 

enterocytes treated with GMC3 OW/OB extracts (Fig. 3d), the latter consistent with our 

earlier observation that GMC3 microbiomes produce metabolic products with the 

potential to alter enteroendocrine function. Genes associated with mucin-producing 

goblet cells were enriched in enterocytes treated with fecal extracts from GMC1 infants 

who had normal BMIs at age two (Fig. 3d), indicating that gastrointestinal mucus, a 

critical physical and biochemical barrier, may also play a protective role against 

childhood obesity development. 

To confirm that GMC3 OW/OB-induced transcriptional reprogramming of enterocytes 

produced functional changes in lipid handling, cellular triglyceride accumulation was 

assessed. Consistent with gene expression data, fecal products from GMC3 OW/OB 

infants enhanced triglyceride accumulation in enterocytes compared with GMC1 infants 

with normal BMIs at age two (n=11; p=0.033; Fig. 3e). 
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GMC3 Candida albicans isolates accelerate triglyceride trafficking in a nutrition-

dependent manner 

Our data indicated that microbial members and metabolites of the higher-risk for obesity 

infant gut microbiome influence lipid accumulation by enterocytes. In an attempt to 

identify specific gut microbes capable of influencing mammalian triglyceride trafficking, 

members of bacterial and fungal genera enriched in GMC3 infants were isolated from 

fecal samples in this study or obtained from lab and commercial culture collections. 

Amongst all strains tested in vitro (22 strains from 12 genera), cell-free supernatant from 

multiple strains of Candida albicans isolated from GMC3 infants promoted the greatest 

egress of accumulated triglycerides from enterocytes (Fig. 4a and Extended Fig. 5a). 

This phenotype was consistent across C. albicans isolates irrespective of oxygen 

availability (Fig. 4a). Fractionation of cell-free C. albicans supernatant identified the 

<3kDa polar fraction as capable of recapitulating this phenotype (Fig. 4a and Extended 

Fig. 5b), implicating a small polar, secreted fungal molecule. Addition of the <3kDa 

fraction to cell-free fecal products from low-risk GMC1 infants was sufficient to promote 

triglyceride egress from enterocytes (Fig. 4b), confirming its capacity to regulate 

triglyceride handling by mammalian cells.  

Compared with GMC1 infants who developed normal BMIs at age 2 years, Candida was 

significantly enriched in GMC3 infants who developed OW/OB status (Extended Fig. 

5c), a significantly larger proportion of whom were formula fed. Since substrate 

availability is known to influence Candida physiology and virulence46, we examined 

whether infant formula enhanced C. albicans growth and capacity to influence 

enterocyte triglyceride trafficking. C. albicans DN2, which promoted the greatest 
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triglyceride egress (Fig. 4a), exhibited rapid growth on either bovine- or soy-based 

infant formulas tested (n=3), but was inhibited by human breast milk (n=3 independent 

donors; Fig. 4c and Extended Fig. 5d-f). Morphologically, C. albicans DN2 cultured on 

infant formula developed floc-like structures comprised of yeast and pseudohyphal cells 

co-associated with extracellular DNA scaffolds (Fig. 4d and Extended Fig. 5g). In 

contrast, C. albicans DN2 cultured on breast milk exhibited a primarily yeast-like 

morphology, and neither formed flocs nor evidenced DNA scaffolding (Fig. 4d and 

Extended Fig. 5g). Cell-free supernatant from formula-grown C. albicans DN2 

promoted triglyceride egress from enterocytes (p=0.002, Fig. 4e), while that from 

breastmilk cultures did not. This phenotype was cell-density dependent, since 

normalization of formula-grown C. albicans DN2 cell numbers to that observed in breast 

milk markedly reduced triglyceride egress by the former (Extended Fig. 5h). 
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Discussion 

Early life gut microbiome development is the product of evolutionary selection and 

dynamic functional synergy in the context of environmental exposures. Emerging 

evidence indicates that alterations to the rate of gut microbiome development disrupts 

the chronological synchrony of host-microbe interactions, impacting microbiome 

assembly, productivity and early life developmental programming resulting in childhood 

disease25,27–29. Our findings indicate that accelerated gut microbiome development in 

early infancy increases risk of children experiencing OW/OB phenotypes at age two 

years. Several of the microbial pathways and metabolites enriched in higher-risk GMC3 

infants have previously been correlated with formula feeding16,47 and older chronological 

age21,22. Thus, a perturbed, functionally precocious early-life gut microbiome detected in 

infants more likely to be formula fed increases risk of overweight and obese phenotypes 

in later childhood. 

Early-life nutrition plays a substantial role in shaping infant gut microbiome functional 

capacity and metabolic productivity16,21,22. Human milk is a complex, dynamic functional 

food, the composition of which differs across mothers and changes with length of 

lactation48. Bioactives in breast milk, such as lactoferrin and immunoglobulin-A, regulate 

early-life microbial colonization in the gastrointestinal tract49,50. Nutritional substrates, 

including human milk oligosaccharides, promote selection of co-evolved microbes 

capable of metabolizing human milk51 and fulfilling dynamic amino acid and vitamin 

requirements throughout growth in infancy. In contrast, infant formula primarily provides 

nutritional substrates, thus failing to exert the same chronological selective pressures as 

breast milk on the developing microbiome. 
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Broad functional changes both in gene content and metabolic productivity of higher- and 

lower-risk for obesity infant microbiomes were evident. Of note were the differences in 

microbial strategies for nutrient utilization and energy biogenesis. Nutrient excess is 

known to promote mitochondrial dysfunction, leading to obesity-related pathologies52. 

Thus, the observed alternative microbial capacity for nutrient utilization, associated with 

lower-risk for obesity gut microbiomes and increased breastfeeding, may serve to 

reduce such nutrient excess to confer protection against childhood obesity 

development.  

Cell-free products of higher-risk for obesity infant microbiomes induced a distinct 

program of enterocyte gene expression in vitro that was graduated by OW/OB 

outcomes, raising the possibility that the infant gut microbiome calibrates metabolic 

health in infants who subsequently experience OW/OB phenotypes. Notably, 

enterocytes exposed to cell-free products of higher-risk infants with subsequent OW/OB 

status were characterized by reduced barrier function and fatty acid oxidation, in parallel 

with increased expression of genes involved in inflammation and lipid handling – all 

previously described features of obesity53–56. At the cellular level, obesity is 

characterized by cytosolic lipid overload across multiple cell types54,57. Functional 

confirmation of accelerated triglyceride accumulation in enterocytes exposed to cell-free 

products of higher-risk infant microbiomes indicates that early-life microbes and their 

products regulate lipid loading in enterocytes. Of the strains examined, enterocyte 

triglyceride handling was most accelerated by C. albicans in an infant formula-

dependent manner, underscoring the importance of early life nutrition in governing both 

microbial cell physiology and inter-kingdom signaling. These findings offer mechanistic 
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insights into the origins of childhood obesity and indicate that the infant gut microbiome 

plays a key role in regulating triglyceride trafficking and the risk of childhood overweight 

and obesity at age two years. Thus, early-life approaches to foster appropriately paced 

microbiome development and metabolism may help prevent childhood obesity. 
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Fig. 1. Compositionally distinct gut microbiota classes (GMCs) in feces of 1-
month-old infants exhibit differential microbiota maturity and relate to the relative 
risk (RR) of Overweight/Obesity (OW/OB) at age 2 years.  

(a) Distinct GMCs identified by Dirichlet Multinomial Mixture modeling explain more than 
10% of observed variation in infant fecal bacterial β-diversity (n = 349; PERMANOVA of 
unweighted UniFrac distances). (b) BMI Z-score at age 2 years is significantly different 
in infants with distinct GMCs (n = 349; Linear regression; P = 0.039), with GMC3 infants 
exhibiting significantly higher BMI Z-scores in childhood. (c) Microbiota-for-age Z-scores 
(MAZ) of GMC3 infants are significantly greater than that of lower-risk infants (n = 349; 
Kruskal-Wallis; P < 2e-16), indicating early microbiota maturity. MAZ scores were 
calculated from a random forest model trained by the 50 most age-discriminatory 
bacterial OTUs of normal BMI infants. (d) Bacterial taxonomic comparison of GMC3 and 
GMC1 subjects; taxa exhibiting significant differences (zero-inflated negative binomial 
regression (ZINB); PFDR < 0.05) in mean relative abundance are shown. Values are 
log10-transformed for purposes of illustration. Bar height indicates the magnitude of 
between-group relative abundance difference. Bacterial phyla are color coded as 
indicated. (e) Relative abundance of fungal genera differs across GMCs. Pairwise 
comparisons were calculated by linear regression in b and two-sided Wilcoxon rank 
sum tests in c. Boxplots indicated within violin plots represent the median (center), the 
25th and 75th percentiles, and the smallest and largest values within 1.5 × the 
interquartile range (whiskers).  
 

Table 1. GMCs exhibit significantly different relative risks RRs of developing 
OW/OB phenotypes at age 2 years.  

Significance of risk ratios between microbiota states was calculated on the basis of log-
binomial regression.  

 

  

Microbial Community Types RR1 (95% CI) 
GMC1

(N = 141) 
GMC2

(N = 130) 
GMC3
(N = 78) 

GMC3 vs. 
GMC1

GMC2 vs. 
GMC1

GMC3 vs. 
GMC2

Overweight or 
Obese at Age 2 

16 25 
(19%) 

21 
(27%) 

2.63 
(1.45-4.76) 
P = 0.002 

1.80 
(0.94-3.33) 
P = 0.059 

1.45
(0.86-2.44) 
P = 0.163 

1 Adjusted for age (in days) at stool sample collection, prenatal antibiotic and antifungal use, mode of delivery and breastfeeding status at 1-month
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Fig. 2. High-risk GMC3 and lower-risk GMC1 exhibit distinct functional capacities 
and metabolic productivity.  

(a) Bar plot of gene pathways distinguishing (log2 FC > |1|; PFDR < 0.25) GMC3 (n=23) 
and GMC1 (n=20) microbiomes. Integrated shotgun metagenomic and untargeted 
metabolomic analyses indicate (b) pathways involved in differential substrate 
degradation for energy biogenesis and (e) reduced allantoin degradation in GMC3. 
Enzymes (➞) and metabolites (� and ■) in b and e with log2 FC > |0.25| colored coded 
by GMC enrichments (red enriched in GMC3; blue enriched in GMC1). Pathways 
involved in central carbon metabolism are highlighted in grey shading. Legend in b 
similarly applicable to e. (c) Fecal bilirubin, (d) urobilinogen, (f) GABA and (g) 
phenylacetate levels differ between GMC3 (n=32) and GMC1 (n=28). Differences in 
normalized abundance between groups in a determined by zero-inflated compound 
Poisson (ZICP) regression (Supplementary Table 9A). In c, d, f and g, significance was 
calculated using Welch’s two-sided t-test, with PFDR < 0.05 considered significant, and 
each dot represents an independent infant stool sample. Boxplots represent the median 
(center), the 25th and 75th percentiles, and the smallest and largest values within 1.5 × 
the interquartile range (whiskers). 
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Fig. 3. Cell-free fecal products from GMC3 infants who developed OW/OB 
phenotypes in childhood reprogram Caco-2 enterocyte transcription and 
accelerate triglyceride accumulation.  

(a) Combined GMC and OW/OB groupings explain a large proportion (33%) of 
observed variance in Caco-2 enterocyte response to cell-free fecal products of 1 month 
old infants (n=11; PERMANOVA of Euclidean distances). (b) Volcano plot and (c) heat 
map of significantly (PFDR < 0.05) differentially (log2 FC > |1|) expressed genes observed 
following exposure of enterocytes to cell-free fecal products of GMC3 OW/OB (n=7) or 
GMC1 Normal BMI (n=4) infants. Genes of interest and those associated with distinct 
intestinal epithelial cell types (Parikh et al. 2019) are labeled in c.  (d) Gene-set analysis 
of transcripts associated with intestinal epithelial cell states (Parikh et al. 2019) indicate 
enrichment of enteroendocrine precursors and transit amplifying cell populations in 
response to cell-free fecal products of GMC3 infants who become OW/OB at 2 years. 
(e) Cell-free fecal products of 1-month-old GMC3 infants who develop an OW/OB 
phenotype at 2 years (n=7) promote increased triglyceride accumulation in enterocytes 
compared to cell-free products of GMC1 infants who develop normal BMIs (n=4; 
ANOVA; P = 0.031). For a-d and e, n indicates biologically independent infant samples. 
Each dot represents one independent infant fecal sample in a, one transcript in b, and 
one independent biological replicate in e. DESeq2 was used to calculate significant 
genes using a two-sided FDR and log2 FC. Welch’s two-sided t-test was used for 
pairwise comparisons in e. Boxplots indicate the median (center), the 25th and 75th 
percentiles and the smallest and largest values within 1.5 × interquartile range 
(whiskers). 
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Fig. 4. Candida albicans isolated from GMC3 infants accelerate triglyceride 
trafficking in a nutrient-dependent manner.  

(a) Egress of accumulated triglycerides from enterocytes is promoted by the 3kDa 
fraction of multiple C. albicans isolates (DN2, DN10, DN11 and SC5314) independent of 
oxygen availability. Pairwise comparisons between cell-free supernatant (S) or 3kDa 
fraction (3kDa) and respective Sabouraud Dextrose (SD) control were all significant (^ p 
< 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001). (b) C. albicans DN2 3kDa fraction is 
sufficient to accelerate egress of absorbed triglycerides even against a background of 
low-risk GMC1 cell-free fecal products. (c) C. albicans DN2 growth is inhibited in the 
presence of human breast milk (Breastmilk 1-3) compared with infant formula (Formula 
1-3) or SD media. Representative growth curves of three independent experiments 
measured by optical density at 600 nm (OD600), error bars denote s.e.m. from center 
mean between three technical experiments. Integral of logistic regression model fitting 
was used to calculate area under the curve (auc) and change with respect to SD is 
reported as Δauc. (d) Representative phase contrast and fluorescence micrographs of 
C. albicans DN2 grown in breast milk (top) and infant formula (bottom) at 60x with 
propidium iodide stain for DNA in red. Scale bars indicate size. Images representative of 
three independent milk donors or formula brands per group (Extended Data 5f). (e) 
Promotion of triglyceride egress from enterocytes by C. albicans DN2 differs by growth 
media; colored dots represent independent breast milk or formula brands respectively. 
In a and e each dot represents a biological replicate. In b, each dot represents an 
independent fecal sample. Significance of pairwise comparisons in a, b, and e were 
calculated using Welch’s two-sided t-test. Boxplots indicate the median (center), the 
25th and 75th percentiles, and the smallest and largest values within 1.5 × the 
interquartile range (whiskers). 
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Extended Data Fig. 1. Compositionally distinct gut microbiota classes (GMCs) 
exist during the first year of life.  

(a) Dirichlet multinomial mixture (DMM) model identifies three compositionally distinct 
bacterial GMCs as the best model fit in very early life (n=349, range 21 – 58 days; 
median = 35). Model fit was based on the Laplace approximation to the negative log 
model where a lower value indicates a better model fit. (b) GMC1 and GMC3 infants do 
not significantly differ in age. (c) Bacterial richness (n=349; Kruskal–Wallis; P < 2e-16) 
and (d) phylogenetic α–diversity are significantly greater in GMC3 (n=349; Kruskal–
Wallis; P < 2e-16). (e) DMM model identifies four compositionally distinct bacterial 
GMCs as the best model fit later in infancy (n=287, range 174 – 238 days; median = 
206). Model was constructed as defined in a. (f) GMC4-7 participants do not differ 
significantly in age (n=287; Kruskal–Wallis; P = 0.15), with the exception of GMC5 and 
GMC6 where the latter is significantly older in a pairwise comparison. (g) GMC 
designation significantly explains the observed variation in bacterial β-diversity in later 
life samples (n = 287; PERMANOVA of Bray Curtis distances, R2 = 0.15; P = 0.001). 
Each dot represents an independent fecal sample. (h) Age-stratified taxa summaries 
(presented at the family level) of bacterial relative abundance (n = 756; number of 
participants per age group is provided above bars). (i) Age-stratified taxa summaries 
(presented at the genus level) of fungal relative abundance (n = 366; number of 
participants per age group is provided above bars). (j) Tenfold cross-validation indicates 
that 50 bacterial OTUs are sufficient for random forest predictions of the chronological 
age of normal BMI infants on the basis of microbiota composition. Data show mean ± 
s.d. computed over 100 iterations. (k) The 50 most informative predictors to the random 
forest model, ranked in descending order of their importance to model accuracy. These 
bacterial OTUs were included in the sparse model used to calculate MAZ. Data show 
mean ± s.e.m. computed over 100 iterations. Two-sided Wilcoxon rank sum test for 
significance of pairwise comparisons in b-d and f. Boxplots indicated within violin plots 
represent the median (center), the 25th and 75th percentiles, and the smallest and 
largest values within 1.5 × the interquartile range (whiskers). 
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Extended Data Fig. 2. GMC3 and GMC1 microbiomes exhibit distinct functional 
capacities.  

Comparative analysis of microbial metabolic pathways by GMC status (Supplementary 
Table 9A) indicated that GMC3 (n=23) microbiota are enriched for pathways that 
degrade (a) D-glucarate, D-galactarate, (b) myo/chiro/scillo-inositol, (c) pyruvate and (d) 
glycerol, whereas GMC1 (n=20) is enriched in pathways that degrade (e) methylgloxal, 
(f) glycol, and (g) ketogluconate. GMC1 is also enriched in capacity for synthesis of (h) 
L-phenylalanine, (i) arginine and polyamines, (j) thiamine and (k) phylloquinol, and for 
(l) allantoin degradation (ALLANCOM; Supplementary Table 9B). Each dot represents 
an independent fecal sample. P values are two-tailed, from zero-inflated compound 
Poisson (ZICP) models Benjamini-Hochberg FDR adjusted for multiple comparisons; 
PFDR < 0.2 considered significant. Boxplots show normalized abundance (nCPM) and 
indicate the median (center), the 25th and 75th percentiles, and the smallest and largest 
values within 1.5 × the interquartile range (whiskers). 
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Extended Data Fig. 3. GMC3 and GMC1 are metabolically distinct.  

(a) Comparison of fecal samples from GMC3 (n=32) and GMC1 (n=28) by untargeted 
mass spectrometry identifies widespread metabolic differences. GMC3 subjects exhibit 
evidence of increased fermentation and protein metabolism, the later reflective of 
greater incidence of formula feeding. In contrast, GMC1 subjects, who are enriched in 
oligosaccharides associated with breast feeding, exhibit evidence of greater fatty acid β-
oxidation. GMC1 also contains greater concentrations of the methylglyoxal degradation 
products (b) lactate and (c) pyruvate, whereas GMC3 is enriched in (d) the GABA 
precursor glutamine and (e) the weak GABA agonist 5-aminovalerate. Each dot 
represents an independent fecal sample in b-e. P values are two-tailed, from Welch’s 
two-sided t-test FDR BH-adjusted for multiple comparisons; PFDR < 0.05 considered 
significant. 
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Extended Data Fig. 4. Cell-free fecal products of 1-month-old GMC3 infants who 
become OW/OB at 2 years or GMC1 infants with normal BMIs at age 2 years 
induce divergent transcriptional responses in Caco-2 enterocytes.  

(a-b) Principal-component analysis of Euclidean distances of top 10,000 variably 
expressed genes (by coefficient of variation) and (c) heat map of most significantly 
differentially expressed (log2FC > |1|, PFDR  < 0.05) genes in Caco-2 enterocytes treated 
with cell-free fecal products from GMC1 Normal BMI (n=4), GMC3 Normal BMI (n=5), 
GMC1 OW/OB (n=1) or GMC3 OW/OB (n=7) subjects, as determined by RNA 
sequencing, indicate a transcriptional shift in enterocyte expression based on GMC 
class and 2-year OW/OB phenotypes. Pathway analysis indicates that enterocytes 
treated with cell-free fecal products of GMC3 OW/OB (n=7) infants exhibit altered 
expression of (d) PPAR signaling and lipid metabolism and (e) reduced expression of 
mitochondrial oxidative phosphorylation genes compared with cells treated with GMC1 
Normal BMI cell-free fecal extracts (n=4). Genes in d and e with log2FC > |1| and PFDR < 
0.15 are indicated within bolded solid black boxes. Each dot represents an independent 
fecal sample in a and b. PERMANOVA test was used for significance for a and b. 
DESeq2 was used to calculate pairwise significance using a two-sided FDR and log2FC. 
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Extended Data Fig. 5. Candida albicans promotes robust triglyceride egress from 
enterocytes in a formula-dependent manner irrespective of oxygen availability.  

(a) Members of the Candida genus, including the dominant fungus in GMC3 C. 
albicans, promote the greatest egress of accumulated triglycerides from enterocytes (21 
strains from 12 genera). Strains are color coded by growth media. P values indicate 
significant (P < 0.05) comparison with relevant uninoculated growth media. (b) Egress 
of accumulated triglycerides from enterocytes is promoted by the polar 3kDa fraction of 
aerobically grown C. albicans DN2. (c) Relative abundance of fungal genera differs 
between GMC3 OW/OB (n=11) and GMC1 Normal BMI (n=59) participants. (d) Effects 
of breast milk and infant formula compared to SD media on anaerobic growth and (e-f) 
24 h survival of C. albicans DN2. (g) Additional phase contrast and fluorescence 
micrographs of C. albicans DN2 grown in breast milk (left) and infant formula (right) at 
60x with propidium iodide stain for DNA in red. (h) Promotion of triglyceride egress by 
C. albicans is cell density dependent. OD600 normalization of C. albicans DN2 grown in 
formula to that of breast milk cultures markedly reduces its supernatant’s ability to 
promote triglyceride egress from enterocytes. Each dot represents a biological replicate 
in a, a technical triplicate from two experiments in b and an independent milk donor or 
formula brand in d-f and h. All P values were calculated using Welch’s two-sided t-test. 
Boxplots indicate the median (center), the 25th and 75th percentiles, and the smallest 
and largest values within 1.5 × the interquartile range (whiskers). 
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Supplemental Files 

Supplementary Table 1 | Association between maternal and early life factors and 

GMCs 

Supplementary Table 2A | Unadjusted and adjusted association between 1-month 

GMC1-3 and obese/overweight at age 2 

Supplementary Table 2B | Unadjusted and adjusted association between 1-month 

GMC1-3 and BMI z-score at age 2 

Supplementary Table 3A | Unadjusted and adjusted association between 6-month 

GMC4-7 and obese/overweight at age 2 

Supplementary Table 3B | Unadjusted and adjusted association between 6-month 

GMC4-7 and BMI z-score at age 2 

Supplementary Table 4 | Differentially abundant (FDR <0.05) bacterial OTUs between 

GMC3 (n=78) and GMC1 (n=141). Taxa ordered by decreasing log2 Fold Change 

(Log2FC) of OTU relative abundance in GMC3 versus GMC1. 

Supplementary Table 5 | Differentially abundant (FDR <0.05) fungal OTUs between 

GMC3 (n=32) and GMC1 (n=68). Taxa ordered by decreasing log2 Fold Change 

(Log2FC) of OTU relative abundance in GMC3 versus GMC1. 

Supplementary Table 6 | Differentially abundant (FDR <0.05) bacterial OTUs between 

GMC3 (n=78) and GMC2 (n=130). Taxa ordered by decreasing log2 Fold Change 

(Log2FC) of OTU relative abundance in GMC3 versus GMC2. 

Supplementary Table 7 | Differentially abundant (FDR <0.05) fungal OTUs between 

GMC3 (n=32) and GMC2 (n=50). Taxa ordered by decreasing log2 Fold Change 

(Log2FC) of OTU relative abundance in GMC3 versus GMC2. 
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Supplementary Table 8 | Distribution of microbiologically representative infant fecal 

samples that underwent shotgun metagenomic and untargeted metabolomic profiling. 

Supplementary Table 9A | Differential abundance of MetaCyc pathways between 

GMC3 (n=23) and GMC1 (n=20). Pathways ordered by increasing BH-adjusted P value 

in GMC3 versus GMC1. 

Supplementary Table 9B | Aggregation of MetaCyc pathway variants  

Supplementary Table 10 | Differential abundance of metabolites detected in GMC3 

(n=32) and GMC1 (n=28) stool samples. 

Supplementary Table 11 | Differentially expressed (log2FC >|1| and FDR <0.15) genes 

in Caco-2 enterocytes treated with GMC3 Ow/Ob (n=7) versus GMC1 Normal (n=4) 

cell-free fecal products. Genes ordered by decreasing log2 Fold Change (Log2FC) of 

expression in GMC3 versus GMC1. 

Supplementary Table 12 | Growth conditions for microorganisms whose 24 h 

supernatant was tested in enterocyte triglyceride trafficking assay. 
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Methods 

Study population, subsample criteria of subjects for stool microbiome analysis 

and OW/OB definition 

The Wayne County Health, Environment, Allergy and Asthma Longitudinal Study 

(WHEALS) US birth cohort recruited pregnant women (n=1258) aged 21 - 49 years 

between August 2003 and November 200758. Women were considered to be eligible if 

they lived in a predefined cluster of contiguous zip codes in Wayne County, Michigan 

(including the city of Detroit), had no intention of moving out of the area in the 

subsequent two years and provided informed written consent. For this study, we 

selected WHEALS children who had a stool sample collected during a 1 and/or 6 month 

home visit, and had completed their 24-month clinic visit with height and weight 

measurements (n=543 subjects; n=756 samples). The age of infants at stool collection 

ranged from 1–11 months and samples were stored at −80 °C. Samples were shipped 

to the University of California, San Francisco (UCSF) on dry ice, where they were also 

stored at −80 °C until processed. At the study’s 2-year clinic visit, trained field staff 

measured child height and weight. Overweight or obesity (OW/OB) at age 2 years was 

defined using the 2000 age and sex adjusted CDC growth charts59 as BMI at or above 

the 85th percentile and normal BMI as BMI between the 5th to <85th percentile. 

Since age strongly influences microbiome composition during early life, DMM modeling 

was only applied to samples that were collected within a standard deviation of the mean 

collection age for each home visit to control for age-specific microbiome differences. 

Samples were stratified by time of sample collection (n=403 1-month, n=353 6-month). 
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In the DMM analytical dataset, stool specimens from the 1-month visit were collected at 

a mean ± 1 standard deviation (SD) of 39 ± 19 days (n = 349, median age 35 days; 

range 21 - 58 days) and stool specimens from the 6-month visit were collected at a 

mean ± 1 SD of 205 ± 33 days (n = 287, median age 206 days; range 174 - 238 days). 

DNA extraction 

Fecal DNA was extracted from stool samples using the modified 

cetyltrimethylammonium bromide (CTAB) method previously used for fungal and 

bacterial profiling60,61. Briefly, 500 µl modified CTAB extraction buffer was added to 25 

mg of stool in a 2 ml Lysing Matrix E tube (MP Biomedicals) prior to incubation at 65 °C 

for 15 min. Samples were bead-beaten (5.5 m/s, 30 sec) in a Fastprep-24 (MP 

Biomedicals) and then centrifuged (16000 × g, 5 min) before the top aqueous phase 

was transferred to a 2 ml polypropylene 96-well plate (USA Scientific). A further 500 µl 

modified CTAB extraction buffer was added to each LME tube, similarly bead-beaten 

and centrifuged to collect a total of 1 ml aqueous phase per sample. After adding 1 ml of 

phenol:chloroform:isoamyl alcohol (25:24:1) to the collected aqueous supernatant, 

samples were centrifuged (3200 × g, 20 min, 4 °C) and the resulting top aqueous phase 

was transferred to a new 2 ml polypropylene 96-well plate (USA Scientific). 

Polyethylene glycol/NaCl (2 v/v) was added to the collected aqueous supernatant and 

incubated at room temperature for 2 h. Samples were then centrifuged (3200 × g, 60 

min, 4 °C), washed with ice cold 70% EtOH and resuspended in 30 µl of TE buffer 

(Invitrogen). 
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PCR conditions and library preparation for bacterial and fungal biomarker 

sequencing 

The V4 region of the 16S rRNA bacterial gene was amplified using primers designed by 

Caporaso et al62. PCR was performed in 25 µl reactions using 0.025 U Takara Hot Start 

ExTaq (Takara Mirus Bio Inc.), 1x Takara buffer with MgCl2, 0.4 pmol/µl of F515 and 

R806 primers, 0.56 mg/ml of bovine serum albumin (BSA; Roche Applied Science), 200 

µM of dNTPs and 10 ng of gDNA. Reactions were performed in triplicate with the 

following: initial denaturation (98 °C, 2 min), 30 cycles of 98 °C (20 s), annealing at 50 

°C (30 s), extension at 72 °C (45 s) and final extension at 72 °C (10 min). Amplicons 

from technical triplicates were pooled and verified using a 2% TBE agarose e-gel (Life 

Technologies), cleaned up and normalized using SequalPrep Normalization Plates 

(Applied Biosystems), and quantified using the Qubit dsDNA HS Assay Kit (Invitrogen). 

Samples were pooled in equal moles (5 ng), purified using AMPure SPRI beads 

(Beckman Coulte), quantified using KAPA SYBR (KAPA Biosystems), denatured and 

diluted to 2 nM, and 5 pmol was loaded onto the Illumina Nextseq cartridge with 40% 

(v/v) of denatured 12.5 pM PhiX spike-in control. 

The internal transcribed spacer region 2 (ITS2) of the fungal rRNA gene was amplified 

using the primer pair fITS7 (5’- GTGAATCATCGAATCTTTG-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’)63. PCR was performed in triplicate in 25 µl reactions 

with 1x Takara buffer (Takara Mirus Bio), 200 nM of each primer, 200 µM dNTPs, 2.75 

mM of MgCl2, 0.56 mg ml-1 of BSA (Roche Applied Science), 0.025 U Takara Hot Start 

ExTaq and 50 ng of gDNA. Reactions were conducted under the following conditions: 

initial denaturation (94 °C for 5 min) followed by 30 cycles of 94 °C (30 sec), annealing 
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at 54 °C (30 sec), extension at 72 °C (30 sec) and a final extension at 72 °C (7 min). 

PCR amplicons were verified, purified, quantified and pooled as described above for 

bacterial library preparation. ITS2 PCR was performed on all stool samples, which 

produced ITS2 amplicons in n=186 1-month and n=180 6-month samples; samples 

without fungal data had no detectable ITS2 amplicons. The amplicon library was 

purified, quantified, denatured and diluted similar to the 16S amplicon library described 

above. 10 pmol of the ITS2 amplicon library was loaded onto the Illumina MiSeq 

cartridge with 25% (v/v) of denatured 10 pM PhiX spike-in control.  

Biomarker sequence data processing 

Paired-end sequences were assembled using FLASH v1.2.764 requiring a minimum 

base pair overlap of 25 bp and demultiplexed by barcode using QIIME v1.9.165. Quality 

filtering was performed using USEARCH v8.0.162366 to remove reads with >2 expected 

errors. Quality reads were dereplicated at 100% sequence identity, clustered at 97% 

sequence identity into operational taxonomic units (OTUs), filtered of chimeric 

sequences by UCHIME67, and mapped back to resulting OTUs using UPARSE68; 

sequence reads that failed to cluster with a reference sequence were clustered de novo. 

Taxonomy was assigned to the OTUs using the Greengenes v13_5 database69. 

Sequences were aligned using PyNAST70, and FastTree 2.1.371 was used to build a 

phylogenetic tree. Resulting sequence reads were normalized by multiply rarefying to 

60,000 reads per sample as described previously61 to ensure reduced data were 

representative of the fuller data for each sample. 
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Fungal sequences were quality trimmed (Q score, <25) and removed of adaptor 

sequences using cutadapt72. Paired-end sequences were assembled, demultiplexed by 

barcode, clustered into OTUs at 97% identity and filtered of chimeras using similar 

methods as described for 16S amplicons. Taxonomy was assigned using UNITE v7.073. 

Resulting sequence reads were normalized by multiply rarefying to 1,000 reads per 

sample to ensure reduced data were representative of the fuller data for each sample. 

Prediction of microbiota age using random forests 

Random forest models were used to regress the relative abundances of all 16S rRNA-

derived bacterial OTUs in infant stool samples against their chronological age using 

randomForest in R as previously described39. Default parameters were used with the 

following exceptions: ntree = 10,000, importance = TRUE. Tenfold cross-validation was 

performed using the rfcv function over 100 iterations to estimate the minimum number 

of features needed to accurately predict microbiota age. The features most important for 

prediction were identified over 100 iterations of the importance function, and a sparse 

model consisting of the 50 most important features was constructed and trained on a 

set of n=255 normal BMI infants (n=356 fecal samples) randomly selected from the 

larger normal BMI infant set (including 50% of normal BMI GMC1 infants [n=54]; 

excluded GMC2 and GMC3 infants). This model was validated in the remaining n=54 

normal BMI GMC1 infants, and then applied to all remaining GMC1-3 infants to predict 

microbiota age. Microbiota-for-age z-scores (MAZ) was computed as previously 

described39, enabling comparisons of microbiota maturity as the metric accounts for 

differing variance in predicted microbiota age throughout infant development. 
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Metagenomic processing and data analysis 

DNA was extracted from n=28 GMC1 (n=15 Normal, n=13 OW/OB) and n=32 GMC3 

(n=15 Normal, n=17 OW/OB; Supplementary Table 8) stool samples using the 

modified CTAB methods described above – samples selected had the highest posterior 

probability of GMC membership and sufficient remaining material for paired 

metagenomic and metabolomic profiling. Extracted DNA was sent to the Vincent J. 

Coates Genomic Sequencing Laboratory at the California Institute for Quantitative 

Biosciences for library preparation and 150-bp paired-end sequencing on an Illumina 

HiSeq 4000 (www.qb3.berkeley.edu/gsl). Only samples with >25,000 raw reads in each 

direction (>50,000 total raw reads) were included in this study (n=43, indicated within 

parentheses in Supplementary Table 8). The median number of raw reads per sample 

was 13,541,440 (IQR 6,300,000). The median number of reads following Q15 quality 

trimming and filtering human DNA using Bbduk v38.73 

(https://sourceforge.net/projects/bbmap/) was 13,367,212 (IQR 2,073,330). All analyses 

were performed on trimmed and filtered reads. HUMAnN2 v2.8.174 was used to identify 

genes, level4ECs and functional MetaCyc pathways from the short-reads, and to 

normalize outputs into copies per million (CPM). Zero-inflated compound Poisson 

regression (MaAsLin275 package) was used to determine pathways that differed in 

relative abundance between GMCs, which were corrected for multiple testing using 

Benjamini-Hochberg (BH) False Discovery Rate (FDR). Significantly different pathways 

(PFDR <0.25) were visualized using BioCyc’s Pathway Collage and overlaid with log2 FC 

paired level4EC and metabolite (see Metabolomic profiling) values. 
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Metabolomic profiling 

Stool samples (200 mg) sent for metagenomic profiling (n=60, Supplementary Table 8) 

were provided to Metabolon (Durham, NC) for Ultrahigh Performance Liquid 

Chromatography/Tandem Mass Spectrometry (UPLC-MS/MS) and Gas 

Chromatography-Mass Spectrometry (GC-MS) using their standard protocol 

(http://www.metabolon.com/). Identified compounds were compared to Metabolon's in-

house library of purified standards, which includes more than 3,300 commercially 

available compounds. 

In vitro exposure of enterocytes to cell-free fecal products 

Fecal samples from 4 GMC1 Normal BMI, 1 GMC1 OW/OB, 5 GMC3 Normal BMI and 7 

GMC3 OW/OB infants with metagenomic and metabolic profiles were used (biological 

replicates) to prepare cell-free fecal products and for microbial isolation (see Microbial 

isolation and supernatant); excluded samples from these groups had insufficient 

material. Stool samples were homogenized 1 g/ml in pre-warmed phosphate-buffered 

saline (PBS) containing 20% fetal bovine serum (FBS). Samples were vortexed, 

incubated (37 °C, 10 min) and centrifuged (14,000 rpm, 30 min). Supernatant was 

filtered through a 0.2 µm filter before being used in the enterocyte assay described 

below. 

Caco-2 enterocytes between passage numbers 24 and 30 were seeded at 20,000 

cells/cm2 into tissue culture-treated 96-well flat bottom plates (Corning) and incubated 

for 14 days in Modified Eagle Medium (MEM, Gibco) media supplemented with 10% 

FBS (Gibco), 1x Non-Essential Amino Acids Solution (NEAA, Gibco), 100 U/ml penicillin 
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and 100 µl/ml streptomycin (Gibco). Media was changed every other day. Oleic acid 

(Sigma Aldrich) was used as the substrate to measure fatty acid uptake and triglyceride 

egress by enterocytes. Differentiated enterocytes were co-incubated with 500 µM 

oleate-albumin and 5% v/v cell-free fecal products for 24 h at 37 °C. Control exposures 

included no treatment and sterile 20% FBS in PBS.  

Caco-2 enterocyte RNA sequencing and data analysis 

RNA was extracted from Caco-2 enterocytes treated with cell-free fecal products using 

the RNAqueous kit (ThermoFisher) and quantified using Qubit RNA HS assay 

(ThermoFisher). Extracted RNA was sent to the Vincent J. Coates Genomic 

Sequencing Laboratory at the California Institute for Quantitative Biosciences for library 

preparation and 150-bp paired-end sequencing on an Illumina NovaSeq 6000 

(www.qb3.berkeley.edu/gsl). Demultiplexed paired-end reads were quality filtered and 

Q20 trimmed, removed of PCR duplicates and Illumina adapters using HTStream 

(https://github.com/s4hts/HTStream) and aligned to the human genome (Hg38 release) 

using STAR76 with ENCODE recommended parameters. Features were assigned to 

transcripts using STAR and normalized using DESeq2. Differential expression was 

evaluated using DESeq2 genes with at least 20 reads per gene in respective sample 

grouping. Log-normalized read counts were obtained from DESeq2 package, genes 

were filtered for presence in 75% of samples per comparison group, top variable genes 

were identified by the coefficient of variance and used to calculate principal components 

of Euclidean distances. Differential gene expression was mapped onto WikiPathways 

(www.wikipathways.org/instance/WP3942 and www.wikipathways.org/instance/WP111) 

using RCy377. 
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Enterocyte triglyceride accumulation and egress 

Five µl conditioned media from enterocytes treated with cell-free fecal products was 

incubated with 200 µl Infinity triglyceride reagent (ThermoFisher Scientific) for 5 min at 

37 °C and measured at absorbance 540 nm to quantify triglyceride egress from 

enterocytes. To quantify triglyceride accumulation in enterocytes, cells were washed 

twice with PBS before 250 µl hexane:isopropanol (60:40, HIP) washes were added to 

each well thrice. HIP washes were pooled into 1.5 ml tubes and dried down using a 

rotating speedvac at room temperature (Savant SC110, ThermoFisher Scientific). 100 µl 

1% Triton-X was added to each 1.5 ml tube, incubated on a shaking incubator at room 

temperature for 4 h, and 5 µl was incubated with 200 µl Infinity triglyceride reagent for 5 

min at 37 °C and measured at absorbance 540 nm. Cytotoxicity was quantified using 

the Pierce LDH cytotoxicity kit (ThermoFisher Scientific); all enterocytes exhibited ≥95% 

viability following treatment. Triglyceride quantities were normalized by total protein 

concentrations. To quantify total protein per well, HIP-extracted cells were dried at room 

temperature for 1 h before 300 µl 0.1M NaOH/0.1% sodium dodecyl sulfate was added 

to each well and incubated for 1 h at room temperature on a rotating incubator at 55 

rpm. Ten µl from each sample was added to 200 µl protein assay dye (Bio-Rad), 

incubated at room temperature for 5 min and quantified at absorbance 595 nm. 

Microbial isolation and supernatant 

Microbial strains were isolated from the same n=17 stool samples extracted for cell-free 

fecal products (with metagenomic and metabolic profiles and sufficient remaining 

material). 25mg stool was incubated at 37 °C on Sabouraud Dextrose (SD) with 0.05 
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mg/ml chloramphenicol, Brain Heart Infusion (BHI), Luria-Bertani (LB) and Tryptic Soy 

Broth (TSB) agar. Colony species identification was confirmed by Sanger sequencing 

(Quintara Biosciences) amplicons generated using primer pairs 27 F and 1492 R114 for 

the full-length bacterial 16S rRNA gene and ITS1 F and ITS4 R115 for the fungal ITS2 

gene. Taxonomy of sequences was assigned by SINA78 against the curated SILVA79 

database. Isolated strains and additional strains from ATCC and lab collections were 

grown in media conditions detailed in Supplementary Table 12. Microbial cells were 

propagated for experiments by inoculation of single colonies into relevant sterile media 

and incubated overnight at 37 °C. To generate cell-free culture supernatants, overnight 

cultures were normalized spectrophotometrically to OD600 0.1 in fresh media and grown 

at 37 °C under continuous OD600 measurement using a Cytation3 plate reader and 

Gen5 2.06 software (BioTek) every 30 min for 24 h. Cells were then normalized to 

OD600 0.3 as needed, centrifuged for 10 min at 13,000 rpm and filtered through a 0.2µm 

filter. Cell-free supernatant was further centrifuged for 30 min at 16,000 rpm and room 

temperature through a pre-rinsed Amicon Ultra 3kDa filter (Millipore) as needed to 

obtain the <3kDa fraction. Methyl Tertiary Butyl Ether (MTBE) liquid-liquid extractions80 

were used to further separate the 3kDa fraction into polar and non-polar fractions. 

Briefly, solvents comprised of 3:1 v/v MTBE:methanol (solvent 1) and 3:1 v/v 

H2O:methanol (solvent 2) were vortexed with the complete 3kDa fraction at a 3:2:1 v/v 

solvent 1:solvent 2:3kDa fraction ratio, then centrifuged at 20,000 x g and room 

temperature for 20 minutes. Upper (non-polar) and lower (polar) phases were separated 

into individual 2ml Eppendorf tubes and dried overnight at room temperature in a 

rotating speedvac (Savant SC110, ThermoFisher Scientific). The complete 3kDa 
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fraction was used as a positive control. Dried fractions were resuspended in SD media 

equivalent to the volume of original full 3kDa fraction subjected to MTBE extraction. 

20% v/v cell-free supernatant and 3kDa fractions were used in the enterocyte assay 

described above, with filtered blank media as a negative control. 

Fungal growth and morphology 

Breast milk media was prepared by centrifuging human breast milk from three different 

donors (Innovative Research) at 3000 rpm for 10 min at 4 °C. Formula milk media was 

prepared from three common formula brands (Tippy Toe’s Soy, Similac Pro-Total 

Comfort, Holle Bio Stage 1). Five grams of formula powder was mixed with 30 ml 

molecular grade water and centrifuged at 3000 rpm for 60 min at 4 °C. Both breast milk 

and formula were filtered through a 0.2 µm PES filter and diluted 1:2 in sterile PBS prior 

to use. Liquid Candida albicans DN2 cultures were grown for 24 h at 37 °C in SD media. 

Cultures were normalized to OD600 0.1, washed with PBS at 3000 rpm for 5 min at room 

temperature to remove residual SD media, and incubated in SD, breast milk or formula 

media. Fungal cultures were incubated in a Cytation3 spectrophotometer (BioTek) at 37 

°C for 24 h and OD600 was recorded every 30 min. Anaerobic 24 h OD600 readings were 

measured after resuspension with a pipette to homogenize floc structures that 

aggregated in wells. Growth curves were modeled by logistic regression in 

growthcurver81. Colony forming units (CFU) were counted from serial dilutions of 24 h 

cultures, grown on SD agar plates. 24 h cultures were also stained with propidium 

iodide and transferred onto glass slides for visualization by phase contrast and 

fluorescence microscopy. 
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Statistical analysis 

Except where indicated, all analyses were performed using the R statistical 

programming language. Faith’s phylogenetic diversity was calculated in QIIME and 

Student’s or Welch’s t-tests or Wilcoxon tests were calculated in R, depending on the 

data distribution. Distance matrices based on unweighted and weighted UniFrac82, 

Bray-Curtis and Canberra algorithms were calculated in QIIME to assess compositional 

dissimilarity between samples and were visualized using PCoA plots in R and 

Emperor83. PERMANOVA was performed using Vegan::Adonis84 in R to determine 

factors that significantly (p<0.05) explained variation in microbiota β-diversity. 

Dirichlet Multinomial Mixture (DMM) modeling35, which uses an unsupervised Bayesian 

approach to cluster samples, was used to identify clusters of subjects based on 

bacterial taxon relative abundance. Samples were stratified by time of sample collection 

(1-month, 6-month; n=349 and n=287, respectively), with rarefied counts collapsed at 

the genus-level to avoid extreme sparsity. The best-fitting DMM model was determined 

using the Laplace approximation to the negative log model evidence, testing up to 10 

underlying microbiota classes. Each sample was assigned to a particular Gut Microbiota 

Class (GMC) based upon the maximum posterior probability of membership; GMCs 

were examined for good separation and interpretability.  

Unadjusted and adjusted risk ratios (RRs) and corresponding 95% confidence intervals 

were calculated for OW/OB using log-binomial regression with maximum likelihood 

estimation, using PROC GENMOD in SAS version 9.4. Linear regression was used to 

test if BMI Z-scores were significantly different between GMCs. To determine which 
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OTUs differed in relative abundance between GMCs, unnormalized read counts were 

transformed using DESeq285 to identify log-Fold Change (FC) enrichment and corrected 

for multiple hypothesis testing using BH FDR (PFDR <0.05). Taxon fold change in relative 

abundance between GMCs was log10 transformed for illustration on a phylogenetic tree 

using iTOL v5.6.186. Metabolites exhibiting significantly different (PFDR <0.05) scaled 

intensities between GMCs were illustrated using Cytoscape v3.7.287. 

Data Availability 

All raw sequences are deposited in the SRA Bioproject PRJNA648818. 
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