UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Thinking Locally to Act Globally: A Novel Approach to Reinforcement Learning

Permalink
https://escholarship.org/uc/item/91f167cr|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Author
Schwartz, Anton

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/91f167cn
https://escholarship.org
http://www.cdlib.org/

Thinking Locally to Act Globally:
A Novel Approach to Reinforcement Learning

Anton Schwartz*
Computer Science Dept.
Stanford University
Stanford, CA 94305
schwartz@cs.stanford.edu

Abstract

Reinforcement Learning methods address the prob-
lem faced by an agent who must choose actions in
an unknown environment so as to maximize the re-
wards it receives in return. To date, the available
techniques have relied on temporal discounting, a
problematic practice of valuing immediate rewards
more heavily than future rewards, or else have im-
posed strong restrictions on the environment. This
paper sketches anew method which utilizes a subjec-
tive evaluator of performance in order to (1) choose
actions that maximize undiscounted rewards and (2)
do so at a computational advantage with respect to
previous discounted techniques. We present initial
experimental results that attest to a substantial im-
provement in performance.

Introduction

In the Artificial Intelligence community, much attention
has lately been given to “situated” models of behavior,
which focus not on the explicit mental representations an
agent has of its environment but on the interactions be-
tween the agent and the environment (Agre, 1993; Kael-
bling & Rosenschein, 1990; Maes, 1993). In this spirit,
the paradigm of Reinforcement Learning addresses the
problem of how an agent may learn to engage in produc-
tive interactions on the basis of trial and error.

In Reinforcement Learning (e.g., Barto, Sutton &
Watkins, 1989) an agent must learn to perform actions
in an environment so as to maximize, over the long run,
a measure of reinforcement which it receives in return.
The environment is formalized as a set S of states, ob-
servable and distinguishable by the agent, and a set A of
available actions. At each step in time the environment
is in some state, and an action must be chosen; this action
has the effect of changing the current state and producing
a scalar reinforcement value. The reinforcement value,
or reward, represents the extent to which we can consider
the action to have had immediate desirable or undesirable
consequences for the agent.

*Supported by an IBM Graduate Fellowship.

A policy is a mapping from S to A, suggesting which
action to perform in each state. The goal of Reinforce-
ment Learning methods is to arrive, by performing ac-
tions and observing their outcomes, at a policy which
maximizes the rewards accumulated over time. To do
this, one must have a notion of accumulated rewards, and
for almost all techniques developed to date, this notion
has been discounted return. The discounted return of a
policy p applied in a state s is given by

VP(s) & Y 't (1)
=0

where ¥ is the reward that will be received i time steps
after the learner begins executing policy p in state s,! and
« is atemporal discounting constant (0 <+ < 1). This sum
gives exponentially decreasing value to rewards further in
the future, with the result that an infinite future of rewards
may be summarized in a single finite value. The smaller
the value of gamma, the greater the relative importance
given to proximate rewards.

Let (a; p) represent the non-stationary policy which on
the first time step takes action a and thereafter follows
the suggestions of p. Q-learning, the most widely used
and studied Reinforcement Learning technique, works
by maintaining a policy p and an approximation of the
values V.{*)(s) for each state-action pair (s, a). These
represent the answers, in each state s to the question,
“How well off would I be if, just this once, I did action a
instead of my policy’s action?” Whenever the Q-learner
sees that in some state s it would be better off performing
some action other than the one its policy suggests, it
changes its policy to always choose that action in s.

More concretely, Q-learning operates by maintaining
afunction Q(s, @) which initially maps all values to zero,
and is updated every time an action is performed, as
follows. Let z &y, for 0 < 8 < 1, denote the operation
of assigning to variable z the value 8-y + (1 — 3) - z. If
action a is performed in state s, resulting in an immediate
reward 7,,»» and a transition into state s, then the value

'In stochastic domains, rf is a random variable, so we must
take the expected value of the sum.

mailto:schwartz@cs.stanford.edu

(+1)
A (+0))8 "Heaven"
"Earth"
B A'B " "
(+1000) 4l
-1

Figure 1: A trivial domain in which discounted and undis-
counted measures may disagree. States are indicated by
circles, actions are given in italics, their associated state
transitions are given by arrows, and their immediate re-
wards are given in parentheses.

of @ on input (s, a) is modified by performing:
)

At any time, the Q-values induce a policy p® which maps
each state s to the action a maximizing Q(s, a).

While Q-learning itself is a beautiful idea, the dis-
counted measure of return it relies on proves problematic.
For one, it may make behaviors with quick but mediocre
results look more attractive than efficient behaviors reap-
ing long-term benefits. In the simple example of Figure 1,
it is clear that attention to long-term rewards should dic-
tate a poligg which takes action A in state 1. But for
any y < 3 ~ 0.998 action B actually yields a higher
discounted return!

Moreover, even when discounted return favors behav-
iors with adequate farsightedness, it can have many neg-
ative effects on the Q-learning algorithm, including the
following (Schwartz, 1993a):

Q(5,8) & Tymm +7 max Q(s', a).

Indifference. The discounted returns for sequences of
actions beginning optimally and non-optimally can look
so similar that it is hard to decide which one is best, and
the actual loss in performance for choosing the wrong
one will be very large in comparison to the difference in
discounted return.

Ramping. When the rewards received by an agent are
positive on the average—as one would hope they would
be—discounted returns can be quite large, and the pro-
cess of converging to those values can be extremely slow,
especially for the large values of v which are required to
avoid indifference. During this process of convergence,
approximation error obscures the differences between
true discounted returns of different states and actions,
sometimes prohibiting informed action choices and state
evaluations altogether.

In this paper we present a technique we call R-learning
which does not rely on the discounted measure of re-
turn, and so avoids all of the problems associated with
it. It resembles Q-learning inasmuch as it measures the
return—for a different notion of return—of state-action
pairs, relative to its current policy, and in any state rec-
ommends that action which maximizes return. The key

907

element introduced is a policy-relative measure of aver-
age reward, compiled on the fly, which serves as a stan-
dard of comparison. By constructing a measure of utility
which depends on this average, we arrive at an evaluator
of states and actions which is policy-relative, and allows
local improvements to policies to be made more visible,
improving performance in a number of ways.

This paper presents the R-learning algorithm with a
concern for its motivations, its qualitative behavior, and
its practical benefits. For a more detailed, mathematical
discussion of R-learning and other related techniques,
refer to (Schwartz, 1993b).

Average Reward

In looking for an undiscounted measure of policy per-
formance, one naturally considers V7, the infinite undis-
counted sum of future rewards (cf. Equation 1). In
special cases, such as that in which an agent is guaran-
teed to always receive rewards of zero after a finite period
has passed, one may in fact use this infinite sum. But in
the general case, an agent may reap positive or negative
rewards indefinitely, causing the sum to be infinite. This
precludes its use in policy evaluation.

As an alternative measure, we define the lifetime aver-
age reward of a policy p started in state s as

:‘=0l Tf

n

< lim

A : (3)
where ¥ is the reward received at time ¢ when the agent
begins in state s and takes actions dictated by p.

This gives us an optimality criterion for policies: let us
write that p >, q¢ whenever pf > pi for all states s, and
call a policy p optimal whenever p >, ¢ for all policies
q. We proceed to present a method for finding p-optimal
policies.?

For the remainder of the paper we make the following
assumption: that any policy under consideration has a
single average reward p? independent of the initial state
s. This assumption is tantamount to requiring that the
states of the environment be mutually reachable, and that
any policy will eventually bring the agent to some area
of state space in which the policy performs best. Though
intuitively plausible, the assumption may fail to hold in
practice. A discussion of the case in which policies may
partition the state space into regions of differing average
reward is given in (Schwartz, 1993b).

The notion of lifetime average reward equips us to
speak of the average-adjusted reward, r — pP, relative
to a policy p. This useful measure tells us the extent to
which an action gives above- or below-average immedi-
ate reward, relative to the infinite sequence of expected
rewards to come.

Having set the stage, we now present a Q-style learning
algorithm which maximizes average reward.

n— o0

In fact the method finds policies which maximize per-
formance in a stronger sense: they are T-optimal, as defined
in (Schwartz, 1993a), and T-optimality trivially implies p-
optimality.

R-Learning

To arrive at a p-optimal policy p , we propose the follow-
ing iterative procedure:

1. Begin with a | S| x | A| table of real numbers R(s, a), all ini-
tialized to zero, and a real-valued variable p, also initialized
to zero.

2. Repeat:

2a. From the current state s, perform some action @, cho-
sen by some exploration/action-selection mechanism (an
orthogonal component of the system, just as it is for Q-
learning). Observe the immediate reward rymm received
and the subsequent state s’.

2b. Update R according to:

R(s,a) & rimm — p+ Ur(s') (4)

where Ug(s') = max,: R(s’,a’) and 3 is a leamning rate
parameter.

2c. If R(s,a) = Ur(s) (ie., if a agrees with your current
policy p™), then update p according to:

P = rimm + Ur(s") — Ur(s) (5)
where « is a leamning rate parameter.

We see that the technique is the same as Q-learning with
the modifications that:

o It maintains an estimate p of average reward.

e It uses average-adjusted rewards rather than plain re-
wards 1n its update.

e Iteliminates -, the temporal discounting factor.

Intuitively, R-learning works for the following reason.
Suppose we take a Q-learning system and simply remove
an average-reward term from all the rewards it receives,
before it sees them. This ensures that the average value
of the rewards it sees is zero. Then what will happen
to its Q-values? In cases where the average reward re-
ceived is positive, the Q-values all rise steadily, slowing
down until the negative contribution of multiplication by
v balances out the positive contribution of the average
rewards received. But in the new case where the average
reward is zero, the Q-values will neither rise nor fall, but
remain centered around zero. This being the case, one
can eliminate the discount factor 4 from the recurrence;
its job—to drive Q-values toward zero—is obviated. The
net result: by orchestrating matters so that rewards aver-
age out to zero, one does not need a discounting factor to
prevent their sum from blowing up.

The Meaning of R-values

R-values serve as a potential function for rewards. They
provide the learner with a measure of whether it is in a
good state or a bad state, such that whenever it takes an
action it may simply add the change in R-value to the
(p-adjusted) immediate reward it gets to see whether it
has made progress toward maximizing average reward
over time. If that value is zero then it has done the
best it thought was possible; if it is below zero it has
done worse than that (because it has chosen worse than it

908

could have, or because of stochastic rewards, or because
the environment has changed); if the value is positive
then it has done better than it imagined it could.

Equivalently, we may view the quantity r + AURg as a
measure of amortized reward, which is what each action
is chosen to maximize. The recurrence relation (7) given
below tells us that for all optimal actions, the expected
value of the amortized reward is p; all non-optimal actions
will fall short of p. In this light, the whole temporal
credit assignment problem may be seen as the task of
constructing the secondary reward AUg to provide this
amortized reward, which then serves as an immediate
rather than cross-temporal quantity to be maximized by
action choice. Once accurate R-values are available,
the problem of delayed reinforcement learning has been
reduced to the much simpler non-delayed problem of
selecting actions to maximize immediate reward.

The actual quantity approximated by R(s,a) can be
written in a closed form. Just as Q(s, a) approximates

the evaluator V{*? °)(s), so too R(s, a) approximates an
evaluator V,{*? R)(s) where V} is defined as

VEG) F lim 3 oA (P -p). (6)

i=0

That is, V}, is the expected average-adjusted return (c.f.
Equation 1) for vanishingly little temporal discounting.
The theory of this value function was introduced by
Howard (1960) and has been discussed in the Dynamic
Programming literature (e.g., Puterman, 1990).

One may derive the following recurrence relation for

VE:

VE(s) =r(s,p(s)) — p+ E[VE(s")]. (7)
From this recurrence one may make sense of the update
rules both for R(s, a) and (by rearranging terms) for p.

Advantages of R-Learning

R-learning Maximizes Total Reward

R-learning, unlike Q-learning, is designed to maximize
undiscounted cumulative reward and (hence) average re-
ward, which are the principal two measures used by Re-
inforcement Learning researchers in graphs of learning
performance (e.g., Kaelbling, 1990; Lin 1991; Mahade-
van, 1991; Sutton, 1990). Additionally, the fact that R-
learning does not use any < rids the researcher of the need
to tune that parameter for each new domain encountered.

Agents Now Pay a Price for Wasted Time

We have argued elsewhere (1993a) that in domains where
rewards are sparse, the phenomenon of indifference al-
lows little incentive for a Q-learner to prefer productive
actions to time-wasting ones . R-learning overcomes this
by imposing a price on all actions: namely p. This has the
effect, for example, that R-values of actions that waste
time via auto-transition look worse than those of actions
that actually achieve ends, by a difference of p. This is
fitting; the perceived harm of achieving nothing is exactly

the fact that you’ve lost out on amortized future rewards,
which is to say on the average reward p. R-learning turns
time into a commodity whose value is a function of the
agent’s policy, and by rewarding the agent on the basis of
(r — p) instead of r, it automatically punishes the agent
for its use.

No More Double Standard for Setting Reward
Values

In order to overcome indifference, some researchers have
proposed setting up domains so as to give result-free ac-
tions a negative reward, making a reward of zero an in-
dication of good progress (e.g., Barto, Sutton & Watkins,
1989). We now understand this technique as an attempt
to do by hand that which R-learning does dynamically, in
maintaining p. The manual version has the disadvantages
of (1) violating our intuitions that neutral immediate out-
comes should correspond to zero rewards, (2) requiring
extra work of the researcher, and (3) requiring advanced
knowledge not only of the domain but of the optimal
policy in that domain. (The first sort of knowledge is
undesirable to presuppose, since we may well want our
learners to explore unknown environments; the second
sort presupposes the solution to the whole problem Rein-
forcement Learning is out to solve, and must clearly be
ruled out). R-learning eliminates all of these problems,
allowing us to assume the consistent, intuitive standard
of reserving the reward value zero for actions without any
immediate teleological consequences.

R-Values Change Linearly

R-values have the following property: during stretches
of time when the agent is performing the optimal action
and receiving the same rewards, the R-values change lin-
early. In comparison, the gamma present in Q-values
makes increases and decreases in those values exponen-
tial, growing in magnitude with temporal proximity to
rewards.

Linearity is especially desirable in the case where S
1s a metric space and the optimal action causes uniform
movement along some dimension of S. In this case the
R-values vary linearly over the space, permitting the use
of simple and accurate linear interpolation to speed up
learning and even allow learning over continuous state
spaces.

R-Learning Eliminates Ramping

Ramping occurs when the average reward per step, an
unbiased estimator of which is effectively added to a
Q-value every time the Q-value is updated, differs con-
sistently from zero. But in R-learning, the analogous
quantity which is being added is 7,,m — p which, given
the definition of p, has an expected value of zero.
Another way to view the situation is this. Whereas
the average R-valuation for any policy is zero, the aver-
age Q-valuation tends toward 1—% for large 7 (Derman,
1970). This granted, Q-values are likely to differ greatly
from zero, and their relative differences will be hidden

during the long process in which their values migrate—
at varying speeds—from zero. Since, on the contrary,
R-values center around zero, there is no problem with
ramping. Experimental results supporting this observa-
tion are given below.

R-Learning is More Responsive to Domain
Changes

A consequence of ramping is that when the environment
changes to make some previously suboptimal action op-
timal, it may take the corresponding action-value a long
time to approach its new value. This transition period is
lengthened additionally by the fact that since the Q-value
of the suboptimal action remains unchanged at its normal
high value, it still appears optimal and, hence, the new
action will be executed only occasionally.

R-learning avoids this problem in two ways. First,
since R-values lie close to zero and do not ramp, the
likelihood of an enormous difference between the action-
values for the two actions is extremely small. But also, in
attempting the new action the learner updates p, and the
increase in p will make the R-values for the actions along
the previously optimal policy decrease. This speeds the
process by which the newly optimal actions look better
than the old.

Q-Learning is a Special Case of R-learning

When we take any domain and modify the state transi-
tions to incorporate, from every state, a (1—+) probability
of death—that is, of transition to an absorbing state from
which no further reward is gained—we find that the re-
sulting update rule prescribed by R-learning is identical to
that of Q-learning on the unmodified domain (Schwartz,
1993b). That is to say, one may incomporate a finite life-
time assumption explicitly into R-learning, and the result
is Q-learning. In this sense, Q-learning is a special case
of R-learning.

Psychological Foundations

While R-learning is proposed here as an engineering tech-
nique and not a psychological model, there seem to be
some connections to be drawn to psychological phenom-
ena. The human nervous system has a general capac-
ity for habituating to ambient conditions so as to make
changes to the current state perceptually salient. This ca-
pacity, the subject of the field of Adaptation-Level Theory
(Helson, 1964), is precisely the intuition at work behind
R-values. R-values are inherently relative to the level of
performance (the average reward p) of the very policy
they induce, so as to make small gains easily distinguish-
able from small losses, but with the effect of obscuring
differences of magnitude among policies which are all
improvements. More specifically, the concept of time-
averaged reinforcement—computed similarly to p, as a
reference level relative to which subsequent reinforce-
ments are judged—appears in the psychological literature
(e.g., Bevan, 1963) in order to explain animal condition-
ing effects. It would seem, then, that the idea underlying

(+0) +0) (+0) (+0)

Figure 2: A simple domain with temporally distant re-
wards (a 50-state version of Sutton’s (1984) “easy” envi-
ronment).

1 T T T T

09 1

Nk S o
e T A

08 T
0.7 -
0.6 N
oS F R-learning = 1
Q-learning “""""

04 F =
0 3 1 L 1 1

0 50000 100000 150000 200000 250000

Figure 3: Performance of R-Learning versus Q-learning
(normal rewards)

R-learning, its computational benefits aside, is a psycho-
logically plausible one.

Experimental Results

An initial experiment compared Q-learning and R-
learning in the simple domain pictured in Figure 2 with
the additional stochastic element that a random variable
(-1 or 1 with equal probability) is added to all reinforce-
ments. Figure 3 shows the results. The z-axis measures
number of actions performed, while the y-axis measures
average reward per 1000-action interval. (The results
are averaged over 50 trials.) This is using random ex-
ploration with fixed probability 0.05 of a random action
at any time step—not even any method that pays atten-
tion to the size of the difference between optimal and
non-optimal action values (for which indifference would
cause additional problems).

Figure 4 shows a comparison of Q-learning and R-
learning in the same domain with all rewards increased
uniformly by 100. Notice the period of adaptation in
which R-learning stalls while its estimated p climbs from
an initial value of zero up to the proper value of 101.

Both runs use ¥ = 0.9, 8 = 0.2, @ = 0.01. Because
of the exploration strategy, an optimal policy will have
an average reward of 0.95. Note that the fixed g is
responsible for the fact that the Q-values never converge
to values that prescribe the optimal policy.

A second experiment, showing the benefits of elimi-
nating the ramping phenomenon, uses the domain shown
in Figure 5. Figure 6 shows the average rewards of the
two methods over time, averaged over 100 runs. Here
R-learning shows approximately a seven-fold speedup
over Q-learning. The reason for the poor performance by

910

S A A

'-‘,' s h,l'-..,'.--l.

£l

A T L P R ey

R-learning =

Q-learning -

;
100.1 .

1 1 1 1

0 50000 100000 150000 200000

250000

Figure 4: Performance of R-Learning versus Q-learning
(all rewards increased by 100)

(+0) (+0)
"\
0

(+10)

ABM’) B ‘ (+0) (‘oi

oo "

Figure 5: A domain with two cycles, used to demonstrate
the effects of ramping. Action choice is irrelevant except
in state 0.

Q-learning is that the shorter cycle allows for faster ramp-
ing, so even though it gives less per-step payoff than the
longer cycle, it’s Q-values converge more quickly than
the longer one’s, making it look more favorable during
the long process of convergence.

These experiments use the same parameters as the pre-
vious ones, except that here v is increased to 0.99 in
order that Q-learning may learn the policy which maxi-
mizes average reward at all. For larger v, the effect is
even more dramatic: When v = 0.999 instead of 0.99,
the speedup by R-Learning is over forty-fold.

R-learning has also been tested in a domain that sim-
ulates a fetch-and retrieve task for a simplified robot.
The initial results, too recent to present here, seem very
promising.

15
145
14
135
13
1.25
12 f
115 [;
H ” S .
b Bl il S]
l 1 1 1 1 1
0 10000 20000 30000 40000 S0000 60000

Figure 6: Comparison of learning mechanisms on a do-
main with two cycles. Performance of Q-learning is poor
compared to R-learning because of ramping.

Conclusion

We have presented R-Learning, a new Reinforcement
Learning technique for maximizing total, rather than
future-discounted, reward. The key shift making this
possible was the introduction of a subjective evaluator to
replace Q(s, a)—subjective in the sense that it measures
the merit of states and actions relative to the long-term
performance of the current policy. Q-learning evaluates
state and action merit by the same measure with which
it judges policy optimality, viz., discounted return. We
introduce average reward as an alternative (and, we ar-
gue, preferable) measure of performance, but the result
is ironic: the analogous Q-style method, which lets its

Q-values represent p**) instead of V{*")(s), would be
a dismal failure; all its Q-values would be the same! So
instead, we look to another measure, which measures just
what Q-values do (for large), but with the contribution
of p explicitly taken out. This value represents not the
long-term rate of reinforcement, but the small constant
gains that can be achieved by starting in one state rather
than other, or starting with one action rather than another.
These purely local measures are the key to evaluating
which states and actions are best, and hence to improving
the global performance of the policy.

Thus R-learning accomplishes the task of globally
maximizing average reward by making policy improve-
ments that achieve small local gains. Every time such
a gain occurs, average rewards are improved, and the
subjective evaluator changes in response, making new
improvements visible. When there are no more gains vis-
ible, an optimal policy has been achieved. The method
offers quicker convergence in many cases than existing
techniques, and is the first technique to use an undis-
counted optimality criterion.

Unlike the discounted methods, whose mathemat-
ics have been extensively explored (e.g., Watkins &
Dayan, 1992), the convergence of R-learning has not been
proven. Butrelated techniques such as undiscounted Pol-
icy Improvement (Howard, 1960) are well understood,
and work toward a convergence proof is currently under-
way (Schwartz, 1993b).

R-learning is simple and intuitive, but it is not the only
option for creating a Q-style technique for maximizing
undiscounted rewards. Rather, it is one of a class of
methods which draw on the intuition of sensitivity to local
change, and the mathematics of undiscounted optimality.
Other possible approaches are discussed in (Schwartz,
1993b).

Acknowledgements

I wish to thank David Chapman, Nils Nilsson, and David
Rumelhart for their helpful comments.

References
Agre, P. E. (1993). The Dynamic Structure of Every-
day Life. Cambridge: Cambridge University Press.
Forthcoming.

911

Barto, A. G., Sutton,R. S., & Watkins, C.J. C. H. (1989).
Learning and Sequential Decision Making (Report
No. COINS 89-95). Amherst: Department of Com-
puter and Information Science, University of Mas-
sachusetts.

Bevan, W. (1963). The pooling mechanism and the phe-
nomena of reinforcement. In O. J. Harvey (Ed.),
Motivation and Social Interaction (pp. 18-34). New
York: Ronald.

Derman, C. (1970). Finite State Markovian Decision
Processes. New York: Academic Press.

Helson, H. (1964). Adaptation-Level Theory. New York:
Harper and Row.

Howard, R. A. (1960). Dynamic Programming and
Markov Processes. Cambridge, MA: M. 1. T. Press.

Kaelbling, L. P. (1990). Learning in Embedded Systems.
Doctoral dissertation, Stanford University.

Kaelbling, L. P. & Rosenschein, S. J. (1990). Action
and planning in embedded agents. Robotics and
Autonomous Systems, 6, 35—48.

Lin, L.-J. (1991). Programming robots using reinforce-
ment learning and teaching. In Proceedings of the
Ninth National Conference on Artificial Intelligence
(pp- 781-786). Cambridge, MA: MIT Press.

Maes, P. (1993). Behavior-based artificial intelligence.
In Proceedings of the Second International Con-

ference on Simulation of Adaptive Behavior. Cam-
bridge, MA: MIT Press. Forthcoming.

Mahadevan, S. & Connell, J. (1991). Automatic program-
ming of behavior-based robots using reinforcement
learning. In Proceedings AAAI-91 (pp. 768—773).
Cambridge, MA: MIT Press.

Puterman, M. L. (1990). Markov decision processes.
In D. P. Heyman & M. J. Sobel (Eds.), Handbooks
in OR & MS, Vol. 2 (pp. 331-434). North-Holland:
Elsevier.

Schwartz, A. (1993a). Doing Away with Temporal Dis-
counting. Unpublished technical memorandum.

Schwartz, A. (1993b). Undiscounted Techniques for Re-
inforcement Learning. Technical report, in progress.

Sutton, R. S. (1984). Temporal Credit Assignment in
Reinforcement Learning. Doctoral dissertation, De-
partment of Computer and Information Sciences,
University of Massachusetts.

Sutton, R. S. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Sev-
enth International Workshop on Machine Learning
(pp- 216-224). San Mateo: Morgan Kaufmann.

Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning.
Machine Learning, 8, 279-292.

	cogsci_1993_906-911

