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1 Introduction

It is now well-known that the generic pre-compact orbit of a strongly monotone dynam-
ical system approaches the set of equilibria. Such a result is proved by Hirsch in [3] for
ordinary differential equations where generic means that it holds for almost all initial
data, relative to Lebesgue measure. This is extended to general strongly monotone sys-
tems in ordered spaces in [2, 6] where generic refers either to a residual set of initial
data or all but a subset of Gaussian measure zero in suitable Banach spaces. Matano
[10] announced similar results. Smith and Thieme [16, 15] and later Takac [17] found
mild conditions under which generic means the result holds for an open and dense set
of initial data. Although these results hold for a quite general class of strongly ordered
spaces, the proofs are not easy and, at least in the case that generic means open and
dense, additional compactness assumptions on the semiflow are required. In the present
paper, we give a short proof that convergence to the set of equilibria holds for an open
and dense set of initial data. Of course, it is based on fundamental results of monotone
systems theory, such as the Convergence Criterion and the Limit Set Dichotomy. How-
ever, instead of requiring additional compactness assumptions, we assume that compact
invariant sets have a supremum and infimum in the state space. As the stronger prop-
erty holds for the space of continuous functions on a compact set with the usual ordering
(every compact subset has an infimum and supremum), our result covers the standard
spaces used in applications to systems of ordinary and delay differential equations. For
systems of reaction-diffusion equations, the choice of state space is more delicate but in
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many cases one can use continuous function spaces (see e.g. [13]). For an up-to-date
survey of monotone systems theory, we refer the reader to our forthcoming paper [8].

2 Definitions and Basic Results

Let X be an ordered metric space with metric d and partial order relation <. Recall that
a partial order relation satisfies:(i) reflexive: x < x for all z € X; (ii) transitive: x <y
and y < z implies x < z;(iii) antisymmetric: x < y and y < x implies © = y. We write
x <yifz <yand z #y. Given two subsets A and B of X, we write A < B (A < B)
when z <y (z < y) holds for each choice of z € A and y € B. We assume that the
order relation and the topology on X are compatible in the sense that x < y whenever
rn, — x and y, — y as n — oo and x, < y, for all n. This is just to say that the partial
order relation is closed. For A C X we write A for the closure of A and IntA for the
interior of A. A subset of an ordered space is unordered if it does not contain points x, y
such that < y. Let A C X and let L = {z € X : x < A} be the (possibly empty) set
of lower bounds for A in X. In the usual way, we define inf A :=w if u € L and L < u;
u is unique if it exists. Similarly, sup A is defined.

The notation x < y means that there are open neighborhoods U,V of x,y respec-
tively such that U < V. Equivalently, (z,y) belongs to the interior of the order relation.
The relation <, sometimes referred to as the strong ordering, is transitive and vacuously
antisymmetric, but not reflexive; in many cases it is empty. We write x > y to mean
y < z, and similarly for > and >>.

A semiflow on X is a continuous map @ : IR* x X — X, (¢,7) — ®(x) such that:

Oo(x) =z, (PyoDy)(x) = Dyps(x) (t,s >0, z € X)

The orbit of z is the set O(x) = {Py(z) : t > 0}. An equilibrium is a point x for which
O(z) = {x}. The set of equilibria is denoted by E.

The omega limit set w(z) of € X, defined in the usual way, is closed and posi-
tively invariant. When O(z) is compact, w(z) is also nonempty, compact, invariant and
connected; and it attracts x, that is, lim; ., dist(®;(z),w(x)) = 0. A point x € X is
quasiconvergent if w(x) C E. The set of such points is denoted by Q. If w(x) is single
point, necessarily an equilibrium, then x is convergent. The set of convergent points is
denoted by C.

Let ¢ denote a semiflow in an ordered space X. We call ® monotone provided
O, (z) < ®4(y) whenever z <y and t > 0.

® is strongly monotone if x < y implies that ®,(z) < ®;(y) for all ¢ > 0 and eventually
strongly monotone if it is monotone and x < y implies that ®;(x) < ;(y) for all large
t > 0. ® is strongly order-preserving, SOP for short, if it is monotone and whenever
x < y there exist open subsets U,V of X with x € U and y € V and ¢y > 0 such that

(I)to (U) < (I)to (V)
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Monotonicity of ® then implies that ®,(U) < ®,(V) for all ¢t > ty. It is easy to see
that if ® is SOP and K, L are compact subsets satisfying K < L, then we can choose
neighborhoods U, V' of K, L and ty; > 0 such that the previous inequality holds for ¢t > t,.
Strong monotonicity implies eventual strong monotonicity which implies SOP. See e.g.
[16, 13].

In the remainder of this paper we assume ® is a monotone semiflow in an ordered
metric space X, such that every orbit has compact closure. The fundamental building
blocks of the theory of monotone systems are the following results. Proofs can be found
in the works of Hirsch [1, 6], in the monograph [13], or in the forthcoming survey [8].

Theorem 2.1 (CONVERGENCE CRITERION) Let ® be monotone and ®r(x) > x for
some T > 0. Then w(z) is a T-periodic orbit. If ®(x) > x for t belonging to some
nonempty open subset of (0,00) then ®(x) — p € E ast — oo. If & is SOP and
Or(x) > for some T > 0 then ®y(x) - p € E ast — 0.

Theorem 2.2 (NONORDERING OF LIMIT SETS) Let w(z) be an omega limit set for @,
(i) No points of w(z) are related by <.
(i) If @ is SOP, no points of w(z) are related by <.
Theorem 2.3 (LiMIiT SET DicHOTOMY) Let ® be SOP. If x < y then either
(a) w(z) <w(y), or
(b) w(z) =wly) C E.
If case (b) holds and t;, — oo then @y, (x) — p if and only if Oy, (y) — p.

Smith and Thieme [15] improve part (b) of the Limit Set Dichotomy to read w(z) =
w(y) = {e} for some e € E under additional smoothness and strong monotonicity
conditions. For example, this strengthened Limit Set Dichotomy holds if X C Y where
Y is an ordered Banach space with cone Y, having non-empty interior, ®;(x) is C! in
x and its derivative is a compact, strongly positive operator.

3 A New Approach to Generic Quasiconvergence

A point x is doubly accessible from below (respectively, above) if in every neighborhood
of = there exist f,g with f < g < x (respectively, x < f < g).
Consider the following condition on a semiflow having compact orbit closures:

(L) Either every omega limit set has an infimum in X and the set of points that
are doubly accessible from below has dense interior, or every omega limit set has a
supremum in X and the set of points that are doubly accessible from above has dense
interior.



Axiom (L) is a restriction on both the space X (order and topology) and the semiflow
(limit sets). It holds when X = C(A,IR), the Banach space of continuous functions on
a compact set with the usual ordering, because every compact subset of C'(A,IR) has
a supremum and infimum (see Schaefer [11], Chapt. II, Prop. 7.6). In particular, it
holds for IR" = C'(N,IR) and C(A,IR") = C(A x N,IR) with the usual component-wise
ordering where N = {1,2,--- 'n} with discrete topology. Even if X is not a lattice,
e.g., the Banach space of C'! functions on a compact manifold, (L) may still be valid for
certain dynamical systems.

Theorem 3.1 Let ® : X — X be an SOP semiflow on the ordered metric space X,
having compact orbit closures, and satisfying axiom (L). Then X\ Q C Int C, and Int Q)
15 dense.

The proof is based on the following result. For p € E define C(p) := {z € X : w(z) =
{p}}. Note that C =, ., C(p).

peElR

Lemma 3.2 Suppose x € X \ Q and a = infw(x). Then w(a) = {p} with p < w(x),
and x € Int C(p) provided x is doubly accessible from below.

Proof: Fix an arbitrary neighborhood M of z. Note that a < w(z) because w(z) is
unordered (Theorem 2.2). By invariance of w(x) we have ®;a < w(zx), hence ®;a < a.
Therefore the Convergence Criterion Theorem 2.1 implies w(a) is an equilibrium p < a.
Because p < w(z), SOP yields a neighborhood N of w(x) and s > 0 such that p < &N
for all t > s. Choose r > 0 with &;x € N for t > r. Then p < &,z if t > r + s. The set
V = (®,4,) Y(N) N M is a neighborhood of x in M with the property that p < &,V
for all ¢ > r + 2s. Hence:

veV = p<w(u) (3.1)

Now assume x doubly accessible from below and fix y;,y € V with y; < y < .
By the Limit Set Dichotomy w(y) < w(z), because w(z) ¢ E. By SOP we fix a
neighborhood U C V of y; and t; > 0 such that &, u < &,y for all v € U. The Limit
Set Dichotomy implies w(u) = w(y) or w(u) < w(y); as w(y) < w(z), we therefore have:

wel = w(u) <w(z) (3.2)
For all uw € U, (3.2) implies w(u) < w(a) = {p}, while (3.1) entails p < w(u). Hence
U C C(p) N M, and the conclusion follows. '

Proof of Theorem 3.1 To fix ideas we assume the first alternative in (L), the other case
being similar. Let X, denote a dense open set of points doubly accessible from below.
Lemma 3.2 implies Xy C Q UIntC' C Q U Int @, hence the open set X, \ Int @ lies in
Q. This prove Xy \ Int@Q C IntQ, so Xy \ Int@Q = 0. Therefore Int@ O X, hence
Int@Q > Xy = X. '




4 An Example

We give a simple example illustrating that the application of Theorem 3.1 can lead to
improvements in earlier results based on the approach of Smith and Thieme [16, 15].
The key message is that strong compactness assumptions for the semiflow can be avoided
when the state space is a space of continuous functions on a compact set.

Consider the delay differential equation with positive delayed feedback

2'(t) = fa(t),z(t — 7)) (4.1)
where f : IR x IR — IR is C'! and satisfies
fy(x,y) > 0. (4.2)

The state space for (4.1) is X := C([—7,0],IR) with the usual order. Given ¢ € X,
there is a unique local solution of (4.1) satisfying

z(s) = ¢(s), s € [—T,0].

Proposition 4.1 Suppose f satisfies (4.2) and suppose that the solution of every initial
value problem is bounded on t > 0. Then the set of initial data ¢ corresponding to a
convergent orbit contains a dense open set in C'([—7,0],IR).

Proof: Eventual strong monotonicity, hence SOP, is implied by (4.2) Theorem 2.5 in
Smith [12]. Orbits have compact closure by virtue of the boundedness of forward orbits.
Hypothesis (L) holds on C([—7,0],IR). Therefore, Theorem 3.1 implies that () contains
an open and dense set. But () C C since the set E of equilibria is totally ordered and
limit sets are unordered.s

Proposition 4.1 extends readily to cooperative and irreducible systems of functional
differential equations as in chapter 5, Smith [13]. In particular, Theorem 4.1 [13] holds
if in hypothesis (T) of that result, we drop the assumption that for every compact set
A C C([-7,0],IR"™), there exists a closed and bounded set B such that for each ¢ € A,
x(¢) € B for all large t.
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