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Abstract

Asthma prevalence has increased in epidemic proportions with urbanization, but growing up on 

traditional farms offers protection even today.1 The asthma-protective effect in farms appears 

to be associated with rich home dust microbiota,2,3 which could be used to model a health-

promoting indoor microbiome. Here we show by modelling differences in house dust microbiota 

composition between farm and non-farm homes of Finnish birth cohorts4 that in children who 

grow up in non-farm homes asthma risk decreases as the similarity of their home bacterial 

microbiota composition to that of farm homes increases. The protective microbiota had a 

low abundance of Streptococcaceae relative to outdoor-associated bacterial taxa. The protective 

effect was independent of richness and total bacterial load and was associated with reduced 

proinflammatory cytokine responses against bacterial cell wall components ex vivo. We were able 

to reproduce these findings in a study among rural German children2 and showed that children 

living in German non-farm homes with an indoor microbiota more similar to Finnish farm homes 

have decreased asthma risk. The indoor dust microbiota composition appears as a definable, 

reproducible predictor of asthma risk and a potential modifiable target for asthma prevention.

From ancient times, humans have adapted to rich microbial exposures in early life. 

Changes in these exposures in modern urbanized environments may drive the epidemic 

increases in asthma and allergies.5,6 Many studies describe and identify protective microbial 

exposures but with heterogeneity in the specific microbial signals. Thus microbial exposures 

that could be exploited for preventive interventions remain unidentified. Here, we tested 

whether it is possible to circumvent this issue with an anchor-based method, drawing 

on the well-characterized asthma-protective effect of growing up on animal farms that 

appears associated with their particular indoor dust microbiota composition.2,3 If the indoor 

microbiota in farm homes causally protects from asthma, as suggested by experimental 

data,3,7,8 similar microbiota in non-farm homes should also have a protective effect despite 

the different surrounding environment and life-style.

We characterized the indoor microbiota from living-room floor dust collected from the 

homes of Finnish birth cohorts, LUKAS1 and LUKAS2,4,9 at the index child age of 

2 months. At this age infants who crawl are constantly exposed to floor dust via the 

respiratory tract, skin and mouth.10,11 The characteristics of the farm home microbiota 

were defined within LUKAS1, which includes only rural homes, half of which are on farms 

with livestock. LUKAS2 is a random cohort of mostly suburban children.
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The microbial composition in farm homes was clearly distinct from that in non-farm homes 

(Figure 1). The farm home dust microbiota was characterized by high bacterial richness 

and low-abundance cattle-associated microbes that were typically absent from the non-farm 

homes such as members of the Bacteroidales, Clostridiales and Lactobacillales orders, and 

rumen-associated archaea of the Methanobrevibacter genus (Figure 1, Extended Data Figure 

1 and 2, Supplementary Table 1a and Supplementary Table 2).12 Several taxa within the 

Actinomycetales order were also more abundant in the farm than non-farm homes. In 

contrast, non-farm homes had higher proportions of human-associated bacteria, including 

members of the Streptococcaceae family and Staphylococcus genus (Extended Data Figure 

2, Supplementary Table 1b). Several differences were also seen in the relative abundance of 

specific fungal taxa, but fungal richness did not differ significantly between farm and rural 

non-farm homes (Figure 1, Extended Data Figures 1 and 3, Supplementary Table 3).

We then modelled the farm home microbiota-like community composition in LUKAS1. 

Separate models were built for the farm-like bacterial/archaeal presence-absence, bacterial/

archaeal relative abundance, fungal presence-absence and fungal relative abundance. The 

coefficients from these models were then applied to data of LUKAS2 non-farm homes.

The bacterial/archaeal presence-absence patterns were very different between farm and 

non-farm homes (Figure 1). Accordingly, the probability of farm-like presence/absence 

pattern in a non-farm home was very low, and was not associated with asthma risk among 

the LUKAS2 non-farm children (Supplementary Table 4). Farm-like fungal composition 

also had no association with asthma risk (Figure 2, Supplementary Table 4). In contrast, 

farm-like relative abundance of bacteria/archaea at age 2 months was associated with 

decreased risk of asthma development by 6 years of age (Figure 2). The association reached 

statistical significance also with active asthma at age 6 years when analyzed in a pooled 

sample of LUKAS1 and LUKAS2 (referred to as LUKAS from here onwards) non-farm 

children (Supplementary Table 4). The association between the farm-like relative abundance 

of bacteria/archaea and asthma was similar between children living or not living on farms, as 

indicated by non-significant interaction term (p>0.6) and nearly equal odds ratio estimates in 

stratified analysis (Supplementary Table 4). However, in farms asthma was rare (N=10) and 

probably due to low statistical power the protective effect was not significant (except with 

dichotomous probability variable; p=0.02).

We named the probability variable based on the bacterial/archaeal relative abundance data 

FaRMI (Farm home Resembling Microbiota Index). Notable feature of FaRMI was its 

moderate classification accuracy in the training set (i.e. LUKAS1) (Extended Data Figure 

4), which allows detection of farm-like features also in non-farm homes. From LUKAS 

farm homes 75.9% (88/116) and non-farm homes 32.7% (91/278) had more farm than 

rural non-farm like microbiota based on FaRMI ≥ 0.5. The association between FaRMI and 

asthma in non-farm children was independent of markers of microbial exposure previously 

linked with reduced risk of asthma, including bacterial richness and total bacterial and 

endotoxin load (Supplementary Table 5).2,13,14,7 This suggests that these general markers 

may be only proxies of more specific microbial composition such as described by FaRMI.15 

A minor part (17%) of the protective effect associated with FaRMI seemed to be explained 

by muramic acid concentration in dust which could indicate the importance of bacterial cell 
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wall structures. Muramic acid is a cell wall component characteristic (but not limited) to 

Gram-positive bacteria and its indoor levels were recently associated with asthma protection 

also in adults.16

Variables associated with increased FaRMI in non-farm homes included walking inside with 

shoes worn outdoors, which may reflect transfer of soil; presence of two or more older 

siblings; elevated indoor moisture; and increased age of the house (Supplementary Table 6). 

However, the asthma-protective association of FaRMI in non-farm homes was independent 

of these determinants, which indicates the importance of the microbial exposure over 

the environmental and lifestyle factors (Supplementary Table 5). Source tracking analysis 

confirmed that FaRMI was positively correlated with bacterial/archaeal OTUs of soil origin 

(Extended Data Figure 2). The beneficial influence of soil microbe exposure on asthma risk 

is supported by a recent study in mice.17

To test the reproducibility of the association between farm-like bacterial/archaeal relative 

abundance and asthma, we first tested the reproducibility using alternative, data reduction 

independent, methodological approach. For this purpose we trained a random decision forest 

in LUKAS1 and applied it to LUKAS2 non-farmers. Compared to our original approach, 

this is more specific approach, and does not take into account phylogenetic similarity and 

thus is, by default, less likely to detect farm-like features in non-farm homes. Nonetheless, 

the analysis supported the concept as asthma protective trend (p<0.1) of farm-like features in 

non-farm home microbiota were also noted by this approach (Supplementary tables 7 and 8).

We then tested the reproducibility of the association between FaRMI and asthma in 

another study population. For this purpose we applied our approach to data from the cross-

sectional, German study among rural children; GABRIELA.18 In GABRIELA, home indoor 

microbiota was characterized from mattress dust (N=1031) and animal shed dust microbiota 

from a subsample of farms (N=50). The microbial community membership structure in the 

GABRIELA mattress dust samples was clearly distinct from the LUKAS floor dust samples, 

as would be expected due to the different sample types,19 geographical location,20,21 and 

other study-specific differences.20 However, the influence of farming on the home indoor 

microbiota was similar, characterized in both studies by clustering closer to the GABRIELA 

animal shed dust samples (Figure 3, Supplementary Table 9).

In order to replicate our results independently of the LUKAS1 beta-diversity matrix, 

we built a linear model for FaRMI with relative abundance of bacterial/archaeal taxa in 

LUKAS1 and applied it to GABRIELA data (Supplementary Table 10a). This reproduced 

the asthma-protective effect of FaRMI in GABRIELA non-farm children (Figure 3, 

Supplementary Table 11). Based on FaRMI ≥ 0.5, the microbiota in GABRIELA homes 

resembled more that in LUKAS1 farm than non-farm homes in 60.4% (241/399) of farm 

homesand in 36.8% (123/334) or 20.5% (61/298) of non-farm homes depeding whether the 

children were regularly exposed to farms or not, respectively. This replication demonstrates 

that FaRMI as a model of the asthma-protective indoor microbiota composition, is not 

limited to a single geographical location, population or indoor dust sample type.
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We then used the FaRMI-approach to model GABRIELA farmhouse-like microbiota 

(Supplementary Table 10b). The GABRIELA farm-house-like relative abundance pattern 

(FaRMIGABRIELA) tended to be associated with lower asthma risk in GABRIELA and 

LUKAS non-farm children (Figure 3, Supplementary Table 11), which indicates that 

the FaRMI-approach is not limited to LUKAS1 as the anchor population. Common to 

both LUKAS1- and GABRIELA-based models was a negative association of FaRMI 

with the abundance of taxa in the Streptococcaceae family and positive associations 

with Sphingobacteriia and Alphaproteobacteria classes and Cyanobacteria phylum, which 

together explained over 60% of the total variance in both models (Figure 3, Extended Data 

Figure 5).

Early-life microbial exposures,15 and living on the farm,1 may protect from atopic 

sensitization, which is a risk factor for asthma. The association between FaRMI and 

asthma was, however, independent of atopic sensitization among LUKAS non-farm children 

(Supplementary Tables 5 and 12). Similar observation has been previously made in relation 

to microbial richness in farm homes.2 FaRMI at 2 months had some but no consistent 

association with total cytokine production capacity of blood leukocytes at 1 and 6 years, as 

determined by ex vivo mitogenic stimulation (Table 1, Extended Data Figure 6). Instead, 

high FaRMI was associated with suppression of the bacterial cell wall component induced 

secretion of type 1 immunity associated cytokines including interferon-γ, interleukin 

(IL)-1β, IL-6 and IL-12. This indicates that the farm home –like microbiota may improve 

tolerance to microbial exposures; similarly as high early-life indoor endotoxin exposure 

may lead into endotoxin tolerance.14 Based on animal models, endotoxin tolerance may 

inhibit also allergen-induced airway inflammation.22,23 This hypothesis also parallels the 

findings on Amish and Hutterite farm children, known for low and high asthma prevalence, 

respectively. The Amish children appear to have higher proportion of immunosuppressive 

monocytes than the Hutterite children, and the dust from the Amish but not Hutterite homes 

inhibited ovalbumin-induced broncho-alveolar eosinophilia in mice.7 A higher proportion of 

immunosuppressive monocytes could also explain the cytokine pattern associated with high 

FaRMI but that could not be assessed with data available. Instead, we found in exploratory 

analyses a strong positive correlation between FaRMI at 2 months and immunoglobulin-

like transcript (ILT) 4 expression24 on peripheral blood plasmacytoid dendritic cells of 

non-asthmatic LUKAS1 non-farm children (pDC, rho=0.64; p=0.0015; n=26) at 6 years. 

This correlation did not exist within LUKAS1 children who were diagnosed with asthma 

by 6 years (rho=-0.09; p=0.80; n=15, Extended Data Figure 7). No correlations were seen 

between FaRMI and ILT4 expression on myeloid DC (mDC) or ILT3 expression on mDC 

or pDC (data not shown). ILTs are known inhibitory receptors and markers of tolerogenic 

DCs.25 pDCs are potential gate keepers that could direct immune response against harmless 

environmental antigens away from pro-asthmatic inflammatory responses such as airway 

eosinophilia.26

The route of exposure and mechanisms through which bacteria might mediate the immune 

suppressive effects and asthma protection require further research. We hypothesize that a 

key feature is the high relative abundance of environmental bacteria (including those of 

animal origin) relative to human associated bacteria. The human associated bacteria may 

be more likely to colonize, invade and infect us and thus release more proinflammatory 
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danger signals than the environmental bacteria.27 This potential was visible in the predicted 

abundance of genes negatively associated with FaRMI (Supplementary Table 13).28–35 In 

previous studies Streptococcus, Moraxella and Haemophilus genera that include common 

opportunistic respiratory pathogens have been associated with increased risk for asthma 

when abundant in home dust or colonizing the airways early in life.7,36,37 These genera 

were also more abundant in the non-farm than farm homes, but did not seem to contribute 

considerably to FaRMI (Supplementary Table 10a). Unlike with asthma-predisposing 

taxa, there seems to be very little overlap between the different studies in low-asthma-

risk associated indoor taxa.2,7,15,37 They may still share common beneficial properties, 

e.g. similar cell wall structures or functions, but it is also possible that the beneficial 

associations merely reflect lack of predisposing features and the relative abundance of 

these taxa compared to the potentially predisposing microbes. The lack of consistency 

could also indicate that the specific microbes are only proxies for less specific microbiota 

characteristics, such as richness or total load, or of environmental determinants, but this is 

not supported by our data.

The major strengths of our study are the prospective design, low dropout rate, long follow-

up, adjustments for confounders, sample size, data on immunological responsiveness and 

replicability. Another advantage was the use of the anchor-based approach, which allowed 

us to study the health effects associated with microbiota typical to a protective environment 

(farming) independently of that environment. A limitation is that an observational study 

cannot establish causality, which needs to be established by an interventional study. Further 

studies, such as metagenomic, metabolomic and cell wall chemistry assessments, are needed 

to define the key features of asthma-protective microbial exposure. Comparing the relevance 

of fungal and bacterial exposures was limited by the modeling-associated differences and 

mechanistic studies to systemic immunity, which may differ from that in airways.

In conclusion, while the asthma-protective effect of farming is intriguing, it has little 

practical relevance unless the protective effect can be functionally transferred to non-

farming environments. We have taken the ‘farm effect’ outside of farms by showing that 

compositionally similar indoor dust bacterial/archaeal microbiota is also protective in non-

farm environments. This is in agreement with our hypothesis and consistent with (but not 

proof of) the possibility that bacteria could be causal mediators of the asthma-protective 

farm effect. Our results warrant translational studies to confirm the causal relationship 

through indoor microbial exposure-modifying intervention that may also form a novel 

strategy for primary asthma prevention. With our robust and straightforward approach for 

defining farm-like microbiota, it is now possible to evaluate the asthma-protective potential 

associated with a given indoor microbial community, select suitable donor microbiota for 

interventions, and monitor the changes induced in the recipient home microbiota.

Online Methods

The birth cohorts

In LUKAS1 (N=214) equal numbers of pregnant mothers living in farms with livestock 

and mother’s living in rural areas but not in farms were recruited in the major local 

hospitals in eastern and middle Finland (Kuopio, Iisalmi, Jyväskylä and Joensuu) between 
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September 2002-May 2004. The inclusion criteria were maternal age ≥18 years, singleton 

pregnancy, native language Finnish, no plans to move from the study area, expected delivery 

in one of the study hospitals, siblings of the study child not participating in the study, 

parturition at ≥37 weeks of gestation, no congenital abnormalities in newborn and successful 

cord blood sampling. In LUKAS2 all pregnant women with estimated delivery at Kuopio 

University Hospital between May 2004 and May 2005 were invited to join the study without 

selection by occupation or area of living. Mothers living in apartments were excluded to 

maintain housing conditions comparable with LUKAS1. In the current study LUKAS2 

children living on farms were excluded (n=11). Written informed consent was acquired from 

all LUKAS mothers. Ethical permission was granted by the Research Ethics Committee, 

Hospital District of Northern Savo. The replication stage included 1031 children from the 

cross-sectional, Phase II GABRIELA study2 with data on child home indoor microbiome. 

The children in the study were 6 to 12 years old (median 9) and they lived in the rural 

regions around Munich or Ulm in a farm home (n=399) or in non-farm home with (n=334) 

or without (n=298) regular exposure to farms.

Sample collection and processing

In the LUKAS study, the living room floor dust samples were collected at index child age 

of 2 months. The sample was collected by the occupants into a nylon sampling sock by 

vacuuming an area of 1 m2 from a rug for two minutes or in the absence of a rug, an area of 

4 m2 from a smooth floor for two minutes. The living room was defined as the room where 

the family spent most time after dinner. The dust samples were homogenized by sieving 

through a sterile strainer, dried in a desiccator and stored at -20°C until DNA extraction. 

Genomic DNA was extracted from 20mg of dust using bead beating method and chemagic 

DNA plant kit (Perkin Elmer) on the KingFisher DNA extraction robot.

In the GABRIELA study, mattress dust was collected by the parents of the participating 

children using a standardized dust collection protocol.39 The whole area of the child's 

mattress was vacuumed for a period of 2 min using a dust sampling nylon sock (Allied 

Filter Fabrics Pty Ltd, Australia) attached to the vacuum cleaner hose. Stable dust samples 

were collected with a brush from horizontal areas above 1.5 m. The dust samples were 

stored at -80°C after arrival at the study center. DNA extraction was performed using 

MoBio PowerSoil Extraction Kit (MO BIO Laboratories, Carlsbad, CA, USA) according 

to the Earth Microbiome Project Protocols (http://www.earthmicrobiome.org/emp-standard-

protocols/).

Sequencing and bioinformatics

In LUKAS the bacterial/archaeal 16S rRNA gene V4 region was amplified using 515F/

806R primers40 and fungal ITS region by ITS1F/ITS2 primers.41 These DNA amplicons 

were sequenced as 300 base pair paired-end reads with Illumina MiSeq V3 chemistry. The 

amplifications and sequencing were performed by commercial provider (LGC Genomics 

GmbH, Berlin, Germany). In GABRIELA, the Earth Microbiome Project Protocols were 

used to create bacterial/archaeal amplicon libraries using identical primers (515F/806R) to 

LUKAS, followed by sequencing on the Illumina HiSeq platform. At the discovery stage, 

sequence reads were merged with FLASH, 42 while QIIME43 was used for quality filtering, 

Kirjavainen et al. Page 7

Nat Med. Author manuscript; available in PMC 2024 December 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.earthmicrobiome.org/emp-standard-protocols/
http://www.earthmicrobiome.org/emp-standard-protocols/


exclusion of chimeric sequences and further processing. Sequences were clustered into 

operational taxonomic units (OTUs) at 97% similarity using the open-reference protocol44 

against the 16S rRNA gene database, greengenes, or the ITS database UNITE. OTUs 

representing less than 0.001% of the total sequences (minimum count of 83 and 93 

sequences for bacteria and fungi, respectively) were excluded. Chloroplast (n=93) and 

mitochondrial (n=23) sequences were removed from the bacteria OTU table. All samples 

with less than 2150 sequences were not included in the analyses. Rarefaction curves are 

presented in the Supplementary figure 1

In order to obtain compatible data for the replication stage, the reads from GABRIELA and 

LUKAS sequencing were processed together. The replication data was prepared using the 

Deblur software, based on sub-operational-taxonomic-units (sOTU). This achieves single-

nucleotide resolution which supports the combination of different datasets.45 Only forward 

R1 reads of Illumina paired end was used in this approach and R2 reverse reads were 

discarded in order to avoid noise from reverse reads during deblurring. Then low-quality 

reads, and artificial sequences such as primers and adapters, were removed. Each forward 

read file was trimmed to the lowest available length in any of the data sets: 115bp (from 

original length of about 260bp). After that, the sequences were clustered by the Deblur 

algorithm and the sOTU table was obtained. The minimum cutoff for a single sOTU was set 

as 50 reads, and sOTUs below that cutoff were filtered out. Taxonomy was assigned based 

on Ribosomal Database Project.

Asthma and atopic sensitization

Data on asthma outcome was obtained from parent-reported questionnaires. Doctor-

diagnosed asthma at least once or asthmatic bronchitis more than once by the age of 

6 years was termed as ‘asthma ever’, and asthma with medication or wheezing at the 

age of 6 years as ‘active asthma’. Immunological phenotype was assessed from venous 

blood samples collected at 1 and 6 years of age. Atopic sensitization was evaluated at 

6 years by specific immunoglobulin E (sIgE) measurements to 13 inhaled (dust mites: 

Dermatophagoides pteronyssinus and D. farinae; pollens: alder, birch, European hazel, grass 

pollen mixture, rye, mugwort and plantain; and cat, horse and dog dander; as well as the 

mold Alternaria alternate) and 6 food allergens (hen’s egg, cow’s milk, peanut, hazelnut, 

carrot and wheat, Mediwiss Analytic, Moers, Germany) 46 with cut-off ≥ 3.5kU/L.

Immune responsiveness

Cytokine responsiveness was evaluated from cultured whole blood collected at 1 and 6 

years as earlier described.47 Overall cytokine production capacity profile of leukocytes 

was assessed from whole blood cultured 24h with phorbol 12-myristate 13-acetate and 

ionomycin (PI, 1 µg/mL) and responsiveness to bacterial cell wall components from cultures 

stimulated 24h with lipopolysaccharide (LPS, 0.1 μg/mL) or peptidoglycan (PPG, 10 

µg/ml, at 6 years only). At 6 years, also non-stimulated cultures were assessed to analyse 

spontaneous cytokine secretion. All stimulants were from Sigma, Deisenhofen, Germany. 

The concentration of interleukins (IL) 1b, 4, 5, 6, 10, 12p70, 13, 17A and interferon-γ 
were determined from the cell culture supernatants with multiplexed cytometric bead 

arrays (BD human CBAflex) with FACSArray bioanalyzer system (BD Biosciences).48 The 
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concentrations were standardized by leukocyte counts. Non-detects were set to the detection 

limit standardized by leukocyte count. The CRP values at the six years were measured by 

SYNCHRON® System(s) (Beckman Coulter Inc., Fullerton, CA, USA).

Expression of the tolerance associated surface receptors ILT3 and ILT4 on circulating 

mDCs and pDCs was analyzed by flow cytometry from cryopreserved peripheral blood 

mononuclear cell (PBMC) samples of a subpopulation of LUKAS1 children as described 

earlier.49 The mean viability of thawed cells was 93.9%. The antibodies used for staining 

are described in Supplementary Table 14 and the gating strategy in Supplementary Figure 

2. The LUKAS1 subpopulation data represented 1:2 asthma – non-asthma design where all 

children with asthma ever by 6 years were included if their PBMC sample and specific IgE 

data was available at age 6. A double number of non-asthmatic children with one half living 

on a farm were randomly selected of children with available PBMC sample and IgE data 

at age 6 with priority on children with dendritic cell data at age 4.5 years. Only data from 

children not living on a farm was included in the analyses for this study.

Microbial diversity

Measures of α-diversity in LUKAS1 and 2 samples, richness (defined as OTUs observed) 

and Shannon entropy, were calculated with QIIME from 2150 resampled sequences and 

presented as a mean of ten iterations. Phylogenetically-informed variation between pairs of 

samples (β-diversity) in the bacterial/archaeal community was evaluated with Generalized 

UniFrac distances, calculated on using GUniFrac R-package50 with midpoint rooted tree 

and using α=0 for abundance unweighted and α=1 for abundance weighted β-diversity. 

Due to the lack of conserved sequences within ITS that would allow reliably establishing 

phylogenetic relatedness between taxa, we did not calculate phylogenetically informed 

beta-diversity within fungal microbiota. Instead, the beta-diversity within fungal community 

was evaluated by a Bray-Curtis distance matrix calculated on binary (presence/absence) 

or relative abundance data. Principal coordinate analyses were carried out using R pcoa 

function in ape-package with default settings.51 Statistical significance of group-wise 

differences in the beta-diversity matrix were analyzed by PERMANOVA using adonis 

function from vegan R-package with default settings (999 permutations).

Defining microbial taxa associated with farm- or non-farm environments

Differences in phylum, class, order, family and genus level relative abundance between farm 

and non-farm homes was assessed using ANCOM v1.1-3 with false discovery rate (FDR) of 

0.05.52 The association to farm- or non-farm environment was assigned to that with higher 

median abundance.

Defining farm home microbiota-like community composition

Farm home microbiota-like community composition was modelled in LUKAS1 with logistic 

regression analysis (PROC LOGISTIC statement, SAS version 9.3). The home location on 

a farm or non-farm rural environment was the dependent variable and the main components 

of Principal Coordinate Analysis (PCoA) axis scores of beta-diversity matrices were the 

predictor variables. Bacterial and fungal microbiota were investigated separately. For both 

bacteria and fungi separate models were built using axis scores from PCoA of abundance 
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unweighted and weighted β-diversity matrices. The PCoA axes were selected based on the 

scree plot method including axes above the point at which the variance explained by the 

additional axes levels off (Supplementary Figure 3). The models give an estimate of the 

probability that the sample is from a farm home. The farm home likeness of the microbial 

composition in the LUKAS2 non-farm homes was then estimated by applying the regression 

coeffients obtained from the LUKAS1-based models to the corresponding microbial data 

from LUKAS2 samples.

Some analyses were done in non-farm homes of both LUKAS2 and LUKAS1 to obtain 

increased sample size and power if results remain comparable as was observed. Due to the 

discovered association with asthma, the probability that was modelled based on the relative 

abundance weighted bacterial/archaeal beta-diversity was named Farm home Resembling 

Microbiota Index (FaRMI) and studied further in greater detail. In this model the first 

four PCoA axes were used as the predictor variables (Supplementary Figure 3). In the 

replication stage analogous logistic regression equation was built in GABRIELA to obtain 

probability that a given microbial composition represents (is more similar to) GABRIELA 

farm homes as opposed to homes of children neither living nor regularly exposed to farms 

(FaRMIGABRIELA).

To test alternative methodological approach, we calculated equivalent to FaRMI (i.e. 

probability predicted based on microbiota composition that the sample is from a farm home 

as opposed to non-farm home) directly from the OTU-table with random forest analysis 

using RandomForestClassifier from scikit-learn python module.53 Supervised training of the 

model was done in LUKAS1 dataset, which was randomly split to training and test set so 

that the test set had 25% of the samples. The classifier was trained using the training set and 

tested using the test set. The trained classifier was then used to calculate probability scores 

also for LUKAS2 samples.

Oligotyping Methanobrevibacter genus

Oligotyping analysis54 with Oligotyping pipeline script version 1.7 was used to obtain 

indicative species level identification within Methanobrevibacter genus. This was done to 

determine whether the farm home associated increase in Methanobrevibacter was more 

likely of ruminant or human origin. Within LUKAS1 and 2 samples there were in total 

1085 sequence reads, within 181 samples, that were assigned to Methanobrevibacterium 
genus based on OTU IDs. These sequences were aligned against the greengenes 16S rRNA 

database reference alignment using mothur version 1.3555 and trimmed for equal length 

of 253 base pairs. Uninformative positions due to insertion or deletion were removed with 

O-trim-uninformative-columns-from-alignment script. To obtain taxonomic assignments the 

oligotype reads were blasted with 16S Ribosomal RNA Bacteria/Archael database (NCBI 

blastn tool) and the results were filtered for minimum 99% identity. The results were 

optimized for highly similar sequences with megablast.

Source tracking

Using the Qiita web portal (https://qiita.ucsd.edu),56 sequences from the LUKAS sample 

data were clustered into OTUs against the Greengenes database using the closed reference 
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workflow. These samples were combined with publicly available studies selected as 

potential source environments (bovine, human and soil) for the target LUKAS sequences. 

The Qiita IDs for the studies used are provided in the Supplementary Table 15. The 

combined data table was run through SourceTracker in the R platform to predict the sources 

of bacteria.

Predicted functional metagenomics

The metagenome functional content was predicted using PICRUSt software following the 

standard pipeline (http://picrust.github.io/picrust/) with the LUKAS OTU table, from which 

de-novo OTUs were removed, as the input file.57 The functional predictions were based 

on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology database. The quality 

of the PICRUSt predictions was good as indicated by low Nearest Sequenced Taxon 

Index (NSTI) median 0.049 (interquartile range 0.042-0.58) describing the availability of 

nearby genome representatives.57 The data was analysed using STAMP software version 

2.1.3.58 Functional predictions associated with farmhouse-like bacterial/archaeal relative 

abundance were analysed by White’s non-parametric t-test59 using Benjamini-Hochberg 

false discovery rate for multiple testing correction. FaRMI was studied as a dichotomous 

variable, with probability of 0.5 as the cut-off.

Determinants with possible influence on indoor microbiome

To find determinants of farmhouse-like bacterial/archaeal relative abundance (FaRMI) in 

non-farm homes several environmental, building and occupancy associated determinants 

were tested including: the number of older siblings, type of living area (city centre, 

suburban, rural community, rural sparse), environmental biodiversity (based on land use 

information), home construction year, presence of basement, ground (slab vs. other), home 

frame material, moisture (condensation on windows, relative humidity and indoor specific 

absolute humidity), ventilation, heating with wood, contact with farm-animals, closeness 

of dunghill, having pets, walking with outdoor shoes inside. The effect of determinants 

on FaRMI were analysed by chi-square test using categorized variables. FaRMI was used 

as a dichotomous variable using probability of 0.5 as the cut-off. Independence of found 

significant associations from other, highly collinear determinants, was assessed by logistic 

regression analysis (data not shown).

Replication

Contribution of specific taxa to the PCoA axes will vary depending on the samples 

included in the beta-diversity matrix. Therefore the “true” replicability of the findings 

in LUKAS (LUKAS1 and LUKAS2) with LUKAS1 farm home-like microbiota (FaRMI) 

were tested using generalized linear models (GLM) analysis based estimates of FaRMI 

(PROC GLMSELECT statement, SAS 9.3). The estimates were calculated with the relative 

abundances of sOTUs under a particular taxa from phylum down to genus level as predictor 

variables. The taxa variables were ranked by the relative abundance percentile to standardize 

data and to avoid issues with influential data points. The variables were entered into 

the GLM model based on their significance until minimum predicted residual error sum 

of squares (PRESS) was reached using 10-fold cross validation.60 We also tested the 

replicability in the other direction, i.e. from GABRIELA to LUKAS. For this purpose we 
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first computed FaRMIGABRIELA, i.e. beta-diversity derived probability, predicted using beta-

diversity based modelling of bacterial/archaeal relative abundance, a given sample represents 

GABRIELA farmhouse rather than a home of children neither living nor regularly exposed 

to farms. The FaRMIGABRIELA was then modelled using the GLM-based analysis.

Statistical analyses on health outcomes

The associations between the probability variables (including FaRMI) and asthma were 

studied with logistic regression models (PROC LOGISTIC statement, SAS version 9.3). 

These models were adjusted as per a priori decision for basic confounders including 

(as applicable) living on a farm, cohort, gender, the maternal history of allergic diseases 

(asthma, atopic dermatitis or allergic rhinitis), number of older siblings and smoking during 

pregnancy (never, only before pregnancy, during pregnancy). In addition the effect of several 

other confounding factors on the association between FaRMI and asthma were tested using 

the change-in-estimate criterion with 10% cutoff. The tested variables included paternal 

history of atopic disease (hay fever, atopic dermatitis and/or asthma) and asthma, maternal 

and paternal education levels, birth weight, mode of delivery, indoor exposure to dog and/or 

cat ownership at the age of 2 months, distance to farm, breast-feeding, consumption of farm 

milk, day care attendance and regular exposure to passive tobacco smoke at the age of 1 

year as well as house type (detached vs. row house) and age, season (winter, spring/autumn, 

summer), type of vacuumed floor and time from last vacuuming with reference to dust 

sampling. Based on these analyses, all asthma association models were further adjusted 

by paternal allergic disease and maternal education level. Additionally, the independence 

of the observed association of markers of microbial diversity, proxies of total microbial 

levels9 including loads of lipopolysaccharide10:0-16:0 (LPS10:0-16:0), muramic acid and 

endotoxin, and atopic sensitization were tested as indicated in the results. Overall, the 

additional adjustments had little influence to the observed effects. Where indicated, model 

instabilities due to small number of cases in stratified analyses were solved by combining 

categories in the instability causing variable and/or by using Firth's penalized likelihood-

based bias-adjusted estimates.61

The association between the FaRMI and cytokine responses ex vivo were studied using 

quantile regression that is suitable for skewed data and found to be robust against 

heteroscedastic errors (PROC QUANTREG, SAS 9.3).62 The cytokine analyses were 

adjusted for the a priori decided basic confounders. Data on cytokine stimulations where 

the cytokine concentrations were below the detecetion limit in over 25% of samples were 

not analyzed. In the replication stage, with GABRIELA data, the models were adjusted 

with comparable variables as in LUKAS including gender, first degree relative with allergic 

disease (asthma, atopic dermatitis or hay fever), number of older sibling, smoking during 

pregnancy (yes/no) and maternal education level as well as study design related variables 

including age of the child, study center and in models with non-farm children alone the 

strata (i.e. not living but regularly exposed to farms, neither exposed nor living on a farm). 

Based on stratified analysis and non-significant interaction term, there was no evidence 

that strata had significant influence on the reported results (data not shown). Associations 

between FaRMI and dendritic cells inhibitory molecule expression were assessed within 

subsample of LUKAS1 non-farm children stratified by asthma ever using Spearman 
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rank’s correlation test (PROC CORR statement, SAS 9.3) with the a priori decided basic 

confounders as partial variables. To test whether such association were different between 

asthmatic and non-asthmatics was determined based on interaction term significance in 

logistic regression modeling adjusted with the a priori decided basic confounders.

All statistical analyses with health outcomes were performed using SAS Enterprise Guide 

5.1 (SAS Institute Inc., Cary, NC, USA) unless stated otherwise.

Data availability

The bacterial and fungal sequences from LUKAS have been deposited in European 

Bioinformatics Institute European Nucleotide Archive database under accession number 

PRJEB29081. Other data supporting the findings of this study are available through direct 

communication with the corresponding author. Limitations apply to variables where too 

small subgroups may compromise research participant privacy/consent. In these cases 

amendment to the ethical approval will be required prior to data transfer.

Code availability

All codes used in the study are available on the public repository [https://github.com/

PirkkaKirjavainen/FaRMI]. Contact the corresponding author for more information.

Extended Data
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Extended Data Figure 1. Bacterial and fungal diversity in farm- and non-farmhomes.
In the LUKA1 farm homes the bacterial/archaeal richness (N=107), with median 652 

operational taxonomic units (OTUs, interquartile range (IQR) 567-708) and Shannon 

entropy, with median 7.8 (IQR 7.2-8.2), were consistently higher than in the majority of 

the rural control homes (N=96) where the respective values were 449 (IQR 384-555) for 

richness and 6.7 (IQR 5.9-7.2) for Shannon (Wilcoxon, two-sided p<0.0001). In fungal 

microbiota, there was a tendency for higher richness, with median 263 (217-306) fungal 

OTUs, and Shannon entropy, with median 3.9 (3.4-4.3), in the rural control (N=97) than 

farm homes (N=101) where the respective values were 252 (195-301;p=0.12) for richness 

and 3.7 (3.3.-4.1; Wilcoxon, two-sided p=0.07) for Shannon. The boxes represent IQR with 

median marked within the box, the whiskers represent minimum/maximum value within 

1.5* IQR below the lower quartile/above the upper quartile, respectively, the dots represent 

outliers.

Extended Data Figure 2. Key microbial sources in floor dust microbiota in farm- and non-farm 
homes
The relative abundance of (a) bovine- and (b) human associated bacterial/archaeal 

operational taxonomic units (OTUs) in living room floor dust in farm- (N=107) and non-

farm homes (N=96) within LUKAS1 as determined by source tracking. Both comparisons 

(a-b) were significantly different with Wilcoxon test at two-sided p<0.0001. (c) Relative 

abundance of soil-associated bacterial/archaeal OTUs was higher in the LUKAS (LUKAS1 

and 2) non-farm homes that resembled more LUKAS1 farm- (N=179) than non-farm homes 

(N=215) as defined by FaRMI (Wilcoxon test, two-sided p=0.0003). The boxes represent 

IQR with median marked within the box, the whiskers represent minimum/maximum value 

within 1.5* IQR below the lower quartile/above the upper quartile, respectively, the dots 

represent outliers.
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Extended Data Figure 3. Fungal microbiota in farm- and non-farm homes
Fungal taxa with significantly higher relative abundance in LUKAS1 farm (N=101) than 

non-farm (orange circles) or in non-farm (N=96) than farm homes (blue circles) as 

determined with ANCOM. Clades are coloured respectively up to genus level. Names are 

given for all phyla and for all taxa with significantly different relative abundance between 

farm than non-farm homes that have taxonomic assignment. The name of the highest 

taxonomic level is given for clade where the relative abundance between farm and non-farm 

homes is significantly different at several taxonomic levels. o=order.
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Extended Data Figure 4. Classification accuracy of LUKAS1 farm-like microbiota model in the 
data it was trained in (LUKAS1)
Based on the receiver operating characteristics (ROC) curve FaRMI had only moderate 

classification accuracy with area under the curve 0.74. This is a critical feature of FaRMI as 

it enables the detection of farm-like features also in non-farm homes.
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Extended Data Figure 5. Taxa included in models of LUKAS1 and GABRIELA farm-like indoor 
microbiota
That is variables contributing to FaRMI and FaRMIGABRIELA. respectively (see also 

Supplementary Table 9). Taxa in both models marked with yellow, taxa in LUKAS only 

with blue and taxa in GABRIELA only with red triangles. The direction of the triangle 

indicates negative (▼) or positive (▲) association with FaRMI and FaRMIGABRIELA. The 

size of the triangles are proportional to the variance explained by the taxa (adjusted partial 

R2); for the common taxa the higher adjusted R2. In three cases the direction was opposite 
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between the two models, in these cases the triangles represent the model where the taxa had 

higher adjusted R2. Clades are colored where the adjusted R2 was >1%.

Extended Data Figure 6. Cytokine responses and serum CRP-levels in association to farm-like 
indoor microbiota
Quantile process plots of the quantile regression analysis showing the estimated change 

in cytokine concentration (pg/mL) at given percentile per one interquartile range change 

in Farm home Resembling Microbiota Index (FaRMI) at year 1 (a) and year 6 (b). 
The shaded areas show the 95% confidence intervals based on resampling with 1000 
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repetitions and where these do not overlap with the horizontal zero-change line the decrease/

increase at that percentile is statistically significant (two-sided p-value without correction 

for multiple testing <0.05). Plots are presented for all cytokines that show tendency 

for significant (p<0.1) association with FaRMI between the 25th and 80th percentile 

without correction for multiple testing. Cytokines were measured from blood cultures 

stimulated with phorbol 12-myristate 13-acetate and ionomycin (PI), lipopolysaccharide 

(LPS), peptidoglycan (PPG). CRP was measures from serum. IL=interleukin, TNF=tumour 

necrosis factor, IFN=interferon and CRP=C-reactive protein.

Extended Data Figure 7. Proportion of immunoglobulin-like transcript (ILT) 4 expressing 
plasmacytoid dendritic cells (pDC) is correlated with FaRMI.
Proportion of immunoglobulin-like transcript (ILT) 4 expressing plasmacytoid dendritic 

cells (pDC) increased with increasing FaRMI within LUKAS1 children living in a non-farm 

home who were not diagnosed with asthma by 6 years of age (N=26). In those children 

who had been diagnosed with asthma (N=16) such a correlation did not exist. In logistic 

regression analysis modelling the association between the ILT4 expression on pDCs and 

FaRMI the interaction term asthma ever * FaRMI was significant (p=0.03). The scatterplots 

fitted with simple linear regression lines

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Differences between farm and non-farm rural home indoor microbiota.
(a) Dissimilarity (β –diversity) of bacterial/archaeal (phylogenetically informed) and fungal 

presence-absence and relative abundance patterns in living-room floor dust of farm (orange) 

and non-farm (blue) homes in LUKAS1. The first two PCoA axes with %-variance 

explained are presented. The differences between farm homes (n=107 with bacteria; n=101 

with fungi) vs non-farm homes (n=96 with bacteria; n=97 with fungi) were significant in all 

the four distance matrices (Permutational Multivariance of Anova38, p<0.001). α-Diversity 

of each sample is illustrated by the size of the points on the plot, which are directly 
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proportional to richness (number of OTUs) or index of Shannon entropy as indicated. 

(b) Relative abundance of predominant bacterial phyla in non-farm and farm homes. (c) 
Bacterial/archaeal taxa with significantly higher relative abundance in farm than non-farm 

(orange circles) or in non-farm than farm homes (blue circles) as determined with ANCOM. 

Clades are coloured respectively up to family level. Top 20 bacterial genera with the greatest 

absolute difference in median relative abundance between farm and non-farm homes are 

indicated with a letter (A-T). For unassigned genera the highest assigned taxonomic name is 

presented (f=family, o=order).
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Figure 2. Farm home-like indoor microbiota is associated with asthma protection in non-farm 
children.
Association between asthma during the first 6 years of life and compositional similarity of 

home indoor dust bacterial/archaeal or fungal microbiota at age 2 months to that in farm 

homes in the suburban LUKAS2 (n=164) and the pooled LUKAS1 and LUKAS2 (LUKAS, 

n=251) studies. The compositional similarity was defined as beta-diversity-derived predicted 

probability that the sample would be from a LUKAS1 farm as opposed to LUKAS1 non-

farm home. The association with asthma is shown as adjusted odds ratio per interquartile 

range (IQR) of the probability. The center values represent the odds ratios and the error bars 

95% confidence intervals.
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Figure 3. Replication of the asthma protective effect of growing up in a home with a farm home 
-like indoor bacterial microbiota.
Principal coordinate analysis of (a) unweighted and (b) weighted Generalized UniFrac 

analysis of GABRIELA mattress dust and LUKAS floor dust bacterial/archaeal microbiota. 

N(LUKAS non-farm)=278, N(LUKAS farm home)=116, N(GABRIELA non-farm)=632, N(GABRIELA 

farm home)=399, N(GABRIELA animal shed)=50. While the cohort specific differences load 

primarily to the first axis (horizontal) in the presence-absence microbial data, the farm-

effect on microbiota is visible in the second axis (vertical) where the farmhouses from 

both cohorts cluster closer to the animal shed microbiota. In the weighted analysis, this 

clustering pattern is also present but less pronounced. (c) The association between farm 

home–like indoor microbiota and asthma by 6 years of age among LUKAS (n=244) 

and by 6 to 12 years of age among GABRIELA (N=603) children living in a non-farm 

Kirjavainen et al. Page 26

Nat Med. Author manuscript; available in PMC 2024 December 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



home. The farm home–like microbiota was defined as modeled FaRMILUKAS (derived in 

LUKAS1) and FaRMIGABRIELA (derived in GABRIELA) and adjusted odds ratios (aOR) 

are presented per interquartile range of modeled FaRMILUKAS(blue)/FaRMIGABRIELA (red). 

The center values represent the odds ratios and the error bars 95% confidence intervals 

(CI). The primary replication from LUKAS to GABRIELA is highlighted with light orange 

shade (d) The same 4 taxa (Streptococcaceae, Sphingobacteriia, Alphaproteobacteria and 

Cyanobacteria) marked with a black arch explained nearly two-thirds of the variance of 

FaRMI in both LUKAS (FaRMILUKAS) and in GABRIELA (FaRMIGABRIELA). The pie 

charts present all taxa with the adjusted R2>1%. The direction of the triangle indicates 

negative (▼) or positive (▲) association with FaRMI and/or FaRMIGABRIELA. The letters 

after the taxa names stand for p=phylum, c=class, o=order, f= family, and g=genus.
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Table 1
FaRMI was associated with reduced proinflammatory responsiveness.

The association between FaRMI and serum CRP levels and cytokine responses to ex vivo microbial stimulants 

in LUKAS non-farm children. Adjusted estimates of quantile regression analysis for cytokine/CRP 

concentrations at the 75th percentile per one interquartile range (IQR) change in FaRMI. The adjusted 

estimates are presented as a percentage of IQR of the respective cytokine/CRP concentration to allow 

comparison between the different analytes. *Quantile regression process plots are shown in the Extended Data 

Figure 6 for all analytes with suggestive associations (p<0.1) to FaRMI anywhere between the 25th and 80th 

percentile. Where suggestive association was observed at the 75th percentile, p-value1 is presented in the 

superscript.

Cytokine

Adjusted relative estimates2 at 75th percentile in relation to FaRMI

Capacity to produce Response to bacterial exposure In vivo 
activation3

PI LPS PPG

1 year4 6 years5 1 year6 6 years5 6 years7 6 years7

IL-1β 7.7 22.7 -27.5*0.021 -25.0* -33.8*0.056 –

IL-4 19.7 -16.5 – – – –

IL-5 9.7 11.4 – – – –

IL-6 -15.9 10.5 -16.6* -25.5*0.073 -30.7*0.076 24

IL-10 -28.9*0.022 -13.1 -12.1 1.6 -27.8* 13.1

IL-12p70 – – 5.5 -43.0*0.050 -33.2*0.084 –

IL-13 18.1* 6.8 – – – –

IL-17A -3.8 -9.1* – – – –

IFN-γ -7.5 -0.1* -5.2 -46.2*0.081 -44.8* 0.017 –

TNF-α -4.7 -16.1 -22.9*0.095 -31.8*0.073 -8.3* –

CRP ND ND ND ND ND -69.2* 0.016

1
Two-sided, uncorrected for multiple testing.

2
Adjusted for sex, maternal and paternal allergic disease, maternal smoking during pregnancy, number of older siblings, maternal education and 

cohort.

3
Cytokines measured in non-stimulated cell culture media and CRP from serum.

4
N=231 for IL-1β and IL-4; N=230 for IL-5, IL-10, IL-12p70, IL-13 and IL17A; N=208 for IFN-γ and TNF-α; and N=204 for IL-6;.

5
N=155;

6
N=234;

7
N=154 for cytokines and N=179 for CRP.

ND = not determined, “–” = Data not analysed because over 25% of observations below the detection limit, PI= phorbol 12-myristate 13-acetate 
and ionomycin, LPS=lipopolysaccharide, PPG=peptidoglycan, IL=interleukin and IFN=interferon, CRP=C-reactive protein, FaRMI=Farm house 
Resembling Microbiota Index a probability variable describing the similarity of home indoor dust microbiota bacterial/archaeal relative abundance 
to that in LUKAS1 farm homes.
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