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Abstract — Methods for deep-penetration radiation transport remain important for radiation shielding,
nonproliferation, nuclear threat reduction, and medical applications. As these applications become more
ubiquitous, the need for accurate and reliable transport methods appropriate for these systems persists. For
such systems, hybrid methods often obtain reliable answers in the shortest time by leveraging the speed and
uniform uncertainty distribution of a deterministic solution to bias Monte Carlo transport and reduce the
variance in the solution. This work reviews the state of the art among such hybrid methods. First, we
summarize variance reduction (VR) for Monte Carlo radiation transport and existing efforts to automate
these techniques. Relations among VR, importance, and the adjoint solution of the neutron transport
equation are then discussed. Based on this exposition, the work transitions from theory to a critical review
of existing VR implementations in modern nuclear engineering software. At present, the Consistent Adjoint-
Driven Importance Sampling (CADIS) and Forward-Weighted Consistent Adjoint-Driven Importance
Sampling (FW-CADIS) hybrid methods are the gold standard by which to reduce the variance in problems
that have deeply penetrating radiation. The CADIS and FW-CADIS methods use an adjoint scalar flux to
generate VR parameters for Monte Carlo radiation transport. Additionally, efforts to incorporate angular
information into VR methods for Monte Carlo are summarized. Finally, we assess various implementations
of these methods and the degree to which they improve VR for their target applications.

Keywords — Neutron transport, hybrid methods, review, deep-penetration neutron transport, variance
reduction.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

This review aims to contextualize the state of the art in
the realm of hybrid methods for deep-penetration neutral
particle transport. Pertinent theoretical information relevant
to this topic provides a foundation for discussion of the
various efforts to implement these methods for applied
problems and the degree to which those efforts succeeded.

First, a brief overview of variance reduction (VR) for
Monte Carlo radiation transport is described in Sec. II.
Then Sec. II.C expands on the various efforts to automate

VR techniques in Monte Carlo. Section III.A follows
with an introduction of the concept of importance and
how that relates to VR. This section also focuses specifi-
cally on how the adjoint solution of the transport equation
relates to importance.

From this point, the review transitions from theory
into existing implementations of VR techniques used in
modern software in the nuclear engineering community.
Beginning in Sec. IV.A, a description of the Consistent
Adjoint-Driven Importance Sampling (CADIS) method,
which has been optimized for VR of local solutions, is
presented. Next, Sec. V discusses the methods
implemented to reduce the variance for global solutions.*E-mail: mmunk2@illinois.edu
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This discussion includes a description of the Forward-
Weighted Consistent Adjoint-Driven Importance
Sampling (FW-CADIS) method. Section VI details the
efforts to incorporate angular information into VR
methods for Monte Carlo. Sections IV.A. through VI
each conclude with a description of the various software
programs in which these methods have been implemen-
ted and the degree to which they improved the VR for
their target applications.

II. MONTE CARLO VARIANCE REDUCTION

The nuclear engineering community employs Monte
Carlo methods for radiation transport for a wide spectrum
of application problems. Monte Carlo methods aim to
emulate the transport of a particle from birth, through
physical interaction, to death. This is done by randomly
sampling the probabilities of various interactions that
a particle could encounter (e.g., particle production,
elastic and inelastic scattering, absorption, and so forth).
This process of transporting a single particle is repeated
many times to simulate the transport of many particles
throughout the problem. When the user achieves
a sufficient number of samples—or particles—in the
region of interest to reach the desired statistical precision,
the simulation is complete. However, this naïve approach
to simulating each particle—disregarding whether it is
likely to contribute to the tallied result—can be extraor-
dinarily computationally inefficient depending on the
problem. A code could waste time simulating millions
of “unusable” particles and still not reach the desired
statistical precision for the tally. Variance reduction
techniques were developed to address this issue. In
general, these techniques augment the Monte Carlo
transport to more effectively contribute to a particular
result while not fundamentally changing the nature of
the problem being solved.

II.A. Statistical Background

Variance reduction techniques are rooted in statis-
tics, so we begin our discussion of VR techniques with
a brief primer on the statistical background relevant to
Monte Carlo radiation transport. Sections II.A.1, II.A.2,
and II.A.3 are summarized from Refs. 1 and 2. Monte
Carlo methods transport many randomly sampled
particles, and when those particles reach a region of
interest, they are scored in a tally. The statistical
precision of the tally reflects the total number of
particles sampled in a chosen region or at a chosen

surface. The reliability of the answer obtained in this
region then depends on the quantity of the particles
sampled in each discretization of the tally phase-space.

II.A.1. Population Statistics

In radiation transport, one desires to estimate some
response in phase-space. This response is the average
behavior of the physical interactions in some differential
phase-space in energy, space, and time. If the probability
density function f ðxÞ for the response is known exactly,
then the response in dx can be calculated exactly by the
true mean, or

x ¼
ð1
�1

x f ðxÞdx : ð1Þ

Rarely is f ðxÞ known exactly, so instead, it is sampled.
Using N randomly sampled particles, the estimate of the
true mean value is given as

x̂ ¼
PN

i¼1 xi
N

; ð2Þ

where xi is the i’th event and bx is the sample mean, or the
estimated value of x based on the N number of samples
that were used to calculate bx. As N ! 1, bx will ! x,
which is given by the Strong Law of Large Numbers.2 In
itself, bx is a useful measure, but determining the spread of
values about bx is also an important measure. This is called
the variance. The true variance of the distribution is

σ2ðxÞ ¼ x2 � x2 ; ð3Þ

and the standard deviation is the square root of the
variance:

σðxÞ ¼ ðx2 � x2Þ1=2 : ð4Þ

The variance of the sampled distribution differs, as
a finite number of samples are used to calculate x and
σ. The sample variance is defined by

S2 ¼
XN
i¼1

ðxi � bxÞ2
N � 1

fficx 2 � bx 2 ; ð5Þ

where

cx 2 ¼ 1

N

XN
i¼1

x2i ; ð6Þ
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and the sample standard deviation is given by

S ¼ ðcx 2 � bx 2Þð1=2Þ : ð7Þ

For Eq. (5) to hold true, the number of N samples must be
large. S2 is the sample estimate of the true variance σ2.
The variance of the estimate of the mean value about x is

S 2
x̂ ¼

S2

N
: ð8Þ

From Eq. (8), one can see that the relationship between
the sample standard deviation and the standard error of bx
about x is

Sx̂ ¼
ffiffiffiffiffi
S2

N

r
¼ Sffiffiffiffi

N
p ; ð9Þ

where Sbx is the standard error of the estimate of the

sample mean. The relative error normalizes the standard
error by the estimate of the mean

R ¼ S x̂bx : ð10Þ

As a result, S, R, and N follow the relationship

S2 / R2 / 1

N
: ð11Þ

II.A.2. The Central Limit Theorem

Suppose bx is calculated from several independent
random particles to estimate x. At what point does one
conclude that bx sufficiently reflects x? The central limit
theorem1,2 (CLT) is a very powerful supplement to the
quantities described in Sec. II.A.1. The CLT states that
for large N, bx will have a limiting distribution fNðbxÞ, and
that distribution will be a normal distribution

fNðbxÞ � 1ffiffiffiffiffi
2π

p
σðbxÞ exp �ðbx� xÞ2

2σ2ðbxÞ
" #

; N ! 1 : ð12Þ

The standard deviation of bx can be related to the standard
deviation of the samples by

σðbxÞ ¼ σðxÞffiffiffiffi
N

p : ð13Þ

Using the definition from Eq. (13) in Eq. (12) results in

fNðbxÞ � ffiffiffiffiffi
N
2π

r
1

σðxÞ exp
�Nðbx� xÞ2

2σ2ðxÞ

" #
;

N ! 1 :

ð14Þ

This allows us to use known values for bx and an approxima-
tion of σðxÞ; using S; to determine the probability density
function of the sample means fNðbxÞ. Because fNðbxÞ is
normally distributed, we can find the probability that bx lies
in x� ε with

Pfx� ε < bx � xþ εg ¼
ðxþε

x�ε
fNðbxÞdbx : ð15Þ

Placing our definition for the distribution of bx, which is
fNðbxÞ, into Eq. (15); changing the limits of integration;
and defining a new variable t such that

t ¼
ffiffiffiffiffiffiffiffiffi
N=2

p
½ðbx� xÞ=σðxÞ� ; ð16Þ

this becomes

Pfx� ε < bx � xþ εg ¼ 2ffiffiffi
π

p
ðð ffiffiffiffiffiffi

N=2
p

Þðε=σðxÞÞ

0
e�t2dt :

ð17Þ

Recall that the definition of the error function Eq. (17)
becomes

Pfx� ε < bx � xþ εg ¼ erf

ffiffiffiffi
N
2

r
ε

σðxÞ

" #
: ð18Þ

Then, using the calculated estimation S for the true standard

deviation σðxÞ and also recalling that S x̂ ¼ S=
ffiffiffiffi
N

p
[Eq. (9)],

the error function reduces to a function of ε and S x̂ , or

erf

ffiffiffiffi
N
2

r
ε

σðxÞ

" #
¼ erf

ffiffiffi
1

2

r
ε
S x̂

" #
: ð19Þ

Should ε be chosen to be a function of S x̂ , the error
function reduces further and becomes merely an evalua-

tion as M multiples of S x̂ and
ffiffiffiffiffiffiffiffi
1=2

p
. For the first few

multiples of the standard error, this is evaluated as

Pfx�MS x̂ < bx � xþMSbxg ¼
0:683; M ¼ 1;
0:954; M ¼ 2;
0:997; M ¼ 3

8<: :

ð20Þ
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The CLT tells us that the sample mean follows a normal
distribution, regardless of the distribution of the underlying
sample, as the number of samples approaches infinity. This
means that no matter what distribution is being sampled, the
sampled mean will have this expected behavior. As a result,
given a calculated value for bx and S, the probability that bx is
near x is known and calculable. Further, the CLT shows that
this distribution is approached very quickly as N increases,
with most problems only requiring N > 30 (Ref. 1). Note
that N is not the total number of samples but is the number
of samples required to calculate each mean.

However, for the CLT to hold, a number of require-
ments must be satisfied. All of the quantities in Sec. II.A.1
have the underlying assumption that each xi is assumed to
be randomly sampled and independent of other xi. If some
region of phase-space is omitted accidentally, these values
will not be reflective of the true f ðxÞ, and so bx will not
approximate x. Further, for S to be a good approximation of
σðxÞ, a large number of N samples must contribute to the
calculation of bx. The CLT also assumes that f ðxÞ is
a probability density function that can be sampled and has
a variance that exists. As a result, one must be reasonably
sure that all of these requirements are satisfied if using
Monte Carlo sampling methods.

II.A.3. The Figure of Merit

The equations in Secs. II.A.1 and II.A.2 describe how to
estimate the statistics of a population given a finite number
of samples. In radiation transport, a user seeks to estimate
some response, the relative error associated with that
response solution, and the time it takes to obtain those values.
Equation (11) describes the relationship among the sample
variance, the relative error, and the number of particles as

S2 / R2 / 1

N
:

The relationship between the relative error R and the
number of particles N ðrecall that R2 / 1

N
Þ will be

some constant value C1:

C1 ¼ R2N : ð21Þ

As a problem is simulated, the number of particles run N
will increase proportionally to the computational
transport time T : Therefore, the relationship between R
and T should also be a constant:

C2 ¼ R2T : ð22Þ

The figure of merit (FOM) shown in Eq. (23) is the most
commonly reported metric using this relationship. It is
widely used in quantifying the effects of VR methods.
Because it uses the inverse quantity of the relative error
and time, a “good” result would be obtained from a low
relative error in a short amount of time, resulting in
a FOM with a high numerical value:

FOM ¼ 1

R2T
: ð23Þ

Once the FOM for a problem has been determined, it can
be used to reveal information about future computations
of the problem. For example, a user may wish to
determine the resultant error given a specified run time.
In that case, Eq. (23) can simply be rearranged to

R ¼ 1

ðFOM� TÞ1=2
: ð24Þ

The FOM is a very useful tool, but it is limited by
statistical precision in calculating R. Early on in
a transport simulation, when too few particles have been
simulated to effectively capture S or bx, the FOM will
oscillate. Eventually, the FOM will converge to
a relatively constant value. This behavior can also be
used to determine whether one has sufficiently sampled
the region in which he or she is quantifying the response.

II.B. Variance Reduction Methods for Monte Carlo
Radiation Transport

Having introduced the key parameters affecting
variance in a problem, let us transition to different VR
techniques available in Monte Carlo radiation transport
packages. Variance reduction techniques in radiation
transport methods fall into four general categories:
population control methods, modified sampling methods,
truncation methods, and partially deterministic methods.

II.B.1. Population Control Methods

Population control methods adjust the particle
population in the problem to obtain better sampling in
regions of interest by preferentially increasing or decreas-
ing the particle population. The first two types of popula-
tion control methods that will be discussed are called
splitting and rouletting. Splitting is a method by which
the particle population can be increased by splitting
a single higher-weight particle into several lower-weight
particles. Rouletting, conversely, reduces the particle
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population by stochastically killing particles. Particles
that survive a rouletting routine have their weight
adjusted higher, thereby conserving weight in the routine.
Both splitting and rouletting maintain a fair game by
adjusting the particle weights as each routine is
performed; statistically, the sum of the child particle
weights is the same as the parent weight as it entered
the routine.

To use population control methods effectively as a VR
technique, splitting is performed in high-importance
regions to increase the particle count—and thus the
sampling—in important regions. Conversely, rouletting is
performed in low-importance regions to reduce the particle
population in unimportant regions. For now, consider
important regions as those that are significant to contribut-
ing to a tally result. A more thorough discussion of
importance is presented in Sec. III.A. Splitting and
rouletting can be applied to include space, angle, energy,
and time.

The weight window combines splitting and rouletting
to keep particles within a desired weight range. Figure 1
illustrates the different processes a particle may go
through when passing through a weight window.

The top particle entering the weight window is
a single, high-weight particle. The weight of this particle
is above the weight window bounds, so as it enters the
weight window, it is split into multiple particles whose
weight is within the window bounds. The second
particle entering the window is within the weight win-
dow bounds, so it retains its weight and is not split or
rouletted. The last two particles entering the window
have weights lower than the bound. They undergo
a rouletting routine and one particle is killed, and the
surviving particle is increased in weight. As these

particles leave the window, all of them have weights
within the range of the window. This will reduce the
variance of the particles contributing to a tally in that
region.

While the use of weight windows in a problem helps
to keep a more ideal distribution of particle weights, the
user is faced with calculating a significant number of
parameters to determine weight windows for the entire
problem. In the best case with an experienced user, this
may just take time. With an inexperienced user or
a complex problem, this can be insurmountable and may
be too difficult to do without some automated assistance.

It should be noted that while splitting and rouletting
can be performed on a single variable, i.e., angle, energy,
space, or time, the weight windows generally used are
either energy-space dependent or space-time dependent.
Further, the weight window will split or roulette
depending on the particle weight entering the window.
Given a cell with importance I and an adjacent cell with
importance I 0, splitting and rouletting on their own either
increase or decrease the particle weight proportional to
the ratio of the cell importances, or I 0=I, no matter what
the entering particle weight is. As a result, poorly chosen
splitting or rouletting parameters can still result in
significant tally variance because particle weights may
still span a wide range.

II.B.2. Modified Sampling Methods

Modified sampling methods adjust transport by
sampling from a different probability distribution function
than the actual distribution for the problem. This is possi-
ble if, as with population control methods, the particle
weights are adjusted accordingly. The new probability
distribution function should direct particles in regions of
high importance to the problem tallies. In MCNP,
a number of modified sampling methods exist. These
include the exponential transform, implicit capture, forced
collisions, source biasing, and neutron-induced photon
production biasing.

The exponential transform modifies particle transport
from the analog problem by artificially modifying the
macroscopic cross section, and thus the distance to
collision, to move particles in important directions. In
directions of higher importance, the cross section is
reduced and particles can flow more freely. In directions
of lower importance, the cross section is increased and
particles more frequently interact, thereby increasing their
probability of directional change or absorption. The
transformed cross section used by the exponential trans-
form is defined by

Fig. 1. Cartoon illustration of a weight window, adapted
from Refs. 3 and 4.
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Σ	
t ¼ Σtð1� pμÞ ; ð25Þ

where

Σ	
t = transformed total macroscopic cross section

Σt = true total macroscopic cross section

p = transform parameter

μ = cosine of the angle between the preferred
direction and the particle’s transport
direction.2,4,5

Because the particle’s transport is adjusted in the
exponential transform, the particle weight must be
adjusted accordingly. This is given by

w	 ¼ Σte�Σts

Σ	
t e

�Σ	
t s

¼ e�ρΣtμs

1� pμ
;

ð26Þ

where s is the phase-space of particle residence. This
weight adjustment ensures that the particle weight is
conserved throughout transport, even as the cross section
is altered. Because the cross section in the problem is
both energy and material dependent (depending on the
geometry), the exponential transform will be dependent
on space and energy, and particle transport will be
augmented in both. While a powerful method, the
exponential transform is quite difficult to use, and if p
is ill chosen, this method can perform quite poorly.
Further, the user has to know quite a bit about the
problem physics and material to choose an optimal
quantity for p.

Source biasing, rather than preferentially adjusting
particles’ directionality by way of adjusting the cross sec-
tions, biases particles from their origin. Source biasing has
the option to bias particles in energy, direction, and space
(if the source is volumetric). This allows the user to choose
importance separately for each variable. First, the source
variable is defined as a series of bins or a function. Second,
the bins are assigned probabilities of occurrence according
to their importance. As an illustrative example, let us
consider energy for the moment. An energy bin with
a high importance will be assigned a high probability of
occurrence, and a bin with low importance will be
assigned a low probability of occurrence. As particles are
born in the bins with higher importances, they will have
their weights adjusted to the inverse of their probability of
occurrence, or w	 ¼ p=p	; where p refers to the

probability density function for the source particles; it
bears no relation to the exponential transform factor.

Source biasing is a very simple method that can
reduce the solution variance significantly. However, if
a user chooses bin sizes or a function that does not
properly reflect the particles’ importances in the problem,
the source will be poorly sampled. As a result, sampling
may be very inefficient, and the FOM will decrease. In
MCNP, if poor parameters are chosen for this method, the
user is given a warning.

II.B.3. Truncation Methods

Truncation methods stop tracking particles in
a region of phase-space that is of low importance to the
tally. These methods can be used in space (a vacuum
boundary condition), energy (eliminate particles above
or below a specified energy), or time (stop tracking
after a given time). To effectively use these methods,
the user must be aware of particles’ importance to
a tally result. When important particles are eliminated
with a truncation method, the tally will lack the contribu-
tion from those particles’ phase-space and will
correspondingly be underestimated. Further, as discussed
in Sec. II.A.2, the CLT only holds assuming that the
histories tracked are independent and drawn from
identical distributions. Truncating particles of high
importance removes the independence from the sampling
and modifies the underlying probability density function
being sampled, so the estimate of the response will be
invalid.

II.B.4. Partially Deterministic Methods

Partially deterministic methods typically use
a deterministically calculated response function,
overcoming the need for stochastic Monte Carlo in
certain regions of the problem. In those regions, the
probability of scattering into the region of interest is
deterministically calculated and recorded by an asso-
ciated tally at each step of the Monte Carlo random
walk. Such methods include point tallies and forced flight
methods such as Deterministic Transport6 (DXTRAN),
a method built into MCNP6. As such methods have not
been proven in deep-penetration problems and instead
perform best in voids,6 they are not discussed further in
this review.

It is important in using any VR technique to ensure
that a fair game is being played. The user must ensure
that the fundamental nature of the problem is not being
changed by using a VR technique, or the answer will not
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be representative of the original problem. Automated VR
techniques aim to eliminate this uncertainty for the user
by estimating the importance of particles in some way
and then setting up VR parameters automatically. The
remainder of this review paper will focus on efforts to
automate population control methods and modified
sampling methods for VR.

II.C. Historical Automated VR Methods for Monte Carlo
Radiation Transport

Section II.B describes some methods that one may
use to reduce the variance in Monte Carlo radiation
transport tallies. These methods, if used correctly, can
significantly increase the transport efficiency in a Monte
Carlo simulation. However, correct use of these methods
often requires intelligent selection of VR parameters,
which is a nontrivial task. Users have found themselves
often performing several trial runs before choosing final
quantities for the VR parameters in their problems, which
was computationally inefficient and required significant
knowledge of Monte Carlo and VR to execute well.7

This has been addressed by using Monte Carlo to
sample the problem in an initial calculation to determine
more favorable VR parameters automatically. Recognizing
that choosing optimal weight window values for energy-
and space-dependent weight windows was difficult even for
experienced users, Booth and Hendricks proposed two tools
for Monte Carlo VR in parallel. The first was a Monte Carlo
importance generator7 that could be used to make informed
decisions on cell importances throughout the problem.
The second method, a Monte Carlo–generated weight
window generator (WWG), calculates the weight window
values automatically for a given problem.8 The importance
generator estimates a cell’s importance by tracking the
weights of the particles in the cell, or

Importance ¼ score of particles leaving the cell

weight leaving the cell
:

ð27Þ

The WWG calculates weight window values with

Wi; low ¼ 1

kN

X
ðWi;inÞ þ

X
ðWi; outÞ

h i
ð28aÞ

and

Wi; high ¼ k �Wi; low if Wi; low � 0
1 if Wi; low ¼ 0

�
; ð28bÞ

where

Wi; low;Wi; high = weight window lower and upper
weight bounds, respectivelyPðWi;inÞ;

PðWi;outÞ = total weight entering and leaving
the cell

N = number of source particles

k = some weight window width (a
constant that Hendricks8 set to 5).

In his paper, Booth notes that the weight window
target value derived from the importance generator was
chosen so that the track weight multiplied by the expected
score in the tally region (for unit track weight) was
approximately constant. Booth’s importance generator
saw improvements in the FOM between 1.5 to 8 times
when compared to the analog run for the test problem
presented.

Booth and Hendricks combined these two methods to
automate weight window generation based on phase-space
importance.9,10 They showed that the combination of the
importance estimator and the WWG was a successful way
to perform VR in deep-penetration problems. However,
their method depended on several iterations of importance-
determining runs to obtain a satisfactory estimation of the
importance. For a 300-cm slab problem, the FOM was
increased from 1.9 to 75 but took ten subsequent runs to
obtain the FOM of 75, and these runs ranged from 1.2 min
(for the analog problem) to 42 min (for the ninth run10).

It should be noted that both the importance generator
and the WWG use a lower-fidelity Monte Carlo run to
gain an initial estimate for a cell’s importance and
generate VR parameters from them to bias a more com-
putationally intensive and higher-fidelity run. Naturally,
the VR parameters generated by using these techniques
are limited by the statistical precision in the regions used
to generate them. Hendricks also pointed out that the
WWG tended to populate all regions of phase-space
equally, which he conceded was not ideal for all
problems.8 Furthermore, for deep-penetration particle
transport, the VR parameters for low flux regions are
exceedingly difficult to generate, resulting in unfavorable
VR parameters.

The MCNP (Refs. 2 and 3) WWG has been extended
beyond the initial space and energy implementation
described in Booth’s paper. It now has the ability to
automatically generate space, energy, and angle weight
windows. The importance generator in MCNP also has
been extended to time importance, the values of which can
be used for splitting or rouletting parameters3 and can be
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optimized on a grid independent from the MCNP
geometry.11

As with the original implementations of Booth and
Hendricks, this updated WWG still relies on adequate
sampling to obtain sufficient weight window
parameters. When additional degrees of freedom, like
angle dependence, are added, the time to converge on
those parameters takes even longer. The WWG also
allows for only a single tally to be optimized at once,
so multiple tallies cannot be optimized simultaneously.
Finally, the WWG still requires user input and updat-
ing to seed the weight window solution. The user must
choose the meshing of the problem and have some
intuition as to how the problem should be subdivided.
In the report by Van Riper and Los, it was found that
depending on user experience, the WWG can have
differences ranging between a factor of 2 to a factor
of 10 (Ref. 12) for the problems that they investigated.

III. IMPORTANCE FUNCTIONS FOR VR

The effective use of VR techniques can lead to
a faster time to a desired solution and a reduced variance
in the specified tally. As noted, however, specifying VR
parameters is not always a straightforward procedure. In
simple geometries, a user might intuitively understand
which regions of a problem may contribute more to
a desired solution, but for more complex geometries,
this may not be so obvious. In Secs. III.A, III.B, and
III.C, the theory in determining which regions of
a problem are important to eliciting a tally response
will be described. The first topic discussed will be the
concept of importance and obtaining a measure of
importance with Monte Carlo sampling. Second, the
adjoint equation and its relation to importance will be
introduced. Last, the contributon solution and how it
relates to tally responses is reviewed.

III.A. The Concept of Importance

The concept of importance is, in essence, a way of
defining which regions in a problem are more likely to
contribute to a response and which are less likely to
contribute to a response. The regions that are more likely
to generate a response will have a higher importance than
those that do not. If an importance function for a system
can be obtained computationally, that importance
function can be strategically used in VR techniques to
speed up the Monte Carlo calculations.

As described in Sec. II.C, Booth7 proposed a method to
quantify a cell’s importance within a Monte Carlo simula-
tion [Eq. (27)]. In this method, Booth suggested estimating
the cell’s importance using Monte Carlo transport asa

Importance ¼ score of particles leaving the cell

weight leaving the cell
:

This particular calculation of importance follows from the
intuitive explanation for importance in the preceding
paragraph. Recall from Sec. II.B that in VR methods, the
population of particles is increased in important regions
such that the number of samples or particles contributing
to a tally increases but the total problem weight is
conserved. More important regions should have many
lower-weight particles to reduce the tally variance. By
using Booth’s bookkeeping method for estimating regional
importance, and noting that in a problem with no weight
variation every particle has an equal weight assumed to be
unity, one can determine the relative importance of a cell. If
the total score in the tally from particles leaving the cell is
less than the sum of the weights of the departing particles,
then the relative contribution of that cell to the tally is likely
to be lower than other regions. If, instead, the total score
tallied from particles leaving the cell is greater than the
weight leaving the cell, then that region is more important
to the tally response.

While this estimation of the importance requires
only a Monte Carlo forward calculation of the problem,
it is referred to as the forward-adjoint importance
generator7,9,10 because the bookkeeping tracked by
Eq. (27) is a forward approximation of the adjoint.
Adjoint theory and how it relates to importance will
be discussed in Sec. III.B. Booth’s estimation of impor-
tance was used to generate weight window target
values inversely proportional to the importance. In
this case, the track weight multiplied by the expected
score is approximately constant in the problem.
Choosing this inverse relationship between the weight
window and importance is common practice in VR and
is often a good choice because it is nearly optimal over
a broad range of a problem phase-space.13

It should be noted that Booth’s method is dependent
on the reliability of the answers obtained in the cells to
generate their importances. That is, if the cell tally has

aWhile Booth defined importance related to particles leaving the
cell in Eq. [7], in a later paper with Hendricks,10 importance was
defined as related to particles and their weights entering the cell.
As long as the bookkeeping remains consistent, the importance
estimates should be comparable.
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poor sampling and low statistical precision, the
importance estimate will be equivalently poor. For deep-
penetration problems, obtaining a “good” estimate of the
cell importances many mean free paths from the forward
source takes several iterations. With large fluctuations
between iterations, this has the potential to be a very
slow and computationally inefficient way to calculate
importance in a problem. Using a solution of the adjoint
that is equally valid across all of the problem space is
more ideal for deep-penetration problems.

III.B. The Adjoint Solution for Importance

Using the solution of the adjoint formulation of the
neutron transport equation is one of the most widely
recognized methods for generating an importance
function. This section will begin with a brief summary
of adjoint theory. A discussion on how the adjoint
solution differs physically from the forward solution for
a particular problem follows. Last, some early investiga-
tions on how the adjoint and importance are related are
summarized.

III.B.1. Theory

In Secs. II and III.A we have reviewed the statistical
precision of Monte Carlo–based methods and how
sampled results in Monte Carlo can be obtained in less
time with VR methods. We have also briefly addressed
the forward and the adjoint solutions for a particular
problem. In neutron transport, the integral form of the
forward, steady-state, particle transport equation can be
defined as

bΩ 
 �ψð~r;E; bΩÞ þ Σtð~r;EÞψð~r;E; bΩÞ ¼ð
4π

ð1
0
ΣsðE 0 ! E; bΩ 0 ! bΩÞψð~r;E 0; bΩ 0ÞdE 0 dbΩ 0

þ qeð~r;E; bΩÞ ;
ð29Þ

where

~r, E, bΩ = position, energy, and direction, respectively,
giving six dimensions of phase-space in
total

ψ = neutron flux

Σ = neutron interaction (scattering, absorption,
total) cross section

qe = external fixed source.

Alternatively, this can be written in operator form:

Hψ ¼ qe ; ð30Þ

where

H = streaming, scattering, and absorptive terms
from Eq. (29)

ψ = angular flux as it is in Eq. (29)

qe = source term.

The forward transport equation tells us where
particles are moving throughout the system. Of note,
the particles move in the scattering term from E 0 into
E, and from bΩ 0 into bΩ. Therefore, for a particular pro-
blem with a given qe, particles start at qe and move
throughout the system, either scattering in energy,
streaming out of the problem, being absorbed by the
problem materials, or inducing a response at the tally
location.

The adjoint equation of the same form, in contrast,
can be expressed as

�bΩ 
 �ψyð~r;E; bΩÞ þ Σtð~r;EÞψyð~r;E; bΩÞ ¼ð
4π

ð1
0
ΣsðE ! E 0; bΩ ! bΩ 0Þψyð~r;E 0; bΩ 0ÞdE 0 dbΩ 0

þ qye ð~r;E; bΩÞ ;
ð31Þ

or in operator form as

Hyψy ¼ qye ; ð32Þ

where the variables with y signify the adjoint-specific

variables for the problem: the adjoint flux ψy and the

adjoint source q
y
e . Note here that the particles in the adjoint

equation move from E into E 0, and from bΩ into bΩ 0, which
indicates a reversal of scattering in energy and a reversal of
direction when compared to the forward problem.
Therefore, if a particle has a downscattering event in
energy in the forward problem, the complementary particle
in the adjoint problem will have an upscattering event in
energy. The external source, too, is different, changing

from qe to q
y
e .

To solve the adjoint problem, the adjoint source q
y
e

can be chosen such that it has the potential to reveal
information about the forward problem. In Monte Carlo
VR we seek to obtain information on the detector or
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tally response for the system. The response for the for-
ward problem given a defined source distribution

qð~r;E; bΩÞ is
Rtally ¼

ð
4π

ð
V

ð
E
ψð~r;E; bΩÞΣtallyð~r;E; bΩÞdEdVdbΩ ;

ð33aÞ

where dE, dV , and dΩ are the differential spaces of
energy, volume, and angle, respectively, in the tally
region. This can be simplified using bracket notation,
where the angle brackets indicate an integration over all
phase-space:

Rtally ¼ hψΣtallyi ; ð33bÞ

where ψ is the angular flux and Σtally is the effective tally
response function.

For a simple source-detector problem, we choose q
y
e

to be Σtally, or the adjoint source is the tally/detector
response function for the system. Therefore, the adjoint
particles start at the detector location, move away from
the adjoint source (the detector location), and scatter in
a reversal of energy as compared to the forward problem.

By making the choice that q
y
e ¼ Σtally, the response

function can be written as a product for the forward
flux and the adjoint source:

Rtally ¼ hψqyi : ð34Þ

By using the adjoint identity and the same operators H
from Eqs. (30) and (32),

hψ;Hyψyi ¼ hψy;Hψi : ð35Þ

Equation (34) can be written as a function of the adjoint
flux and the forward source distribution:

R ¼ hψyqi : ð36Þ

At this point, we know that the solution to the adjoint
problem transports particles from the adjoint source
(which is the detector or tally location) into the problem
phase-space. The adjoint particles are scattered in energy
and are transported in � Ω relative to the forward pro-
blem. However, it may not be immediately obvious how
this adjoint solution relates to importance for the forward
solution. Let us start with a simple illustrative example:

a monoenergetic, monodirectional, point source. The
forward source takes the form of a delta function:

qð~r;E; bΩÞ ¼ δð~r �~r0ÞδðE � E0ÞδðbΩ� bΩ0Þ : ð37Þ

Using this definition of the forward source and evaluating
Eq. (36), we obtain

R ¼ hψyqi
¼
ð
V

ð
E

ð
Ω
ψyð~r;E; bΩÞqð~r;E; bΩÞdbΩdEdV

¼ ψyð~r0;E0; bΩ0Þ : ð38Þ

This result shows that the solution to the adjoint equation
is the detector response for the forward problem. As
a result, the adjoint flux can be used as an indicator of

a particle produced in (~r;E; bΩ) contributing to a response
in the system. This indicator can be thought of as the
particle’s importance to achieving the tally or response
objective. Consequently, it is often said that the adjoint is
the importance function for the problem.

The adjoint solution is used in nuclear engineering
for a number of applications, including reactor physics
and perturbation theory.14–17 However, Goertzel and
Kalos’ early work recognized its application for deep-
penetration radiation shielding. Goertzel and Kalos18

showed analytically that the exact adjoint solution, if
used as an importance or weighting function for the
forward Monte Carlo calculation, will result in a zero
variance solution for the forward Monte Carlo problem.
Further, Kalos19 showed in a one-dimensional (1-D)
infinite hydrogen slab problem that an analytically
derived adjoint importance function significantly
improved the speed to convergence for neutron transport
in deep-penetration problems.

Goertzel and Kalos’ finding that an exact adjoint can
lead to a zero variance solution indicates that if a single
particle is transported with the adjoint weighting function,
its score will be the same as the total system response.
Only a single particle is required to get an exact solution
for the forward problem. This is prohibitive because
obtaining an exact adjoint solution is just as computation-
ally expensive as getting an exact forward solution.
Instead, one seeks to obtain a good, but fairly inexpensive,
estimate of the adjoint solution based on computational
limitations. A good importance estimate should help
reduce the variance in a reasonable amount of time and
be relatively computationally inexpensive. A Monte Carlo
solution can provide a continuous solution over the pro-
blem phase-space. However, as discussed in Sec. II.B, the
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quality of this adjoint solution relies on the number of
samples used to calculate it, and that may take
a significant amount of time. A deterministic solution has
the potential to offer equal or better solution confidence
across the entire problem. However, it is discretized in
space, energy, and angle. For deep-penetration importance
functions, we opt for deterministically obtained solutions
due to the solution’s equally distributed validity.

III.B.2. Implementation

Coveyou et al.20 expanded on Goertzel and Kalos’
work by interpreting in which ways the adjoint solution
could be adapted for Monte Carlo VR. In particular, they
investigated the choice of biasing schemes and how effec-
tive they were at VR for a simple 1-D problem. They
reiterated that the adjoint solution is a good estimate for
importance but should not be calculated explicitly and
rather should be estimated by a simpler model. The adjoint
function is not necessarily the most optimal importance
function; however, it is likely the closest and most obtain-
able estimate of importance that can be calculated.20 They
concluded that source biasing by the solution to the adjoint
equation or by the expected response is the best choice for
Monte Carlo VR, as it can be used independently from any
other VR technique and provides good results.

Tang and Hoffman21 extended the work of
Coveyou et al.20 by generating VR parameters automa-
tically for fuel cask dose rate analyses. In their work,
Tang and Hoffman used the 1-D discrete ordinates code
XSDRNPM-S (Ref. 22) to calculate the adjoint fluxes
for their shielding problems. The results from this
calculation were then used to generate biasing
parameters for Monte Carlo; specifically, they aimed
at generating parameters for energy biasing, source
biasing, rouletting and splitting, and next-event
estimation probabilities. They implemented their work
in the SAS4 module in SCALE (Ref. 23); it was one of

the earlier implementations of a fully automated
deterministic biasing procedure for Monte Carlo.

III.C. The Contributon Solution for Importance

Contributon theory is another useful concept that can
be used as a measure of importance.24–26 However,
contributon theory quantifies importance differently from
adjoint theory. In contributon transport, a pseudo particle,
i.e., the contributon, is defined. The contributon carries
response in the problem system from the radiation source
to a detector. The total number of contributons in a system
are conserved by the contributon conservation principle:
All contributons that are emitted from the source even-
tually arrive at the detector. Much of the work in this realm
has been done by Williams,24 Williams and Manohara,25

and Williams.26

The contributon transport equation can be derived in
a form analogous to the forward [Eq. (29)] and adjoint
[Eq. (31)] equations. The derivation of Eq. (40) and its
corresponding variables are available in a number of the
sources referenced in this section, so we will abstain
from rederiving it here. The angular contributon flux is
defined as the product of the forward and adjoint angu-
lar fluxes:

Ψð~r;E; bΩÞ ¼ ψyð~r;E; bΩÞψð~r;E; bΩÞ : ð39Þ
The contributon transport equation is

bΩ 
 �Ψð~r;E; bΩÞ þ eΣtð~r;E; bΩÞΨð~r;E; bΩÞ ¼ð
4π

ð1
0
epð~r; bΩ 0 ! bΩ;E 0 ! EÞePð~r; bΩ 0;E 0Þ

� eΣtð~r;E 0; bΩ 0ÞΨð~r;E 0; bΩ 0ÞdE 0 dbΩ 0 þ bpð~r;E; bΩÞR :

ð40Þ
The units of phase-space are the same as those in the
forward and adjoint transport equations. The symbols

decorated with tildes denote variables that are unique to the contributon equation; ep and eP are both probability functions

related to scattering, and eΣ are effective cross sections. The effective cross sections are given by

eΣtð~r;E; bΩÞ ¼ eΣsð~r;E; bΩÞ þ eΣað~r;E; bΩÞ
¼

ðð
Σsð~r; bΩ 00 
 bΩ;E ! E 00Þψyð~r;Ω 00;E 00ÞdΩ 00dE 00

ψyð~r;E; bΩÞ þ Qyð~r;E; bΩÞ
ψyð~r;E; bΩÞ :

ð41Þ



Note here that the effective scattering and absorption cross
sections are adjoint flux dependent. Where the adjoint flux
becomes small, the interaction probabilities will become
large. As a result, in regions where the adjoint flux is high,
interaction probabilities become low, causing fewer inter-
actions and more streaming. Conversely, regions with low
adjoint fluxes, like the problem boundary, will have a very
high cross section, thus encouraging particle transport back
toward the adjoint source. This increased probability of
interaction in low-flux regions encourages response particle
(contributon) transport toward the detector or tally, thus
contributing to a response.

The scattering probability of a contributon at position

~r, E 0, and bΩ 0 is

ePð~r; bΩ 0;E 0Þ ¼
eΣsð~r;E 0; bΩ 0ÞeΣtð~r;E 0; bΩ 0Þ

; ð42Þ

and the probability that a contributon scattering at~r, E 0,
and bΩ 0 will scatter into dbΩ dE is

epð~r; bΩ 0 ! bΩ;E 0 ! EÞ ¼
Σsð~r; bΩ 0 
 bΩ;E 0 ! EÞψyð~r;E; bΩÞðð

Σsð~r; bΩ 0 
 bΩ 00;E 0 ! E 00Þψyð~r;E 00; bΩ 00ÞdbΩ 00dE 00
:

ð43Þ

The distribution function governing the contributon
source is

bpð~r;E; bΩÞ ¼ ψyð~r;E; bΩÞQð~r;E; bΩÞððð
ψyð~r 0;E 0; bΩ 0ÞQð~r 0;E 0; bΩ 0ÞdbΩ 0dE 0dV 0

:

ð44Þ

Note that the contributon source is actually defined in
Eq. (40) by the product of bp and R, where R is the
contributon production rate and is given by the integral
of the adjoint flux and the forward source:

R ¼
ððð

ψyð~r;E; bΩÞQð~r;E; bΩÞdbΩdEdV
¼ hψyQi;

ð45Þ

which is recognizable as the system response described in
Sec. III.B. By integrating Eq. (40) over all phase-space
and ensuring that the function bp is normalized, it can also
be shown that

R ¼ heΣaΨi ; ð46Þ

or the rate at which contributons die in the detector is the
same as the rate at which they are produced by the
contributon source.

Knowing that R is the contributon production rate, let
us consider the probability that a particle will be absorbed
in the detector, or P, given by

P ¼ hΣaψi : ð47Þ

Adding a factor of ψy=ψy to the terms on the right side,
this becomes

P ¼ Σa

ψy
ψψy

* +
: ð48Þ

By using the identities from the contributon equation, this
is also

P ¼ h eΣaΨi : ð49Þ

Next, substituting the definition from Eq. (46) into
Eq. (49), it follows that

P ¼ R : ð50Þ

This is the same contributon conservation principle
introduced at the beginning of this section. Williams
noted that one could go so far as to transport contribu-
tons rather than real particles with Monte Carlo.
Because every particle transported would eventually
reach the detector and give an exact value for R [as
shown by Eq. (50)], this would lead to a zero variance
solution. However, the nature of solving the contribu-
ton equation with Monte Carlo (or any other transport
mechanism) involves knowing the exact solution to the
adjoint equation and so relies on the same computa-
tional obstacles as solving the adjoint transport
equation.

As mentioned in Sec. III.B the adjoint flux is an
indicator of a particle’s importance to inducing
a response. Conversely, the contributon flux describes
the importance of a particle to the solution. Becker’s
thesis27 aptly points out that this is illustrated most
dramatically in a source-detector problem, where the
forward source has little importance to the adjoint source
but does have importance to the problem solution. As
a result, both the contributon solution and the adjoint
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solution can be considered importance functions for
a problem, but the importance that they describe differs.

Williams recognized the applications of contributons
to shield design and optimization in an extension of
contributon theory called spatial channel theory. In
particular, Williams noted that variables relevant to con-
tributon response were useful in determining transport
paths through media.26,28 A study of different contributon
values throughout the system could enlighten users on
regions with higher response potential. This could then be
used to intelligently choose regions for detector locations
or add to shielding. The contributon values in this theory
include the contributon flux, the contributon density, the
contributon current, or the contributon velocity.29 In this
way, the user could find the particles most influential to
the response of the system. A region with high response
potential is the most important to a detector tally. The
variables of response described by Williams are the
response potential, the response current, and the response
vorticity.25

Contributon theory and spatial channel theory have
been applied successfully to shielding analyses28,30 due to
their ability to show particle flow between a source and
response effectively. Williams and Engle showed that
spatial channel theory can be used in reactor shielding
analyses. In their work, they used contributon currents to
determine preferential flow paths through the Fast Flux
Test Facility.28 Seydaliev and Henderson30 used angle-
dependent forward and adjoint fluxes and currents to
visualize the contributon flux for simple source-detector
problems. In this work, they showed that contributon
flow in the system behaves much like a fluid between
the source and detector, following preferential flow paths
more densely. Seydaliev and Henderson also observed
ray effects in the contributon flux for high-energy
photons, and traditional methods like using a first colli-
sion source did not remedy the issue. The contributon
formulation of particle transport can show important
particle flow paths between a source and a detector, but
it is still not immune to computational obstacles that exist
for standard forward and adjoint transport.

Sections III.A through III.C have described various
ways to define and quantify importance for a problem. As
discussed in Sec. III.A, generating an importance
function with Monte Carlo is limited in that the quality
of the importance map is only as good as the regions that
are sampled. For deep-penetration problems, it may be
prohibitively difficult to obtain adequate importance
sampling with traditional Monte Carlo methods.

Deterministically obtained importance functions,
however, offer the benefit of a solution that is equally

valid across all of the problem solution space. This is
because the deterministic solution’s precision is limited
by convergence criteria, not sampling of individual
particles. Using a deterministic solution is often faster
and much less computationally intensive than Monte
Carlo for importance quantification. As a result, many
hybrid methods opt to use deterministically obtained
importance functions to generate VR parameters for
Monte Carlo transport.

IV. AUTOMATED VR METHODS FOR LOCAL SOLUTIONS

Sections IV, V, and VI describe different ways that
deterministically obtained importance functions can be
applied to VR methods in practice. Local VR methods
are those that optimize a tally response in a localized
region of the problem phase-space. These types of pro-
blems may be the most immediately physically intuitive
to a user, where a person standing x meters away from
a source may wish to know his or her personal dose rate.
In this section, notable automated deterministically driven
VR methods that have been designed for such localized
response optimization are described. Recall that Booth’s
importance generator (Sec. II.C) was also designed for
localized tally results, but it will not be elaborated upon
here.

IV.A. CADIS METHOD

In 1997, Wagner and Haghighat31 introduced the
CADIS method32,33 as a tool for automatic VR for local
tallies in Monte Carlo. CADIS was unique in that it used
the adjoint solution from a deterministic simulation to
consistently bias the particle distribution and particle
weights. Earlier methods had not ensured the consistency
between source biasing and particle birth weights.
CADIS was applied to a large number of application
problems and performed well in reducing the variance
for local tallies.34

The next several paragraphs present and discuss the
theory supporting CADIS. Note that the theory presented
is specific to space-energy CADIS, which is what is
currently implemented in existing software. The original
CADIS equations are based on space and energy (~r;E)

dependence, but not angle, so ϕy can be used rather than

ψy. This does not mean that CADIS is not applicable to
angle. This is merely a choice made by the software and
method developers given the computational resources
required to calculate and store full angular flux data sets
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and the inefficiency that using angular fluxes might pose
for problems where angle dependence is not paramount.

In trying to reduce the variance for a local tally, we
aim to encourage particle movement toward the tally or
detector location. In other words, we seek to encourage
particles to induce a detector response while discouraging
them from moving through unimportant regions in the
problem. Recall from Eqs. (34) and (36) that the total
system response can be expressed as either an integral of

ψy qe (the adjoint flux and the forward source) or ψ q
y
e

(the forward flux and the adjoint source). Also, recall that
the adjoint solution is a measure for response importance.

To generate the biased source distribution for the
Monte Carlo calculation, bq should be related to its con-
tribution to inducing a response in the tally or detector.
It follows, then, that the biased source distribution is the
ratio of the contribution of a cell to a tally response to
the tally response induced from the entire problem.
Thus, the biased source distribution for CADIS is
a function of the adjoint scalar flux and the forward
source distribution q in region (~r;E) and the total
response R:

bq ¼ ϕyð~r;EÞqð~r;EÞðð
ϕyð~r;EÞqð~r;EÞdEd~r

¼ ϕyð~r;EÞqð~r;EÞ
R

:

ð51aÞ

The starting weights of the particles sampled from the
biased source distribution bq must be adjusted to account
for the biased source distribution. As a result, the starting
weights are a function of the biased source distribution
and the original forward source distribution:

w0 ¼ qbq
¼ R

ϕyð~r;EÞ
:

ð51bÞ

Note that when Eq. (51a) is placed into Eq. (51b), the
starting weight is a function of the total problem response
and the adjoint scalar flux in~r;E. The target weights for
the biased particles are given by

bw ¼ R

ϕyð~r;EÞ
; ð51cÞ

where the target weight bw is also a function of the total
response and the adjoint scalar flux in region ~r;E. The
equations for bw and w0 match; particles are born at the
same weight of the region into which they are born.
Consequently, the problem limits excessive splitting and
rouletting at the particle births in addition to consistently
biasing the particle source distribution and weights. This
is the “consistent” feature of the CADIS method.

CADIS supports adjoint theory by showing that

using the adjoint solution ϕy for VR parameter genera-
tion successfully improves Monte Carlo calculation run
time. CADIS showed improvements in the FOM when
compared to analog Monte Carlo on the order of 102 to
103 and on the order of five when compared to “expert”
determined or automatically generated weight
windows32,35 for simple shielding problems. For more
complex shielding problems, improvements in the
FOM were on the order of 101 (Refs. 31 and 32).
Note that CADIS improvement is dependent on the
nature of the problem and that these are merely illus-
trative examples.

IV.B. Becker’s Local Weight Windows

Becker’s work in the early 2000s also explored generat-
ing biasing parameters for local source-detector problems.27

Becker noted that in traditional weight window–generating
methods, some estimation of the adjoint flux is used to bias
a forward Monte Carlo calculation. The product of this
weight window biasing and the forward Monte Carlo
transport ultimately distributed particles in the problem
similarly to the contributon flux. In his work, Becker used
a formulation of the contributon flux, as described in Eq.
(39), to optimize the flux at the forward detector location. The
relevant equations are given by Eqs. (52a) through (52f).

First, the scalar contributon flux ϕc, which is
a function of space and energy, is calculated with
a product of the deterministically calculated forward
and adjoint fluxes, where

ϕcð~r;EÞ ¼ ϕð~r;EÞϕyð~r;EÞ : ð52aÞ

This is then integrated over all energy to obtain
a spatially dependent contributon flux

eϕcð~rÞ ¼ Cnorm

ð1
0
ϕcð~r;EÞdE ; ð52bÞ

where the normalization constant Cnorm for a given
detector volume VD is
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Cnorm ¼ VDð
VD

ð1
0
ϕcð~r;EÞdEdV

: ð52cÞ

The space- and energy-dependent weight windows are
given by

wð~r;EÞ ¼ Bð~rÞ
ϕyð~r;EÞ

; ð52dÞ

where

Bð~rÞ ¼ αð~rÞeϕcð~rÞ þ 1� αð~rÞ ð52eÞ

and

αð~rÞ ¼ 1þ exp
eϕcmaxeϕcð~rÞ � eϕ

cð~rÞeϕcmax

 !" #�1

: ð52fÞ

Becker found that this methodology compared similarly
to CADIS for local solution VR for a large challenge
problem comprising nested cubes. The particle density
throughout the problem was similar between CADIS
and Becker’s local weight window. The FOMs were
also relatively similar but were reported only with
Monte Carlo calculation run times (meaning that the
deterministic run times were excluded). Note that
Becker’s method requires both a forward and an adjoint
calculation to calculate the contributon fluxes while
CADIS requires only an adjoint calculation.

V. AUTOMATED VR METHODS FOR GLOBAL SOLUTIONS

Variance reduction methods for global solutions are
designed to obtain an even distribution of error across
several tallies or a tally map that spans the entire problem
phase-space. Section IV details several methods that
automate VR for localized tallies. However, for global
solutions these methods do not work well. The global
tally suffers from a large range in variance across the
physical problem space, and the solution is dependent on
the flux distribution throughout the problem.

This section describes several methods that provide
automated VR for global solutions or multiple tallies. The
general principle that these methods follow is that by
distributing particles evenly throughout the Monte Carlo
problem, a global tally will have approximately the same
sample size in each region, resulting in a uniform var-
iance across the tally. This often requires a forward

deterministic solution to determine the density of forward
particles throughout the problem and subsequently using
that forward distribution to aid in generating an impor-
tance map. This section summarizes the theory behind
a number of existing global VR methods. The section
concludes with a summary of how the methods per-
formed and in which problems they performed well.

V.A. Cooper’s Isotropic Weight Windows

Cooper and Larsen developed a weight window tech-
nique to reduce the variance of Monte Carlo global
solutions36 using a calculation of the forward flux from
solutions obtained from diffusion, quasi diffusion,37 or
pure Monte Carlo. In their work, Cooper and Larsen
utilized a forward solution to the transport equation to
generate weight window values to uniformly distribute
particles throughout the problem. By doing so, the var-
iance in the scalar flux remained relatively constant
throughout the problem for a problem-wide tally rather
than rising significantly with increasing distance from the
forward source. Cooper’s “isotropic” weight windows

(named because they were not dependent on bΩ) depen-
dent on~r are given by

wwð~rÞ ¼ ϕð~rÞ
max ϕð~rÞ ; ð53aÞ

wwð~rÞtop ¼ ρwwð~rÞ ; ð53bÞ

and

wwð~rÞbottom ¼ wwð~rÞ
ρ

; ð53cÞ

where ρ is the weight window scaling factor. Note that by
setting the weight window target value to be inversely
proportional to the total flux in the cell, the density of
particles throughout the problem becomes roughly con-
stant. Also note from Eq. (53a) that the weight windows
depend on space only.

In practice, Cooper’s algorithm iteratively switches
between solving the diffusion equation with transport
correctors (Eddington factors described by Ref. 38) and
Monte Carlo solutions; this process is known as quasi
diffusion.37,38 An initial quasi-diffusion solution is used
to generate weight windows, and then after a relatively
short run time, the Monte Carlo solution is used to
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generate updated Eddington factors for the quasi-
diffusion solution.

Because Cooper’s method depends on Monte Carlo
to generate the Eddington factors for the quasi-diffusion
problem, this method is limited by the iterative switch
between the quasi-diffusion solution and the Monte Carlo
solution. The frequency with which this switching hap-
pens is entirely up to the user but may drastically affect
the efficiency of the method. Further, Cooper notes that
we do not know at what point in time (for which number
of N particles) the Monte Carlo solution becomes more
accurate than the quasi-diffusion solution, which is an
important issue in choosing solution parameters.

V.B. Becker’s Global Weight Windows

Becker, in addition to developing the local VR
method discussed in Sec. IV.B, developed a global space-
energy weight correction method both with (Sec. VI) and
without directional biasing.27,39 Becker’s global method
uses a formulation of the space-dependent contributon
flux, as with the local weight windows described in
Sec. IV.B. For reference, those are defined in Eqs. (52a)
and (52b).

Becker defines the spatially dependent contributon
flux parameter as Bð~rÞ, where

Bð~rÞ ¼ eϕcð~rÞ : ð54Þ

Becker’s method defines a different adjoint source dis-
tribution depending on the response desired for the cal-
culation. To optimize the flux the adjoint source is
defined as

qyð~r;EÞ ¼ 1

ϕð~r;EÞ : ð55aÞ

If the detector response is desired, then

qyð~r;EÞ ¼ Σdð~r;EÞð1
0
ϕð~r;EÞΣdð~r;EÞdE

ð55bÞ

can be used instead. The space- and energy-dependent
weight windows are then a function of the contributon
flux, where

wð~r;EÞ ¼ Bð~rÞ
ϕyð~r;EÞ

: ð56Þ

The process followed by Becker’s global method uses
two deterministic calculations to generate weight win-
dows for the Monte Carlo calculation. First, the forward
flux is calculated deterministically and used to construct
the adjoint source distribution. After the adjoint solution
has been obtained, the contributon flux is calculated. The
contributon flux and the adjoint flux are then used to
construct the weight windows.

Becker’s method aims to distribute response evenly
throughout the problem. However, like FW-CADIS
(discussed in Sec. V.C), the global response weight win-
dows are proportional to the forward response,

wð~r;EÞ /

ð
Σð~r;EÞϕð~r;EÞdE

Σð~r;EÞ ; ð57Þ

rather than the forward flux as in Cooper’s method,
where wð~r;EÞ / ϕð~r;EÞ.

In implementation, both Becker’s and Cooper’s global
methods undersampled the source (in comparison to FW-
CADIS, which is described in Sec. V.C) for a specified
calculation time. However, Becker’s method sampled
approximately one-third the number of particles that
Cooper’s method did. Notably, Becker’s method did obtain
better relative uncertainties for low-flux regions in the
problem.

V.C. FW-CADIS

In 2007, Peplow et al.40 proposed three methods by
which VR could be decreased in global mesh tallies in
deep-penetration radiation transport problems. The first
method, using a CADIS calculation where the adjoint
source is defined at the problem boundary, aimed at
moving particles outward to the problem edges.
The second method used standard CADIS but instead
defined each cell as equally important, so the adjoint
source was defined equally throughout the problem
phase-space. The last method, FW-CADIS, distributed
the adjoint source across mesh cells as an inverse relation
to the forward response of the cell. In their work, Peplow
et al. found that the first method had large uncertainties in
areas of the problem far from the boundary; the second
method performed slightly, but not significantly, better
than analog; and the third method had the most uniform
uncertainty distribution.

FW-CADIS (Refs. 41, 42, and 43) extended the work
by Cooper and the CADIS method. Like Becker’s
method, FW-CADIS uses a forward deterministic calcu-
lation to determine the source distribution for the adjoint
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calculation. Unlike Becker’s method, which used contri-
buton fluxes to construct weight windows, the CADIS
method uses adjoint fluxes as the basis of the weight
window values. Similar to Cooper’s method, however,
FW-CADIS uses the forward calculation to determine
how to evenly distribute particles throughout the pro-
blem. Like CADIS, FW-CADIS uses the adjoint solution
from the deterministic calculation to generate consistent
source biasing, weight windows, and particle birth
weights.

The adjoint source for the adjoint calculation is
dependent on the desired response for the system. The
generic description for the adjoint source is given by
Eq. (58), and more specific parameters are given by
Eqs. (59a), (59b), and (59c). First, we can describe
a general form of the adjoint source definition for all
phase-space P as

qyðPÞ ¼ ΣdðPÞ
R

: ð58Þ

Thus, the adjoint source is dependent on the detector
(or tally) cross section and whatever response is being
calculated in the system. Depending on whether the
response is a flux or a dose rate, the adjoint source
will differ. For example, the adjoint source for the

spatially dependent global dose

ð
ϕð~r;EÞΣdð~r;EÞdE is

qyð~r;EÞ ¼ Σdð~r;EÞð
Σdð~r;EÞϕð~r;EÞdE

: ð59aÞ

The adjoint source for the spatially dependent total fluxð
ϕð~r;EÞdE is

qyð~rÞ ¼ 1ð
ϕð~r;EÞdE

: ð59bÞ

Last, the adjoint source for the energy-dependent and
spatially dependent flux ϕð~r;EÞ is

qyð~r;EÞ ¼ 1

ϕð~r;EÞ : ð59cÞ

The process followed by FW-CADIS is to initially run
a deterministic forward calculation to obtain the forward
response. This solution is used to create the source dis-
tribution for the adjoint problem. A second deterministic
calculation is run to obtain the adjoint solution. The

adjoint solution is then used to generate VR parameters
in the same manner as CADIS.

V.D. Other Notable Methods

Baker and Larsen showed that the exponential
transform can be used to generate VR parameters for
global low-variance solutions in Monte Carlo.44 In this
work, Baker and Larsen used a forward diffusion solu-
tion to generate parameters for a combination of VR
techniques: implicit capture and weight cutoff, geome-
try splitting/rouletting with implicit capture and weight
cutoff, and the exponential transform combined with
implicit capture and a weight cutoff. The exponential
transform method was then compared to the other
combinations of VR techniques to quantify its success.
In their work, Baker and Larsen found that the expo-
nential transform approach did not work well for
highly scattering problems, where geometry splitting
and rouletting were generally better options. Their
work did not focus on generating weight window
values nor was it tested on deep-penetration shielding
problems.

While the aforementioned methods in this and
Secs. V.A through V.C use deterministically obtained solu-
tions to generate importance maps, it should be noted that
not all methods use this approach. Booth’s and Hendricks’
methods used initial Monte Carlo calculations to reduce
the relative error in tallies. Two methods in the global VR
realm are notable in that they too use Monte Carlo esti-
mates of the flux to generate VR parameters.45,46 Van Wijk
et al.45 developed an automated WWG that used a Monte
Carlo calculation of the forward flux to generate weight
window values. The weight window target values could be
determined based on either a flux-centered scheme like
Cooper’s [Eq. (53a)] or by using a ratio of the square
roots of the fluxes. The second method is a combination
of Cooper’s weight window target values and knowing that
the relative error in a region is proportional to the square
root of the number of particles. Van Wijk et al. applied
their methods to a pressurized water reactor facility and
observed a FOM increase by a factor of >200 when
compared to analog Monte Carlo. However, as with other
Monte Carlo–generated VR parameters, for deep-
penetration problems this approach relies on adequate
sampling of all phase-space, which could be computation-
ally prohibitive.

The Method of Automatic Generation of Importances
by Calculation (MAGIC) method was proposed in paral-
lel by Davis and Turner.46 As with Van Wijk et al.’s
method, the MAGIC method uses an analog forward
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Monte Carlo—potentially with several iterations—calcu-
lation to generate weight windows. The initial Monte
Carlo runs used to generate the importance map took
less time to converge by using multigroup (rather than
continuous energy) cross-section data as well as energy
cutoffs. MAGIC converged on a finalized importance
map by iteratively running several lower-fidelity Monte
Carlo calculations.

Davis and Turner46 compared three variants of
MAGIC to FW-CADIS in ITER fusion energy systems.
These three variants used different weight window adjust-
ments for importances: weight windows in mesh cells
based on existing weight information, weight windows
in mesh cells based on flux information, and weight
windows in mesh cells based on population density. It
was concluded that the most effective method for VR of
those proposed in the paper was MAGIC’s weight win-
dow in mesh cells based on flux information. In this case,
FW-CADIS’s FOM was 65% that of MAGIC’s. This
compared similarly to Van Wijk et al.’s method, where
the flux-based results continued improving the FOM as
the computational time increased. Davis and Turner did
not make it clear how many iterations were required, on
average, to generate the finalized weight window map or
if the time to iteratively generate the importance map was
included in the FOM. While FW-CADIS’s FOM was
lower than MAGIC’s, FW-CADIS had the highest
fraction of cell voxels with very low relative errors.

Peplow47 compared the performance of Cooper’s
method, Van Wijk et al.’s method, Becker’s method, and
FW-CADIS across a number of shielding calculations. For
a simple shielding problem, FW-CADIS had the shortest
run time, which included the forward and adjoint determi-
nistic run times, and had a FOM 80 times higher than the
analog calculation and more than three times higher than
the next best hybrid method. Van Wijk et al.’s method was
the only method other than FW-CADIS to pass all statis-
tical convergence checks for the problem, but its reported
FOM was lower than either Becker’s method or FW-
CADIS. In a second deep-penetration shielding problem,
FW-CADIS was the only method that passed all statistical
convergence checks. FW-CADIS also had the highest
reported FOM for this problem. For all of the methods,
the timing was comparable. Peplow also ran two “chal-
lenge” problems. As with the first two problems, FW-
CADIS outperformed the other methods and passed all
statistical checks. Becker’s method was consistently com-
parable to FW-CADIS in reported FOMs but passed all of
the statistical checks only in a single challenge problem.
Becker’s method also performed relatively better than the
other methods in deep-penetration challenge problems.

The ubiquity and continued development of global
VR methods illustrate the need and desire for them in the
nuclear engineering community. Some of the methods
discussed in this section, including Becker’s global
weight windows, Cooper’s weight windows, Van Wijk
et al.’s method, and FW-CADIS, have been applied to
large application problems and compared to other meth-
ods. When compared to analog Monte Carlo, all of the
methods reduce the time to a good solution, thus improv-
ing the final FOM. When compared against one another,
FW-CADIS consistently outperforms the other methods.

VI. AUTOMATED ANGLE-INFORMED VR METHODS

In a number of problems, the angular dependence of
the flux is significant enough that biasing in space and
energy exclusively is not sufficient. As a result, a subset
of hybrid methods was developed to incorporate some
degree of the flux anisotropy in VR parameters. Without
explicitly calculating the angular flux, which is memory
and storage intensive, methods attempted to approximate
the angular flux using other information more readily
accessible to them. These approaches are broadly categor-
ized as methods that bias using population control methods
(such as weight windows) and methods that bias with
modified sampling methods (such as the exponential trans-
form). Initial approaches to angular biasing focused on
approximating the angular flux ψ as a separable function
of the scalar flux and an angle-dependent multiplier. These
approximations of the flux were then used to generate
biasing parameters dependent on angle for highly angular-
dependent problems. In this section, methods that generate
VR parameters dependent on angle or that include angular
information are described.

VI.A. Angular Biasing with Population Control Methods

VI.A.1. AVATAR

The Automatic Variance and Time of Analysis
Reduction12,48 (AVATAR) method generates three-
dimensional space-, energy- and angle-dependent weight
windows for Monte Carlo. The implementation of
AVATAR by Van Riper et al.12,48 uses a relatively coarse-
mesh and few-angle deterministic calculation in
THREEDANT (Ref. 49), approximating the angular
flux as a function of the scalar flux, and then subse-
quently passes those flux values through
a postprocessing code, Justine, to generate weight
windows for MCNP (Ref. 2). The AVATAR approach to
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determining the angular flux uses an approximation of the
angular flux based on the maximum entropy distribution,
which is briefly summarized in the next few paragraphs.

VI.A.I.a. Information Theory

First, for a given set of discrete values
xi; i ¼ 1; 2; 
 
 
 n, that are passed to a function f ðxÞ, the
expectation value of that function is given by

h f ðxÞi ¼
Xn
i¼1

pi f ðxiÞ : ð60Þ

For the probability distribution pi ¼ pðxiÞ, i ¼ 1; 2; 
 
 
 n,
the entropy of p is defined as

Hð pÞ ¼ �K
X
i

pi ln pi ; ð61Þ

where K is a positive constant. A proof that this is indeed
the associated maximal entropy associated with all pi is
given in Ref. 50. For a continuous probability density
function pðxÞ over the interval I, the entropy of the
continuous function is

Hð pÞ ¼ �K

ð
I
pðxÞ ln pðxÞdx : ð62Þ

To maximize either of these distributions, while also
maintaining that

P
pi ¼ 1, one can use Lagrangian multi-

pliers λ and μ:

pi ¼ e�λ�μf ðxiÞ : ð63Þ

This set of equations can be solved using

hf ðxÞi ¼ � q
qμ

ln ZðμÞ ð64aÞ

and

λ ¼ ln½ZðμÞ� ; ð64bÞ

where

ZðμÞ ¼
X
i

e�μf ðxiÞ : ð64cÞ

Jaynes50,51 showed that the maximum entropy probability
distribution function corresponding to Eqs. 61 though 64
is given by

pi ¼ exp ½�ðλ0 þ λ1 f1ðx1Þ þ 
 
 
 þ λm fmðxiÞÞ� ; ð65Þ

and the entropy of this distribution is given by

Smax ¼ λ0 þ λ1h f1ðxÞi þ 
 
 
 þ λmh fmðxÞi : ð66Þ

In this case, the constant K from Eq. (61) has been set
to 1.

The maximum entropy approach to calculating
a probability distribution function is an attractive option
given limited information about that distribution. This
method’s power lies in that it deduces a function given
limited information but does not place too great of an
importance on missing or unwarranted information.
Furthermore, a distribution ascertained from this metho-
dology will encompass all distributions with smaller
entropies that satisfy the same constraints. Thus, the
method provides the most widely applicable probability
distribution function for the system that has been defined.

Moskalev showed that by using the maximum entropy
approach, a distribution function could be reconstructed
from a (truncated) Legendre expansion.52 This is particu-
larly applicable to radiation transport because scattering
terms are often truncated Legendre expansions. In his
application, Moskalev derived a generalized form of
reconstructing a probability distribution from a truncated
expansion, where the true function represented by
a Legendre polynomial series,

f ðL; μÞ ¼
XL
l¼0

� 2l þ 1

2
flPlðμÞ ; ð67Þ

could be associated with an adjusted function (obtained
from maximizing the entropy of the known values),

ef ðL; μÞ ¼ exp
XL
l¼0

λlPlðμÞ
 !

; ð68Þ

such that

ð f ;PlÞ ¼ ð ef ;PlÞ; l ¼ 0; 
 
 
 ; L ; ð69Þ

where λl are the Lagrange multipliers; ef and f lie within
a positive set of functions (2 Φ) and are assumed to be
a function of μ such that f ðμÞ � 0; μ 2 ½�1; 1�; and (,) is
the inner product. These generalized equations were then
applied to group-to-group scattering probability distribu-
tion functions, as well as reconstructing a L ¼ 3 function.
The reconstruction showed agreement except near the
extrema of μ.
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Walters and Wareing53,54 showed that the angle-
dependent source definition for a discrete ordinates trans-
port problem could be calculated using Moskalev’s
approach.52 In their method, Walters and Wareing used
this approach to reconstruct the source distribution of
particles in each cell from the source moments. For
standard methods, the source in a cell expanded in
Legendre moments is

SmðxÞ ¼ Sm;j P0ðxÞ þ
Sxm; j
Sm; j

P1ðxÞ
� �

; ð70Þ

where

Sm; j = average source in cell j, direction m

Sxm; j = P1ðxÞ moment of the source

P0;P1 = associated Legendre polynomials.

Using a normalized source distribution smðxÞ; where

SmðxÞ ¼ smðxÞSm; j ; ð71Þ

the normalized distribution is

smðxÞ ¼ ½s0 þ s1P1ðxÞ� ; ð72Þ

where s0 and s1 are the zeroth and first Legendre
moments of the source, respectively. The source distribu-
tion derived from the maximum entropy distribution is

esðxÞ ¼ λ1; k
sinhðλ1; jÞ e

λ1; jP1ðxÞ ; ð73Þ

where es has normalized Legendre moments s0 and s1 that
match smðxÞ. Because es satisfies the information that can
be obtained about sm, it can be used to reconstruct SmðxÞ:

SmðxÞ ¼ esmðxÞSm; j : ð74Þ

The term λ1; j can be found with

s1 ¼ 3 coth λ1; j � 1

λ1; j

� �� �
: ð75Þ

It should be noted that the same methodology that
Walters and Wareing use to reconstruct the source
distribution from the source moments can be used to
reconstruct the angular flux in cells based on moments
of the angular flux (i.e., the scalar flux and current).53

In their paper, Walters and Wareing54 suggest that in
place of solving Eq. (75) for λ1; j, a rational polynomial

can be used in its place to reduce computational time. The
suggested polynomial for 0 � λ1; j � 5 is

λ1;j ¼
2:99821

s1;j
3

� 	
� 2:2669248

s1;j
3

� 	
2

1� 0:769332
s1;j
3

� 	
� 0:519928

s1;j
3

� 	
2 þ 0:2691594ðs1;j

3
Þ3

;

ð76Þ

and the suggested polynomial for for λ � 5 is

λ1;j ¼ 1

1� s1; j
3

: ð77Þ

A full derivation of Eq. (75) and how it satisfies the
maximum entropy requirements can be found in
Appendix A of Ref. 54.

In their application, Walters and Wareing found that
this method was accurate over a fairly coarse mesh for
the problems analyzed and the computed fluxes remained
positive over the solution space. When compared to other
methods, this approach performed much better on coarse
meshes. However, the analysis was limited to
1-D problems. As mesh size grew finer, the method
performed similarly to other methods. Near-vacuum
boundary conditions, λ 1; j ! 1 at the cell boundary,
caused issues in calculating the flux in these cells.

VI.A.I.b. AVATAR Implementation

AVATAR uses a deterministically obtained solution
of the adjoint scalar flux and adjoint currents to recon-
struct the angular flux distribution. The angular flux dis-
tribution is then used to generate weight windows.
AVATAR leveraged the methodology described by
Walters and Wareing,53,54 but instead of reconstructing
the source distribution inside the cell, the maximum
entropy method was used to reconstruct the angular
fluxes. Thus, the angular flux ψ was reconstructed with
the scalar flux ϕ and the current J .

AVATAR avoided generating explicit angular fluxes
with THREEDANT (Ref. 49) by assuming that the
adjoint angular flux is symmetric about the average

adjoint current vector Jy:

ψyðbΩÞ ¼ ψyðbΩ 
 nÞ ; ð78aÞ

where
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n ¼ Jy
Jy



 


 : ð78bÞ

Note that n; J ;ψ; and ϕ all have implied dependence on
ð~r;EÞ. The angular flux could then be reconstructed
assuming that the angular flux is a product of the scalar
flux and some angle-dependent function:

ψyðbΩ 
 nÞ ¼ ϕyf ðbΩ 
 nÞ : ð78cÞ

Note that Eq. (78c) takes the form of Eq. (74). Thus, f is
derived from the maximum entropy distribution:

f ðbΩ 
 nÞ ¼ λeðbΩ
nÞλ
2 sinh λ

; ð78dÞ

and λ is a function of the average cosine μ:

λ ¼ 2:99821μ� 2:2669248μ2

1� 0:769332μ� 0:519928μ2 þ 0:2691594μ3

¼ 1

1� μ
ð78eÞ

for 0 � μ < 0:8001 and 0:8001 � μ < 1:0, respectively.
The variable μ is defined as

μð~r;EÞ ¼
Jyð~r;EÞ



 



ϕyð~r;EÞ

: ð78fÞ

Equations (78e) and (78f) are exact in both isotropic and
streaming conditions.12

Using the calculation of the angular flux described in
Eqs. (78a) through (78f), angle-dependent weight windows
can be constructed. AVATAR’s space-, energy-, and angle-
dependent weight window is given by

wð~r;E; bΩÞ ¼ k

ϕyð~r;EÞf ðbΩ 
 nÞ
; ð79Þ

where k is a constant that can be adjusted to match the
source distribution. In the case of AVATAR, k was used
as a normalization factor to ensure that source particles
are born with weights within the weight window.
AVATAR exclusively generated weight windows and did
not attempt to consistently bias the source distribution.
Physically, the assumption behind AVATAR is that the
adjoint angular flux is locally 1-D, so azimuthal symme-
try is assumed.

VI.A.I.c. AVATAR Results

Van Riper et. al.12,48 showed that AVATAR’s angu-
larly dependent weight windows improved the FOM
(from five times to seven times) for a multiple-tally well-
logging problem compared to the MCNP WWG.
AVATAR was also compared to other methods in subse-
quent papers.11 In an update of the MCNP WWG,
AVATAR was compared to variants of the WWG and
had a FOM of 79 while variants of the WWG had
FOMs ranging from 105 to 119 (Ref. 11). However, the
MCNP WWG required multiple iterations of Monte
Carlo transport to converge on weight window values
while AVATAR did not. Total run times for iteratively
converging on weight window values were in the 200- to
300-min range, while AVATAR took roughly 5 min to
converge on weight window values for the problem.
Whether these calculations were performed in serial or
parallel was not discussed.

The MCNP WWG has also been adapted to use
weight window values seeded by a solution from
AVATAR (Ref. 11). This method had FOMs comparable
to the default MCNP WWG but required only one itera-
tion to converge rather than three. This reduced the total
transport run time from roughly 260 to 140 min but still
required user experience and input to adequately set up
and prepare the deterministic input for AVATAR.

The method used by AVATAR to produce angle-
dependent weight windows successfully incorporated
angular information into VR parameters for Monte Carlo
with very little additional computational burden. However,
because AVATAR was not fully automated, the user had to
have knowledge on the use of the SN deterministic solver in
addition to the Monte Carlo methods they were trying to
optimize. As a result, the user needed to adequately prepare
the deterministic inputs, correctly specify the adjoint
source for the deterministic solve, and then pass these
values to postprocessing software.11,55 The FOMs reported
with AVATAR did not incorporate the additional time
required for user setup and preparation of inputs. Though
this is not a customary time inclusion, the burden of time
for this process may be significant. Though more compu-
tationally efficient than the WWG, this aspect of AVATAR
may be too substantive of an obstacle for new-user
approachability. Further, it leaves more room for user-
induced error.

The AVATAR method12,48 used an approximation of
the angular flux—without explicitly calculating it—to
generate angle-dependent weight windows. It operated
with the approximation that the angular flux was
separable and symmetric about the average current
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vector. The angular flux was then calculated using
a product of a deterministically obtained scalar flux and
an exponential function, derived from the maximum
entropy distribution, that was a function of the scalar
flux and the current. Space-, energy-, and angle-
dependent weight windows for the Monte Carlo problem
were then generated from the inverse of the angular flux.
AVATAR improved the FOM for sample problems from
two to five times but did not apply to problems where the
flux was not azimuthally symmetric.

VI.A.2. Simple Angular CADIS

Simple Angular CADIS (Ref. 55) is built on the
theory of CADIS and FW-CADIS but incorporates
angular information in the methods without explicitly
using angular flux solutions from the deterministic
solution. Instead, the method reconstructs the angular
flux in the same manner employed by AVATAR and
additionally consistently biases the source distribution
with the weight windows using the same methodology
as CADIS and FW-CADIS. Recall that the original
implementation of AVATAR did not have consistent
source biasing. In their work, Peplow et al. implemen-
ted simple angular CADIS in MAVRIC, a hybrid
methods software package distributed with the
SCALE code base.23 The Simple Angular CADIS
method was implemented with two different
approaches to VR: directionally dependent weight
windows with directionally dependent source biasing
and directionally dependent weight windows without
directional source biasing.

VI.A.2.a Theory

The simple angular CADIS approach, like AVATAR,
uses a reconstruction of the angular flux derived from the
maximum entropy distribution (Sec. VI.A.1). In simple
angular CADIS, the adjoint angular flux is approximated
such that

ψyð~r;E; bΩÞ ffi ϕyð~r;EÞ 1

2π
f ðbΩ 
 bnÞ ; ð80Þ

where f ðbΩ 
 bnÞ is given by the same Eqs. (78d), (78e), and
(78f) as AVATAR. Note that this differs from AVATAR’s
reconstruction of the angular flux, Eq. (78a), by a factor of
1=2π. As it was only dependent on μ, AVATAR’s original
approach assumed azimuthal symmetry but did not
incorporate any factor of integration into the angular flux

reconstruction. By including the azimuthal integration

factor of 1=2π, this version of ψy satisfies

ϕyð~r;EÞ ¼
ð
ϕy 1

2π
f ðbΩ 
 bnÞdbΩ : ð81Þ

The corresponding angle-dependent weight windows are
then given by

wð~r;E; bΩÞ ¼ 2πk

ϕyð~r;EÞ f ðbΩ 
 nÞ
: ð82Þ

For the version of simple angular CADIS with
directionally dependent weight windows and without
directional source biasing, the biasing parameters are
given by Eqs. (83). The biased source distributionbqð~r;E; bΩÞ is given by a combination of the standard

CADIS biased source ϕyð~r;EÞ and the original direc-

tional source distribution qðbΩ 
 bdÞ such that

bqð~r;E; bΩÞ ¼ 1

R
qð~r;EÞϕyð~r;EÞ 1

2π
qðbΩ 
 bdÞ

¼ bqð~r;EÞ 1

2π
qðbΩ 
 bdÞ : ð83aÞ

The direction bd is sampled using the original directional
source distribution. The birth weight matches standard
CADIS with

w0ð~r;E; bΩÞ ¼ qð~r;E; bΩÞbqð~r;E; bΩÞ
¼ R

ϕþð~r;EÞ ; ð83bÞ

and the weight window target value is given by

wð~r;E; bΩÞ ¼ R

ϕyð~r;EÞ
f ðbΩ0 
 nð~r0;E0ÞÞ

f ðbΩ 
 nÞ

¼ wð~r;EÞ f ð
bΩ0 
 nð~r0;E0ÞÞ
f ðbΩ 
 nÞ

: ð83cÞ

Note that the biased source distribution bqð~r;E; bΩÞ is
a function of the biased source distribution from standard
space and energy CADIS and of the original directional
source distribution. This is why this method has direc-
tional weight windows but not directional source biasing.

For the version of simple angular CADIS with direc-
tionally dependent weight windows and with directional
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source biasing, the biasing parameters are given by the
equations summarized in Eqs. (84). The biased source
distribution is given by a combination of the space-
energy biased source distribution, the original directional
source distribution, and a directionally dependent biased

source distribution f ðbΩ 
 bn0Þ such that

bqð~r;E; bΩÞ ¼ 1

Rc
qð~r;E; bΩÞϕyð~r;E; bΩÞ

¼ 1

R
qð~r;EÞϕyð~r;EÞ

� �
� 1

c
1

2π
qðbΩ 
 bdÞ 1

2π
f ðbΩ 
 n0Þ

� �
¼ bqð~r;EÞ 1

c
1

2π
qðbΩ 
 bdÞ 1

2π
f ðbΩ 
 n0Þ

� �
: ð84aÞ

The constant c is given by

c ¼
ð
1

2π
qðbΩ 
 bdÞ 1

2π
f ðbΩ 
 n0ÞdbΩ : ð84bÞ

The birth weights are also a function of direction, where

w0ð~r;E; bΩÞ ¼ qð~r;E; bΩÞbqð~r;E; bΩÞ
¼ R

ϕþð~r;EÞ
2πc

f ðbΩ 
 n0Þ
; ð84cÞ

as are the target weights

wð~r;E; bΩÞ ¼ R

ϕyð~r;EÞ
2πc

f ðbΩ 
 n0Þ
¼ wð~r;EÞ 2πc

f ðbΩ 
 nÞ
: ð84dÞ

Details about how Eqs. (84) were practically implemen-
ted are detailed in Ref. 55. The motivated reader may
explore this reference for details on the calculation of λ,

μ, Jyð~r;EÞ



 


, and f ðbΩ 
 bn0Þ.

VI.A.2.b. Simple Angular CADIS Results

To test these two modifications of CADIS, Peplow
et al.55 ran a number of test problems and compared
them against standard implementations of CADIS and
analog Monte Carlo runs. For a spherical boat test
problem, simple angular CADIS without directional
biasing improved the FOM by a factor of 2 to 3. Note
that because the source is monodirectional, directional

source biasing was not compared. Simple angular
CADIS with and without directional source biasing
improved the FOM for active interrogation sample
problems and for simple duct streaming problems. The
methods did not improve the FOMs for sample pro-
blems using a neutron porosity tool or a gamma-ray
litho-density tool.

The range in performance for angle-dependent
problems was explained by Peplow et al.55 as a failure
of the angular flux approximation to capture the true
distribution of the angular flux. Because simple angular
CADIS uses the same approximation in calculating the
angular flux [Eq. (80)] as AVATAR, it is limited in the
types of anisotropy that it can capture. As a result, the
biasing parameters for a problem are unlikely to
adequately reflect the flux distribution in problems
where the flux is not captured effectively by the P1

expansion.
Peplow et al.55 also noted that because the weight

window is dependent on space, energy, and angle, the
source birth weights matched the weight window target
values only at a specific point in the weight window
region. If the weight window covered a substantial region
of phase-space, this could result in particle birth weights
that do not adequately correspond to the importance of
the region into which they are born, resulting in increased
run time and a more computationally intensive
calculation.

VI.A.3. CADIS- Ω and FW-CADIS-Ω

Munk developed an extension of CADIS and FW-
CADIS using adjusted scalar fluxes to generate the source
biasing and weight window parameters by CADIS and
FW-CADIS (Ref. 56). Unlike simple angular CADIS,
this method uses the full angular flux solutions. In this
case, it uses the adjoint and forward angular fluxes to
generate a forward-weighted adjoint scalar flux, as shown
in Eq. (85):

ϕyΩð~r;EÞ ¼

ð
Ω
ψyð~r;E; bΩÞψð~r;E; bΩÞdbΩð

Ω
ψð~r;E; bΩÞdbΩ : ð85Þ

Then ϕyΩ is used in place of ϕy in both CADIS and
FW-CADIS.

The intention of using a forward-weighted adjoint
in CADIS and FW-CADIS is to weight the scalar
fluxes—and by extension the source biasing and
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weight window values—in regions where the flux is
highly anisotropic. In regions where the forward or
adjoint fluxes are isotropic, Eq. (85) will result in

ϕyΩ � ϕy. Only in regions of high anisotropy will the
adjusted adjoint flux differ from standard CADIS.
Further, because these methods use a scalar flux of

the same form as ϕy, it could be used in the same

manner as ϕy in CADIS and FW-CADIS.
Munk showed that the adjusted formulation of CADIS

using the Ω fluxes is given by Eqs. (86). The biased source
distribution used by CADIS-Ω is formulated just as it is in
CADIS, except the adjusted adjoint fluxes are used:

bqΩ¼ ϕyΩð~r;EÞqð~r;EÞðð
ϕyΩð~r;EÞqð~r;EÞdEd~r

¼ ϕyΩð~r;EÞqð~r;EÞ
RΩ

: ð86aÞ

The starting weights of the particles sampled from the
biased source distribution bq are given by

w0; Ω ¼ qbqΩ
¼ RΩ

ϕyΩð~r;EÞ
; ð86bÞ

and the new target weights for the particle are

bwΩ ¼ RΩ

ϕyΩð~r;EÞ
: ð86cÞ

The generalized form for the adjoint source definition is
given by the fraction of the response in a region of phase-
space P over the total response in the problem, or

q
y
ΩðPÞ ¼ qyðPÞ ¼ σdðPÞ

R
: ð87aÞ

When applied to the spatially dependent global doseð
ϕð~r;EÞσdð~r;EÞdE, the adjoint source will be

q
y
Ωð~r;EÞ ¼ qyð~r;EÞ ¼ σdð~r;EÞð

σdð~r;EÞψð~r;E; ÞdE
: ð87bÞ

The adjoint source for the spatially dependent total fluxð
ϕð~r;EÞdE is

q
y
Ωð~rÞ ¼ qyð~rÞ ¼ 1ð

ϕð~r;EÞdE
: ð87cÞ

The adjoint source for the energy-dependent and spatially
dependent flux ϕð~r;EÞ is

q
y
Ωð~r;EÞ ¼ qyð~r;EÞ ¼ 1

ϕð~r;EÞ : ð87dÞ

Munk implemented both CADIS-Ω and FW-CADIS-Ω in
ADVANTG and evaluated the performance of the
CADIS-Ω methods on several test problems with varying
levels of anisotropy in the neutron flux. Munk designed
the problems such that the anisotropy resulted from either
interactions with the problem material (e.g., streaming
paths) or from a directional source.

When comparing CADIS-Ω to standard CADIS,
Munk investigated the impact of the adjusted adjoint
flux ϕΩ on both the deterministic and Monte Carlo calcu-
lations. The Ω methods, as implemented in ADVANTG
and Denovo, could be quite slow to calculate ϕΩ. This
was due to the large memory requirements for the full
angular flux solution for both the forward and the adjoint
used to calculate the Ω flux. The method implemented by
Munk was neither optimized nor parallelized and was
a high cost in the ADVANTG calculation as compared
to traditional CADIS and FW-CADIS. In the biased
Monte Carlo test problems, the Ω methods yielded vary-
ing results. In voids, CADIS and CADIS-Ω performed
equivalently well. In some problems CADIS-Ω achieved
a FOM an order of magnitude larger than standard
CADIS. In others, CADIS-Ω performed poorly. In almost
all cases CADIS-Ω achieved lower relative errors than
standard CADIS. Conversely, the Monte Carlo runs
biased by CADIS-Ω took longer to run than standard
CADIS. The combination of longer run times but lower
relative errors resulted in varying performance of
CADIS-Ω. Munk observed no trend with anisotropy and
the success of the method.

VI.A.4. Cooper’s Weight Windows

Cooper and Larsen, in addition to generating global
isotropic weight windows from a deterministic forward
solution (as described in Sec. V.A), also developed angle-
dependent weight windows.36 Here, the forward angular
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flux is calculated in a similar manner as the AVATAR
method, where the angular flux is a product of the scalar
flux and an angle-dependent function. In this case, the
adjustment factor also includes a factor of 4π:

ψð~r; bΩÞ � Að~rÞe~Bð~rÞ
bΩ ; ð88aÞ

where Að~rÞ and ~Bð~rÞ are given by

Að~rÞ ¼ ϕð~rÞ
4π

Bð~rÞ
sinhBð~rÞ ; ð88bÞ

~Bð~rÞ ¼ Bð~rÞ
~λð~rÞ
~λð~rÞ
��� ��� ; ð88cÞ

and

λð~rÞ ¼ cothBð~rÞ � 1

Bð~rÞ : ð88dÞ

If both Að~rÞ and ~Bð~rÞ are inserted into Eq. (88a), the
formulation will be very similar to AVATAR’s reconstruc-
tion of the angular flux. However, Cooper’s method dif-
fers from AVATAR in the calculation of λð~rÞ. Cooper
noted that λð~rÞ could be estimated either with the scalar
fluxes and currents from a fairly low-cost quasi-diffusion
calculation,

λið~rÞ ¼ Jið~rÞ
ϕð~rÞ ; 1 � i � 3

¼ 1

Σtrð~rÞϕð~rÞ
q
qrj

Eijð~rÞϕð~rÞ ; ð88eÞ

or with the scalar fluxes and currents directly from the
Monte Carlo solution [Eijð~rÞ is the Eddington factor
described in Sec. V.A]. Cooper noted that because
Monte Carlo robustly calculates the Eddington factor,
the current, and the scalar flux, it is the more optimal
choice, though it is more computationally expensive than
the quasi-diffusion calculation. After obtaining the cur-
rent and scalar flux values (with which to calculate λi)
from the chosen method, Cooper’s angle-dependent
weight window could be calculated for each cell i; j with

wwi; jðbΩÞ ¼ ψi;jð~r; bΩÞ
maxϕi 0; j 0=4π

; ð88fÞ

where maxϕi 0; j 0 is the maximum scalar flux in the

system.
As mentioned in Sec. V.A, Cooper’s method was

limited in that it used an iterative quasi-diffusion/Monte
Carlo solution to generate the biasing parameters for the
problem. This method was not automated, and the ideal
frequency between iterations was never explored.
However, Cooper showed in two-dimensional (2-D) exam-
ple problems that the angularly dependent weight windows
significantly improved the FOM as compared to analog
Monte Carlo. The distributions of the FOM and the result-
ing tally were also much smoother with the approach
described in their work. Further, the angular weight win-
dows performed slightly better than the isotropic weight
windows in evenly distributing the particles, even in pro-
blems where the anisotropy was not significant. However,
like AVATAR, this method is limited in the types of
anisotropy it can quantify as a result of the approximations
it uses to reconstruct the angular flux. In generating the

estimates for ~λ, Cooper found that using a quasi-diffusion
estimate was more efficient than using Monte Carlo
estimates, likely because the estimates of the factors
could be periodically updated as the solution iteratively
converged.

VI.A.5. Lagrange Discrete Ordinates with CADIS and
FW-CADIS

Many of the angle-informed hybrid methods
described in Sec. VI have used approximations of the
angular flux to construct angle-informed VR parameters.
The methods are limited by the quality of the solution
used to generate such parameters. The resolutions of
space, energy, and angle all play a role in the quality of
the solution, and in turn, each affects the time to converge
on an acceptable solution. When ray effects are present in
the deterministic solution, for example, they will be
propagated into the biasing parameters of the Monte
Carlo simulation. Rowland et al. studied the use of an
alternative formulation of the transport equation, the
Lagrange Discrete Ordinates57 (LDO) equations, for use
in CADIS and FW-CADIS. The LDO formulation has
a number of favorable features that make it a potentially
attractive method with which to generate the adjoint
fluxes in problems with strong angular anisotropy. The
quadrature set can be rotated arbitrarily, so a problem
with poor performance due to a particular quadrature
interface can be remedied with a rotation in the quadra-
ture set. Further, solutions obtained by solving the LDO
equations allow for interpolation between the quadrature
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points, so a user could get the flux for any arbitrary point
in the unit sphere described by the quadrature set. While
the LDO formulation has a number of attractive features,
Rowland et al. did not deeply investigate the effect of
either of these features on the performance of CADIS or
FW-CADIS using a deterministic solution with an LDO
quadrature set.

Rowland implemented the LDO equations in Denovo
and performed a study to see if it produced favorable
results in problems with strong angular anisotropy.58

Rowland used the CADIS and FW-CADIS methods
implemented in ADVANTG to bias Monte Carlo simula-
tions with MCNP. In this study it was found that the LDO
equations performed well in problems with photons,
likely due to the number of scattering coefficients
available, which allowed for a favorable representation
of the physics with a low-order quadrature set. The LDO
construction did not appear to have consistently superior
performance to other quadrature sets in SN for neutron
transport. Rowland’s work, however, offers a number of
interesting possibilities for future work in angular-
informed hybrid methods. For example, solutions of the
LDO equation solutions could be used to construct VR
parameters with methods using the exponential transform
(Sec. VI.B). The LDO equations were not tested using
angular weight windows, which classically have a high
computational cost and unnecessary burden for VR.
However, the nature of the LDO quadrature sets may
allow for explicit angle-dependent weight windows to
be constructed from its solution.

VI.B. Angular Biasing Using the Exponential Transform

VI.B.1. Early Work

As discussed in Sec. II.B, the exponential transform
is a modified sampling method that adjusts the distance to
collision in Monte Carlo transport to encourage particle
transport in preferential regions. This is done by modify-
ing the sampled cross section. Recall from Eq. (25) that
the exponential transform is dependent on a transform
parameter p and the cosine angle μ such that
Σ	
t ¼ Σtð1� pμÞ. When used without angle biasing,

ψyg ðr;ΩÞ � eΣtλ
r ; ð89Þ

the exponential transform can have undesirable weight
fluctuations,33 especially as the number of collisions to
reach a tally increases.59 Equation (89) shows that the
importance function (the adjoint flux) can be

approximated as an exponential function varying in
space, dependent on the total cross section Σt, distance
traveled r, and a parameter defining the amount and
direction of biasing λ.

Dwivedi60 showed that by adding an angle-dependent
collision biasing scheme in addition to the exponential
transform, the problematic weight fluctuations could be
mitigated. The collision biasing scheme introduced with
the exponential transform takes the form

ψyg ðr;ΩÞ �
σs;0eΣtλ
r

4πσtð1� λ 
ΩÞ : ð90Þ

Note that the ratio of cross sections outside of the expo-
nential function σs;0=σt, where σs;0 is the zeroth moment
of the scattering cross section, is the survival probability
in an interaction event, and the ð1� λ 
ΩÞ term is
consistent with the weight adjustment required for the
exponential transform [Eq. (26)]. This was applied to
a monoenergetic problem with slab geometry and
isotropic scattering, and the variance was reduced by
a factor of more than 100 when compared with other
exponential transform methods.

Gupta and Dwivedi’s subsequent work59 adjusted the
factor described in the preceding paragraph by applying
the exponential transform with angle biasing to deep-
penetration problems with anisotropic scattering. Gupta
and Dwivedi did not explicitly use the true distribution
for anisotropic scattering but rather chose to approximate
the biased kernel to be a function of the isotropic angular
distribution. They observed a reduction in the variance by
a factor of 10, but they acknowledged that while the
combination of the biased kernel and exponential biasing
reduced weight fluctuations, it also had the potential to
introduce other weight fluctuations due to anisotropies in
the flux.

Ueki and Larsen61 generalized Dwivedi’s importance
transform and applied it to isotropic, linearly anisotropic,
and quadratically anisotropic scattering. They observed
that Dwivedi’s method and the generalized Dwivedi
method outperformed non-angle-dependent exponential
biasing for all types of scattering and that Ueki and
Larsen’s generalized method outperformed Dwivedi’s
original method in higher-order scattering. The works of
Dwivedi, Gupta and Dwivedi, and Ueki and Larsen were
applied and each compared with 1-D sample problems.
Ueki and Larsen pointed out that their method could be
extended to three-dimensional problems using Turner and
Larsen’s methodology (described in Sec. VI.B.2,
Ref. 61).
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In 1985, Hendricks and Carter62 described a method by
which photon transport could be biased in angle with an
exponential transform adjustment factor. They performed
studies on three test problems with the exponential
transform adjustment factor and with a synergistic angular
bias and exponential transform adjustment. In all studies,
the synergistic biasing outperformed the exponential trans-
form adjustment alone. However, their method performed
best in highly absorbing media. They noted that this per-
formance was because the biasing could be strong without
undersampling scattering in the problem. They also pointed
out that while the weight window method was comparable
in efficiency to the method described, their method avoided
choosing importances and weight window values for
biasing. Their method was limited to exclusively photon
transport biasing and not neutron transport. However,
Hendricks and Carter were optimistic that the method
could be extended to neutron transport with relative ease.
Both et al.63 also derived VR parameters for the
exponential transform and for collision biasing based on
the adjoint solution as a measure of importance.

VI.B.2. Local Importance Function Transform

The Local Importance Function Transform64,65 (LIFT)
method developed by Turner and Larsen, like Dwivedi’s
exponential transform, is a modification of the zero var-
iance solution (see Sec. III.C). Consequently, the LIFT
method uses a calculation of the adjoint flux as
a measure for importance in the problem to distribute
particles according to the contributon density in the pro-
blem. LIFT uses a deterministic calculation to generate
biasing parameters for the exponential transform and
weight window VR techniques.

As with the form of the importance function derived
by Dwivedi [Eq. (90)], the LIFT method generates an
angle-dependent importance function by taking the
product of a space-based exponential function and an
angle-informed collision estimator. Additionally, LIFT
uses a deterministic calculation of the adjoint scalar flux
to inform the angular flux reconstruction. The adjoint
angular flux is approximated as piecewise continuous in
space and angle with Eqs. (91a) through (91d):

ψyg; nðr;ΩÞ � ϕyg; nVn βg; n
σs0;g!g; nbg; nðΩÞ
σt; g; n � ρg; n 
Ω

eρg; n
ðr�rnÞ
" #

;

ð91aÞ

where the physical system comprises N regions of

volume Vn and ψyg;n is the approximation of the adjoint

angular flux for group g and region n. Further, β, the
normalization factor, is given by

βg; n ¼
1ð

Vn

eρg; n
ðr�rnÞdr
ð
4π

σs0;g!g; nbg; nðΩÞ
σt; g; n � ρg; n 
Ω

dΩ
;

ð91bÞ

where bg;n, the linearly anisotropic factor, is

bg; nðΩÞ ¼ 1þ 3μg!g; n
σt; g; n � σs0; g!g; n

ρg; n
��� ���2 ρg; n 
Ω;

ð91cÞ

and the biasing parameter ρg; n is given by the product of

the cross section and the biasing parameter λ seen
previously in Eqs. (89) and (90):

ρg; n ¼ σt; g; nλg; n : ð91dÞ

Turner and Larsen showed that ρg; n can be obtained from

the deterministic solution to the adjoint equation rather
than from the cross section and λ, which requires some
assumptions on the distribution of particles. Turner and
Larsen’s corresponding solutions for ρ in terms of the
deterministic scalar fluxes are

ρi; g; n ¼
1

Δxn
ln

ϕyg; iþ1=2

ϕyg; i�1=2

0@ 1A ; ð92aÞ

ρj; g; n ¼
1

Δyn
ln

ϕyg; jþ1=2

ϕyg; j�1=2

0@ 1A ; ð92bÞ

and

ρk; g; n ¼
1

Δzn
ln

ϕyg; kþ1=2

ϕyg; k�1=2

0@ 1A : ð92cÞ

Each value of ρ is defined using cell-edge flux values in
Cartesian coordinates.

Equation (91a) is an adjustment of the exponential
transform described by Dwivedi.60 However, rather than
relying upon an isotropic scattering law, like earlier
implementations of the exponential transform, the LIFT
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method adjusts the transform to instead be linearly aniso-
tropic in angle. The derivation of this equation for both
linearly anisotropic scattering and isotropic scattering is
available in Ref. 64. To summarize, the parameters βg; n,
bg; n, and ρg; n are calculated from values obtained from

the deterministic calculation and are used to calcu-

late ψyg; n.
In addition to using the exponential transform to bias

the particles in angle, the LIFT method also uses weight
windows for particle weight adjustment. However, the
computational cost of generating angle-dependent weight
windows from the previous equations led Turner and
Larsen to choose space-energy exclusive weight win-
dows. The weight window target values were calculated
to be inversely proportional to the adjoint solution, as
with other methods:

wwcenter; g; n ¼
ϕyg; src
ϕyg; n

: ð93Þ

The LIFT method,64,65 like AVATAR, calculated the
angular flux for a region by assuming the angular flux
was a product of the scalar flux and an exponential
function. The angular flux values were then used to gen-
erate values for the exponential transform VR technique
to bias the particles in space, energy, and angle. Like
AVATAR, LIFT also generated weight window para-
meters. However, generating a full angle-dependent
weight window map and running Monte Carlo transport
with those weight windows was computationally limiting,
and Turner and Larsen chose to generate only space- and
energy-dependent weight windows. They showed that
LIFT outperformed AVATAR for several example pro-
blems, but both methods performed poorly in voids and
low-density regions.

Turner and Larsen compared a number of variants of
LIFT (Ref. 65) against AVATAR to determine the
efficiency of LIFT. In their investigation, Turner and
Larsen compared LIFT and AVATAR using approxima-
tions for the adjoint solution with diffusion and SN
transport calculations, and with various methods to
calculate weight window parameters, including using
LIFT combined with AVATAR’s weight window
parameters. In most cases, LIFT outperformed AVATAR.
In problems with voids and low-density regions, the
efficiency of the LIFT method decreased, but so did
AVATAR. This independently confirmed the findings of
the previous study. However, an important note that
Turner and Larsen mentioned was that while increasing

the accuracy of the deterministic solution may decrease
the variance, it is not necessarily the best for the FOM.
This is a valuable lesson for all automated VR methods:
An overly accurate solution for the adjoint problem may
reduce the variance but may come at such a high compu-
tational cost that it decreases the FOM.

More recently, Keady and Larsen showed that LIFT
could be improved upon further by using cell-averaged
currents and fluxes rather than cell-edge values for angu-
lar biasing.66 By using this modified variation of LIFT,
material interfaces do not create strong flux discontinu-
ities on cell edges, resulting in a solution that is both
smoother and more realistic. Results were presented for
a 1-D monoenergetic slab problem with material inter-
faces. The modified version of LIFT outperformed both
the original LIFT method and Monte Carlo weight win-
dows generated with forward deterministic weight
windows.

VII. OTHER VR METHODS

Sections IV, V, and VI describe a number of efforts to
reduce the variance in Monte Carlo problems according
to different problem constraints: localized detectors,
global tallies, or problems requiring additional angular
information. However, there exist a few methods that
are not well described using the previous classifiers.

Becker and Larsen67 developed a general transform
for VR. Their general transform is applicable to many
different types of VR methods, including source biasing,
weight windows, the exponential transform, or collision
biasing. It is also valid in space, energy, and angle, thus
applying to any of the aforementioned sections of this
paper. This general transform allows for VR parameters
to be determined for any Monte Carlo particle distribu-
tion, which allows the user flexibility in choosing
a distribution (and VR parameters) that is problem
dependent.

Becker and Larsen’s general transform defines the
angular flux in terms of a transform function T , the
weight window centers w, and the Monte Carlo particle
flux m:

ψðx;Ω;EÞ ¼ Tðx;Ω;EÞwðx;Ω;EÞmðx;Ω;EÞ : ð94Þ

The full derivation of Eq. (94) can be found in Ref. 67.
By combining a transform function and a weight

window, a user can use any combination of VR methods
to distribute particles throughout the problem given
a particular particle distribution. The user may choose
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to use only the transform function, only weight windows,
or some combination of both to achieve the desired
particle distribution in the problem. For example, should
the user choose to use exclusively weight windows, the
transform function T can be set to 1, and Eq. (94)
reduces to

ψðx;Ω;EÞ ¼ wðx;Ω;EÞmðx;Ω;EÞ : ð95Þ

If the weight window center is chosen such that

wðx;Ω;EÞ ¼ 1=ψyðx;Ω;EÞ, as is common in many of
the previously mentioned VR methods, the Monte Carlo
particle distribution in the problem becomes

mðx;Ω;EÞ ¼ ψðx;Ω;EÞψyðx;Ω;EÞ : ð96Þ

This resultant particle distribution, the contributon flux, is
observed in methods using the adjoint flux in the weight
window values.

Conversely, if a user chooses to bias with no weight
windows and a transform function alone, w may be set to
1, and Eq. (94) reduces to

ψðx;Ω;EÞ ¼ Tðx;Ω;EÞmðx;Ω;EÞ : ð97Þ

One may note that this derivation of the general transform
also allows one to determine what the particle distribution
in the problem will be, given a set of weight windows.
This method allows for any particle distribution to be
chosen by the user, and then any combination of the
transform function and weight window values can be
combined to achieve that distribution.

Becker and Larsen applied the general transform to
two demonstration problems representative of those com-
monly encountered in hybrid methods: a global flux
problem and a source-detector problem. The general
transform was applied to these problems at both
extremes, using either the complete transform function
or the weight window. Both variations of the general
transform function yielded comparable results.

All of the methods presented in Secs. III though VI
moved particles in the system according to some choice,
whether that be the adjoint flux, the contributon flux, or
something else. Our choice of particle distribution has clas-
sically been with the intent of reducing the FOMby increas-
ing the particle population in tally regions. However, Becker
and Larsen showed that there is no rigorous mathematical
link between the FOM and the Monte Carlo particle dis-
tribution, though the improvement in the FOM from
a higher particle population is observable.

Solomon et al.68 proposed a method to optimize the
FOM by calculating the tally variance and the average
computational time per history, thereby directly
optimizing the FOM. This method is called the Cost
Optimized Variance Reduction Technique (COVRT).
Solomon et al. showed that the history-score moment
equations describe the moments of a Monte Carlo tally
score distribution. The first two moments of the
history-score moment equations can be used to
calculate the tally variance. Additionally, the future
time equation can be solved to determine the average
computational time per history. Together, these can be
combined for a deterministic estimate of the Monte
Carlo FOM.

Solomon et al. deterministically obtained solutions for
the history-score moment equations and the future time
equations using a discrete ordinates method. The solutions
were then used to calculate the cost to achieve a desired
solution. Weight window bounds were chosen such that
the cost function was minimized, that is, that the trade-off
between the tally variance and the average particle time in
the solution was optimized. Solomon et al. applied this
methodology to 1-D and 2-D problems and observed
improvements in the FOM by up to a factor of 2 as
compared to standard adjoint-based VR. Solomon et al.
also compared the weight window maps generated by
standard adjoint-based methods to the COVRT method
and found that COVRT generated weight window values
that differed by up to a factor of 2.

Kulesza et al.69 performed an assessment of the COVRT
method on several 1-D and 2-D test problems with weight-
dependent and weight-independent parameters. One may
recall from Sec. II.B that some VR methods are dependent
on particle weight (weight windows) and others are not
(splitting and rouletting). Solomon et al.’s initial work
generated weight-dependent VR parameters, but the
methodology is also valid for generating weight-
independent parameters. Kulesza compared weight-
dependent and weight-independent COVRT-biased Monte
Carlo with unbiased Monte Carlo. Kulesza’s initial work
found that COVRT improved the FOM as compared to
unbiased Monte Carlo and also had a higher FOM than
ADVANTG for a single test problem. However, when
comparing COVRT and ADVANTG, the deterministic solu-
tion took orders of magnitude longer with COVRT than
ADVANTG. This was attributed to the production-level
algorithmic implementation of the deterministic solver used
by ADVANTG as compared to the research code used by
COVRT. Kulesza then extended the COVRT method to be
usable with DXTRAN (Ref. 70) in one and two dimensions.
COVRTwas found to generate good parameters in this case.
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VIII. VARIANCE REDUCTION IN LARGE APPLICATION
PROBLEMS

Variance reduction methods exist for Monte Carlo
methods to achieve a more accurate answer in a shorter
amount of time. Automated VR methods have been
designed to aid users in generating VR parameters
where it might not be intuitive or obvious what VR
parameters are best for a problem. The most successful
VR methods construct or estimate an importance function
for the desired response from a preliminary calculation.
This importance function may be derived from the adjoint
solution to the transport equation, or it may be derived
from contributon theory.

The methods described in Secs. IV, V, and VI have
been implemented and tested in a number of software
packages. The problem spaces over which they have been
applied are extensive and show that a large subset of
application problems can be successfully simulated with
the assistance of existing VR techniques. Local VR meth-
ods can be used to reduce the variance in source-detector
problems where the detector constitutes a small subset of
the problem phase-space. Global VR methods can be
used to distribute response sampling equally throughout
several tallies or a problem-wide tally. Angle-based VR
methods are used in problems where space and energy
VR methods alone are not sufficient. For large and com-
plex problems, automated versions of each of these meth-
ods are required as the user expertise to obtain even
remotely adequate parameters is significant. Here, the
existing state of automated VR methods and the
applications on which they have been tested will be
summarized.

At present, numerous hybrid method packages that
use the methods described in Secs. IV, V, and VI are
available. These packages are targeted toward deep-
penetration radiation transport and shielding
applications. The CADIS and FW-CADIS methods are
distributed with MAVRIC (Refs. 23 and 40) and
ADVANTG (Ref. 71) from Oak Ridge National
Laboratory (ORNL), which use the Denovo discrete
ordinates code72 to make VR parameters for the Monte
Carlo codes Monaco (Ref. 23) and MCNP (Ref. 2),
respectively. CADIS and FW-CADIS are also available
in the Tortilla code,73 which uses the hybrid method
software using the Attilla deterministic code.74 Tortilla
also includes a version of LIFT and LIFT-based weight
windows. The Deterministic Adjoint Weight Window
Generator (DAWWG) from Los Alamos National
Laboratory75 uses the adjoint solution from
a deterministic solve in PARTISN (Ref. 76) to generate

biasing parameters for MCNP and also includes
AVATAR functionality. MCNP (Ref. 2) is distributed
with a WWG that uses a preliminary Monte Carlo
solution to estimate an importance function for the
problem. Though this list is not exhaustive, it illustrates
the present ubiquity and need for hybrid methods to
analyze realistic problems. In the analysis of realistic
problems, ensuring that a “good” answer is achieved is
necessary for safety and security. In the next few
paragraphs, how and how effectively each of these
methods have been applied to application problems is
summarized. The degree to which each is successful is
also discussed.

CADIS and FW-CADIS have been used for a number
of studies of spent fuel storage facilities. Radulescu et al.
used FW-CADIS in MAVRIC to calculate spent fuel dose
rates of a single dry cask with finely detailed geometry
and spent fuel isotopic compositions.77 Chen et al. used
MAVRIC (Ref. 23) to analyze dose rates on spent fuel
storage containers.78 The fueled region of the storage
container was homogenized into an effective fuel region.
They found that in a coarse energy group calculation,
MAVRIC underestimated neutron dose rates at high
energies. However, MAVRIC’s ability to generate impor-
tances in three dimensions allowed it to have better
problem-wide results, while other methods (SAS4)
struggled to generate satisfactory results in the axial
direction. This was demonstrated to a greater extent in
an analysis of an independent spent nuclear fuel storage
installation79 (ISFSI) by Sheu et al. The FOM achieved
by MAVRIC appeared inferior to that obtained with
SAS4 or TORT/MCNP in a single cask. However, when
applied to a storage bed of 30 casks, MAVRIC was able
to generate VR parameters, which were unfeasible for the
other two methods. These studies demonstrated that
CADIS and FW-CADIS are desirable methods for
which to obtain global and three-dimensional VR
parameters for realistic problems.

ADVANTG (Ref. 71), developed at ORNL (Refs. 34,
80, and 81), is a hybrid method package for automated VR
of the Monte Carlo transport package MCNP (Ref. 4).
ADVANTG uses the Denovo deterministic transport
code72 to perform the forward and adjoint calculations
for CADIS and FW-CADIS. At its inception,
ADVANTG was used to analyze various threat detection
nonproliferation problems.71 FOM improvements on the
order of 102 to 104 when compared with analog Monte
Carlo have been observed. However, Mosher et al. noted
that the methods struggled with problems exhibiting
strongly anisotropic behavior. In particular, they noted
that low-density materials and strongly directional sources
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posed issues. This indicated that while CADIS and
FW-CADIS are very useful methods, they have limitations
in highly angle-dependent applications.

DAWWG utilizes the PARTISN discrete ordinates
code75 to generate space- energy-, and angle-dependent
weight windows. It is an internal feature of MCNP. The
angle-dependent weight windows are calculated with the
same methodology as AVATAR (Refs. 12 and 75).
Sweezy et al. compared DAWWG to the standard
MCNP WWG on an oil well logging problem,
a shielding problem, and a dogleg neutron void problem.
DAWWG obtained similar relative errors as the standard
WWG for the first two problems but in a fraction of the
time. However, for the dogleg void problem, which
exhibited strong angular dependence in the neutron flux,
Sweezy et al. noted that DAWWG was not as effective as
the standard MCNP WWG. This was attributed to ray
effects from the SN transport influencing the weight win-
dows obtained by DAWWG, which is not an issue for the
standard WWG.

A variety of automated VR methods, including
CADIS and LIFT, have been implemented into the
Attila/Tortilla deterministic and hybrid transport code
packages.73 These methods were used on several nonpro-
liferation test problems. For the most part, LIFT and LIFT
combined with weight windows outperformed CADIS’s
weight windows and source biasing, indicating that the
addition of angular information was of benefit for these
more realistic nonproliferation application problems.

Peplow et al. formulated an adjustment to CADIS in
the ORNL code suite55 to incorporate angular information
into the VR parameters (see Sec. VI.A.2). Two different
methods to generate weight windows and source biasing
parameters were investigated: CADIS with directional
source biasing and CADIS without directional source bias-
ing. For the method without directional source biasing, the
biased source distribution matched that of the original
CADIS, but the weight window values were directionally
dependent. The method with directional source biasing
used the transform function to obtain directionally depen-
dent weight windows and directional source biasing.
Peplow et al. found that these methods generally increased
the FOM by up to a factor of 5 as compared to traditional
CADIS but in some cases decreased the FOM. This was
attributed to the P1 approximation used to calculate the
angular flux, which limited the physical applicability of
the method, just as with AVATAR.

CADIS and FW-CADIS have become the existing
gold standard of local and global VR methods for large
application problems, a selection of which are described
in the preceding paragraphs. These problems include

active interrogation of cargo containers,71 spent fuel sto-
rage casks77,78 and storage facilities (ISFSI) (Ref. 79),
and other nonproliferation and shielding applications.73

For additional applications, one may refer to Ref. 34. In
some of these application problems, the parameters gen-
erated by CADIS or FW-CADIS were sufficient for the
problem application. However, for other problems that
had strong angular dependence or geometric complexity,
the parameters were insufficient.55,73,78 This can be
remedied with additional angular information in the VR
parameters, such as LIFT (Ref. 73), but the benefits of
consistent source biasing are lost in this case.
Alternatively, the angular flux can be reconstructed in
a manner similar to AVATAR (Refs. 55 and 75) to
generate angle-dependent weight windows, but this
approximates the angular flux to be linearly anisotropic
in angle (from the P1 reconstruction) and is also depen-
dent on the deterministic flux not having ray effects.75

Although numerous methods have been proposed and
implemented to obtain adequate angle-informed VR
parameters for application problems, they have limited
applicability, and determining in which problems they
will be useful is not always straightforward. No single
method has been successful for problems with all types of
anisotropy, and no existing angle-informed method
captures the anisotropy in the flux without significant
approximation. For large-scale, highly anisotropic, deep-
penetration radiation transport problems, there exists
a need for improvements in hybrid methods.

IX. CONCLUSIONS

Hybrid methods are and will be a realm of continued
importance in radiation transport method development.
The application space and demand for hybrid methods
continues to grow. With this growth, accurately and effi-
ciently modeling the physics of increasingly complex
problems is paramount for safety and security.
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