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Guanylate cyclase–activating protein 2 contributes to
phototransduction and light adaptation in mouse cone
photoreceptors
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Light adaptation of photoreceptor cells is mediated by Ca2�-
dependent mechanisms. In darkness, Ca2� influx through
cGMP-gated channels into the outer segment of photoreceptors
is balanced by Ca2� extrusion via Na�/Ca2�, K� exchangers
(NCKXs). Light activates a G protein signaling cascade, which
closes cGMP-gated channels and decreases Ca2� levels in pho-
toreceptor outer segment because of continuing Ca2� extrusion
by NCKXs. Guanylate cyclase–activating proteins (GCAPs)
then up-regulate cGMP synthesis by activating retinal mem-
brane guanylate cyclases (RetGCs) in low Ca2�. This activation
of RetGC accelerates photoresponse recovery and critically con-
tributes to light adaptation of the nighttime rod and daytime
cone photoreceptors. In mouse rod photoreceptors, GCAP1 and
GCAP2 both contribute to the Ca2�-feedback mechanism. In
contrast, only GCAP1 appears to modulate RetGC activity in
mouse cones because evidence of GCAP2 expression in cones is
lacking. Surprisingly, we found that GCAP2 is expressed in
cones and can regulate light sensitivity and response kinetics as
well as light adaptation of GCAP1-deficient mouse cones. Fur-
thermore, we show that GCAP2 promotes cGMP synthesis and
cGMP-gated channel opening in mouse cones exposed to low
Ca2�. Our biochemical model and experiments indicate that
GCAP2 significantly contributes to the activation of RetGC1 at
low Ca2� when GCAP1 is not present. Of note, in WT mouse
cones, GCAP1 dominates the regulation of cGMP synthesis. We
conclude that, under normal physiological conditions, GCAP1
dominates the regulation of cGMP synthesis in mouse cones,
but if its function becomes compromised, GCAP2 contributes to
the regulation of phototransduction and light adaptation of
cones.

Guanylate cyclase–activating proteins (GCAPs)3 are EF-hand
proteins that regulate cGMP synthesis by retinal membrane
guanylate (guanylyl) cyclases (RetGCs) in a Ca2�-dependent
manner (1–6). In low Ca2�, when the active EF-hand sites of the
GCAP protein are not occupied by Ca2�, GCAPs activate Ret-
GCs and promote the synthesis of cGMP. High Ca2� blocks the
activation of GC by GCAPs, and only a low basal level of cGMP
synthesis is maintained in the cells. The presence of several
GCAP isoforms in photoreceptor cells has been well-estab-
lished (7–10). The diversity of GCAPs is particularly appar-
ent in fish photoreceptors where at least seven different
GCAP genes are expressed (7). Human photoreceptors express
GCAP1–3, whereas only GCAP1 and GCAP2 are present in
mouse photoreceptor cells (8, 10). Several mutations in the
GUCA1A gene encoding for GCAP1 cause severe hereditary
blinding diseases, including Leber congenital amaurosis, mac-
ular dystrophy, and cone-rod dystrophies (11–18). Although
significant advances have been made in understanding the eti-
ology of these diseases, it is still not clear why mutations in
GUCA1A preferentially lead to cone, rather than rod, dystro-
phies and loss of daytime vision.

GCAP-mediated regulation of cGMP synthesis in the photo-
receptors has been shown to be the single most important
Ca2�-mediated pathway of light adaptation (19, 20). In dark-
ness, steady-state cGMP concentration in photoreceptor outer
segments is maintained by a low basal synthesis of cGMP by
RetGCs and its hydrolysis by phosphodiesterase 6 (PDE6).
Light activates a G protein signaling cascade, leading to the
increased hydrolysis rate of cGMP by PDE6 and a decline of the
rod and cone outer segment cGMP concentration. Conse-
quently, cGMP-gated channels in the outer segment plasma
membrane close, leading to a decreased inflow of Na� and Ca2�

into the outer segments (for a review, see Ref. 21). As Ca2� ions
are continuously extruded from outer segments by Na�/Ca2�,
K� exchangers (22–25), the Ca2� level drops, and Mg2�

replaces Ca2� in the Ca2�/Mg2�-binding sites of GCAPs (26).
The Mg2�-GCAPs activate RetGCs to accelerate cGMP syn-
thesis, promoting the recovery of the photoreceptor cell to its
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dark-adapted state after a transient light stimulus or preventing
a closure of all cGMP-gated channels during continuous
illumination.

It is believed that mouse rods express both GCAP1 and
GCAP2, whereas mouse cones express only GCAP1 in their
outer segments (9, 10). In rods, GCAP1 and GCAP2 regulate
the cGMP synthesis in a relay fashion. Early in the photore-
sponse or at dim background light, when the Ca2� level is only
slightly lower than in darkness, GCAP1-mediated feedback
dominates. Later in the photoresponse or at brighter back-
ground light, when Ca2� drops to lower levels, GCAP2-me-
diated feedback is also engaged (19, 27). This model is con-
sistent with the higher Ca2� affinity of GCAP2 compared
with GCAP1 (18, 28, 29). Although previous studies have
suggested that GCAP2 may not be substantially present in
normal or Nrl�/� mouse cone outer segments (10, 30, 31),
direct genetic and functional approaches have not been used
to test whether GCAP2 has any physiological role in mouse
cones. Here, we aimed to determine the contribution of
GCAP1 and GCAP2 in mouse cone phototransduction and
light adaptation by using a comprehensive electrophysiol-
ogy, genetic, biochemistry, and single-cell immunohisto-
chemistry study.

Results

GCAP1 and GCAP2 are expressed in mouse cones

GCAP1 is expressed in outer segments of vertebrate rods and
cones from zebrafish to human (8, 9). However, the expression
pattern of GCAP2 varies among different species (9). Previous
studies have shown contradicting results regarding its presence
in mouse photoreceptors (9, 10, 32). Thus, we sought to deter-
mine the expression pattern of GCAP2 in mouse cones by sin-
gle-cell immunohistochemistry in retinas from wildtype (WT)
control, Gcap1�/�, Gcap2�/�, and GCAP1/2 double knockout
(Gcaps�/�) mice. The top two panels of Fig. 1 demonstrate
expression of GCAP2 in WT control and Gcap1�/� cones
based on the colocalization of mouse cone arrestin (mCAR;
green) and GCAP2 (red) antibodies. Additional GCAP2 signal
around the cones is from rod photoreceptors that sometimes
surrounded the cones even after the mechanical cell isola-
tion (see “Experimental procedures”). We observed overlap
between the cone arrestin and GCAP2 signals in both WT con-
trol and Gcap1�/� cones, suggesting that GCAP2 is expressed
in mouse cones. As expected, the GCAP2 signal was not
observed in Gcap2�/� or Gcaps�/� cones (Fig. 1, bottom two
panels), thereby confirming the specificity of the GCAP2 anti-
body (33). Together, these results clearly demonstrate that
GCAP2 is expressed in mouse cones.

GCAP1 and GCAP2 regulate the kinetics and sensitivity of
mouse cone phototransduction

To determine the specific roles of GCAP2 and GCAP1 in
mouse cone phototransduction, we compared light responses
of dark-adapted cones from WT control, Gcap1�/�, Gcap2�/�,
and Gcaps�/� mice using ex vivo electroretinography (ERG)
recordings. To isolate the cone photoreceptor component of
the ex vivo ERG signal, we used synaptic blockers and Ba2� to
remove b- and c-waves and rod-saturating background light.

Key experiments and the light adaptation studies were also
done in a Gnat1�/� genetic background to remove the rod
component of the ERG signal. As has been shown previously
(19), simultaneous deletion of GCAP1 and GCAP2 slowed
down light response recovery and increased the sensitivity of
cones to light flashes (see Fig. 2d and Table 1). Removal of
GCAP1 alone increased time to peak (tp) of the responses elic-
ited by dim light (Fig. 2, d and h, and Table 1) and increased the
sensitivity of cones almost as much as the deletion of both
GCAP1 and GCAP2 (Fig. 2d and Table 1). However, the recov-
ery kinetics of the late tail phase of the responses in Gcap1�/�

cones was not decelerated for both dim flashes (Fig. 2d) and
bright saturating flashes (Fig. 2e). Afterdepolarization, or
response recovery overshoot, which was often present both in
control and GCAP-deficient cones, prevented us from fitting an
exponential function to the late tail phase of the responses to
estimate the response recovery time constant (�rec). However,
the faster overall kinetics of Gcap1�/� cone dim flash responses
as compared with that of Gcaps�/� cones was demonstrated by
their shorter integration time when compared with Gcaps�/�

mice (Table 1). Isolating the cone component of the response by
using Gnat1�/� mice confirmed that the responses from
GCAP1-deficient cones are still substantially faster than these
of cones lacking both GCAP1 and GCAP2 (Fig. 2, f and g). These
results suggest that GCAP2 can shape the light response kinet-
ics specifically in brighter light, at least in the absence of
GCAP1. In contrast, the sensitivity of dark-adapted cones to
dim light flashes appears to be mediated mainly by GCAP1 (Fig.
2h and Table 1). We also recorded light responses from
Gcap2�/� mice (Fig. 2c) but did not find any significant
changes of response kinetics or light sensitivity of GCAP2-de-
ficient cones compared with WT controls (Fig. 2, d, e, and h,

Figure 1. GCAP2 is expressed in the mouse cones. Dissociated retinal cells
from mice of the indicated genotypes were incubated with the mCAR anti-
body (green) to label cones followed by incubation with GCAP2 antibody
(red). Arrowheads point to the positions of the cones in each field. Nuclei were
stained with DAPI (blue). Images shown are representative of 38 cones from
14 fields (C57), 26 cones from 10 fields (Gcap1�/�), 10 cones from seven fields
(Gcap2�/�), and nine cones from three fields (Gcaps�/�). Scale bar, 20 �m.
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and Table 1). Thus, we conclude that GCAP1 can support nor-
mal cone photoresponses in the absence of GCAP2.

GCAP2 promotes cGMP synthesis in low Ca2� in mouse cones

Biochemical experiments have demonstrated that GCAP
proteins activate cGMP synthesis of RetGCs in low Ca2� (1, 6).
Here, we asked whether GCAP2 could promote cGMP synthe-
sis in intact mouse cones. To assess the Ca2�-mediated accel-
eration of cGMP synthesis in cones, we determined the change
of the maximal saturated cone photoresponse amplitude (rmax)
when the retinas were switched from normal perfusion solution
with1.2 mM [Ca2�]o to low �30 nM [Ca2�]o in ex vivo ERG
experiments. Such a treatment causes rapid reduction in the
level of Ca2� in photoreceptor outer segments and the subse-
quent GCAP-mediated up-regulation of cGMP synthesis (41).
The rmax is proportional to the cGMP-gated channel current,
and thus, increased cGMP concentration caused by accelerated

cGMP synthesis rate is expected to increase rmax. We deter-
mined rmax from saturated cone responses elicited by periodic
bright test flashes in dark-adapted mouse retinas before and
after low-Ca2� exposure. In control Gnat1�/� retinas, rmax
increased about 4-fold after a low-Ca2� exposure (Fig. 3, black
squares), demonstrating the up-regulation of cGMP synthesis
and subsequent opening of the cGMP-gated channels. How-
ever, the cells could not maintain such a high cGMP-gated
(CNG) channel channel current for long, and eventually rmax
declined under low Ca2�. When cones lacking both GCAP1
and GCAP2 (from Gcaps�/� Gnat1�/� retinas) were exposed
to low Ca2�, a much more subtle increase of rmax was observed
(Fig. 3, green squares), consistent with the lack of up-regulation
of cGMP synthesis in low Ca2� in the absence of both GCAPs.
Notably, when we exposed Gcap1�/� Gnat1�/� retinas to low
Ca2�, we observed substantial increase in rmax that was compa-
rable with that in control Gnat1�/� mice (Fig. 3, red squares).

Figure 2. GCAP1 and GCAP2 regulate mouse cone phototransduction. a– c, responses of dark-adapted cones to 1-ms flashes of light with intensity, IF,
ranging from 220 to 183,000 photons (530 nm) �m�2 in the presence of rod-saturating background light from isolated WT control (a), Gcap1�/� (b), and
Gcap2�/� (c) mouse retinas. d, averaged responses of control (black), Gcap1�/� (red), Gcap2�/� (blue), and Gcaps�/� (green) mouse cones to a 220 photons
�m�2 flash normalized with rmax. e, saturated responses of control (black), Gcap1�/� (red), Gcap2�/� (blue), and Gcaps�/� (green) mouse cones to the 183,000
photons �m�2 flash normalized (Norm.) with rmax. f and g, normalized dim flash (f) and saturated (g) light responses recorded from dark-adapted retinas of
control (black), Gcap1�/� (red), and Gcaps�/� (green) mice that were bred on a Gnat1�/� background are shown. h, the smooth traces plot Equation 1 with I1⁄2

of 3,200, 1,900, 2,100, and 4,000 photons �m�2 fitted to the average response amplitude data (r/rmax as a function of IF) of each genotype. Error bars give S.E.
n � 3 mice (six retinas) for each genotype.

Table 1
Light (flash) response parameters from WT, Gcaps�/�, Gcap1�/�, and Gcap2�/� mouse cones
All recordings were from Gnat1�/� mice except for the light adaptation parameters I0 and n, which were obtained from Gnat1�/� mice. Retinas were exposed to constant
70,000 photons (530 nm) �m�2 s�1 background light to suppress the rod component of the response except in the light adaptation experiments that were from
Gnat1�/�mice. rmax, saturated photoresponse amplitude (IF � 183,000 photons �m�2 at 530 nm); tp, time to peak (IF � 220 photons �m�2 at 530 nm); ti, integration time
defined as an area under a dim flash response divided by the amplitude of the response; I1⁄2, light flash intensity eliciting a response with peak amplitude r � 0.5rmax
determined by fitting Equation 1 to the response amplitude data; I0, background light intensity at which cone sensitivity is 50% of that in darkness determined by fitting
Equation 2 to the light adaptation data; n, steepness factor determined by fitting Equation 2 to the light adaptation data. * and † indicate statistically significant difference
as compared with the WT control and Gcaps�/� mouse cones, respectively (p � 0.05, two-tailed Student’s t test). NA, not available.

Genotype rmax tp ti I1⁄2 I0 n

�V ms ms photons �m�2 photons �m�2

WT 144 � 15 53 � 1 51 � 0.1 3,200 � 130 14,500 � 3,000 1.0 � 0.1
GCAPs�/� 156 � 26 76 � 3* 90 � 9* 1,900 � 150* 3,600 � 800* 1.5 � 0.03*
GCAP1�/� 135 � 6 66 � 3* 64 � 4*† 2,100 � 320* 6,900 � 900* 1.0 � 0.02†
GCAP2�/� 125 � 18 52 � 2† 49 � 2† 4,000 � 450† NA NA

GCAP1 and GCAP2 regulate mouse cone phototransduction
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These results demonstrate that Ca2� feedback mediated by
GCAP2 can promote acceleration of the cGMP synthesis in
intact mouse cones in the absence of GCAP1.

GCAP2 contributes to mouse cone light adaptation in bright
background light

GCAP-mediated Ca2� feedback dominates the regulation of
rod and cone photoreceptor sensitivity in response to fast
increments or decrements of background light (19, 34). How-
ever, the distinct contributions of GCAP1 and GCAP2 to the
light adaptation capacity of mouse cones is not known. To
address this question, we determined how the sensitivity of
cones is regulated by background light in isolated retinas from
control mice expressing both GCAPs and from mice lacking
either both GCAPs or only GCAP1. All mice were on a
Gnat1�/� background to eliminate rod signaling and facilitate
the quantification of cone light adaptation. When mouse cones
are exposed to a step of light, they produce an initial hyperpo-
larizing response peak followed by partial relaxation to a pla-
teau (Fig. 4, a– c). This relaxation was attenuated after removal
of both GCAPs (Fig. 4b), consistent with the dominant role of
the GCAP-mediated feedback in cone light adaptation. Nota-
bly, GCAP1-deficient cones exhibited prominent relaxation
after the peak of the response comparable with that in control
cones, indicative of efficient light adaptation. We quantified the
relaxation magnitude and kinetics by fitting a sum of two expo-
nential functions from the peak to the plateau of the step
responses using Equation 3 (see Fig. 4, a– c). Although we used
a two-exponential function, the relaxation was dominated by
the exponential term with the faster of the two time constants
(�1). Thus, we used �1 to assess the kinetics of relaxation and the
amplitude from peak to the plateau (A) normalized by the peak
amplitude (r0) to assess the magnitude of relaxation (see Equa-
tion 3). The A/r0 was similar between control (76 � 1%) and
Gcap1�/� (80 � 1%) mice but significantly smaller in the

absence of both GCAP1 and GCAP2 (27 � 5%). This result
demonstrates that the expression of GCAP2 in GCAP1-defi-
cient cones was sufficient to promote robust light adaptation as
demonstrated by the substantial relaxation of their response in
steady background light. However, the kinetics of the relaxation
was decelerated significantly by the deletion of GCAP1 alone
(from 165 � 30 ms in control to 495 � 20 ms in Gcap1�/�

mice), whereas the value for �1 was not statistically significantly
different in Gcaps�/� cones (423 � 30 ms) as compared with
that in Gcap1�/� cones. This result is consistent with the dom-
inant role of GCAP1 in driving the rapid light adaptation of
mouse cones.

To quantify the efficiency of light adaptation, we measured
the sensitivity of cones to light flashes at 4.5 s after the step
onset at different background light intensities. The sensitivity
normalized to the sensitivity in darkness declined more steeply
in Gcaps�/� cones than in control or Gcap1�/� cones (Fig. 4d).
As expected, based on their higher sensitivity in darkness, the
operating range of Gcap1�/� cones was shifted to dimmer
background light intensities. However, the slope of the adapta-
tion curve was not changed, and the adaptation capacity was
clearly better in Gcap1�/� mice than in Gcaps�/� mice. These
results indicate that GCAP2 can contribute to the light adapta-
tion of mouse cones in the absence of GCAP1. We did not have
Gcap2�/� Gnat1�/� mice. Thus, in an effort to investigate the role
of GCAP2 in light adaptation, we compared light adaptation
between Gcap2�/� and WT mice (on Gnat1�/� background). In
those experiments, we did not observe any change in light adapta-
tion caused by the deletion of GCAP2 (data not shown), consistent
with our flash response data showing only negligible phenotype in
GCAP2-deficient cones (Fig. 2, c–e and h).

Figure 3. GCAP2 promotes CNG channel current in low Ca2�. Normalized
(Norm.) rmax, the saturated photoresponse amplitude of dark-adapted cones,
of control Gnat1�/� (black), Gcaps�/� Gnat1�/� (green), and Gcap1�/�

Gnat1�/� (red) mice in normal Ca2� (at t � 0 s) and during low-Ca2� exposure
(t � 0 s) is shown. The values for rmax were normalized to their respective value
in normal Ca2� just before the switch to low Ca2� at t � 0 s. n � 3 mice (six
retinas) for each genotype. Error bars give S.E.

Figure 4. GCAP1 and GCAP2 contribute to the light adaptation capacity
of cones. a– c, responses of cones to 7-s steps of light with a 1-ms flash deliv-
ered 4.5 s after the step onset from isolated retinas of control Gnat1�/� (a),
Gcaps�/� Gnat1�/� (b), and Gcap1�/� Gnat1�/� (c) mice obtained using ex
vivo ERG recordings. Smooth gray traces plot Equation 3 with best fitting
parameters A1, �1, and �2. See “Results” for numerical values and statistical
analysis. d, sensitivity (SF) normalized (Norm.) with the dark-adapted sensitiv-
ity (SF,D) of cones as a function of background light intensity (I) in control
Gnat1�/� (black), Gcaps�/� Gnat1�/� (green), and Gcap1�/� Gnat1�/� (red).
Smooth lines plot Equation 2 with I0 of 13,500 photons �m�2 s�1 (n � 1),
6,700 photons �m�2 s�1 (n � 1.4), and 4,100 photons �m�2 s�1 (n � 1) for
control Gnat1�/� (black), Gcaps�/� Gnat1�/� (green), and Gcap1�/�

Gnat1�/� (red). n � 3 mice (four retinas) for each genotype. Error bars give S.E.
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GCAP1 and GCAP2 compete for activation of RetGC1 in low
Ca2�

Our results demonstrate that GCAP2 is expressed in mouse
cones and that it can contribute to the Ca2�-dependent activa-
tion of RetGCs and phototransduction feedback in their outer
segments. However, it remained unclear whether the expres-
sion level of GCAP2 in WT cones is sufficient to contribute to
the overall Ca2� feedback. A simple biochemical model (see
“Experimental procedures” for details) predicts that a quite
small concentration of GCAP2, �0.1– 0.5 �M in the cone outer
segment, could explain the �4-fold increase of rmax in low Ca2�

observed in Gcap1�/� cones (see Fig. 3). Based on the model
prediction, we designed a biochemical experiment to assess the
extent of activation of the native RetGC1 (the predominant
guanylate cyclase isozyme expressed in the cones (30, 31, 35))
by recombinant GCAP1 and GCAP2. We used photoreceptor
membranes from Gcaps�/� RetGC2�/� mouse retinas retain-
ing only RetGC1 isozyme to measure cGMP synthesis by
RetGC1 in low Ca2� at normal physiological 0.9 mM Mg2� (36).
Consistent with our model, the low basal activity of RetGC1 was
significantly increased by addition of either 0.5 �M GCAP2
(derived from the biochemical model) or 3 �M GCAP1 (the
estimated GCAP1 concentration in mouse rods (29)) (Fig. 5).
Next, we assessed whether GCAP2 can contribute to the regu-
lation of RetGC1 activity in the presence of GCAP1. To test
this, we used M26R GCAP1, a mutant form that can bind to
RetGC1 like the WT GCAP1 but does not activate it (37, 38). In
the presence of 3 �M GCAP1, addition of M26R GCAP1 started
to decrease RetGC1 activity at �0.3 �M (Fig. 5, red circles), its
near-physiological concentration (28, 29), and reached half-
maximal inhibition at 1 �M. At the same concentration of
M26R GCAP1, the activation of RetGC1 by 0.5 �M GCAP2,
which in the absence of GCAP1 would be sufficient to effec-
tively accelerate RetGC1 in vivo (Figs. 2 and 3), was almost
completely suppressed (Fig. 5, black circles).

Discussion

Ca2�-dependent regulation of cGMP synthesis by GCAP2 in
mouse cone photoreceptors

Our experiments clearly demonstrate that GCAP2 is
expressed in mouse cones (Fig. 1). To address the possible func-
tional role of GCAP2 in cones, we investigated its ability to
up-regulate cGMP synthesis in low Ca2� and to mediate light
adaptation in cones lacking GCAP1. As previous studies have
suggested that GCAP1 and RetGC1 dominate the synthesis of
cGMP in the mouse cone outer segments, we expected that
Gcap1�/� retinas would respond to low-Ca2� exposure simi-
larly to Gcaps�/� retinas (9, 10, 30, 31, 35). However, Gcap1�/�

cones were able to boost their maximal response amplitude in
low Ca2� as much as control WT cones (Fig. 3). Based on our
model presented under “Experimental procedures,” as low a
concentration as 0.1 �M GCAP2 in the outer segments of
Gcap1�/� cones could explain the �4-fold increase of their
maximal response amplitude in low Ca2�. This concentration
is more than 10-fold lower than the known GCAP1 or GCAP2
concentration in mouse rod outer segments (28, 29). The quan-
titative power of these experiments might be limited due to the
cooperativity of the CNG channel for cGMP (39, 40) or the
transient nature of the increase in photoreceptor response
amplitude in low Ca2� (41–45). However, despite the quantita-
tive limitations of our study, our results clearly demonstrate
that GCAP2 can activate RetGC in mouse cone photoreceptor
cells when GCAP1 has been deleted.

Similarly, when we examined light adaptation in Gcap1�/�

cones, we found that the slope of the light adaptation curve was
comparable with that in control cones. In addition, the adapta-
tion capacity of GCAP1-deficient cones was substantially better
than that of Gcaps�/� cones (Fig. 4). Together, these results
demonstrate that GCAP2 is able to up-regulate cGMP synthe-
sis and to mediate light adaptation in cones in the absence of
GCAP1.

The role of GCAP1 and GCAP2 in cone phototransduction and
light adaptation

The relative contribution of GCAP1 and GCAP2 in rod phys-
iology has been established in mouse rod photoreceptors (27).
There, GCAP1 is more important in determining the peak
amplitude of the dim flash response, whereas GCAP2 shapes
the response recovery kinetics after the peak amplitude. These
results are consistent with the known biochemical properties of
GCAP1 and GCAP2. Namely, GCAP2 has a higher affinity to
Ca2� (KCa � 50 nM) as compared with GCAP1 (KCa � 130 nM)
(18, 28, 29). In darkness, Ca2� concentration in mouse rod
outer segment is �250 nM, and it declines to �20 –50 nM in
bright light (46). Hence, after a dim flash, Ca2� dissociates first
from GCAP1, and the GCAP1-mediated feedback dominates
over the GCAP2-mediated pathway. Later, when Ca2� has
dropped to a lower level, it can also dissociate from GCAP2,
up-regulating the GCAP2-mediated feedback to contribute to
the recovery phase kinetics of the dim flash response. Notably,
the primary target for GCAP1 in mouse photoreceptors is
RetGC1, whereas regulation of the ancillary isozyme RetGC2 is
carried out mostly by GCAP2 (47). Hence, in mouse rods, acti-

Figure 5. GCAP1 and GCAP2 compete for the activation of RetGC1. The
native RetGC1 activity in Gcaps�/� RetGC2�/� mouse retinas was assayed as
described under “Experimental procedures” in the absence of GCAPs (Œ) or in
the presence of 3 �M mouse GCAP1 (red circles) or 0.5 �M GCAP2 (black
circles). Variable concentrations of the competing bovine M26R GCAP1
were added to the assay as indicated. The data, average � S.D. (error bars)
of two to four independent measurements, were fitted assuming a sig-
moidal Hill function.

GCAP1 and GCAP2 regulate mouse cone phototransduction
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vation of the cyclase after the flash of light occurs first as acti-
vation of RetGC1 by GCAP1 followed by additional activation
of RetGC1 and RetGC2 by GCAP2 (27). Here, we compared
dark-adapted cone flash responses from WT, Gcaps�/�,
Gcap1�/�, and Gcap2�/� mice to understand the relative con-
tributions of GCAP1 and GCAP2 in determining the sensitivity
and response kinetics of mammalian cones (Fig. 2). We found
that deletion of GCAP1 causes a comparable increase of the
sensitivity and dim flash response amplitude as the deletion of
both GCAP1 and GCAP2 (Fig. 2, d and h, and Table 1). Thus,
just as in rods, GCAP1 seems to dominate the up-regulation of
cGMP synthesis up to the peak of the dim flash response, and
the sensitivity of cones is set almost completely by GCAP1.

Comparison of saturated bright flash responses from WT,
Gcaps�/�, Gcap1�/�, and Gcap2�/� mice revealed that dele-
tion of both GCAP1 and GCAP2 significantly delays the escape
of cones from saturation, whereas the deletion of GCAP1 had a
much less dramatic effect, and the deletion of GCAP2 had
almost no effect at all on the recovery kinetics (Fig. 2e). Notably,
the recovery kinetics of Gcap1�/� cones were not slower than
those of WT cones so that cone responses from Gcap1�/� mice
recovered to the baseline level at the same time as those of WT
and Gcap2�/� mice (Fig. 2d). Thus, it appears that both GCAP1
and GCAP2 can compensate for the lack of the other isoform in
accelerating the recovery of bright flash responses (Fig. 2e).
These results are also consistent with the idea that a larger drop
in Ca2� caused by brighter light is required to activate the
GCAP2 pathway. In support of this notion, we observed devia-
tion between Gcap1�/� and Gcaps�/� mouse light adaptation
only at brighter background light. This, again, suggests that
GCAP2 is more important under brighter illumination and at
lower Ca2�.

Although our data clearly show that GCAP2 contributes sig-
nificantly to the physiology of mouse cones in Gcap1�/� mice,
it is not clear whether GCAP2 plays a role in the phototrans-
duction and/or light adaptation of healthy WT cones. Evi-
dently, GCAP2 is present in native mouse and Nrl�/� cones at
much lower levels than in rods, whereas GCAP1 expression in
cones is very strong (5, 10, 31). However, our functional data
from Gcap1�/� mice could be explained even by a rather low
0.1– 0.5 �M GCAP2 concentration in the absence of GCAP1. In
contrast, our biochemical experiments assessing the relative
contribution of the two GCAP isoforms show that, even at
equal concentrations of the two GCAP isoforms, GCAP1 effec-
tively outcompetes GCAP2 from RetGC1 (see Fig. 5 and Refs.
28 and 38). Assuming further that GCAP2 expression in mouse
cones is lower than that of GCAP1, we conclude that under
normal physiological conditions GCAP1 would dominate the
regulation of cGMP synthesis in mouse cones. However, if the
function of GCAP1 becomes compromised, GCAP2 should be
able to effectively regulate the phototransduction feedback and
light adaptation of cones.

Experimental procedures

Ethical approval

All experimental procedures were in accordance with the
Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Commit-
tees at Washington University in St. Louis, Salus University,
and University of Southern California.

Animals

WT C57Bl/6J control and age-matched adult mice devoid
of guanylate cyclase–activating protein 1 (Gcap1�/� (48)), 2
(Gcap2�/� (49)), or both (Gcaps�/� (19)) were used in this
study. The mutant strains were bred to the control C57Bl/6J
background for several generations but were not siblings of
the control mice. For some electrophysiology experiments,
Gcap1�/� and Gcaps�/� mice were bred into a Gnat1�/�

background to remove the rod-driven light responses (50).
Mice were kept under a 12/12-h light/dark cycle and had free
access to regular mouse chow and clean water.

Single-cell immunohistochemistry

Freshly dissected retinas from C57, Gcap1�/�, Gcap2�/�,
and Gcaps�/� mice were washed in Ames’ medium, placed on
an ice-cooled glass slide with a few drops of cold Ames’ buffer,
and chopped with razor blade. Dissociated cells and small cell
clumps were collected into 8-chamber slides (Lab-Tek�, cata-
log number 177445) that were precoated with wheat germ
agglutinin (100 �M wheat germ agglutinin was added to the
wells and incubated for 1 h). After cells were collected into
wells, equal volumes of formaldehyde (4% in PBS) were added.
The slides were centrifuged for 10 min at 168 	 g to attach the
cells to the glass surface. Cells were washed in PBS; blocked
with 5% goat serum, 0.1% Triton X-100 in PBS for 1 h; and
incubated overnight with a rabbit polyclonal anti-mCAR anti-
body (51) (1:700 in blocking buffer). The next day, slides were
washed in PBS and incubated with a secondary anti-rabbit anti-
body to visualize mCAR-labeled cones. Following PBS washes,
cells were incubated with biotinylated anti-GCAP2 antibody
(33) (1:300 of 1 mg/ml in blocking buffer). The GCAP2 signal
was visualized by Texas Red-avidin (1:200; Vector Laborato-
ries). The cells were mounted in Vectashield with DAPI (Vector
Laboratories). Fluorescence images were acquired using a Zeiss
Axio Scope microscope using the same settings and exposure
times for the different genotypes.

Ex vivo electroretinography

We used ex vivo ERG to assess the function of mouse cone
phototransduction and light adaptation (52). Either a back-
ground light of 70,000 photons (530 nm) �m�2 s�1 or
Gnat1�/� genetic background (53) was used to remove the rod
component of the ERG signal. The Gnat1�/� mouse rods do
not respond to light but maintain normal morphology. The
background light needed to fully saturate rods was surprisingly
high and would have been expected to bleach a significant
amount of pigments during our experiments. However, after
about 10 min of exposure to the background light, the cone
responses remained stable for up to at least 2 h (the longest
experiment), potentially due to a balance between pigment
bleaching and regeneration via the Müller cell (54) visual cycle
pathway. Retinas were dissected from dark-adapted eyes under
IR illumination and mounted to a custom-built ERG specimen
holder described in Vinberg et al. (52). Flashes and steps of light
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were provided by green LEDs (530 nm; Luxeon Rebel LED
SR-01-M0090) via an inverted microscope light path where the
condenser was replaced by a 10	 objective forming a homoge-
nous 2.35-mm spot of light at the sample. The intensity of the
light stimulus was calibrated at the level of the sample by a
photometer (Model 211, UDT Instruments). Retinas were per-
fused at 1 ml/min at 37 °C with bicarbonate-buffered Locke’s
solution containing 112 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl2,
1.2 mM CaCl2, 10 mM HEPES, 20 mM NaHCO3, 3 mM disodium
succinate, 0.5 mM sodium glutamate, and 10 mM glucose. The
solution was equilibrated with 95%O2 and 5%CO2 at 37 °C.
Low-Ca2� solution was prepared by using 0.1 mM CaCl2 instead
of 1.2 mM and adding 0.4 mM EGTA. Addition of EGTA caused
acidification of the medium, and we used NaOH to equalize the
pH of our normal Locke’s and low-Ca2� media. We estimate
that the free [Ca2�] of the low-Ca2� medium is �30 nM in the
presence of 2.4 mM Mg2� (55).

A differential amplifier (DP-311, Warner Instruments) and
Bessel filter (model 3382, Krohn-Hite Corp.) together with a
DigiData 1440 digitizer and pCLAMP software (Axon Instru-
ments) were used to acquire data at 10 kHz with a 300-Hz low-
pass filter. Clampfit (Axon Instruments), Origin 9.0.0 (Origin-
lab), and Excel (Microsoft) software were used to analyze and
graph the data. A Naka-Rushton function was fitted to the
response amplitude (r) data.

r

rmax
�

IF

I1/ 2 � IF (Eq. 1)

where rmax is the maximal saturated response amplitude, IF is
flash intensity, and I1⁄2 is the light intensity (in photons �m�2)
required to elicit a half-maximal response. A modified Weber-
Fechner function was fitted to light adaptation data.

SF

SF,D
�

I0
n

I0
n � In (Eq. 2)

where SF is the sensitivity of cones to a flash of light (IF that
elicits r � 0.2rmax) defined as r/IF, SF,D is the sensitivity in dark-
ness, I is the background light intensity (in photons �m�2 s�1),
I0 is the background light intensity in which SF � 0.5SF,D, and n
is a factor determining the steepness of the adaptation curve.

A sum of two exponential functions was used to quantify the
kinetics and magnitude of light response relaxation after the
initial peak during light steps.

r
t� � r0 � A1
1 � e
�

t�td

�
1 � � 
 A � A1�
1 � e

�
t�td

�
2 �

(Eq. 3)

where r0 is peak amplitude measured at td, A is amplitude mea-
sured from the peak to the steady-state plateau of the step
response, A1 is the fraction of recovery covered by the time
constant �1, and (A � A1) is the fraction of the recovery covered
by the time constant �2.

Biochemical model of RetGC1 activation by GCAP2

We used the following equations to model binding of Ca2�

to GCAP2 and binding/activation of RetGC1 by Ca2�-free

GCAP2. The parameter values were taken from Peshenko et al.
(28).

GCAP2 � 2Ca2� ¢O¡
KCa

2

GCAP2-2Ca2� (Eq. 4)

f GCAP2 � �GCAP2
 �
KCa

2

KCa
2 � �Ca2�
2 �GCAP2
total

(Eq. 5)

where KCa � 50 nM is the apparent dissociation constant of
Ca2� from GCAP2. We model the activation of RetGC1 by
GCAP2 by assuming that only Ca2�-free GCAP2 can activate
the RetGC1.

GC1 � GCAP2 ¢O¡
KGC1

GC1-GCAP2 (Eq. 6)

f GC1-GCAP2 �
GCAP2

KGC1 � GCAP2
GC1total (Eq. 7)

where KGC1 � 1.25 �M and GC1total � 3.2 �M. Cyclase activity
(�; in �M s�1) can be calculated as follows.

� � kn1 GC1 � ks1 GC1-GCAP2 (Eq. 8)

if we assume that GTP (the substrate) �� Km(GTP-GC) (dissoci-
ation constant of the GTP from RetGC1). We assume that the
basal RetGC1 activity kn1 � 2.6 s�1 and for the activated
RetGC1 ks1 � 33 s�1 (28). Concentrations of GCAP2-free GC1
and GCAP2-bound GC1-GCAP2 in a specific [Ca2�] and
[GCAP2] can be calculated from Equations 5, 6, and 7.

At steady state,

� � � cGMP (Eq. 9)

f cGMP � cG �
�

�
(Eq. 10)

where � � 4.1 s�1 is the spontaneous cGMP hydrolysis activity
of rod PDE in darkness (56). The CNG channel current (57) can
be calculated as follows.

JcG � Jmax

cG3

cG3 � 
20 �M)3 (Eq. 11)

where Jmax is the CNG channel current at high [cGMP]. Assum-
ing that [Ca2�] is 250 nM in a dark-adapted mouse cone outer
segment under normal extracellular Ca2� and declines to 25 nM

during our low-Ca2� exposure (see above), as low as a 0.1 �M

total concentration of GCAP2 in the cone outer segment is
predicted to cause a 4.4-fold increase of JcG when switched from
normal (1.2 mM) Ca2� to low Ca2�.

Expression and purification of GCAPs

We used recombinant mouse myristoylated GCAP1 (E6S)
and GCAP2 expressed from pET11d vector (Novagen/Calbi-
ochem) in BLR(DE3) Escherichia coli strain harboring yeast
N-myristoyltransferase as described previously (28). GCAP2
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was purified using urea extraction from the inclusion bodies
and size-exclusion chromatography (26, 58). GCAP1 was puri-
fied using urea extraction and hydrophobic and size-exclusion
column chromatography as described previously to reach a
final protein of 95% purity by SDS-PAGE (28, 59). The M26R
bovine GCAP1 mutant was produced and purified as described
previously (37, 38).

RetGC assays

The native mouse RetGC1 activity was assayed under IR illu-
mination in dark-adapted Gcaps�/� RetGC2�/� triple-knock-
out mouse retina homogenates isolated as described previously
(28). Briefly, the assay mixture (25 �l) containing retinal homo-
genate, 30 mM MOPS-KOH (pH 7.2), 60 mM KCl, 4 mM NaCl, 1
mM DTT, 2 mM EGTA, 0.9 mM free Mg2�, 0.3 mM ATP, 4 mM

cGMP, 1 mM GTP, 1 �Ci of [�-32P]GTP, 100 �M zaprinast and
dipyridamole, 10 mM creatine phosphate, and 0.5 unit of crea-
tine phosphokinase was incubated at 30 °C for 8 min, and the
reaction was stopped by heat inactivation at 95° for 2 min.
The resultant [32P]cGMP product was separated by TLC
using fluorescently backed polyethyleneimine cellulose
plates (Merck) developed in 0.2 M LiCl and eluted with 2 M

LiCl, and the radioactivity was counted using ScintiSafe liq-
uid scintillation mixture (Thermo Fisher Scientific) with
addition of 20% ethanol.
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