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Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as 

an extracellular signaling molecule through at least six cognate G protein-coupled 

receptors LPA1-6.  These receptors mediate diverse biological responses, including 

developmental, physiological, and pathophysiological effects.  The embryonic nervous 

system is a major site of LPA presence and action through its receptors, although the 

precise cellular and mechanistic roles are not well understood.  To study the role of 

LPA signaling in an intact developing cortex, I developed an in utero injection 
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paradigm targeting mouse brain and used histology and immunochemistry in 

combination with pharmacological perturbation and LPA receptor null mutants to 

study this system.  Overactivation of LPA1 via a single LPA bolus exposure causes 

disruption of neuroprogenitor cells (NPCs) residing in the ventricular zone of the fetal 

brain, numerous accompanying histological changes - including ventricular dilation, 

formation of neurorosettes and heterotopias, mitotic displacement, loss of ependymal 

cells, ciliary defects, and 3rd ventricular occlusion - and subsequently fetal 

hydrocephalus (FH).  In addition, exposure to blood derivatives and components such 

as serum and plasma through hemorrhage, two major sources of LPA, also cause FH.  

This modeled disorder can be prevented using both LPA1 null mutants and 

pharmacological antagonism.  This novel role of LPA in the etiology of FH is 

consistent with multiple, independent hydrocephalic models and clinical observations, 

suggesting common mechanistic pathways and, importantly, potential therapeutic 

targets for the amelioration of this disorder. 
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CHAPTER I 

General Introduction 
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Proper formation of the cerebral cortex is vital for cognition and behavior.  In 

humans, cortical malformations result in debilitating neurological disorders with 

numerous personal and societal costs.  Understanding the mechanisms that underlie 

both normal and pathological development, therefore, provides insight into the basis of 

such disorders and may facilitate their future amelioration and treatment.  Recent, 

intriguing observations that bioactive lipids, such as LPA, can considerably alter 

cortical structure, lead to the intense exploration of its effect on the development of the 

cerebral cortex described here. 

 

 

1.1  Development of the cerebral cortex 

The study of the nervous system has preoccupied numerous philosophers and 

scientists since ancient times.  Evidence of detailed studies can be found in early 

treatises by individuals such as Hippocrates and Galen (1).  Subsequent invention of 

the microscope permitted observations that lead to the collective recognition that 

organisms are composed of cells, a theory first postulated by Theodor Schwann in 

1839 (2).  Further refinements in microscopy, coupled with the critical discovery of a 

selective staining method by Camillo Golgi, permitted his contemporary Santiago 

Ramòn y Cajal to make detailed morphological observations of single neural cells 

over 100 years ago (3, 4).  Since then, exponential technological progress in various 

forms of imaging and labeling techniques have lead to a fundamental understanding of 

all parts of the nervous system, importantly the cerebral cortex (5). 
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The cerebral cortex of the brain is distinctly unique in humans.  Structurally, it 

is a bilateral sheet of neural tissue approximately 1 - 4.5 mm thick (6) on the 

outermost brain surface with strong gyrification patterns and arranged in a laminar 

pattern with up to six horizontal layers with different cellular and connective 

compositions (7).  The cerebral cortex is composed of neurons, astrocytes, 

oligodendrocytes, immune cells, and blood vessels (7).  Most importantly, the cerebral 

cortex plays critical roles in memory, thought, language, reason, creativity, and 

consciousness (8). 

Broadly speaking, corticogenesis follows a stereotyped, continuous sequence 

of progressive and regressive events that involve cell proliferation, patterning, 

neuronal migration, synapse formation, and cell death (7).  From the embryo, the 

neural tube arises from the ectoderm, rapidly expands by cell proliferation and forms 

the telencephalon (forebrain, including the cerebral cortex), the mesencephalon 

(midbrain), and rhombencephalon (hindbrain) (9, 10).  The cortex develops through an 

inside-out process: early proliferating cells generate the preplate; further dividing cells 

migrate and divide the preplate into the subplate and marginal zone; and finally future 

cells generated in the dividing ventricular zone (VZ) layer migrate past settled cell 

layers (11, 12).  Thus, the earliest born cells reside deep in the cortex and later born 

cells inhabit more superficial positions. 

Generation of daughter cells with distinct identities involves two essential, 

entwined processes: interkinetic nuclear migration (13) and cell division (14).  

Neuroblasts within the ventricular zone are attached to both the apical ventricular and 
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pial surfaces; during cell cycle progression, these elongated, fusiform-shaped 

progenitors undergo S-phase and synthesize their DNA within the subventricular zone 

(14).  They then translocate their nuclei downwards to the apical ventricular surface, 

round up, and divide by mitosis (15).  Dividing neuroblasts can undergo either 

symmetric or asymmetric division, producing classes of progenitor cells that include 

neuroepithelial cells, radial glia, and basal progenitors (16, 17).  In symmetric 

division, the parental cell gives rise to two progeny cells that remain as 

neuroprogenitors – ready to divide again – or as two terminally differentiated neuronal 

cells that can migrate to their final settled position, whereas asymmetric division 

produces one of each cell type (18).  During this period of rapid cell generation, 

numerous cells are pruned through a process termed proliferative cell death (please 

refer to Appendix B), whereby an average of 50% of cells are dying at any given 

period (19).  While the purpose of this cell death is unclear, the validated detection of 

variable genetic content at the chromosomal level in individual cells during this time - 

termed neural aneuploidy (please refer to Appendix A) (20-25) – may suggest one 

possible reason: a Darwinian strategy to promote neural diversity and fitness.  Other 

concurrent and subsequent developmental processes, including vasculogenesis (26) 

and angiogenesis (27), gliogenesis (28, 29), synaptic wiring, and cell pruning through 

programmed cell death (30, 31), contribute to and complete the overall formation of 

the cerebral cortex .   
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Development of the cerebroventricular system 

An additional aspect of brain development pertains to the fluid-filled 

ventricular cavity immediately ventral to the neuroproliferative layer.  As the cerebral 

cortex and other brain structures are formed, the central lumen of the neural tube 

enlarges and forms the hollow chambers and narrow passages that emerge as the 

lateral, 3rd, and 4th ventricles and connecting aqueducts (32).  The development of the 

ventricular system depends, in part, on the contractility of the overlying 

neuroepithelium (33).  The ventricular system of the brain is filled with cerebrospinal 

fluid (CSF) - composed of water, ions, and bioactive factors produced by choroid plexi 

– that flows posteriorly and is reabsorbed into the draining sinuses of the head (34).   

The specialized ependymal cell eventually forms a single-cell barrier between cortical 

tissue and the underlying flowing CSF (35, 36).  Multi-ciliated ependymal cells arise 

during mid to late neurogenesis, differentiating and maturing by early post-natal life in 

the mouse (37).  Coordinated beating of cilia contributes to CSF flow within the 

ventricles, which is thought to be important for removal of wastes, and more recently, 

proper formation of neural structures (38-41). 

 

 

Lysophosphatidic acid biology 

Recently, many molecular cues that govern the formation of the cerebral cortex 

have been identified, among them a quantitatively minor but bioactive fraction of 

lipids termed lysophospholipids (LPs).  While lipids, in general, have been 
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traditionally regarded as energy storage and structural molecules, a growing body of 

work identify the importance of LPs in basic cell processes such as growth, 

movement, communication, and death. 

There are several classes of LPs, among them lysophosphatidic acid (LPA) 

(Figure 1.1), which signals through a family of at least 6 G-protein coupled receptors, 

LPA1-6 (42, 43) (Figure 1.2), which mediate a wide variety of biological processes.  In 

1996, the first cognate, cell-surface receptor for LPA was identified (LPA1) (44).  The 

mammalian LPAR1 gene (human chromosomal locus 9q31.3) encodes an 

approximately 41-kDa protein consisting of 364 amino acids with 7 putative 

transmembrane domains.  In mice, the opening reading frame is encoded on two of 

five exons with a conserved intron (shared with Lpar2 and Lpar3).   

While Lpar1 expression is widespread in adult tissues such as brain, uterus, 

testis, and spleen (42), it is more spatially restricted during embryonic development, 

with strong expression in the nervous system (45, 46).  In the cerebral cortex, Lpar1 

expression is limited to the VZ and superficially in the meninges and layer 1 (Figure 

2.S8)  (44).  Although the VZ disappears at the end of cortical neurogenesis, just prior 

to birth, Lpar1 continues in the postnatal brain, where it is found in oligodendrocytes 

and Schwann cells, the myelinating cells of the central nervous system (CNS) and 

peripheral nervous system (PNS), respectively (47, 48).  The spatiotemporal 

expression pattern of Lpar1 suggests potential involvement with neuroprogenitor 

development and perhaps cerebral cortical formation. 
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oleoyl LPA 

palmitoyl LPA 

arachidonoyl LPA 

 
 
Figure 1.1: Chemical structures of several common forms of lysophosphatidic 
acid (LPA).  LPA is composed of a glycerol backbone, a phosphate group, and an 
acyl chain of varying length and degree of saturation. Oleoyl LPA, also commonly 
known as 18:1 LPA, exists naturally in organisms, is commonly used as a laboratory 
reagent, and is the main reagent in the studies presented here.  Other forms include 
palmitoyl (16:0) and arachidonoyl (20:4) LPA. 
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Figure 1.2: Downstream signaling pathways activated by LPA1-6 G protein-
coupled receptors.  
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LPAR2 (chromosome locus 19p12) encodes a protein with a predicted amino 

acid sequence of 348 residues (~39 kDa) (49).  Lpar2 has 60% amino acid similarity 

to Lpar1.  In the adult, Lpar2 is more restricted in its expression pattern compared 

with Lpar1, with high levels in kidney, uterus, and testis and to a lesser extent in lung, 

stomach, spleen, thymus, heart, and brain (50).  In the embryonic cortex, Lpar2 is 

present at moderate levels, quantitatively less than Lpar1 (46), with a more diffuse 

expression pattern throughout the cortical wall (Figure 2.S9) (51). 

 LPA1 and LPA2 couple to and activate three types of G proteins: Gαi/o, Gαq/11, 

and Gα12/13 (52, 53) which signal downstream and produce Ca2+ mobilization; 

adenylyl cyclase inhibition; and activation of various intracellular mediators such as 

mitogen-activated protein kinase, Rac, phospholipase C, Akt, and Rho (Figure 1.2) 

(reviewed in (50, 54, 55)).  A range of cellular responses ensue: cytoskeletal 

reorganization, process retraction, cell proliferation and survival, cell migration, and 

cell differentiation (55-57).  These LPA-mediated processes influence numerous 

biological processes, including nervous system function, vascular development, 

immune system function, cancer, reproduction, and obesity (42). 

Genetic deletion of these receptors has revealed numerous disruptions in 

various systems.  Lpar1-/- mice show 50% perinatal lethality in a mixed (C57Bl/6J x 

129) genetic background.  Survivors have a reduced body size, craniofacial 

dysmorphism with blunted snouts, and increased apoptosis in sciatic nerve Schwann 
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cells (58, 59).  Defective suckling, attributed to olfactory defects, likely accounts for 

perinatal lethality.  Small fractions of Lpar1-/- embryos have exencephaly (~5%) or  

frontal cephalic hemorrhage (~2.5%).  In addition, an Lpar1-/- substrain arose 

spontaneously during colony expansion, which is called the “Màlaga variant” and 

exhibits more severe developmental brain defects (60).  Lpar2-/- mice unexpectedly are 

viable, grossly normal, and born at normal Mendelian ratios (61).  Examination of 

Lpar1-/- Lpar2-/- double null mice reveals no additional defects relative to the original 

Lpar1-/- mice, except for an increased incidence of perinatal frontal hematoma (61). 

 

 

LPA and development of the cerebral cortex 

 High levels of LPA receptor expression exist within the nervous system and is 

present in most cell types here, including neural progenitors, primary neurons, 

astrocytes, microglia, oligodendrocytes, and Schwann cells (reviewed in (62)).  The 

putative ligand LPA also exists in the brain at relatively high concentrations at both 

embryonic (Figure 2.S3) and adult ages (63). 

The restricted expression of LPA1 within the proliferative cortical VZ of the 

embryonic brain (44, 52) indicates a significant role of LPA signaling in the 

development of VZ neuroprogenitor (NPC) cells, which express Lpar1 and Lpar2.  

Heterologous expression studies in NPC lines have revealed changes in cellular 

morphology due to LPA receptors (55, 62), while LPA signaling also significantly 

alters the morphology of primary NPCs via promotion of neurite retraction and 
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compaction in the VZ via actomyosin rearrangement (58, 64-67).  Furthermore, LPA 

signaling can also stimulate proliferation and differentiation of primary NPCs (52, 68) 

and neurosphere cultures (69) via LPA1 and differentiation of immortalized 

hippocampal progenitor cells via LPA4 (70).  Additionally, LPA can stimulate ionic 

conductance changes in cortical NPCs earlier than L-glutamate or GABA, with 

contribution mainly from LPA1 and LPA2 (46, 71).  Thus, LPA mediates a diverse 

range of neurodevelopmentally relevant effects in many validated in vitro systems. 

 What are the effects of LPA on corticogenesis in an intact brain?  Initially, this 

was examined using an ex vivo whole cortical hemisphere culture system (72, 73).  

Exogenous LPA exposure increased terminal mitosis of NPCs, resulting in cortical 

thickening and folding that resembled gyri.  These effects were absent in embryonic 

cerebral cortices from Lpar1-/- Lpar2-/- double null mice exposed to LPA, 

demonstrating that these changes were dependent on both LPA receptors.  

Surprisingly, LPA exposure did not increase NPC proliferation (as was seen during in 

vitro studies), but instead resulted in decreased cell death and early cell cycle exit, 

which lead to increased terminal mitosis.  This study provided evidence for a 

considerable role of LPA signaling in corticogenesis via perturbation of a variety of 

NPC functions and through alteration of gross cortical structure. 

 Companion studies examining the genetic loss of Lpar1, Lpar2, or Lpar1 

Lpar2 double null mice found only minor cellular defects in brain development (58, 

61).  This was a surprising finding based on known influences of LPA signaling and 

since dissociated cultures of fibroblast cells derived from these single or double null 
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mice showed receptor-dependent deficits in the LPA signaling pathways.  Recently, 

several studies which examined the Màlaga LPA1 null variant reported significant, 

pronounced defects in cortical development, including reduced proliferative 

populations and increased cortical apoptosis (60), with similar effects on hippocampal 

neurogenesis (74).  Furthermore, this LPA1 null variant also showed behavioral 

deficits in exploratory and memory function (75).  Thus, LPA signaling, particularly 

through LPA1, appears to have substantially more influence - both subtle and gross -  

on cortical development than initially recognized. 

 

 

LPA and neurological disorders 

 In addition to its role in normal cortical development, there may be an 

intriguing link between LPA signaling and neurological disorders (58, 76-79), 

particularly ones such as autism and schizophrenia that have a neurodevelopmental 

basis. (80).  This inferred relationship is based on observed phenotypic and molecular 

similarities - such as craniofacial dysmorphism (58, 80, 81), defects in prepulse 

inhibition (80, 82), and widespread brain alterations in serotonin (5-HT) 

neurotransmitter levels (80, 83) – that are present in both Lpar1-/- mice and patients 

suffering from schizophrenia.  LPA can interfere with glial cell signaling and 

morphology induced by the atypical antipsychotic Risperidone (84), used in the 

treatment of both schizophrenia and autism.  Furthermore, embryonic brain exposure 

to LPA in the ex vivo murine model demonstrated altered gyrification-like changes in 
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the cerebral cortex (72), consistent with observations in autism (85) and schizophrenia 

(86).   

 Interestingly, some epidemiological studies link environmental perturbations 

such as prenatal or maternal bleeding, among other factors, to autism (87) and 

schizophrenia (88).  Because LPA and its metabolic precursors are present in blood 

(89), conditions where the blood-brain barrier is compromised and/or LPA production 

is altered may generate abnormal LPA signaling and lead to neurological pathologies.  

Indeed, a pathologically high concentration of LPA (10 µM) inhibits neurogenesis in 

neurosphere cultures (90), suggesting that LPA exposure dosage may modulate at least 

one relevant parameter in brain development.  Taken together, this growing body of 

evidence implicates LPA signaling in multiple CNS disorders, but additional 

mechanistic studies are needed to further understand and delineate these associations. 

 

 

Experimental approach 

Until now, LPA signaling in the nervous system and particularly the 

developing cerebral cortex has been studied through complementary ex vivo gain-of-

function and in vivo loss-of-function approaches (58, 60, 62, 72, 74, 75).  While these 

studies have yielded a wealth of knowledge, a major limitation has been the lack of in 

vivo gain-of-function studies in living animals, which would be valuable for 

examining LPA signaling in an intact physiological context at specific time periods.  

Therefore, a major enterprise of these studies has been the optimization of the 
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injection of various LPA-related ligands into the embryonic murine brain ventricles at 

periods of known LPA receptor expression (Figure 2.1).  There are at least four 

advantages; this allows for the 1) delivery of ligand directly to the LPA receptors 

which are adjacent to the ventricles; 2) preservation of in vivo cortical architecture, 

cell cycle kinetics, and neurogenic characteristics; 3) analysis of long term pre- and 

postnatal cortical effects; and 4) examination of behavior in intact animals.  Coupled 

with the ease of genetic manipulation, the mouse is an ideal system for studying how 

altered LPA signaling could influence the development of the cerebral cortex in vivo.   
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CHAPTER II 

  

Lysophosphatidic Acid (LPA) Signaling as an Initiating Cause of  
Fetal Hydrocephalus 
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Summary  

Congenital or fetal hydrocephalus (FH) is the most common neurological 

disorder of newborns, producing enlarged heads, cerebrospinal fluid (CSF) 

accumulation and neurological dysfunction, with therapies limited to palliative 

neurosurgery.  Its initiating causes are unclear; however FH has been strongly 

associated with intracranial hemorrhage.  Here we report that lysophosphatidic acid 

(LPA), a lipid signaling molecule, provides an etiological and mechanistic link 

between hemorrhage and FH.  An in vivo model for intracranial hemorrhage in which 

wild type or LPA receptor-null mice were overexposed prenatally to blood fractions or 

LPA, consistently produced both FH and multiple associated histological defects, all 

of which depended predominantly on the receptor subtype LPA1, which is expressed 

on neural progenitor cells (NPCs).  Administration of a short-acting LPA1 antagonist 

prevented induced FH.  These results identify LPA receptor mechanisms in FH and 

suggest LPA signaling pathways as attractive targets for potential therapeutic 

intervention. 

 

 

 

 

 

 



27 
 

 
 

 

 

Introduction 

Approximately 7 of 10,000 newborns suffer from FH (1, 2), a life-threatening 

condition resulting from excessive accumulation of CSF within the ventricular system 

and associated with enlarged heads, structural brain alterations, varied neurological 

impairment, and death if untreated.  Currently, neither preventive nor curative 

therapies exist.  Evidence for genetic contributions to some forms of hydrocephalus 

have been reported (3); however, the majority of cases are sporadic, acquired disease 

with an unclear cellular and molecular etiology. 

Intriguing observations from epidemiological studies have linked FH to 

prenatal bleeding events, such as intrauterine and/or intracranial hemorrhage, that 

could produce pathophysiological exposure to blood components or derivatives like 

serum (1, 2).  This suggests that factors associated with blood could in some way 

contribute to FH.  A molecular species with proven relationships to both blood and the 

developing cerebral cortex is LPA.  It can be produced through multiple biochemical 

pathways (4) and has numerous biological properties that are mediated through a 

family of six known G protein-coupled receptors, LPA1-6 (5, 6).   LPA is also a normal 

component of blood and blood derivatives such as plasma and serum where it can 

reach reported concentrations of 20 µM (4, 7), a value that is approximately 200-300 

fold over the apparent Kd of its receptors (6).  In the embryonic cerebral cortex, gene 

expression studies have identified multiple LPA receptors (8), and receptor-dependent 
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LPA signaling has been shown to influence a broad range of cellular effects that can 

alter NPC physiologies, including their electrophysiological, cytoskeletal, 

morphological, anti-apoptotic and proliferative properties (5).  Receptor-dependent 

effects can also alter the overall organization of the embryonic cortex (9, 10).  To 

assess the possible relevance of prenatal blood or LPA exposure in FH, an in vivo 

model was therefore established.   This model utilized embryonic mouse brain 

exposure to these agents, and subsequent examination at later pre- and postnatal ages, 

combined with use of LPA receptor-null mutants. 
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Results 

 

Serum or plasma exposure induces FH 

Red blood cells (RBCs), plasma or serum, were delivered intraventricularly to 

the embryonic cerebral cortex via intracranial injection (Figure 2.1a-c) at embryonic 

day 13.5 (E13.5) followed by postnatal assessment.  Fetal delivery of plasma or serum, 

but not RBCs, produced FH with postnatal animals displaying characteristic dome-

shaped, enlarged heads, dilated lateral ventricles (LVs), and cortical thinning (Figure 

2.1d, e, g, h).  Cohorts exposed prenatally to serum or plasma developed 

hydrocephalus in 25-50% of animals (Figure 2.1e, h, n), whereas vehicle injection did 

not (Figure 2.1d, g, n; n = 19).   In addition, early cortical disruption appeared in 

wildtype animals after 24 h of exposure to serum or plasma but not RBCs (Figure 

2.S2).   These data indicated that hydrocephalus could be initiated by hemorrhagic 

components, consistent with epidemiological data (1) and a published animal model of 

intracranial bleeding that reported the development of ventricular dilation (11), known 

to be associated with FH.  These data also demonstrated that neither RBCs nor an 

acute increase in ventricular fluid volume produced by vehicle injection were 
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sufficient to produce ventricular dilation or hydrocephalus (Figure 2.1d, n).  This 

supports the possibility that a serum or plasma factor or factors is capable of initiating  

hydrocephalus. 

 

LPA exposure produces FH and associated histological changes 

A bioactive factor that is present within both plasma and serum, which can 

alter embryonic cerebral cortical organization ex vivo (9), is LPA with known 

activities that might contribute to the induction of FH.  The effects of embryonic LPA 

exposure were examined in wildtype embryos at E13.5, an age when NPCs respond 

robustly to LPA (9, 12) (Figure 2.S3), and analyzed at later developmental ages 

through adulthood.  Strikingly, LPA-injected animals developed completely-penetrant 

and severe hydrocephalus (Figure 2.1f, h, n; n = 16) grossly visible by postnatal day 

10 (P10) based on cortical thinning and ventricular dilation (Figure 2.1j).  

Hydrocephalus was never observed in vehicle-injected (n = 19) or non-injected 

littermates (n = 10) (Figure 2.1d, g, i, n).  Hydrocephalic animals showed 

progressively increasing head width (interaural distance, Figure 2.1k), head height 

(mandibular-rostral distance, Figure 2.1l), and body weight loss (Figure 2.1m), 

although there was no statistically significant difference in the anterior-posterior 

dimension (fronto-occipital distance) (Figure 2.S4).  In addition, these hydrocephalic 

animals displayed dome-shaped heads and thin, fragile skulls (Figure 2.1f), frequent 

intracranial hemorrhage (subdural and intraventricular), and destruction of subcortical 
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structures (e.g. caudate and putamen) and corpus callosum (Figure 2.1h).  

Hydrocephalic animals survived between 2-6 weeks after birth (Figure 2.S4).   

Histological alterations common to reported mouse models and clinical cases 

of hydrocephalus (Table 2.1) were observed after LPA but not after control vehicle 

exposure.  Ventricular size was bilaterally increased (Figure 2.2a-c and Figure 2.S5).  

In addition, the apical ventricular surface - composed of NPCs at this age - was 

disrupted and showed protrusions into the lateral ventricles (Figure 2.2d-f).  In 

severely disrupted areas, rounded cell clusters appeared to detach from the ventricular 

surface (Figure 2.2g-i).  These clusters were immunoreactive for nestin, incorporated 

bromodeoxyuridine (BrdU), and expressed Lpar1 as detected by in situ hybridization 

(Figure 2.S6; Lpar1 expression is present in the ventricular zone (VZ)), confirming 

their VZ origin.  Furthermore, the formation of neurorosettes – abnormal, radially-

oriented cells – within the VZ was observed (Figure 2.2j-l).  Finally, cells from the 3rd 

ventricular wall protruded into the ventricle, consistent with partial 3rd ventricle 

occlusion (Figure 2.2m-q).  This improper localization of cells is consistent with 

observed heterotopia formation in FH (13).  One mechanism that could contribute to 

these diverse histological findings is altered cell adhesion that can be produced by 

LPA signaling (14). 

 

LPA exposure disrupts NPC position, adhesion, and cilia 

Cell adhesion molecules forming adherens junctions are necessary for 

maintaining luminal integrity of the cerebroventricular system.  Knockout or 
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knockdown of various related components that maintain ventricular integrity such as 

N-cadherin (N-cad) (15, 16), Celsr 2 and 3 (17), myosin II-B (18), myosin IXa (19), 

Lgl1 (20), and Dlg5 (21) all produce histological features common to human 

hydrocephalus (Table 2.1) or frank hydrocephalus.  LPA has been shown to both 

increase and decrease N-cad cell-cell contact in a cell-type and receptor-subtype 

specific manner (14, 22), suggesting that modulation of LPA signaling could similarly 

affect ventricular integrity.  The apical surface of the lateral ventricles was examined 

for N-cad expression and found to be discontinuous in LPA-exposed embryos (Figure 

2.3a, b).  Consistent with N-cad function in maintaining proper mitotic cell attachment 

to the apical surface (16), LPA-injected embryos showed significantly increased 

mitotic displacement whereby M-phase NPCs typically found at the apical ventricular 

surface were instead displaced basally (Figure 2.3c, d, i; P = 0.002).  In addition, 

denuded NPC spheres (Figure 2.2h, i) (29 ± 7.1 per LPA-exposed embryo) were 

always observed within the ventricles of LPA-treated embryos.   

 A cause of hydrocephalus is loss of cilia or ciliary function on ependymal cells 

lining the ventricular surface that is thought to reduce CSF flow (23-29).  Ependymal 

cells arise from radial glia, differentiating during mid to late neurogenesis, and 

maturing by early postnatal life to form a single, multi-ciliated cell layer that can be 

identified by immunolabeling for acetylated α-tubulin (30).  Following embryonic 

LPA exposure, ependymal alterations were observed by P4 whereby patchy loss of 

mature ependymal cells, identified by S100β immunoreactivity, was accompanied by 
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loss of acetylated α-tubulin immunoreactivity (Figure 2.3e, f).  These results are 

consistent with loss of normal, ciliated ependymal cells (25, 29).    

 

LPA activates both Rho and Rac pathways in the embryonic cortex 

LPA receptors, particularly LPA1, are powerful activators of Rho (31), as well 

as the closely related small GTPase, Rac (32).  To determine the possible involvement 

of these pathways in LPA induced FH, Rho and Rac signaling were examined.  

Statistically significant activation of both prototypical members RhoA (P = 0.04) and 

Rac1 (P = 0.01) that are known to be expressed in the embryonic cortex (12) occurred 

rapidly following LPA stimulation (Figure 2.3j, k, and Figure 2.S7).  These results 

confirm the activation of both Rho and Rac by LPA signaling in the embryonic 

cerebral cortex. 

 

 

 

Serum, plasma, and LPA induce FH that is LPA receptor dependent 

Several blood-related factors have been reported to be elevated in CSF from 

hydrocephalic individuals (33), and when administered in young mice, can cause 

ventricular dilation and hydrocephalus (34).  This raised the possibility that factors in 

addition to LPA, present in serum and plasma, could be responsible for producing FH 

and/or associated histological changes observed in this model.  To address this 

question, LPA receptor null mice were utilized in conjunction with serum, plasma, and 
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LPA injections, followed by prenatal and postnatal assessment.  Based on gene 

expression studies, LPA1 and LPA2 are found in the NPC population of the VZ 

(Figures 2.S8 and 2.S9) and are known to couple to the same G proteins that mediate 

LPA signaling effects (9, 35).  To minimize receptor compensation, LPA1 and LPA2 

double null mutant mice (LPA1
-/- LPA2

-/-) were examined, initially blind to genotype 

as compared to LPA2 homozygous null/LPA1 heterozygote (LPA1
+/- LPA2

-/-), both of 

which were exposed identically to serum, plasma, or LPA.  These analyses revealed 

that exposure to these agents in LPA1
+/- LPA2

-/- mice produced results 

indistinguishable from wildtype controls, indicating a primary role for LPA1 in FH 

(Figure 2.4 and Figure 2.S10 and Table 2.S1).  Both wildtype and LPA1
+/- LPA2

-/- were 

subsequently used as controls compared to double null mutants.  Both serum and 

plasma induced cortical disruption that was abrogated in double-null mutants (Figure 

2.S2).  Critically, LPA’s ability to induce FH and associated histological changes 

(Table 2.1 and Table 2.S1) was strongly dependent on the expression of LPA1. In 

control animals exposed to LPA, FH showed complete penetrance (n = 10, 100%).  By 

contrast, FH was reduced to approximately 10% in double-null mutants (n = 9, 11%) 

(Figure 2.4 and Figure 2.S10 and Table 2.S1).  The rare occurrence of FH in double 

null mutants likely reflects contributions by one or more of the remaining four LPA 

receptors rescuing the double null phenotype.  These data strongly suggest that 

induced FH, along with associated histological changes, produced by serum, plasma, 

and LPA exposure, are LPA receptor dependent and primarily involve LPA1. 
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Pharmacological LPA1 blockade prevents induced FH and histological changes 

The identification of LPA receptor signaling in the initiation of FH suggested 

that pharmacological receptor modulation could influence the development of this 

disorder.  A receptor antagonist Ki16425 with proven specificity against LPA1 and 

LPA3 (36) was intraventricularly injected prior to LPA exposure.  Available genetic 

and expression data did not support a role for LPA3 in LPA-induced FH (37, 38).  

Embryos that were treated with vehicle followed by LPA showed similar cortical 

defects as the LPA-only experiments (Figure 2.5a, b), while embryos treated with 

Ki16425 followed by LPA showed a dramatic reduction in FH and related histological 

changes (n = 5) (Figure 2.5c, d, g-i).  Treatment with Ki16425 followed by vehicle 

produced no such effects (Figure 2.5e-i).  These data demonstrated that 

pharmacological intervention targeting LPA receptors, particularly LPA1, could also 

attenuate LPA-induced FH. These data also eliminate developmental artifacts 

associated with constitutive receptor deletion to explain rescue of FH observed in 

receptor-null animals. 

 

 

 

Discussion 

In this study, a molecular and cellular mechanism was identified that can 

account for the epidemiological observations linking prenatal bleeding and FH: LPA 

receptor-overactivation amongst NPCs (Figure 2.S1).  Moreover, LPA receptor 
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overactivation can explain the diverse histological presentation reported for human 

FH, and is further consistent with other FH-relevant animal models (Table 2.1).  Based 

on genetic and pharmacological studies, the primary receptor mediating these effects 

is LPA1 with comparatively minor contributions by other LPA receptor subtypes.  

While other contributing factors may be present in blood, genetic removal of LPA 

receptors prevented serum and plasma from inducing FH, supporting a primary role 

for LPA signaling in this process. 

 In addition to the direct release of LPA from blood derivatives, it is notable 

that both LPA precursors and the critical enzyme required for LPA production are 

present within the embryonic ventricles when exposed to blood and its derivatives.  

Thus, the LPA precursor lysophosphatidylcholine (LPC) is present within blood (39) 

and serum (40) where it can reach concentrations of up to 200 µM.  The major LPA 

producing enzyme, a lysophospholipase D known as autotaxin (ATX or Enpp2), is 

highly expressed in the ventricular choroid plexus (41) (Figure 2.S11), where it could 

enzymatically convert LPC into LPA.  In view of the brief half-life of LPA in 

biological fluids (42), its enzymatic production from highly abundant precursors – 

LPC approaching 10-20 fold over maximal LPA concentration in serum – could 

provide a more sustained overactivation of LPA signaling under pathological 

conditions. 

A variety of genetic perturbations have been reported to result in FH.  LPA 

signaling has been documented to interface with many if not all of these pathways.  

FH has been linked to cadherins (16, 21), which are altered by LPA signaling (43).  
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Loss of myosin IIB and IXa both result in hydrocephalus, consistent with myosin 

pathways in the developing CNS that are modulated by LPA signaling (44).  The small 

GTPase Rho is activated by LPA (12, 31) and has also been linked to FH (19), and this 

signaling component, along with Rac, was also activated in the employed cortical 

model.  These data support the involvement of LPA signaling that modulates multiple 

small GTPases in maintaining NPC and ventricular integrity through the actin 

cytoskeleton. 

Ciliary defects have been experimentally and clinically linked to FH.  Genetic 

deletions in cilia-related proteins, such as Polaris (Tg737), Stumpy, or Hydin (24, 26, 

27) or mutations leading to primary ciliary dyskinesia (45) indicate that ciliary loss-of-

function can lead to FH.  The loss of cilia observed in the current study, which appears 

to result from NPC disruption, is consistent with these genetic data.  Combined with 

linkage to cell signaling pathways, LPA receptor overactivation could represent a 

shared, proximal modulator of these molecular elements, initiated by blood or related 

products. 

The positioning of LPA signaling as a proximal modulator is consistent with a 

diverse range of reported risk factors and insults that share FH as a common endpoint.  

Risk factors include bleeding, infection, meningitis, and brain tumors that have been 

associated with increased LPA signaling (46-48).  The observation that a host of 

disparate, previously unlinked histological phenomena associated with human FH 

(Table 2.1) can be explained by LPA signaling supports a shared mechanism in both 

mice and humans.  The ability to prevent FH by pharmacological antagonism of LPA 
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signaling provides proof-of-concept for the medical treatment of at least some forms 

of FH.  Finally, it is notable that a host of developmentally linked disorders have also 

been epidemiologically associated with prenatal bleeding; these include heterotopia, 

cerebral palsy, schizophrenia, and autism, which could in part reflect a range of 

defects produced at varying developmental ages and neuroanatomical locations by 

altered LPA signaling. 
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Material and Methods  

 

Injection solutions  18:1 LPA (10 mM in HBSS) was prepared fresh just prior to use.  

Whole blood was obtained from adult mice by cardiac puncture, clotted, and spun 

down.  The top “serum” and bottom “red blood cell” (washed and resuspended in 

HBSS) fractions were collected by centrifugation separation.  The “plasma” fraction 

was obtained as previously described.(11).   Ki16425 (1 mM final concentration in 

HBSS), ROCK inhibitor (Y-27632, 2 mM), and Rac inhibitor (NSC23766, 10 mM) 

were prepared for intraventricular injections.  BrdU solution was prepared (10 mg/ml 

in HBSS, final concentration 100 mg/kg) for intraperitoneal injection.  

 

Injections:  In utero injections of 3 µl vehicle (HBSS), serum, plasma, RBC, or LPA 

solutions into embryonic cortices were performed on anesthesized, timed-pregnant 

dams at embryonic day E13.5.  Embryos were examined after 1 day (E14.5), 5 days 

(E18.5), or postnatally at P4, P10, P21, and 4 weeks.  For postnatal assessment, since 

uterine positional order was lost during delivery, all embryos within each litter were 

injected with identical ligands.  Pharmacological studies were performed using 1.5 µl 

of each ligand to maintain consistent injection volumes across studies.   
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Histology:  Embryos or pups were collected, dissected in cold PBS, and fixed in 

formalin-alcohol-acetic acid solution (FAA).  Paraffinized heads were sectioned (10 

µm thickness), dewaxed, and stained using hematoxylin and eosin.  Only healthy 

embryos with observable heartbeats were analyzed (≥ 90% injected). 

Immunohistochemistry: Brains preserved in 4% paraformaldehyde or FAA were 

examined.  Cryoprotected/frozen heads using 4% paraformaldehyde were sectioned, 

blocked with species-appropriate serum, and immunolabeled.  Paraffin sections were 

additionally dewaxed and  processed through antigen retrieval prior to antibody 

staining.  Antibodies specific for the following antigens were used: nestin (BD 

Biosciences, 1:400), β-III-tubulin (Covance, 1:1000), phosphorylated histone H3 

(Upstate, 1:1000), acetylated-α-tubulin (Sigma, 1:1000), N-cadherin (Calbiochem, 

1:200), and BrdU (Roche, 1:50).  

 

Image acquisition, quantification, and statistical analysis: Images were acquired on 

a Zeiss Imager 1D microscope (Axiovision 4.7.2) using appropriate fluorescence and 

brightfield filters, and analyzed blindly whenever possible.  Photoshop adjustments 

(version CS4) were strictly limited to light level and contrast enhancement for visual 

aesthetics which did not change data interpretation.  Statistical analyses were 

performed using Graphpad Prism (version 5).  Data were expressed as avg ± standard 

deviation (s.d.).  T-tests (paired and unpaired) were considered significant if P ≤ 0.05. 
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Head size measurement:  Increased head circumference, clinically used as a standard 

indicator of hydrocephalus, is typically measured using a cloth tape above the ears, but 

is not technically feasible in early postnatal mice due to small size and incomplete 

skull calcification.  Instead, a digital caliper (C-master electronic gauge) was used to 

perform three uni-dimensional measurements: interaural distance (ear-to-ear), 

madibular-rostral distance (jaw-to-top of the head), and fronto-occipital distance 

(forehead-to-back of the head).  Individual measurements were performed in triplicate 

and averaged.  Measurements were performed at postnatal days 3, 6, 10, 15, 20, 25, 

and 30.  Postnatal animals were tattooed for individual identification. 

 

Ventricle area measurement: Paraffinized embryo heads were serially sectioned and 

selected sections (100 µm intervals apart) were imaged.  Lateral ventricles were 

manually traced, area sizes calculated automatically (Axiovision 4.7.2), and tabulated.  

At least 6 sections were measured per embryo.   

 

Construction and Labeling of In Situ Hybridization Probes:  Mouse Lpar1 Exon 3 

was amplified by PCR from a BAC template using pfx 50 DNA polymerase 

(Invitrogen) using the following primers, A1Ex3For:  5'-

TTCACAGCCATGAACGAACAAC-3' and A1Ex3Rev:  5'-

ACCAAGCACAATGACCACAGTC-3', and A tailed with Taq polymerase.  The 748 

bp product was then isolated using the Qiaex II DNA isolation kit (Qiagen) and cloned 

into the pGem®-T Easy T vector (Promega), linearized with appropriate restriction 
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enzymes, and DIG labeled sense and antisense runoff transcripts were transcribed 

using DIG labeling mix (Roche) and SP6 and T7 RNA polymerases (Roche) 

respectively.  DIG-labeled sense and antisense mouse Lpar2 probes  were prepared as 

previously described.(37)  Mouse Enpp2 (also known as autotaxin, ATX) probe was 

prepared as follows: A 1.2 kb 5' DNA fragment of the mouse ATX gene was 

subcloned into pBluescript II SK.  DIG labeled sense and antisense run off transcripts 

were prepared by linearization with the appropriate restriction enzymes using DIG 

labeling mix (Roche) and T7 and T3 RNA polymerases (Roche) respectively. 

In situ hybridization: Embryo heads were either snap-frozen or paraffin-embedded 

and examined for LPA1, LPA2, and Enpp2 (autotaxin) expression as previously 

described(12).  Paraffin sections were dewaxed and rehydrated using DEPC-treated 

solutions prior to pretreatment and preparation for hybridization.  All probes were 

hybridized at 65oC.  

 

RhoA and Rac1 activation ELISA assay: Fresh embryonic cortical hemispheres were 

dissected out in ice-cold serum-free Opti-MEM and matched hemispheres were 

cultured in media supplemented with 10 µM LPA and 0.1% fatty-acid free bovine 

serum albumin (FAFBSA, consistent with LPA injection concentrations noted in 

Figure 2.S3) or without LPA essentially as previously described(9, 49).  LPA 

stimulation was terminated in fresh ice-cold Opti-MEM without LPA.  Activation of 

RhoA and Rac1 levels were measured using absorbance- or chemoluminescence-based 

G-LISA kits, respectively, according to the manufacturer’s instructions (Cytoskeleton, 
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Denver, CO) using a Bio-Tek EL800 microplate reader and a Bio-Tek SynergyMX 

luminometer (Winooski, VT).  Briefly, the cortical wall overlying the lateral ventricle 

was quickly dissected away from the ganglionic eminences (see Figure 2.S7), 

triturated in lysis buffer, and snap frozen in liquid nitrogen.  Antibody concentrations 

were optimized for machine sensitivity.  Statistically significant but modest activation 

levels likely reflect the absence of serum starvation, used to approximate in vivo 

conditions, along with the influence of other endogenous signaling pathways that 

increase the basal activation of Rho and Rac.  

 

LPA measurements: The LPA extraction method was adapted from Matyash et al. 

2008 with some modification.(50)  Briefly, 50 µl of tissue homogenate (final 

concentration 200-400 mg/ml fresh tissue) was used for each sample. 187.5 µl of 

methanol:HCl 10:1 mixture and 625 µl of methyl-tert-butyl ether (MTBE) were added 

to each sample and incubated on a nutator at room temperature for one hour. 157 µl of 

distilled water was then added to the mixture, incubated for 10 minutes, and phase-

separated by centrifugation at 13,000 rpm for 10 minutes. The initial organic phase 

was collected, while the aqueous phase was re-extracted with 250 µl of 

MTBE:methanol:H2O (10:3:2.5 ratio).  Both organic phases were combined and dried 

using a Speedvac concentrator (Savant, New York), and resuspended in 100 µl 

methanol.  Non-natural 17:0 LPA (Avanti Polar Lipids, Alabaster, AL) was added as 

an internal standard.  The extracts were subjected to liquid chromatography-mass 

spectrometry (LC-MS) for LPA measurement at the TSRI Mass Spectrometry Core 



44 
 

 
 

using an Agilent 6410 triple quad mass spectrometer coupled to an Agilent 1200lc 

stack. Compounds were eluted with a mobile phase of H20/ACN 90:10 with 10 mM 

NH4OAc (A) and ACN/H2O with 10mM NH4OAc (B) at 0.2 ml/min.  Agilent 300SB-

C8 2.1 mm x 100 mm, 3.5 µm columns were used.  The gradient was t = 0, 80:20 

(A:B), t=5 50:50, t=7 25:75, t=15 0:100, t=20 off.  There was a 5 min re-equilibration 

time between samples.  The source was maintained at 350oC with a drying gas flow of 

10 liters / h, and data were collected in negative ion mode. The following transition 

states were monitored: LPA m/z 435 -> 153, C17 m/z 423 ->153. Calibration curves 

were generated using 10-10,000 fmol/injection of 18:0 LPA. Peak areas of [M-H] for 

LPA (18:1) form were normalized to the internal standard, and normalized areas were 

plotted versus concentration. 
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Figure 2.1:  Hydrocephalus is induced by embryonic cortical exposure 
of plasma, serum, or LPA.  a, Diagram of in utero injections.  b, c, 
Visualization (blue) of lateral, 3rd, and 4th ventricles, indicating injection 
diffusion.  A = anterior, P = posterior. d-f, Mice (P30) developed 
macrocephalic heads after injection of plasma, serum, or LPA, but not 
vehicle or RBCs.  g, h Histological examination (P30) showed grossly 
dilated ventricles (v) and thinned overlying cortices.  i, j Whole-brain 
preparations (P10) comparing control- and LPA-injected cortex; note the 
increased dimensions and transparency characteristic of hydrocephalus (j).  
k-m Animals exposed to LPA (n = 7) (red) showed significantly increased 
head dimensions and significantly decreased body weight compared to 
vehicle exposure (n = 10) (blue). (mean ± s.d., unpaired t-test, see Table 
2.S1 for P values).  n, Hydrocephalus penetrance was quantified for each 
exposure condition; numbers in parentheses represent the number of 
hydrocephalic animals / cohort.  CC = corpus callosum, CPu = caudate and 
putamen.  Scale bar = 0.5 cm. 
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Figure 2.2:  Embryonic LPA exposure producing FH also produce 
histological features common to human FH.  Vehicle injection:  a, d, g, 
j, m, n.  LPA injection:  b, e, f, h, i, k, l, o, p, q (magnified in f, i, l, q).  a-c, 
Ventricular dilation. Embryos injected with LPA (analyzed at E14.5) 
showed lateral ventricular dilation compared to vehicle injections (dotted 
outlines indicate ventricles), with changes quantified in c (n = 3 embryos 
per condition, mean ± s.d., unpaired t-test; ipsi = ipsilateral, contra = 
contralateral).  d-f, Cortical disruption.  LPA exposure (analyzed at 
E14.5) produced cortical disruption of ventricular zone (VZ) organization 
and cell protrusions along the apical ventricular surface (boxed area 
magnified in f).  g-i, Neuroprogenitor cell (NPC) clusters in the lateral 
ventricles.  Clusters of NPCs protrude from the apical VZ surface and can 
be found as isolated clusters throughout the ventricle (analyzed at E18.5).  
j-l, Neurorosettes.  These LPA-induced structures were located 
throughout the VZ.  m-q, Partial occlusion of the 3rd ventricle.  
Disruption of the 3rd ventricular wall, associated with partial ventricular 
occlusion was frequently observed (analysed at E14.5 in m, o, q, see 
arrow; or E18.5 in n, p)  v = ventricle, scale bars = 200 (a, b, d, e, g, h, j, 
k, m, n, o, p) and 50 µm (f, i, l, q).   
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Figure 2.3:  Hydrocephalus-associated LPA exposure alters NPC cell 
adhesion, mitotic displacement, produces heterotopia, and 
overactivates Rho/Rac signaling.  a, b, LPA exposure (analysed at 
E14.5) disrupted the apical ventricular surface, altering N-cadherin 
expression (N-cad, red, arrow, magnified in inset), in contrast to vehicle 
exposure.  c, d, NPC mitotic displacement was identified by 
phosphorylated histone H3 (PHH3, red) immunolabeling that revealed 
displaced mitotic cells abnormally positioned superficially in the VZ (d, 
arrows) rather than along the ventricular surface (c).  e, f,  Immunolabeled 
ependymal cells (S100β+, red) and cilia (αAcTub+, green) were lost and 
altered, respectively following embryonic LPA exposure (f) as compared 
to vehicle controls (e) examined at P4.  LPA exposure decreased the 
number of S100β+ cells that was associated with the loss of cilia (asterisk, 
f (arrows: in focal plane; arrowheads: out of focal plane)).  g, h, 
Postmitotic neurons identified by immunolabeling with β-III-tubulin (β-
III-tub+, green) indicated VZ disruption in LPA exposed cortices and the 
presence of heterotopic neurons (h, arrows) compared to vehicle exposure 
(g).  i, Quantification of mitotically-displaced cells identified by PHH3 
immunolabeling (n = 5 embryos per condition, mean ± s.d., unpaired t-
test, ** P = 0.0022).   j, k,  Quantification of RhoA and Rac1 activation in 
ex vivo cortices following exposure to vehicle or LPA for 3 min.  RhoA: n 
= 5 pairs of matched cortical hemispheres exposed to vehicle or 10 µM 
LPA; mean ± s.d., P = 0.0408, paired t-test.  Rac1: n = 6 pairs matched 
cortical hemispheres exposed to vehicle or 10 µM LPA, mean ± s.d., 
paired t-test, P = 0.01. CP = cortical plate, IZ = intermediate zone, SVZ = 
subventricular zone, VZ = ventricular zone.  Scale bars = 50 (a-d, g-h) 
and 20 µm (e, f). 



50 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 
 

Figure 2.4:  LPA-induced hydrocephalus and associated histological 
changes are generally absent from LPA1/LPA2 double-null mice.  a, b, 
Head dilation and hydrocephalus in postnatal animals following LPA exposure 
at E13.5 in control (LPA1

(+/-) / LPA2
(-/-) )(a) contrasted with a normal 

appearance and absence of hydrocephalus in the double-null mutant (LPA1
(-/-) / 

LPA2
(-/-)) (b).  c-h, LPA-injected positive controls revealed the expected 

presence of NPC clusters (c, arrows), early cortical disruption at E14.5 (e, 
arrowheads), and neurorosettes (g, arrows), that were generally absent (see k) 
in double-null mutants (d, f, h).  i, j,  LPA exposure in control mice (n = 10, 
blue line) revealed significantly increased interaural (i) and mandibular-rostral 
distance (j) as early as postnatal day P3 that was attenuated in null mutants (n 
= 9, red line) (cf. Figure 1, wildtype LPA exposure)  (n ≥ 3 embryos per 
genotype, mean ± s.d., unpaired t-test, P < 0.05, see Table 2.S2)  k, Penetrance 
of LPA-induced hydrocephalus was quantified; numbers in parentheses 
represent number of hydrocephalic animals / total cohort.  Scale bars = 400 (c, 
d), 200 (e, f) , and 50 µm (g, h). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



53 
 

 
  

Figure 2.5:  Hydrocephalus can be prevented by pharmacological 
antagonism of LPA1.  Embryos were injected sequentially with vehicle 
followed by LPA 10 min later at E13.5 and examined subsequently during 
embryonic life (a, E14.5) or assessed for hydrocephalus postnatally (b, P25).  
Pharmacological intervention was assessed using the same paradigm but 
replacing vehicle with the LPA1/3 antagonist Ki16425 (Ki) followed by LPA, 
and analysed during the same embryonic (c) and postnatal periods (d).  The 
effects of antagonist alone were similarly assessed by Ki exposure followed by 
veh, then further assessment (e, f).  Apical protrusions of ventricular clusters 
(a, arrows) in vehicle-LPA injected embryos, were not observed in Ki-LPA or 
Ki-veh injected embryos after 24 h exposure (c, e). g-i, Quantitative 
assessments measured head dimensions in positive controls and antagonist-
exposed animals.  Positive controls using veh-LPA exposed animals produced 
the expected changes in head dimensions and hydrocephalus (black lines, g-i).  
In each measured head dimension, statistically significant increases were 
observed that contrasted with the normal head measurements obtained from 
antagonist-exposed brains (red and blue lines, g-i).  No statistically significant 
changes were observed between Ki-veh (blue line) and Ki-LPA (red line) 
injected embryos (n ≥ 3 embryos per condition, mean ± s.d., unpaired t-test, P 
< 0.05, see Table 2.S2).  v = lateral ventricle.  Scale bar = 100 µm. 
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Table 2.1:  Shared histological features of hydrocephalus identified in clinical 
studies, other animal models, and observed following serum or LPA exposure. 
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Figure 2.S1:  Proposed model of fetal hydrocephalus via LPA1 overactivation. 
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Figure 2.S2:  Serum and plasma but not RBCs produce LPA receptor dependent 
cortical wall disruption.  Wildtype (a, b, and c) or LPA1 and LPA2 double null 
mutant E13.5 embryos (d, e, and f) were injected with plasma, serum, or RBCs and 
analyzed at E14.5.  a, b, Injection of serum or plasma produced disruptions of the 
apical ventricular surface (indicated by arrows and shown in the magnified boxed 
inset).  c, RBC injected cortices retained a smooth apical ventricular zone. Abundant 
erythrocytes (pink) are seen within the lateral ventricle.  d-f, Injection of serum, 
plasma, or RBCs into LPA1

-/- LPA2
-/- double null mutant embryos did not produce 

cortical disruption.  A = anterior, D = dorsal. CP = cortical plate, IZ = intermediate 
zone, VZ = ventricular zone.  Scale bars = 200 and 50 µm (inset). 
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Figure 2.S3:  Experimental parameters of LPA cortical exposure model.  Embryos 
injected at E13.5 were examined for total brain weight and 18:1 LPA levels at E13.5 
(1 h later), at E14.0 (12 h later), and E15.5 (48 h later).  a, Total brain weights 
between vehicle (white bars) and LPA injected (black bars) embryos were not 
statistically different up to 48 hours post-exposure (n  ≥  3 embryos per condition, 
mean ± s.d., unpaired t-test; 1 h, P = 0.77; 12 h, P = 0.44; 48 h, P = 0.55).  b, 
Wildtype brain 18:1 LPA concentration remained relatively stable (between 0.32-0.35 
µM ) from E13.5 to E15.5 in vehicle injected embryos (white bars).  LPA cortical 
injection resulted in an initially elevated amount (approximately 10.75 µM 18:1 LPA) 
at 1 h post-exposure, declining by 48 h post-exposure to approximately 1.79 µM 18:1 
LPA (black bars).  Although it is unclear what fraction of total LPA is available for 
signaling towards the development of fetal hydrocephalus (FH) (e.g., concentration at 
the receptors), these levels were consistent with total LPA concentrations that could be 
attained under pathophysiological conditions (up to 20 µM). (1-3)  (n  ≥  3 embryos 
per condition, mean ± s.d., unpaired t-test; 1 h, * P = 0.03; 12 h, ** P = 0.005; 48 h, * 
P = 0.01) 
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Figure 2.S4:  Lack of fronto-occipital changes and survival curve of LPA injected 
animals which develop hydrocephalus over time.  a, Embryos exposed to LPA (n = 
7) (red lines) that develop hydrocephalus with macrocephaly and increased interaural 
and mandibular-rostral dimensions (Figure 1) do not display statistically different 
fronto-occipital distances compared with vehicle-injected embryos (n = 10) (blue 
lines) (mean ± s.d., unpaired t-test).  b, Survival curve of postnatal animals exposed at 
E13.5 to vehicle (veh, blue line) or LPA (red line). 
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Figure 2.S5:  Bilaterally increased ventricular area and mitotic displacement 
following LPA exposure.  E13.5 littermates exposed to LPA for 24 h developed 
ventricular dilation at all levels in both left and right cortices (b, d, f, h, j, l), in 
contrast to matched vehicle exposed cortices (a, c, e, g, i, k).  Dotted white lines 
indicate representative areas measured for vehicle and LPA sample cohorts.  
Quantification of measured ipsilateral and contralateral areas is found in Figure 2c.  
Note the increased PHH3+ mitotic displacement in the LPA-exposed brains (d, 
arrows), compared with brains exposed to vehicle (c, arrowheads).  Ctx = cortex.  
Dorsal is to the top of the page.  Scale bar = 400 µm. 
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Figure 2.S6:  LPA exposure induces the formation of denuded cell clusters that 
originate from the ventricular zone of the developing cortex.  a,b,  In situ 
hybridization with an Lpar1 DIG labeled probe shows shows expression along the 
apical ventricular surface in vehicle (a), and LPA injected (b) E13.5 embryos 
exposed to LPA for 24 h.  Note the smooth apical ventricular surface in embryos 
exposed to vehicle versus LPA.  d, e,  Immunohistochemistry shows nestin positive 
cells along the apical ventricular surface in embryos exposed to vehicle (d) or LPA 
(e) for 24 hours.  g, h,  BrdU staining of vehicle (g) and LPA (h) injected E13.5 
embryo apical ventricle surfaces.  LPA exposed cortices had undulating, disrupted 
apical surfaces that manifested as nodules (compare dotted outlines); in many cases, 
these cells appeared to detach and become free-floating cell clusters in the 
ventricles.  c, f, i, These clusters were Lpar1+ (c), nestin+ (f), and BrdU+ (i).  R = 
rostral, D = dorsal, VZ = ventricular zone, v = lateral ventricle.  Scale bars = 50 (a, 
b, d, e, g, h) and 20 µm (c, f, i). 
 

 

 



63 
 

 
 

 

 
Figure 2.S7:  LPA induces RhoA and Rac1 activation.  a, b, 
E13.5 embryonic cortical hemispheres were exposed to vehicle 
(veh) alone (a) or LPA (b) for 1, 3, 5, 10 15, 30, 60, 120, or 180 
minutes, then immediately microdissected on ice to remove the 
ganglionic eminences (GE) and enrich for the overlying cortex 
that is known to express LPA1 receptors and which 
demonstrated disruption by LPA exposure (tissue region above 
white dotted line).  c, Representative time courses of RhoA (red 
line) and Rac1 (blue line) activation upon LPA exposure by 
ELISA assay showed a nonlinear trend with rapid 
overactivation, followed by inhibition compared with control 
hemispheres.   
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Figure 2.S8:  Expression of Lpar1 in the developing embryonic brain at E13.5.  
a-n, In situ hybridization using anti-sense and sense strand DIG-labeled probes for 
Lpar1 using cryosections from freshly-frozen tissue can be seen in both the coronal 
view (a, b) and horizontal view (c, d).  Lpar1 was expressed in the ventricular zone 
(VZ) layer (a, c, arrows) of the lateral cortical wall at E13.5, more lightly at the 
medial wall, and was also present within the developing 3rd ventricle (c, 
arrowheads).  The development of 3rd ventricular occlusions from LPA exposure 
(see also Figure 2.2) is consistent with this Lpar1 spatiotemporal expression.  g-n, 
Lpar1 in situ hybridization was also performed in paraffin-embedded tissue.  
Strong Lpar1 expression was present in the VZ (indicated by arrows), the meninges 
/ layer 1 of the cortex (indicated by arrowheads), and the medial septal wall (SW) 
between the lateral ventricles (g, i, k, m).  Adjacent sections were stained with 
hematoxylin and eosin (h, j, l, n).  v = lateral ventricle, IZ = intermediate zone, CP 
= cortical plate, Ctx = cortex, Sk = developing skull, ChPl = choroid plexus, D = 
dorsal, L = lateral, R = rostral, A = anterior.  Scale bar = 200 µm.    
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Figure 2.S9:  Lpar2 is expressed in the developing 
embryonic brain at E13.5.   a, b  In situ hybridization with 
DIG-labeled Lpar2 antisense (a) and sense (b) riboprobes 
shows that LPA2 was more diffusely expressed throughout 
both the medial (arrowheads) and lateral cortical wall 
(arrows) compared with Lpar1.  VZ = ventricular zone, v = 
ventricle, D = dorsal, L = lateral.  Scale bar = 200 µm. 
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Figure 2.S10:  LPA-induced cortical disruption and mitotic displacement are 
abrogated in double-null mutant mice.  a, d, Control mice (LPA1

+/- LPA2
-/-) 

injected with LPA showed altered β-III-tub expression, consistent with cortical 
disruption and heterotopia formation, in contrast to the double null mice (LPA1

-/- 
LPA2

-/-) .    b, e, Cortical disruption resulted in phospho-histone H3 (PHH3) 
positive mitotic cells moving basally away from the ventricular surface (indicated 
by arrows), which was not present in double null mice.  c, f, Merged images of β-
III-tub (green), PHH3 (red), and nuclear counterstaining DAPI (blue).  g, 
Quantification of mitotic displacement (%) (n  ≥  4 embryos per condition, mean ± 
s.d., unpaired t-test, * P = 0.016).  Scale bar  = 50 µm.  
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Figure 2.S11:  Enpp2 (autotaxin) is expressed in the developing 
embryonic brain at E13.5.  a-c, In situ hybridization with Enpp2 DIG 
labeled antisense riboprobe shows that Enpp2 is strongly expressed in 
the choroid plexus (ChPl, indicated by arrows) as well as the posterior 
commissure (indicated by arrowhead), which are magnified in b 
(ChPl) and c (PC).  d-f, DIG labeled sense strand control in situ 
hybridization of adjacent tissue sections shown in a-c.  D = dorsal, L = 
lateral.  Scale bar = 200 (a, d) and 50 µm (b, c, e, f). 
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Table 2.S1:  Histological features associated with hydrocephalus are abrogated 
in LPA1 and LPA2 double null animals.  Frank hydrocephalus was absent in ~ 
90% of the double null mutants.  The presence of mild histological features, 
markedly reduced from controls, supports the involvement of LPA1 and LPA2 in 
these histological changes, and suggest that one or more of the other 4 remaining 
LPA receptors may further contribute to these phenotypes.  
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Table 2.S2:  Mean ± s.d., n, and P-values of data graphed in Figures 1, 4, and 5.  
P-values highlighted in green and red represent statistically significant (P ≤ 0.05) and 
non-significant data (P > 0.05), respectively. 
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Table 2.S2:  Mean ± s.d., n, and P-values of data graphed in Figures 1, 
4, and 5, Continued. 
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Initiation and development of FH 

A large body of clinical observations have shed light on important aspects of 

FH, including epidemiology (1, 2), presentation (3), histological heterogeneity (4), and 

associated comorbidities (5).  An important advance has been the refined visualization 

and monitoring of early in utero antenatal changes, such as ventriculomegaly, that can 

lead to FH (6-8), made possible by innovations in sonography (e.g., ultrasound 

imaging) (9) and MRI (magnetic resonance imaging) (10). 

Ventricular dilation, detectable as early as 16 weeks of gestational age, can 

precede frank hydrocephalus by many weeks (11-13).  In addition, postmortem 

analysis of fetuses at various ages, including gestational week 16, revealed disruption 

of the neuroepithelial/ependymal lining of the aqueduct and telencephalon (14, 15) 

and the presence of neuroprogenitor cells within the CSF (16).  Thus, pathological 

neuroarchitectural and cellular changes can occur early during fetal development, even 

within the first trimester (17).  These clinical findings are consistent with the 

experimental observations reported in chapter II, in which a single, initiating event at 

E13.5 in mice (approximately equivalent to gestational week 7, Figure 3.1) can 

produce most of the histological sequelae associated with FH and frank hydrocephalus 

at perinatal ages. 

Bleeding in the fetal brain - variably described as intracranial, intraventricular, 

or germinal matrix hemorrhage - have all been reported to be major risk factors for the 

development of FH (18).  Blood associated factors such as TGF-β (transforming 
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Figure 3.1:  Neural developmental timeline in mouse, macaque, and man.  
Specific cellular layers and anatomical components of the developing brain form 
within stereotyped time periods of varying lengths in 3 species: mouse, macaque 
monkey, and man.  The known period of LPA1 expression in the ventricular zone of 
the mouse cerebral cortex (light blue) extends from post-conception or embryonic day 
12 to birth; this expression is extrapolated in macaque and man, based on a 
comparison of brain developmental maturity.  LPA injections, as performed in studies 
described in chapter II, occur on E13.5 (arrow).  Corpus callo = corpus callosum, ctx = 
cortex, ant comm = anterior commissure, Ent = entorhinal, SN = septal nuclei, E = 
embryonic day, P = postnatal day.  
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growth factor beta) and VEGF (vascular endothelial growth factor), when injected into 

neonatal mouse or rat brains, have been reported to cause ventricular dilation and 

hydrocephalus (19-21).  Furthermore, elevated levels of these factors have been found 

in preterm infants with germinal matrix hemorrhage and hydrocephalus (22, 23).  

However, it is notable that LPA appears to be the chief early initiator in the 

development of FH, since deletion of LPA1 is sufficient to nearly prevent the 

development of FH due to serum or plasma exposure.  There is evidence of cross-talk 

and cross-regulation between LPA, its receptors, and these factors (24-26), but their 

relationship is likely more complex than currently appreciated and warrants further 

investigation.  Importantly, these observations can help direct future clinical and 

experimental approaches towards the study of FH. 

 

 

Current therapies 

Fetal brain hemorrhage is a well-known risk factor for multiple neurological 

disorders, particularly in the development of ventricular dilation and FH.  The 

observation of pooling or residual blood within the ventricles, hemosiderin deposits 

proximal to the ventricular lining (27, 28), and stenosing clots within the aqueduct 

(29) have galvanized numerous clinical therapeutic approaches - including lumbar 

puctures, brain lavage, diuretic drugs, and fibrolytic therapy - to remove old blood, 

decrease bulk CSF volume, and to dissolve blockages (30, 31).  However, despite the 

logical soundness of these interventions, they have not been successful in the 
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prevention of subsequent surgical shunt placement (32).  Moreover, the unexpected 

development of  secondary hemorrhagic events nullified any modest benefits from 

these physical interventions (32). 

Additional studies that identified elevation of TGF-β and VEGF in the CSF of 

post-hemorrhagic infants (22, 23) suggested a more targeted approach using 

pharmacological inhibitors.  In a study of intracranial hemorrhage and ventricular 

dilation in rat pups, animals were treated with perfenidone and losartan, two drugs that 

lower TGB-β levels.  Unexpectedly, however, there was no significant reduction of 

ventricular dilation (33).  Currently, no VEGF inhibition studies have been carried out 

in either clinical or experimental settings.  Thus, the pathological significance and 

contribution to FH of these two factors, among many, remains unclear and merits 

further investigation. 

 

 

A fresh understanding of FH 

 Rapid advances in whole genome sequencing and embryonic stem cell 

targeting technologies have allowed the independent generation of genetic null mutant 

mice with relative ease.  Many of these animals develop similar and overlapping 

histological changes, ventricular dilation, and FH (Table 3.1 and Table 2.1), 

suggesting that multiple genetic changes can result in FH in mice, with corroborating 

studies needed in humans (34).  Whether environmental insults, as postulated for 

acquired hydrocephalus, proceed through similar genetic pathways had been a difficult  
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Table 3.1:  Genetic perturbations in mice that result in histological alterations 
found in FH or result in frank hydrocephalus. 
 

              

  

Affected 
structure 

Gene 

 

Functional effects 

 

References 

              
    

 
 

 
  

  

Cilia Mdnah5 

 

A component of the axonemal structure; null 
mice lack cilia beating and develop 

hydrocephalus 
 

 (35)  

  

 Spag6 

 

A component of the axonemal structure; null 
mice lack cilia beating and develop 

hydrocephalus 
 

(36) 

  

 Polaris 
(Ift88) 

 

Concentrated near apical membrane of basal 
bodies and is involved in left-right axis 

patterning and tissue planar polarity; mutations 
cause immotile cilia/sperm and hydrocephalus 

(among other pathologies) 

 

 (37)  

  

 Stumpy 

 

Required for axonemal extension; null mice 
have deformed or absent cilia, impaired CSF, 

and hydrocephalus 

 

 (38)  

  

 Celsr 2 and 
3 

 

Mammalian ortholog of drosophila Flamingo 
(also known as Starry Night), which are among 

the planar cell polarity core proteins; Celsr 2 and 
3 double null mice have defects in ciliogenesis 

and develop hydrocephalus 

 

 (39)  

              
    

 
 

 
  

  

Ependyma Hyh (Napa) 

 

Napa gene in alpha SNAP and SNARE-
mediated vesicle fusion; natural mutation results 

in ependymal denudation and subsequent 
hydrocephalus 

 

 (40-47) 

  

 RFX3 

 

Transcription factor that regulates ciliated 
ependymal cell differentiation; gene deletion 

results in hydrocephalus 

 

(48)  

              
    

 
 

 
  

  

Cell adhesion 
/ polarity / 
intracellular 
signaling 

N-cadherin 

 

A cell adhesion molecule highly expressed at 
the apical ventricular surface and embryonic 
cerebral cortex; conditional null deletion or 

neutralizing antibody in vivo caused histological 
features of hydrocephalus 

 

(49-52)  

  

 Dlg5 

 

Functions in plasma membrane delivery of 
cadherin via t-SNARE complex; null mice have  

fully penetrant hydrocephalus 

 

(53)  

  

 Lgl1 

 

Thought to function in maintaining cell polarity; 
null mice are unable to asymmetrically localize 

Numb and develop hydrocephalus 

 

(54)  

  

 PTEN 

 

Conditional deletion in mice in the midbrain 
result in enlargement of midbrain and 

hydrocephalus 
 

      (55) 

  

 β-catenin 

 

Conditional deletion in mice in the midbrain 
result in enlargement of midbrain and 

hydrocephalus 
 

(55)  

              

 



84 
 

 
 

Table 3.1:  Genetic perturbations in mice that result in histological alterations 
found in FH or result in frank hydrocephalus, Continued. 
 
 

              

  

Affected 
structure 

Gene 

 

Functional effects 

 

References 

              
    

 
 

 
  

  

G-protein 
coupled 
receptors 

PAC1 

 

Human GPCR; transgenic expression in mouse 
brain leads to enlarged lateral ventricle, 

ependymal cilia disruption, and hydrocephalus 

 

 (56) 

  

 Gαi RASSL 

 

Gαi-coupled GPCR is activated by a synthetic 
ligand; when transgenically expressed by 

astrocytes in vivo, causes ependymal 
denudation and hydrocephalus 

 

  (57)  

  

 Gα2i 

 

Gα subunit with restricted expression in the VZ, 
ependyma, and cilia; in vivo oligonucleotide 

knockdown in mice results in immotile cilia and 
ventricular dilatation/hydrocephalus 

 

  (58)  

              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



85 
 

 
 

question to answer.  A hemorrhage animal model using injections TGF-β produced 

hydrocephalus with incomplete penetrance and variable severity (21) and moderate 

histological alteration, though injection of blood and blood derivatives seem to 

increase the phenotype, both grossly and histologically (59).   Correlates such as 

neuroprogenitor disruption, heterotopia formation, and ependymal loss were reported 

in the latter  model (59).  LPA is the first known hemorrhage-derived factor that can 

produce FH with all of the seemingly unrelated histological changes observed 

clinically and in genetic animal models, including ventricular dilation, NPC disruption 

and denudation, neurorosette formation, mitotic displacement, 3rd ventricular 

occlusion, loss of cilia, and heterotopia formation.  Observed differences in the 

severity and timing of these disturbances likely result from spatiotemporal differences 

and degree of LPA exposure.  Overall, however, these results help link a diverse array 

of genetic disturbances to fetal intracranial hemorrhage that result in FH and create a 

broad working scaffold for future studies. 

 

Conclusion 

 The work presented here demonstrates a causative relationship between 

hemorrhage, exposure to blood derivatives, and the initiation of FH in vivo through the 

overactivation of LPA1.  Prevention of FH by a LPA1 antagonist provides proof-of-

concept towards potential treatment of at least some forms of this disorder.  The 

ultimate goal of these studies is to enable the future development of effective therapies 

of FH through the understanding of the biology of this disorder in vivo.  
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CONSTITUTIONAL ANEUPLOIDY IN THE NORMAL HUMAN BRAIN 
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A word about aneuploidy 

 

Aneuploidy is defined as the gain or loss of chromosomes to produce a 

numerical deviation from multiples of the haploid chromosome complement (1).  

Well-known examples include the systemic gain of an extra copy of chromosome 21 

that produces Down’s syndrome (also known as trisomy 21) (2) or the abnormal, 

varied chromosome complements in cancers (3-5).  However, recent evidence has 

suggested that another form of aneuploidy also exists, particularly in the brain (6).  

Nondiseased murine brains contain post-mitotic cells which have sporadic gains or 

losses of single copies of chromosomes, which form a constitutive mosaic of 

aneuploid, functional cells within the circuitry and architecture of the brain (7, 8).  

Moreover, dividing neuroprogenitor cells also exhibit a wide variety of aneuploidy, as 

determined by karyotype analysis (9, 10).  Such aneuploidy likely has consequences 

that may range from the normal production of genetic diversity among individuals to 

relevance in neurological and neuropsychiatric disorders (11). 

Therefore, I and others undertook studies to examine the chromosome 

complement in murine and human brains specifically in the cerebral cortex and 

cerebellum, areas that, in part, mediate cognition and motor activity.  Using a variety 

of detailed and high-throughput independent methods, including fluorescence in situ 

hybridization (FISH), spectral karyotyping (SK), and fluorescence-activated cell 

sorting (FACS), we find that aneuploidy variations exist across cell type, brain region, 

and species (12-14).  Other groups have validated and complemented these studies in 
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both scope and direction (15-18).  This body of work provides a continuing chain of 

observations that shed light on constitutional aneuploidy as a novel biological 

phenomenon.  
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The text of Appendix A is, in full, a reprint of material as it appears in the 

Journal of Neuroscience.  The dissertation author was a primary researcher and co-

author of this work, and Dr. Jerold Chun supervised the research that forms the basis 

of this chapter.  Appendix A is reprinted here with full permission of all the authors, 

and of the journal, as per its published copyright transfer agreement. 
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APPENDIX B 

 

IDENTIFICATION OF NEURAL PROGRAMMED CELL DEATH THROUGH 
THE DETECTION OF DNA FRAGMENTATION IN SITU AND BY PCR 

 

Current Protocols in Neuroscience, Chapter 3: Unit 3.8 (2009). 
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A word about cell death during brain development  

 

The nervous system is shaped through a continuous sequence of formative 

events, among them a balance between cell proliferation and death (1, 2).  

Programmed cell death (PCD) is the physiological elimination of cells (3-5), apoptosis 

being the most common form, and characterized by DNA fragmentation, blebbing of 

the cell membrane, and chromatin condensation (6-8).  In the developing cerebral 

cortex, as neurons migrate and grow into their targets, they establish functional 

connections or die by apoptosis.  Signaling by neurotrophic factors from target cells is, 

at least in part, responsible for prevention of this cell death (9, 10). 

PCD also occurs at an earlier neurodevelopmental period during which 

dividing progenitor cells increase overall cell number through rapid division.  This  

death is termed proliferative cell death, and such dying cells can be detected by the 

methods described in this appendix (11).  During this neuroproliferative phase, an 

average of 50% of cells are dying at any given point within the developing cerebral 

cortex (12) and neuraxis (13).  Multiple independent studies using genetic deletion of 

pro-apoptotic (14-17) and pro-cell death proteins (18-21) have found prominent 

hyperplasia of embryonic brain cells during this proliferative period, consistent with at 

least partial rescue of proliferative cell death.  Furthermore, deletion of anti-cell death 

genes resulted in smaller brains or progenitor pools (22-24).  These studies support the 

concept that regressive events like proliferative cell death are essential for normal 

cortical brain development. 



106 
 

 
 

While the molecular determinants of proliferative cell death are currently being 

identified, recent studies in axon guidance molecules (reviewed in (25)) such as 

netrins (26-28), semaphorins (29), and ephrins (30) provide insight into their 

unanticipated influence in proliferative cell death.  Conversely, signaling molecules 

with influences on cell death or survival (31, 32) may equally function in neuronal 

axon guidance and connectivity.  These studies contribute to identification of a 

growing body molecular factors with pleiotropic and unifying functions in the proper 

formation of the cerebral cortex.     
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The text of Appendix B is, in full, a reprint of material as it appears in the 

Current Protocols of Neuroscience.  The dissertation author was the primary co-author 

of this work, and Dr. Jerold Chun supervised the research that forms the basis of this 

chapter.  Appendix B is reprinted here with full permission of all the authors, and of 

the journal, as per its published copyright transfer agreement. 
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