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ABSTRACT OF THE THESIS
Clustering Professional Basketball Players by Performance
by

Riki Patel
Master of Science in Statistics

University of California, Los Angeles, 2017
Professor Frederic R Paik Schoenberg, Chair

Basketball players are traditionally grouped into five distinct positions, but these designa-
tions are quickly becoming outdated. We attempt to reclassify players into new groups
based on personal performance in the 2016-2017 NBA regular season. Two dimensionality
reduction techniques, t-Distributed Stochastic Neighbor Embedding (t-SNE) and principal
component analysis (PCA), were employed to reduce 18 classic metrics down to two dimen-
sions for visualization. k-means clustering discovered four groups of players with similar
playing styles. Player representation in each of the four clusters is similar across the 30
NBA teams, but better teams have players located further away from cluster centroids on
the scatterplot. The results indicate that strong teams have players whose success cannot be
attributed to fundamentals alone, meaning these players have advanced or intangible factors

that supplement their performance.
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CHAPTER 1

Introduction

In basketball, players are grouped into five distinct positions: point guard (PG), shooting
guard (SG), small forward (SF), power forward (PF), and center (C).

Point Guard: Initiates offensive plays with great passing and dribbling skills
Shooting Guard: Positions on the wing with strong 3-point shooting ability
Small Forward: Versatile shooter who can drive to the basket

Power Forward: Strong inside presence; scores close and mid-range shots

Center: Scores near the basket with strong rebounding and blocking

It has been increasingly apparent, however, that modern National Basketball Associ-
ation (NBA) players adopt playstyles that do not quite fit into one of these five positions.
For example, many point guards and shooting guards have strong driving skills, and many

taller power forwards and centers have great long-range shooting ability.

Is it possible that a new player designation can be determined based on the actual
performance of modern basketball players? If such a designation is found, could it be used

to build a strong basketball team?

We attempt to answer these questions using player performance metrics for the 2016-
2017 NBA season. First, two dimensionality reduction techniques, t-Distributed Stochastic
Neighbor Embedding (t-SNE) and principal component analysis (PCA), will be employed to
visualize player performance in two dimensions. Next, k-means clustering will be employed
to find similarities among groups of players on the scatterplot. Finally, the 30 NBA teams

will be analyzed to see how their players are represented within this clustering scheme.



CHAPTER 2

Player Data

The dataset for this analysis comes from www.basketball-reference.com [1]. There are 486
players in the dataset and 18 metrics associated with each. All metrics represent per-100-
possessions statistics. In contrast to per-game statistics, per-100-possessions statistics tend
to better approximate player ability because some teams have a much faster offensive pace
than others. The data represents player performance in the regular 2016-2017 NBA season,
so each player has the same maximum number of games played. The variables are described

below:

1) Points Scored

2) Field Goals Made

3) Field Goals Attempted

4) Field Goal %

5) 2-Point Field Goals Made

6) 2-Point Field Goals Attempted
7) 2-Point Field Goal %

8) 3-Point Field Goals Made

9) 3-Point Field Goals Attempted
10) 3-Point Field Goal %

11) Free Throws Made

12) Free Throws Attempted



13) Free Throw %

14) Offensive Rebounds
15) Defensive Rebounds
16) Assists

17) Steals

18) Blocks

Variables that have been removed from the full dataset are turnovers, fouls, and total
rebounds. Turnovers and fouls are variables that do not reflect positive player performance,

and total rebounds are encapsulated by adding offensive and defensive rebounds together.

In addition, a player’s classic position (PG, SG, SF, PF, or C) and team membership
have been excluded from our data. Player position is a classification we are trying to redefine,
so we must exclude it from our dataset in order to minimize its influence on clustering. The

team each player belongs to is similarly excluded to prevent natural grouping of teammates.

Table 2.1 below shows average statistics for players in each of the five classic positions.

Position FG FGA FG% 3P 3PA 3P% 2P 2PA  2P%

PG 737 1774 041 210 6.08 033 527 11.66 045
SG 6.75 1680 039 243 710 033 432 970 043
SFE 6.87 1599 043 213 641 032 473 958 049
PF 733 16.55 0.45 1.52 477 027 581 11.77 049
C 777 15.06 053 050 144 013 726 13.62 0.54
FT FTA FT% ORB DRB AST STL BLK PTS
3.73 4.67 077 092 459 818 190 0.41 20.56
2.96 3.73 06 1.07r 538 396 141 046 18.90
3.08 399 072 160 626 330 163 077 1895
2.79 3.86 069 3.15 818 286 140 1.24 1897
3.57 531 065 467 981 279 140 215 19.61

Table 2.1: Average Performance of NBA Players in Classic Positions



CHAPTER 3

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a modern machine learning algo-
rithm used for dimensionality reduction. The algorithm is extremely useful for visualizing

high-dimensional data on a 2- or 3-dimensional plot.

In contrast to principal component analysis (PCA), a linear dimensionality reduction
technique, t-SNE is a non-linear dimensionality reduction technique. t-SNE is able to take
high-dimensional data points that lie on or near a non-linear manifold and preserve the local
structure when mapping onto a low-dimensional space, which is not possible with any linear
technique [2].

Panels A and B of Figure 3.1 display the famous “Swiss Roll” dataset, which is a
non-linear manifold in three dimensions [3]. Panel C shows the application of PCA to the
data and subsequent plotting in two dimensions. The data is essentially flattened down
without any regard to the underlying spiral manifold relationship among points because it
is a linear mapping. The blue and red data points are neighbors in two dimensions despite
being far apart on the original manifold. When the non-linear dimensionality reduction
method Isomap is used, however, we see in Panel D that the spiral manifold actually unrolls

itself, preserving local structure of the original data.
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Figure 3.1: Application of PCA (c) and Isomap (d) to Swiss Roll Data




The full t-SNE algorithm is described below:

Data: X =z, 25...7,
Cost Function Parameter: Perplexity Perp;
Optimization Parameters: Number of iterations 7', Learning rate 1, Momentum
a(t);
Result: Low-dimensional data representation Y ) =y, ys...yp
begin
Compute pairwise affinities p;; with perplexity Perp using Equation 1;
Set pi; = %§
Sample initial solution Y = y;, y5...5, from N (0, 10741);
for t=1to T do
Compute low-dimensional affinities ¢;; using Equation 2;
Compute gradient % using Equation 3;

Set YO = YO0 4 58 4 o()(Y 0 — y-2).

end

end

exp(—||z;—;||?) /207
Ek#exp(—\lxi—ml?)/?a?

Equation 1: pj; =

(1+|lyi—y;||») !
Y11+ yr—uil2) 1

Equation 2: ¢;; =

Equation 3: 2; = 4%5(pij — @ij) (Wi — y) (L + |y + y5])7)



CHAPTER 4
Application of t-SNE and PCA to Player Data

t-SNE has one cost function parameter, perplexity, and three optimization parameters: num-
ber of iterations, learning rate, and momentum. The optimal set of parameters varies for
each dataset, so we have chosen common values that perform well based on existing literature

in order to minimize bias [4]. The values are described in Table 4.1

Parameter Value

Perplexity (Perp) 30
Number of Iterations (7) 1000
Learning Rate (1) 200
Momentum («(t)) 0.5

Table 4.1: Selected Values of t-SNE Parameters

Figure 4.1 below displays the application of t-SNE to our 486 x 18 player data. The 486
players are now represented as coordinates on a 2-dimensional scatterplot. The legend shows
the classic basketball position (PG, SG, SF, PF, C) of each player to help us understand
whether natural grouping by these positions is occurring. Evidently, basketball power for-
wards and centers are highly grouped together while the other three positions are relatively
mixed among each other. Also, there appears to be some grouping of point guards near the

center of the scatterplot.

Figure 4.2 is a plot of the first two principal components after performing PCA on the
dataset. We are interested in seeing whether PCA, the standard for dimensionality reduction,

performs similarly to t-SNE. Evidently, PCA produces a 2-dimensional plot that has much
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more crowded points. There is still a nice grouping of NBA centers toward the top of the
main group, but everything else is quite fuzzy. The most important variables determined
by PCA are field goals made/attempted, 2-point field goals made/attempted, 3-point field

goals made/attempted, and offensive/defensive rebounds.
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Figure 4.1: Application of t-SNE to 2016-2017 NBA Player Data
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CHAPTER 5

k-Means Clustering and Characterization of Clusters

k-means clustering is one of the most widely used clustering techniques because of its inherent
simplicity. Given a set of observations, we are interested in finding a set of £ points, called
centroids, that minimize the mean-squared distance from each data point to its nearest
centroid [5]. The value of k represents how many clusters are present. We are interested in

seeing how many general clusters that NBA players fall into.

Three validation methods will be used to select the best number of clusters: within-

sum-of-squares (WSS) [6], the silhouette score [7], and the gap statistic [8].
WSS Y > ||z — ¢l
j=li=1

where k = number of clusters, n = number of points,and ¢ = center for cluster j

b(i) — afi)
max {a(i),b(i)}

Silhouette score : s(i) =

where a(7) is the average dissimilarity of 7 to other points in the same cluster and b(%) is

the lowest average dissimilarity of ¢ to other clusters

Gap Statistic : Gap, (k) = E;: {log(W})} — log(Wy)

where £ denotes expectation from a simulated reference distribution for sample size n and

Wy is the pooled within-cluster sum of squares
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Figure 5.1 suggests that all cluster validation measures select four clusters to be optimal
for our t-SNE scatterplot. The within-sum-of-squares metric is based on an “elbow”, or the
number of clusters where reduction in total WSS begins to level off. This is seen at two and
four clusters in the first panel of Figure 5.1, but the elbow at four clusters is slightly more
pronounced. Since all three measures lead to the same result, we can confidently say that

the t-SNE scatterplot can be broken into four groups.

In Figure 5.2, the WSS and silhouette score point to three clusters for our PCA scatter-
plot, while the gap statistic suggests a single cluster. Moving forward, we will disregard this
PCA scatter plot because, visually, the data is much more clumped together than our t-SNE

scatterplot, and our three measures could not reach a consensus on number of clusters.

Figure 5.3 below represents our final four-group clustering scheme based on the t-SNE

scatterplot.

KMEANS Clustering

cluster

Dimension.2
o

Dimension. 1

Figure 5.3: Four-Group Clustering Scheme of NBA Players Based on 2016-2017 Performance
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The next step is to characterize our clusters; what do players in each cluster excel at?

Table 5.1 shows the average performance of players in each of the four clusters.

Cluster FG FGA FG% 3P 3PA 3P% 2P 2PA 2P%
1 (Red) 6.07 11.82 052 030 096 0.13 5.78 10.86 0.53
2 (Green) 478 1286 038 1.85 598 0.29 293 687 043
3 (Blue) 7.50 1776 042 258 732 035 492 1044 047
4 (Purple) 10.45 2229 048 1.69 4.78 028 877 1750 0.51

FT FTA FT% ORB DRB AST STL BLK PTS
291 445 0.64 450 959 254 146 1.87 15.35
1.89 250 069 126 537 440 165 0.60 13.30
3.01 3.89 076 130 538 452 150 0.60 20.57
5.22 6.73 076 295 819 492 155 130 27.82

Table 5.1: Average Performance for Each Cluster

Cluster 1 (Red): The Paint Protectors, moderate scorers with great 2-point shots,

rebounds, and blocks but poor 3-point shooting ability

Cluster 2 (Green): The Supporters, relatively low scorers with good assists, stealing

ability, and decent 3-point shooting ability

Cluster 3 (Blue): The Shooters, moderate scorers with great free throw, 2-point, and

3-point shooting ability

Cluster 4 (Purple): The Insiders, high scorers who excel at free throws, 2-point shots,

rebounds, and blocks

13



CHAPTER 6

Determining the Relationship Between Clusters and

NBA Team Success

Our clustering scheme is only useful if it can be linked to the strength of basketball teams

as a whole.

Two scenarios will be investigated with regards to our clustering scheme. One scenario
is that better teams could have players with either balanced or imbalanced cluster represen-
tation. The second scenario is that better teams may have players who are closer or farther

from the centroid of each cluster.

Figures 6.1 and 6.2 show how players from the best basketball team (as measured by
win percentage) in the 2016-2017 NBA season, the Golden State Warriors, compare to the

worst team, the Brooklyn Nets.

Based on visual inspection, it appears that there are differences in cluster represen-
tation; Golden State has a high number of players in clusters 1 and 4 while Brooklyn has
strong representation in clusters 2 and 3. In addition, Golden State players seemed to be

more tightly grouped together and further away from cluster centroids.

14
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The first scenario, player representation in clusters, will be investigated by finding
what fraction of players reside in each cluster for all 30 NBA teams. Linear regression will
be applied to plots of team rank versus cluster fraction to see if there is a trend. For example,
we notice that Golden State has many players in cluster 1. It could be possible that better

teams tend to favor players in cluster 1, and this will be revealed through linear regression.

Figure 6.3 shows team rank versus fraction of players in each cluster. There is no
significance when applying linear regression to all four plots. This suggests that there is no
relationship between how good a team is and membership in a particular cluster. All clusters

are equally important, suggesting there is no one type of player that dominates the NBA.

05 = p=0.427

0a- p=0.924

=

Fraction in Cluster 1
=
.
. /
.
.
.
.
.
.
.
.
.
.
Fraction in Cluster 2
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)
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0 . p=0.839
04- . p=0_38

o
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=
.
. \
.
.
.
.
.
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Fraction in Cluster 4

=

Team Rank Team Rank

Figure 6.3: Team Rank Versus Membership in Each Cluster
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The second scenario, distance of each player to his nearest cluster centroid, will be
analyzed by finding the simple Euclidean distance from a player’s location on the scatterplot
to the closest centroid within his respective cluster. Each team will have a grand total from
summing all of the players’ distances. To account for teams with varying number of players,
12 players will be randomly selected from each team before calculating a total. This process

will be repeated 20 times and results will be averaged for consistency.

Figure 6.4 shows a remarkable result. Better teams have players further away from
their nearest centroids, while worse teams have more grouping toward the centroid. This

result is revealed through a p-value of 0.02545 for the slope in linear regression.

: p=0.02545

340 - .

300-

Total Distance to Centroids

260 -

Rank

Figure 6.4: Team Rank Versus Total Player Distance to Nearest Cluster Centroid

17



It is possible that poorer players are grouped toward the center of clusters while better
players are grouped toward the periphery of clusters. This would explain why better teams

have players with significantly more distance from centroids on our cluster scatterplot.

Table 6.1 displays 3 players from each cluster who are near the centroids.

Player Cluster  Pos Tm FG FGA F% 3P 3PA  3P% 2P 2PA  2P%

Gorgui Dieng 1 PF MIN 6.30 12.60 0.50 0.30 0.80 0.37 6.00 11.80 0.51
PF BOS 6.60 11.40 0.58 0.80 2.00 041 5.70 9.40 0.61
PF LAL 6.40 12.20 0.53 0.30 1.20 0.28 6.10 11.00 0.55

—_

Amir Johnson

—_

Larry Nance Jr.

Pat Connaughton 2  SG POR 5.80 11.30 0.51 2.70 5.20 0.52 3.10 6.10 0.51
Andre Iguodala 2 SF GSW 5.30 10.00 0.53 1.50 4.30  0.36 3.70 5.70  0.65
C.J. Watson 2 PG ORL 4.70 12.10 0.39 1.60 5.10 0.30 3.10 7.00 0.45
Marquese Chriss 3 PF PHO 7.80 17.40 0.45 2.00 6.20 0.32 5.80 11.20  0.52
Jeff Green 3 PF ORL 7.10 18.00 0.39 1.70 6.20  0.28 5.40 11.80  0.46
Malachi Richardson 3 SG SAC 720 1740 0.41 2.00 720 0.29 5.10 10.20  0.50
Harrison Barnes 4 PF DAL 11.10 23.80 0.47 1.40 4.10 0.35 9.70 19.60 0.49
Rudy Gay 4 SF SAC 10.00 22.10 0.46 2.10 5.60 0.37 7.90 1640 0.48
Nikola Jokic 4 C DEN 11.80 20.50 0.58 1.10 3.30 032 1080 17.10 0.63
FT FTA FT% ORB DRB AST STL BLK PTS
2.60 3.20 0.81 3.60 8.80 3.00 1.70 1.80 15.60
2.10 3.10 0.67 3.60 7.60 4.30 1.60 1.90 16.00
2.00 2.70 0.74 4.10 8.40 3.20 2.80 1.30 15.20
1.10 1.40 0.78 1.60 6.60 4.40 0.90 0.30 15.40
1.70 2,50 0.71 1.20 6.10 6.30 1.80 0.90 13.80
2.80 3.20 0.86 0.80 3.60 5.60 2.10 0.10 13.80
3.10 5.00 0.62 2.60 6.90 1.60  1.80 1.90  20.70
4.70 5.40 0.86 1.30 5.70 2.60 1.20 0.40  20.60
3.80 4.90 0.79 0.80 5.10 2.80 1.30 0.30 20.20
4.50 520 0.86 1.70 5.60 220 1.20 0.30 28.20
5.90 6.90 0.85 1.70 7.70 4.10 2.20 1.30 28.10
4.50 5.50 0.82 5.10 12.10 8.60 1.50 1.30  29.30

Table 6.1: Players Near the Centroid of Each Cluster

Arguably, these players who are grouped near the centroid of each cluster are great per-
formers. One of the players, Andre Iguodala, was instrumental in helping the Golden State
Warriors win the championship. All of these players are great scorers for their respective

positions and would not be considered weak performers in the 2016-2017 NBA season.

Thus, the implication of this final result is that better teams have players who exhibit
18



special characteristics that cannot be captured by the basic metrics used in this analysis.
There are countless advanced statistics that can be measured for a player, such as loose balls
recovered, second-point opportunity success, scoring based on distance from the basket, and
offensive/defensive rating, but our dataset included only 18 variables that represent the core

metrics of basketball so we can easily characterize classic NBA positions and our new clusters.

Many other scholars have attempted to reclassify NBA positions in a similar fashion.
Muthu Alagappan of Stanford University found that there are actually 13 groups of players
9], and Alex Cheng of Cornell University found 8 groups of players [10]. So, it is clear
that strong basketball teams do more than excel at the fundamentals; there are higher-level

metrics beyond those used in this thesis that contribute to player performance.
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CHAPTER 7

Conclusion

We have identified a novel clustering scheme based on player performance in the 2016-
2017 NBA regular season. 18 performance variables were reduced down to 2 using the
dimensionality reduction technique t-SNE, and four groups of similar players were identified

using k-means clustering.

All NBA teams have equal player representation in the four clusters, but better NBA
teams had players who resided further away from cluster centroids than worser NBA teams.
It was determined that strong and weak players are homogeneously distributed throughout
our clusters, so better players residing on the periphery of clusters must have additional

elements that account for their success beyond the 18 basic metrics used in this thesis.

Further exploration will seek to cluster players using as many variables as possible and
with a variety of methods. Exactly what these advanced metrics are that account for NBA
team success must be determined. Is it plausible that team chemistry, an unmeasurable
factor, largely influences whether or not a championship is won, but the science of sports is

certainly heading in a quantitative direction, so all available data must be analyzed.

20
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