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Abstract

The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of

reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-

fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated

with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-

lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature

mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the

system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in

extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration,

and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus

allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled

reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted,

protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage

map.The genome provides an important addition to the linkagemapand transcriptomic tools recentlydeveloped for this species that

together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the

foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology.

Key words: genome, fish, mangrove rivulus, hermaphrodite, isogenic.

Introduction

The mangrove rivulus fish, Kryptolebias marmoratus is re-

nowned for being one of two self-fertilizing hermaphroditic

vertebrates; the other is its putative sister species, Kryptolebias

hermaphroditus (formerly Kryptolebias ocellatus; [Costa

2011]). These species are distributed in close association

with red mangrove forests (Rhizophora mangle) along the

coastal regions of central and south Florida, the Caribbean

and the eastern coasts of Central and South America (Costa

2006). Mangrove rivulus exist primarily as hermaphrodites

with preferential internal self-fertilization (Harrington 1961),

but the species exhibits environmental sex determination, with
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primary males developing from embryos incubated at low

temperatures (18–20 �C; [Harrington 1967; Harrington and

Kallman 1968; Ellison et al. 2015]), and remains sexually labile

throughout adulthood (Harrington 1971, 1975; Turner et al.

2006; Garcia et al. 2016) (fig. 1). No functional females have

been identified in the wild or in captivity (Harrington 1961,

1975; Farmer and Orlando 2012) leading to their classification

as an androdioecious vertebrate; however, histological studies

have shown that some animals possess only ovarian tissue

when young (Cole and Noakes 1997), leading to their classi-

fication as an androdioecious vertebrate. Male abundance

varies among populations from 0% to 24% (Turner, Davis,

et al. 1992) and there is evidence for correspondingly variable

outcrossing rates in some locales (e.g., Central America;

Tatarenkov et al. 2015). While males have not been observed

in all populations, microsatellite data from wild-caught indi-

viduals successfully identified highly homozygous lineages as

well as individuals with heterozygosity expected under

random mating, suggesting that outcrossing between her-

maphrodites and males is common in some populations

(Taylor et al. 2001; Mackiewicz, Tatarenkov, Taylor, et al.

2006; Earley et al. 2012); hermaphrodites do not mate with

one another (Furness et al. 2015).

These features of mangrove rivulus biology have motivated

significant efforts into understanding the environmental

(Harrington 1967, 1968), and physiological/molecular (e.g.,

[Kanamori et al. 2006; Orlando et al. 2006; Park et al.

2013]) mechanisms underlying sex determination. The cou-

pling of these features with multiple genetically distinct line-

ages for many populations, evidence for strong population

genetic structure (Tatarenkov et al. 2007, 2015), and variation

among lineages and populations in the extent to which envi-

ronmental factors induce male development (Harrington

1968, 1975; Kristensen 1970; Ellison et al. 2015) position

mangrove rivulus as a strong model for understanding sex

ratio evolution and the evolutionary ecology of sexual plasticity

(e.g., [Earley et al. 2012; Ellison et al. 2015]).

Mangrove rivulus have been maintained in laboratory set-

tings for over 50 years (Harrington 1961). There are currently

over 400 distinct lineages being maintained in laboratories

throughout the globe (Earley R, personal communication),

and genetic divergence among lineages has been assessed

primarily via microsatellite typing and restriction-site associ-

ated DNA sequencing approaches (Mackiewicz, Tatarenkov,

Turner et al. 2006; Tatarenkov et al. 2010, 2012). These line-

ages are easily reared, reproduce readily via self-fertilization

when individually housed, and have a relatively short genera-

tion time (ca. 3–5 months). Wild-caught lineages that are

highly heterozygous can, if given the opportunity only to

self, produce offspring that are homozygous at all microsatel-

lite loci after approximately 5–10 generations (Mackiewicz,

Tatarenkov, Perry, et al. 2006), which effectively generates

many isogenic lineages with different allele combinations of

the progenitor. Completely homozygous genotypes occur

naturally as well (Kallman and Harrington 1964; Taylor et al.

2001; Mackiewicz, Tatarenkov, Taylor, et al. 2006;

Mackiewicz, Tatarenkov, Turner, et al. 2006; Tatarenkov

et al. 2007, 2012, 2015), which allows for the immediate

production of isogenic lineages if those animals exclusively

self-fertilize in the laboratory. The reproductive biology of

mangrove rivulus provides a unique opportunity to study,

with extraordinary resolution, the contribution of genes,

environment, and gene-by-environment interactions to the

developing phenotype and simplifies quantitative genetic

approaches to investigating phenotypic evolution.

Genetically identical animals can be maintained in different

environments to examine phenotypically plastic responses to

an arsenal of ecologically relevant contexts (e.g., salinity, tem-

perature: Lin and Dunson 1999; air exposure: Wells et al.

2015) and to construct lineage-specific reaction norms

FIG. 1.—Photograph of hermaphrodite (top) and secondary male (bottom). Secondary males lack ocellus and have a pinker coloration than hermaph-

rodites. Photo credits to D. Scott Taylor.
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(Earley et al. 2012). Furthermore, high levels of genetic diver-

sity within and among populations (Turner, Elder, et al. 1992;

Laughlin et al. 1995; Lubinski et al. 1995; Taylor 2001;

Mackiewicz, Tatarenkov, Taylor, et al. 2006; Mackiewicz,

Tatarenkov, Turner, et al. 2006; Tatarenkov et al. 2007,

2012, 2015) allow for the study of heritable phenotypic var-

iation among lineages, including the potential for heritable

variation in reaction norm characteristics (Earley et al. 2012).

Indeed, virtually all studies that have employed different

lineages demonstrate, under common garden conditions, sig-

nificant among-lineage variation for phenotypic characteris-

tics. These range from sensitivity of the sexual phenotype to

early-life or adult temperature regimes (Harrington 1967,

1968, 1971, 1975; Kristensen 1970; Turner et al. 2006;

Ellison et al. 2015), some aspects of endocrine function

(e.g., [Earley and Hsu 2008; Earley et al. 2013]), risk-taking

and exploratory behavior (Edenbrow and Croft 2011, 2012),

performance in aggressive contests (Hsu et al. 2008), the pro-

pensity to voluntarily jettison from the water (Turko et al.

2011), and life history traits (Garcia et al. 2015). These data

indicate that there is considerable heritable variation among

genotypes that persists for generations under laboratory

conditions.

Another key aspect of mangrove rivulus biology is that they

exhibit a number of remarkable adaptations to living in the

notoriously variable, sometimes noxious, upland mangrove

habitat. These environments are tidal, which can leave the

fish stranded on moist land or in stagnant crab burrows for

significant periods of time, and can expose the fish to salinities

ranging from 0 to 60 parts per thousand (ppt), low dissolved

oxygen levels, high hydrogen sulfide levels, and extreme tem-

peratures (Taylor 2012). Mangrove rivulus can live for ex-

tended periods of time on land (up to 2 months), often

occupying rotting logs and leaf litter (Taylor et al. 2008),

and will jettison from water in response to changes in their

aquatic environment, which they perceive via a number

of specialized mechanisms (e.g., neuroepithelial cells;

Robertson et al. 2015). These fish can navigate on land

using a variety of intricate movements (Pronko et al. 2013),

some that involve the fish effectively turning itself into a pro-

jectile to launch off of the substrate (Ashley-Ross et al. 2014).

Emersion onto land also can function in adult thermoregula-

tion (Gibson et al. 2015), and mangrove rivulus will deposit

fertilized eggs on land, which appears to reduce oxygen con-

sumption without detrimental consequences to the adult phe-

notype (Wells et al. 2015). When on land, mangrove rivulus

deploy a number of physiological changes that promote aerial

respiration, osmoregulation, and ionoregulation (Wright

2012; Turko et al. 2014) and they remodel their gills in ways

that reduce surface area for gas exchange (Wright 2012).

The coastal habitats of mangrove rivulus, which are being

developed at an extraordinary rate, are subject to significant

anthropogenic disturbance, particularly with respect to the

influx of environmental pollutants (e.g., endocrine disruptors)

from urban run-off and wastewater treatment plants.

Research into the effects of such pollutants has demonstrated

staggering, often sex-specific, effects on gene expression, en-

docrine function, reproduction, and survival (Lee et al. 2006,

2007; Rhee et al. 2008, 2010, 2011; Rhee, Lee, et al. 2009;

Rhee, Kang, et al. 2009; Farmer and Orlando 2012; Johnson

et al. 2016), leading to rivulus being promoted as an impor-

tant model system for ecotoxicology (Davis 1986; Lee et al.

2008). Most studies on rivulus’ physiological and locomotory

adaptations to extreme environments and on their responses

to environmental pollutants use one or very few lineages,

which limits our ability to understand the full scope of varia-

tion on which selection can act to drive genetic and pheno-

typic divergence among populations. Another limitation is

access to the genetic and genomic resources necessary to

provide a framework for our understanding of both the mech-

anisms underlying and the evolution of the whole-organism

phenotype.

A linkage map is now available (Kanamori et al. 2016) and

N-ethyl N-nitrosourea (ENU) mutagenesis screens have been

successful in this species (Moore et al. 2012; Sucar et al. 2016).

A transcriptome was recently made available, and shed light

on genes that are up- and downregulated during embryonic

diapause (the embryo is fully developed but hatching is de-

layed; [Mesak et al. 2015]). In addition, there has been some

success with producing crosses between phenotypically dis-

tinct rivulus lineages (Harrington 1971; Mackiewicz,

Tatarenkov, Perry, et al. 2006; Nakamura et al. 2008). One

cross between lineages with divergent growth patterns

showed that F2s have intermediate phenotypes (Nakamura

et al. 2008). Although outcrossing frequencies are low,

even under controlled laboratory conditions (e.g., 6–8%

Mackiewicz, Tatarenkov, Perry, et al. 2006; in vitro:

Nakamura et al. 2008), there is great promise for generating

crosses between phenotypically dissimilar lineages that could

produce an arsenal of recombinant inbred lines that would rival

the resources available for Arabidopsis thaliana, Caenorhabditis

elegans, and Drosophila melanogaster (Abzhanov et al. 2008;

Mackayetal.2009,2014;Lehner2013;Rankin2015).Also,our

growing understanding of embryogenesis (Mourabit et al.

2011; Mourabit and Kudoh 2012) will facilitate genetic manip-

ulation during early development.

Here, we present the annotated genome sequence for the

mangrove rivulus from a lab-reared population of the Reckley

Hill Lake (RHL) lineage from San Salvador, Bahamas. We an-

notated 27,328 protein-coding genes. We compared the

K. marmoratus reference genome to genomic data generated

for the sister species K. hermaphroditus (see fig. 2 for the

relationship of Kryptolebias to several model fish species).

The availability of a genome assembly for K. marmoratus pro-

vides the basis for future comparative genomic and pheno-

typic studies and, given increased availability of wild-caught

isogenic lineages and information about population genetic

structure, for highly controlled studies on environmental sex

Genome of the Self-Fertilizing Mangrove Rivulus Fish GBE
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determination, the evolution of phenotypic plasticity, and ad-

aptations to extreme environments.

Results

Genome Sequencing, Assembly, and Annotation

The K. marmoratus genome is composed of 24 haploid chro-

mosomes (Scheel 1972), and the genome size was estimated

to be 0.936 picograms, based on flow cytometry (Kiehart R,

Goddard K, and Turner B, unpublished data) which translates

to approximately 915 megabase pairs (Mb). The genome size

estimate was consistent with the k-mer based estimate from

the raw genomic reads, which estimates the genome size to

be 830 Mb. A total of 289,349,170 paired-end (2 � 101 bp)

reads were included in the short read assembly. Additionally,

mate-pair reads were trimmed and filtered for the adapter

using Ion Torrent PGM software for a total of 15,457,550

mate-pair reads postfiltering with an average read length of

87 bp (supplementary table S1, Supplementary Material

online). The reads were assembled and the resulting draft

genome consists of 40,758 scaffolds, for a total of 654 Mb

assembled with 3.77% ambiguous bases (table 1). The assem-

bled genome size is similar to the genome size estimated from

the sum of contigs from two other de novo genome assem-

blies (642 Mb [Mesak et al. 2015] and 633 Mb [Rhee and Lee

2014]). The longest scaffold is 1,759,740 bp and the N50

scaffold length is 111,539 bp. The de novo genome assembly

was combined with the recently published linkage map

(Kanamori et al. 2016). Of the 9,904 markers used to con-

struct the linkage map, 9,855 markers map uniquely (99.2%

of markers) to 4,871 scaffolds, 21 do not map to the genome

assembly, and 28 do not map uniquely (map to two positions).

More than 396.5 Mb of the assembled genome is placed in

the linkage map (supplementary table S2, Supplementary

Material online).

Evidence-guided annotation of the genome assembly re-

sulted in 27,328 protein-coding genes, 26 ribosomal RNAs,

536 transfer RNAs, and 814 other noncoding RNAs including

microRNAs and small nucleolar RNAs (supplementary tables

S3 and S4, Supplementary Material online). Of the protein-

coding genes, 84% share sequence similarity to 16,919 pro-

teins in the SWISS-PROT database (e-value 10� 10)

(Boeckmann et al. 2003). The mitochondrial genome is

absent from our assembly due to the high raw read coverage.

The gene regions for K. marmoratus in this assembly are

relatively well assembled. Of the highly conserved core eukary-

otic genes determined by CEGMA, 208 complete proteins and

an additional 28 partial proteins were identified in the genome

assembly, which, in total, correspond to a 95% of CEGMA

proteins (supplementary table S5, Supplementary Material

online). Moreover, 76.5% complete and 10.2% fragmented

single-copy vertebrate orthologs were identified using

Benchmarking Universal Single-Copy Orthologs (BUSCO) (sup-

plementary table S6, Supplementary Material online). This

completeness of BUSCO genes is similar to other widely

used and well-assembled fish genomes (supplementary table

S7, Supplementary Material online) To support the complete-

ness of the genome, one of the short-insert libraries used for

the genome assembly maps back to the reference genome

with a mapping rate of 98.7%. Moreover, 90.5% of tran-

scriptome reads from an unrelated study (Mesak et al.

2015), map to the reference genome. More than 30% of

the unmapped reads map to the mitochondrial genome se-

quence available on GenBank (NC_003290, Lee et al. 2001).

Comparison to Sister Species, K. hermaphroditus

To compare K. marmoratus to K. hermaphroditus, we se-

quenced a lab-reared K. hermaphroditus individual to approx-

imately 7-fold coverage and compared the resulting sequence

data to our genome assembly. For this analysis, we appended

the existing mitochondrial genome to our genome assembly.

The reads map to the reference assembly with a 97.8% map-

ping rate. Of sites that met our coverage threshold for com-

parison between the reference and K. hermaphroditus, 0.4%

(1,739,544/421,508,114) were homozygous for an alternate

allele and 0.1% (432,064/421,508,114) were heterozygous

for an alternate allele. All other alleles were identical between

K. marmoratus and K. hermaphroditus.

As K. marmoratus and K. hermaphroditus are sister species,

we were interested in characterizing loci that were highly dif-

ferentiated between the two species. We identified highly

differentiated genes and overrepresented gene ontology

(GO) terms for the comparison. We identified 23,598 genes

that had at least one site where the RHL individual was ho-

mozygous for one allele and the K. hermaphroditus individual

was homozygous for another allele. We ranked genes based

on the number of differences between K. marmoratus and

K. hermaphroditus and considered any genes that were in the

Table 1

Genome Assembly Statistics

Genome

Size (1n) 915 Mb

Karyotype 1n = 24

GC content 39%

Assembly

Size in scaffolds > 500bp 654 Mb

Number of scaffolds >500bp 40,758

Number of scaffolds > 10kb 7,929

Base pairs placed in linkage map 396.7 Mb

Number of scaffolds placed in linkage map 4871

N50 scaffold 111.5 kb

N50 contig 16.1 kb

Annotation

Coding loci 27,328

Noncoding loci 1,376
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top 1% of distribution as highly differentiated (241 genes). Of

the 241 highly differentiated genes, 218 had a significant hit

in the BLAST search and, of those, 204 had a human homolog

and were associated with at least one biological process GO

(see Materials and Methods) term. Our resulting list included

1,091 GO terms. We tested for enrichment of biological pro-

cess, molecular function, and cellular component GO terms in

our highly differentiated genes using Webgestalt (Wang et al.

2013). The most highly enriched terms in biological process

were nervous system development (GO:0007399), multicellu-

lar organismal process (GO:0032501), and single-multicellular

organism process (GO:0044707). For molecular function,

transmembrane signaling receptor activity (GO:0004888), re-

ceptor activity (GO:0004872), and signaling receptor activity

(GO:0038023), were the most significant terms. Finally, terms

associated with cellular component that were most enriched

were membrane related (GO:0031224, GO:0016021,

GO:0044425).

Sex Determination Loci

Due to the environmental sex determination (hermaphrodite

vs. primary male) and sexual plasticity (hermaphrodite to sec-

ondary male transition) (fig. 1), we focused on annotating and

comparing known sex determination loci from other systems.

We identified major known sex-determining loci and report

their gene names along with the scaffold position and linkage

group, when applicable (supplementary table S8,

Supplementary Material online). We identified two sox9

genes, whose homologs have been identified in zebrafish

and appear to have arisen during the teleost whole-genome

duplication event (Chiang et al. 2001). None of the sex deter-

mining loci was in the set of highly differentiated loci, which

was expected because both species are hermaphrodites. We

analyzed the sex determining genes for elevated rates of

nonsynonymous to synonymous substitutions (dN/dS) using

both a sites model (Yang 2007) and a branch-sites model

(Yang and dos Reis 2011) with the branch leading to K. mar-

moratus and K. hermaphroditus as the foreground branch.

None of the loci had significant evidence for positive selection

using either of these approaches with P< 0.01. Some of

genes that have been implicated in sex determination have

complex roles in development and we speculate that gene

expression changes rather than structural changes may be

driving differences in these species.

Comparison to Other Fish Species

We compared our protein-coding gene annotation set with

annotated proteins from zebrafish (Danio rerio) (Howe et al.

2013), stickleback (Gasterosteus aculeatus) (Jones et al. 2012),

medaka (Oryzias latipes) (Kasahara et al. 2007), fugu (Takifugu

rubripes) (Aparicio et al. 2002), Amazon molly (Poecilia

formosa) (W. Warren and The Genome Institute,

Washington University School of Medicine, GenBank

Assembly ID GCA_000485575.1), mummichog (Fundulus

heteroclitus) (GenBank Assembly ID GCA_000826765.1),

and turquoise killifish (Nothobranchius furzeri) (Dario et al.

2015) (fig. 2). In a comparison among the eight species,

4,827 genes were unique to mangrove rivulus. It is important

to note that defining unique genes is a difficult endeavor,

especially in teleost fish, and these are preliminary results. Of

the 4,827 genes, 2,465 of them (~51%) have a BLAST hit in

the SwissProt database and human orthologs exist for 2,213

of them (~90%) and can be used for GO enrichment analyses.

The enriched GO terms include many terms relating to the

nervous system and ion channels.

FIG. 2.—Cladogram to represent the relationship among K. marmor-

atus, K. hermaphroditus and several well-known fish species. The origin of

hermaphroditism is noted on the cladogram.
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Materials and Methods

Sample Collection and DNA/RNA Extraction

The K. marmoratus genome was sequenced and assembled

using DNA from a lineage RHL derived from San Salvador,

Bahamas; the progenitor was caught in the field by D. Scott

Taylor in 1997 and the animals used here were 10–11 gener-

ations removed from the field. DNA was extracted from

muscle tissue from multiple K. marmoratus RHL specimens

from the Earley laboratory. Genetic homogeneity of the RHL

lineage was verified by genotyping the specimens at 32 mi-

crosatellite loci developed for K. marmoratus (Mackiewicz,

Tatarenkov, Perry, et al. 2006). For each locus, one polymerase

chain reaction (PCR) primer in each pair was labeled with a

fluorescent dye (HEX, 6-FAM, or NED) and DNA was amplified

in several multiplex reactions, as described previously

(Tatarenkov et al. 2012). Multiplexed PCR products were di-

luted 10–20 fold and 1 ml of the diluted product was mixed

with 9.6 ml of deionized formamide and 0.4 ml size standard

GS500 (ROX labeled; Applied Biosystems), denatured for 4

min at 95 �C, and electrophoresed on an GA 3100 using

50 cm capillaries filled with Pop4 (Applied Biosystems).

Alleles were scored using Genemapper 4.0 (Applied

Biosystems). All specimens were fully homozygous, genetically

identical, and matched microsatellite profile of the RHL lineage

described in Tatarenkov et al. (2010). DNA was extracted

using the Gentra Puregene Tissue Kit (Qiagen) according to

the manufacturer’s instructions. Purified DNA was sheared

using a Covaris E220 (Woburn, MA) (duty cycle 10, intensity

5, cycles/burst 200, time 180 s) to approximately 400 bp.

Sheared genomic DNA was gel purified and used as input

for sequencing library preparation. Sheared genomic DNA

was end repaired with NEBNext end-repair kit (E6050L), and

A-tailing was accomplished using Taq polymerase. Ultrapure

ligase (L603-HC-L) from Enzymatics and iProof (BioRad) were

used for ligation of the Illumina paired-end adapters (PE-102-

1003) and amplification, respectively. Agencourt Ampure XP

beads were used for clean-up at each step. Three libraries of

the RHL lineage were sequenced using Illumina HiSeq2000

sequencing technology with 2 � 101 bp paired-end reads

at the Stanford Center for Genomics and Personalized

Medicine (Raw reads have been deposited under NCBI

BioProject PRJNA290522). Reads were filtered and trimmed

using Trim Galore! v.0.2.2 (Krueger 2014), retaining reads

with average Phred quality greater than 20 and at least

50 bp in length. An additional long mate-pair library was gen-

erated in collaboration with Life Technologies (now Thermo

Fisher Scientific) for the IonTorrent PGM following manufac-

turer’s protocols for mate-pair library construction with a

target insert size of over 15 kb. Size selection for the appro-

priate insert size was performed using pulse field gel

electrophoresis.

RNA was isolated from liver, gonad, and embryo tissue for

a lab-reared specimen of RHL. RNA was isolated by pulverizing

50–100 mg of tissue frozen in liquid nitrogen with a Covaris

Cryoprep at setting 3. RNA was then extracted with Qiagen’s

RNeasy Plus mini kit. Total RNA was enriched for non-rRNA

using either Ribo-zero (Epicenter) for liver and gonad

NEBNext� Poly(A) mRNA Magnetic Isolation module.

Enriched RNA was fragmented to an average size of 400 nt

using NEB mRNA Fragmentation Module by incubation at

94 �C for 4 min. Fragmented enriched RNA was purified

using Agencourt RNAClean XP beads. First-strand and

second-stranded cDNA was synthesized and the reaction

was purified with Agencourt Ampure XP beads. Double-

stranded cDNA was used as input for Illumina sequencing

library preparation using the NEBNext end-repair kit, A-tailing

with Taq polymerase, ligation with barcoded adapters, and

amplification with Kapa Library Amplification Readymix or as

part of the NEBNext� Ultra Directional RNA Library Prep Kit.

DNA was extracted from liver tissue from a lab-reared spe-

cimen of K. hermaphroditus (strain GITMO), also from the

Earley laboratory. A small-insert Illumina sequencing library

was generated as described above for RHL and sequenced

on an Illumina HiSeq2000 with 2 � 101 bp paired-end reads

at the Stanford Center for Genomics and Personalized

Medicine (Raw reads have been deposited under NCBI

BioProject PRJNA290522).

Genome Size Estimation

Genome size was estimated from the raw reads using the

k-mer frequency distribution for k = 17 and k = 23, as in

Li et al. (2010). K-mer frequencies were counted using

JELLYFISH (Marcais and Kingsford 2011).

Assembly Strategy

De novo genome assembly was accomplished using a multi-

step process. Assembly of the genome using the short read

Illumina data included error correction, preprocessing, and

assembly with the String Graph Assembler (SGA) version

0.10.1 (Simpson and Durbin 2012). Scaffolding with the

mate pair data was accomplished using SSPACE Basic v2.0

(Boetzer et al. 2011). The final draft assembly contains scaf-

folds at least 500 bp. The final assembly is deposited under

NCBI BioProject PRJNA290522. Genome assembly statistics

were computed using a Perl script, provided by

Assemblathon 2 (Bradnam et al. 2013), and CEGMA v.2.5

(Parra et al. 2007). CEGMA required dependencies included

geneid v.1.4.4 (Blanco et al. 2002), genewise v.2.4.1 (Birney

et al. 2004), and HMMER 3.1b2 (Mistry et al. 2013). CEGMA

was used to determine the percent of a defined core set of

248 highly conserved eukaryotic genes is present in the assem-

bly. BUSCO (version 1.1b1) was also used to assess assembly

completeness, using the lineage vertebrata. BUSCO depen-

dencies included HMMER 3.1b2 (Mistry et al. 2013) and

augustus.2.5.5 (Stanke et al. 2008).
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To perform higher-order scaffolding, the linkage map from

(Kanamori et al. 2016) was used. Markers were mapped in

fasta format to the genome assembly using Burrows–Wheeler

Aligner (BWA; Li and Durbin 2009). Information regarding the

scaffold and the mapped markers was parsed from alignment

file. Markers with multiple mappings were discarded.

Information about orientation is not available for the linkage

map, therefore the mapping of scaffolds to linkage groups is

included in supplementary table S2, Supplementary Material

online.

Annotation Strategy

The MAKER2 annotation pipeline (Holt and Yandell 2011) was

utilized for gene annotation. Homo sapiens UniProt (UniProt

Consortium 2012) and Austrofundulus limnaeus Annotation

Release 100 (GenBank GCF_001266775.1) protein databases

were used for protein homology data. RepeatMasker was

used to mask low complexity regions in the genome

assembly (Smit et al. 2013–2015; supplementary table S9,

Supplementary Material online). Filtered RNA-sequencing

data was mapped to the genome using Bowtie (Langmead

et al. 2009), assembled into transcriptomes using Cufflinks

(Roberts et al. 2011) and used as EST evidence in MAKER2.

Ab initio gene prediction was accomplished using two rounds

of training with SNAP (Korf 2004). Annotation of the pre-

dicted protein coding genes was accomplished with homol-

ogy searching using BLASTP (Altschul et al. 1990) with a

threshold cutoff e-value of 10� 10 against the Swiss-Prot data-

base (Boeckmann et al. 2003). Ribosomal RNAs and other

noncoding RNAs were annotated using Rfam (Nawrocki

et al. 2015); tRNAs were additional annotated using

tRNAscan-SE 1.3.1 (options -H and -y) (Lowe and Eddy

1997) and Aragorn 1.2.34 (option -w -t -i116 -l -d) (Laslett

and Canback 2004).

Comparison to Other Data Sets

Transcriptome reads from Mesak et al (2015) were down-

loaded from the Short Read Archive (SRR2001227) and

mapped to the reference genome using BWA (Li and Durbin

2009). Raw reads generated in this study, from RHL and

K. hermaphroditus, were separately mapped to the reference

genome using BWA (Li and Durbin 2009). File manipulation

and summary statistics were generated using SAMtools (Li

et al. 2009) and BamTools (Barnett et al. 2011). The mitochon-

drial reference sequence (Genbank, NC_003290) was in-

cluded for the K. hermaphroditus mapping. Genotypes were

called separately for each individual using the

UnifiedGenotyper tool in the Genome Analysis Toolkit

(GATK) (v. 3.5) with the EMIT_ALL_CONFIDENT_SITES

option. (McKenna et al. 2010) Individual vcf files were then

filtered following the GATK recommended best practices

(DePristo et al. 2011; Van der Auwera et al. 2013). Vcfs

were filtered using vcftools (v. 0.1.12b) such that only sites

with at least 6� coverage (–minDP 6) were kept for each

individual (Danecek et al. 2011). The individual vcf files were

combined using the CombineVariants tool in GATK (McKenna

et al. 2010) and only sites with genotypes in both individuals

were retained with –max-missing 1.0 in vcftools (Danecek

et al. 2011). Sites where the two individuals were homozy-

gous for different alleles were pulled out for further analysis.

We identified which of these sites were located in genes using

the intersectbed utility in BEDtools (v. 2.17.0) (Quinlan and

Hall 2010).

Sex Determination Loci

To identify genes implicated in sex determination processes,

we queried our annotation set for the orthologous loci and

report additional details about linkage group and relative po-

sition across contigs.

GO Enrichment

To characterize putatively differentiated genes, we used

bioDBnet (Mudunuri et al. 2009) to identify biological process

GO terms that were associated with the highly differentiated

genes. We also tested for enrichment of biological process,

molecular function, and cellular component GO terms in our

highly differentiated genes. BioDBnet (Mudunuri et al. 2009)

was used to convert gene names into human Entrez IDs. We

used Webgestalt (Wang et al. 2013) to test for enrichment of

GO terms compared to a reference set composed of human

orthologs of the annotated genes in the K. marmoratus

genome. Significantly overrepresented GO terms were identi-

fied at a false discovery rate of 0.01 (Benjamini and Hochberg

1995). At least two genes had to be associated with a GO

term for it to be considered enriched.

To determine sets of orthologous genes, we compared

protein data sets among closely related fish species. We in-

cluded protein data from D. rerio (43,153), G. aculeatus

(27,576), O. latipes (24,674), T. rubripes (47,841), P. formosa

(30,898), F. heteroclitus (33,705), and N. furzeri (30,028) in

our comparative analysis. Clusters of orthologous genes were

identified using OrthoFinder (Emms and Kelly 2015) with MCL

(Enright et al. 2002).

Supplementary Material

Supplementary tables S1–S9 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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