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The Role of Physical Properties in Understanding
the Functionality of Objects

Daniel S. Jordan
Department of Psychology
Stanford University

Abstract

We investigate the role of physical properties in
determining how people select objects for use
in physical activities. We propose a geometric
model in which dimensions represent properties
relevant to the goals of the activity and objects
occur as points in this property space. An ob-
ject’s proximity to an ideal value on each prop-
erty is additively combined across properties to
produce a measure of the usefulness of the object
for that activity. We report an experiment that
shows that this ideal-point model successfully de-
scribes how people select an object for use in a
physical activity by using physical properties as
an intermediary factor. This model is derived
from models of preference choice in which an in-
dividual selects objects that he or she prefers.

Properties and Functionality

If you want to pound in a nail, but have no ham-
mer, would you rather use a pillow, a metal pa-
perweight, or a table? Although we typically
think of using an object for its intended purpose,
most objects can be used in different ways, de-
pending upon the demands of the activity. The
classic studies of functional fixedness (Duncker,
1945) show that people can decide to use objects
for unusual purposes, but that the intended (or
most frequent or recent) use of an object strongly
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interferes with the person’s ability to recognize
unusual uses.

When people list attributes of objects, they fre-
quently include the functional uses of an ob-
ject among its characteristics (e.g., “makes mu-
sic” for a piano; Rosch & Mervis, 1975; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976;
B. Tversky & Hemenway, 1984). Other listed
attributes include physical properties (e.g., “is
made of wood”) and parts (e.g., “has keys”).
Richards, Goldfarb, Richards & Hassen (1989)
found that affecting an object’s ability to perform
its main function strongly affected the classifica-
tion of that object. For example, few people still
called an object “that is just like a shower cap but
had big holes in it” a shower cap. Thus, how peo-
ple categorize an object depends upon how phys-
ical properties relate to the object’s functional
use. In this paper we present and empirically val-
idate a mathematical model that describes how
physical properties influence how people select
objects for use in physical activities.

A Strategy for Object Choice

One strategy for deciding what to use to pound
a nail is to first prioritize the physical properties
required of any object to be used in the task. For
example, you might identify the physical proper-
ties “hard” and “graspable” as being important
aspects of the object. Next, order the set of avail-
able objects relative to an ideal value for each of
these physical properties for the activity. Finally,
combine this ordering information to select an ob-
ject for use. Thus, in the absence of a hammer,
you might prefer a metal paperweight over a pil-
low (which is not hard) or a table (which is not



graspable).

To make our hypothesis more specific, we iden-
tify the following steps for selecting an object for
use in an activity. First, physical properties that
the goals of the activity require be true of the ob-
Ject are identified and weighted according to their
importance for achieving the goals. Second, the
object is rated on each physical property dimen-
sion. Independently, an optimal value, or “ideal
point”, is selected on each property dimension.
The ideal point specifies the value that any ob-
ject should have on the dimension to best achieve
the goals of the activity. Finally, this information
18 combined to produce the "usefulness” of the
object in the given activity.

The weightings of properties according to the
goals of the activity are independent of specific
objects, and hence can be used for any set of ob-
jects. Also, the ratings of an object on each of
the property dimensions are independent of any
activity, and hence can be used for any activity.
However, because the placement of an ideal point
on a property dimension is dependent on the ac-
tivity, object ratings relative to the ideal point
are dependent on the activity.

A Preference Choice Model

This process of determining the usefulness of ob-
jects in a physical activity is similar to that de-
scribed by models of preferential choice in which
an individual selects items that he or she prefers
based on relevant feature dimensions. Compar-
ing our model to the preference choice models, we
replace the agent that does the selecting, i.e., the
individual, with the physical activity. Thus, the
physical activity "selects” the object that best
satisfies its goals (i.e., that it " prefers”) based on
relevant physical properties. To emphasize the
difference between the two scenarios, in a prefer-
ential choice situation, preferences are assumed
to vary across individuals as well as across con-
texts, whereas in selecting an object in a physi-
cal activity, preferences are assumed to only vary
across activity contexts. In particular, it is as-
sumed that for each activity the usefulness of
an object is objectively determined by the con-
straints of the physical universe. Differences be-
tween individuals in their assessment of an ob-
jects usefulness could arise from individual expe-
rience with the objects or in the activities.
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Figure 1: Illustration of the ideal-point model in
one dimension. Objects “diamond” through “pil-
low” are ordered on the dimension of “hardness.”
Y and Z are ideal points for different activities.
Usefulness increases upward.
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The notion of an ideal point, relative to which
preferences for items are determined, was first
studied by Coombs (1950, 1964) with his uni-
dimensional unfolding model. Coombs proposed
that preference functions are single-peaked and
symmetric with respect to items that lie on
some ordered dimension. We follow Coombs’ ap-
proach, and show in figure 1 an example of a func-
tion that specifies the usefulness of an object in
an activity. Several objects are ordered along the
single dimension of “hardness.” The usefulness
of an object is displayed in the dependent axis
(increasing upward) and is assumed to peak, for
a given activity, at some ideal point on the item
dimension, such as Y or Z. For the activity with
ideal point Y the usefulness ordering of objects
is: hammer, diamond, baseball, pillow; whereas
for the activity with ideal point Z the usefulness
ordering of objects is: baseball, pillow, hammer,
diamond.

The single peaked preference function of Coombs
was extended to the multi-dimensional case by
Bennett and Hay (1960) and Carroll (1972, 1980).
The current model for object functionality follows
the computational analysis presented by Carroll.
As in Carroll’s model, the current model repre-
sents the selection or choice process in a geomet-
ric model, where the property values of objects
occur as points in a multi-dimensional space with
physical properties as dimensions. We assume
the standard Euclidean distance metric in this



multi-dimensional property space. Then the dis-
tance d(7, j) between a point z and an ideal point
y in this space is given by:

r

(i, 5) = 3 w(i, k) x (y(i, k) = z(3, k))? (1)

k

where d(i, j) is the distance of object j from the
ideal point for activity %, y(i, k) is the coordinate
of ideal point y on dimension k for activity i,
z(j, k) is the coordinate of item j on dimension
k, w(i, k) is the importance that dimension k has
in activity 1, and r is the number of dimensions.
We further assume that the usefulness of object 1
in activity j is proportional to the square of this
distance, d(i, j), and is linear. Then:

u(i, §) = a(i) x d*(i, ) + b(i) (2)
where u(i, j) is the usefulness rating of object j in
activity 7, and a(i) and b(i) are constants specific
to activity 7. The assumptions of a Euclidean
metric in the property space and a linear rela-
tion between u(i, 7) and d?(7, j) implies that the
usefulness function as shown in Figure 1 will be
parabolic and centered at the ideal point y.

Equation 2 provides the computational form of
a quantitative ideal-point model for determining
the usefulness of objects in different activities.
The ideal points y(i, k), the weights w(i, k), and
the constants a(7) and b() are the unknown pa-
rameters to be estimated from the data.

An Empirical Test

We have tested the ideal-point model by collect-
ing data for the right hand side of Eq. 2 to cal-
culate a predicted value for u(i, 7). We also col-
lected data for the left hand side of Eq. 2 to
provide observed values for u(z, j) to which pre-
dicted values were compared and used to evalu-
ate the fit of the model. To reduce the number
of unknown parameters in the model, we assume
the weights w(i, k) as given; therefore, the total
number of unknown parameters is r + 2. Thus
we obtained data for three different rating tasks:
rating objects on properties (z(j, k)), rating ob-
jects in an activity context (u(%, 7)), and rating
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Objects: boomerang, bowl, cap, diamond, hammer,
helmet, knife, needle, pillow, plate, rolling pin,
screwdriver, sofa, table, tennis ball.

Properties: hardness/softness, flexibility, thick-
ness/thinness, smoothness/roughness, fragility,
size, flatness/curvedness, graspability, weight.

Activities: unscrew a 1/2-inch screw, anchor a
helium-filled balloon that is attached to a string,
flatten dough for baking cookies, slice a carrot,
poke a hole in the side of a soda can, protect your
head from harmful blows, pound a 1l-inch nail into
a wooden wall, sit down comfortably on an object,
pry open a can of house paint.

Table 1: The objects, properties, and activities
used in the experiment.

the importance of properties in an activity con-
text (w(i, k)).

Method

Fifteen commonly known objects were chosen so
as to provide a variety of similar and dissimilar
object pairs, as well as to have physical prop-
erties that are highly associated with the ob-
ject’s main function. In addition, 10 physical
activities were chosen. All objects and activi-
ties were represented by line drawings. Finally,
nine properties were obtained in a preliminary
session where eight subjects were instructed to
list those physical properties that the activity
suggested should be true of objects. Table 1
gives the objects, properties, and activities. Us-
ing these stimuli, 29 subjects gave three different
types of ratings: (1) object-on-property ratings,
in which subjects rated objects on the given prop-
erties, (2) property-on-activity ratings, in which
subjects rated how much the property mattered
for an object that was to be used for the given ac-
tivity, and (3) object-on-activity ratings, in which
subjects rated the usefulness of objects in the
different activities. Objects (other than these
stimuli objects) were given as endpoint references
for the object-on-property rating task in order to
make the scale endpoints more determinate.

Results

To test that subjects sufficiently discriminated in
their ratings of the selected items (objects, prop-
erties) on their respective scales (property, activ-
ity), we calculated all pairwise T-tests for ratings



between items on a scale. The percentage of item
pairs whose ratings on a scale were significantly
different at the o = 0.05 level averaged 59%
across properties for object-on-property ratings,
57% across activities for object-on-activity rat-
ings, and 43% across activities for property-on-
activity ratings. The averages above 50% for the
object-on-property and object-on-activity ratings
were taken to imply that subjects sufficiently dis-
criminated between items on these scales, and
that the data could be used in the model. (The
only exception was the object-on-activity ratings
for the activity “to protect your hand while hold-
ing a hot pan”, which was eliminated from fur-
ther analyses due to a small percentage of sig-
nificant T-tests.) The below-50% average for the
property-on-activity scales indicates that, at least
in this rating task, properties do not vary much
in their relative importance in a given activity,
or equivalently that many property weights are
about equal. For this reason we report results in
which the w(i, k) property weights in Eq. 2 are
assumed to be equal.

We fitted the ideal point model given in Eq. 2 to
the data for each of the activities. Observed data
were used for the known parameters in the model,
the u(i,j) and z(i,k). Averaged values (over
the 29 subjects) were used for these parameters.
The w(1, k) or property-on-activity ratings were
set equal to 1 (without loss of generality). We
used an iterative weighted non-linear regression
method to estimate the unknown parameters, the
y(i, k) or ideal points, and the constants a(z) and
b(i). Although Carroll (1972, 1980) showed that
Eq. 2 reduces to a standard linear regression
equation from which the unknown parameters
(the y(i, k), a(i) and (7)) can be analytically de-
termined from an exact least-squares solution, we
could not use this approach because we wanted to
restrict the ideal point estimates to the range of
the object-on-property (z(i, k)) scales. Also, the
reduced linear regression equation is too sensitive
to collinearities between the property dimensions
that do not exist in the original non-linear re-
gression equation (Eq. 2). The non-linear re-
gression procedure minimized the weighted sum
of squared errors between the predicted and av-
erage observed u(z, j) values with each error term
in this sum divided by the variance (across sub-
Jjects) of the observed wu(i,j) value. We used a
chi-square test to determine the goodness-of-fit
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of the model to the data. The chi-square term
was equal to the sum, over objects, of squared
Z-scores, where Z-scores were calculated by di-
viding the difference between the predicted and
averaged observed u(z, j) values by the standard
error of the mean of the observed u(z, j) values.

We performed this analysis for each of the nine
activities using from one to all nine properties
in the ideal point model (i.e., in Eq. 2 the in-
dex r ranged from 1 to 9). We used the average
observed property-on-activity ratings (w(i, k)) to
determine the order in which properties were
added to the model for a given activity. Prop-
erties rated as more important for that activity
were added to the model first. (Other meth-
ods may also be used to determine an order-
ing.) For each activity, Table 2 gives the esti-
mated ideal point values for the minimum num-
ber of properties needed to achieve chi-square
significance using the ideal point model in Eq.
2. For example, for the activity “to unscrew
a screw,” six properties were needed before the
model achieved significance with the data. The
average minimum number of properties needed
to achieve significance was 6.22, which is greater
than 1 (¢(8) = 6.56,p < .01) and less than 9
(t(8) = —3.48,p < .01).

Discussion

In all activities the ideal-point model fit the data,
and in general more than one physical property
was needed to determine an object’s usefulness.
In addition, the set of properties needed is de-
termined by the context of the activity. For ex-
ample, only one property, weight, is important
for determining how useful an object is for an-
choring a balloon; however, this property is not
important for determining how useful an object is
for unscrewing a screw, although six other prop-
erties are important.

The ideal point values given in Table 2 vary
widely across activities, as expected, and are in-
tuitively reasonable.! For example, the ideal
point values for the property “thickness” imply
that a thick object is most useful for protecting
your head from harmful blows, but that a thin

'Only ideal point values for the property “hard-
ness” appear to be counter-intuitive, a result for
which we currently do not have a good explanation.



Minimum Flatmess | Frogitity | Grasp- | Hardmess | Weight Rigidicy Size Smooth- Thick-
Activity [’;I_““‘b‘,’ of abily - "
1mensions 1 caua's light police | buman | itchen | wine auto- | nslifle | bedroom
v ag} ball bulb plstol hair stove glass moblle dresser
Anchor 8 1(3.234) 23
beiium bal-
looa
Flattea cookle 7 (6.928) 24 5.8 1.0 25 1.2 1.0 9.0
dough
Protect your 8 (6.170) 6.2 6.0 7.1 9.0 9.0 6.7 33 1.2
head from
blows
Pound a nall 9 (7.047) 62 7.5 46 1.6 3.4 1.0 9.0 3.7 6.3
into a wall
Pryopena 7(7.411) 14 9.0 1.7 1.9 1.1 39 6.8
paint can
Poke a bole ln 5(7.557) 2.17 4.8 8.3 9.0 1.9
& soda can
Unscrew » 6(11.119) 75 8.9 25 1.7 1.4 6.9
screw
She 5(4.157) 597 7.67 45" 9.0" 567
comfortably
Slice a carrot 8 (9.940)3 9.0 9.0 1.5 20 1.2 1.5 9.0 7.4
Ironing tanker rain diamond maple bow shirt glass razor
"':;" anchor barrel feaf (ribbon) button bottle pon

Table 2: Ideal points occur on the rating scale from 1 to 9 shown at the right. For each property, the
objects used as scale endpoints are shown at the top (for “1”) and bottom (for “9”) of each column.

a. For all reported chi-squares, the null hypothesis that the predicted and observed u(i, j) values are
equal could not be rejected at the a = .05 level (i.e., p > .05), except for the last item, marked by “a”,

for which p > .01.

~ Values indicated by tilde (~) are anti-ideal points (see Carroll, 1980), i.e., values that are the least
useful rather than the most useful. Comparing to Figure 1, the usefulness curve for an anti-ideal point is
inverted and concave upward. Hence objects become more useful the farther they are from an anti-ideal

point in either direction along the dimension.
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object is most useful for prying the lid off a paint
can. Our ideal point values suggest design strate-
gies for “ideal objects” as well as an account of
the affordance characteristics of objects in par-
ticular activities (Gibson, 1977; Norman, 1988).
For example, Table 2 suggests that the ideal ob-
ject for protecting your head from harmful blows
should be light but rigid. In fact, manufacturers
of helmets are constantly searching for new ma-
terials to satisfy these constraints; the problem
being, of course, that lighter materials tend to be

flexible.

This phenomenon can also be viewed from the
standpoint of ad hoc categories (Barsalou, 1983).
Selecting objects for an activity such as “to
pound a nail” can be viewed as rating objects
in the ad hoc category “things to use to pound
a nail.” From this standpoint, our research de-
scribes how a set of objects leads to a particular
graded structure for particular activities. Also,
this work can be viewed as a study of the effect
of activtyi context on properties and concept def-
inition. Previous results have shown that context
affects the salience of properties (Barsalou, 1982;
A. Tversky, 1977) as well as concept definition
(Roth & Shoben, 1983).

In summary, the ideal-point model used to de-
scribe preferential choice data for individuals was
successful in describing how people use physical
properties to determine the usefulness of objects
in different activities. Properties relevant to the
goals of the activity are identified and an ideal
value for each property is selected. An object’s
proximity to the ideal value on each property is
additively combined across properties to produce
a measure of the usefulness of the object for that
activity. This characterization provides us with a
better understanding of how people come to use
objects in different activities, as well as how they
perceive functionality in general.
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