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Abstract

Asymptotic PDE Models for Chemical Reactions and Diffusions

by

Peyam Ryan Tabrizian

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lawrence C. Evans, Chair

In this dissertation, I provide a fairly simple and direct proof of the asymptotics of the
scaled Kramers-Smoluchowski equation in one dimension. I further generalize this result to
the cases where the potential function H (1) has three or more wells, (2) is periodic, and (3)
has infinitely many wells.
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Chapter 1

The basic two−well model

1.1 A model for a simple chemical reaction

Consider a simple chemical reaction A ⇀↽ B, where a molecule A transforms into B and
vice-versa. For example, think of A and B as two forms of the same molecule with spatial
assymetry and which therefore exists in two distinct mirror-like spatial configurations.

On the one hand, denoting by α = α(x, t) the volume fraction of A and by β = β(x, t) the
volume fraction of B (so that α + β = 1), using a chemical modeling argument (cf. section
1.4), one obtains that α and β solve the reaction-diffusion system{

αt − a−1∆α =κ (β − α)

βt − a1∆β =κ (α− β) ,
(1.1)

where a±1 are diffusion constants and κ is the rate constant of the reaction, assumed to be
the same for both reactions A → B and B → A. Here, and throughout the rest of the
dissertation, ∆ = ∆x denotes the Laplacian in the x−variable and ∇ = ∇x the gradient in
the x−variable.

On the other hand, one can augment (1.1) by adding a one-dimensional chemical vari-
able ξ that represents the different arrangements of the atoms inside the molecule (while, in
contrast, x represents the spatial degrees of freedom of the molecule). We assume that the
energy of a state (x, ξ) is given by a potential function H = H(ξ) that is independent of x
and that has a double-well structure, as in Figure 1.1 on the next page. Here, ξ = −1 corre-
sponds to the stable state A and ξ = 1 to the stable state B, with infinitely many (unstable)
states in between. In that case, the molecule undergoes an SDE driven by H and Gaussian
noise, and its probability distribution ρε = ρε(x, ξ, t) satisfies the Kramers-Smoluchowski
equation
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Figure 1.1: A double-well potential H

τε (ρεt − aε∆ρε) =
(
ρεξ + ε−2ρεH ′

)
ξ
. (1.2)

Here τε is an appropriate scaling factor in time that provides a nontrivial asymptotic limit of
the system, and aε is the diffusion-coefficient. The quantity 1

ε
is interpreted as an activation

energy; so the limit as ε → 0 corresponds to a limit of large activation energy, where the
energy barrier separating the two wells of H is large compared to the noise.

The following question then arises: How are (1.1) and (1.2) related? Are they two sides of
the same coin? Is it possible to take a limit of large activation energy such that the solutions
of (1.2) converge to (1.1)?

The Kramers-Smoluchowski equation (1.2) has been studied since the 1930s in the context
of chemical reaction rates. In that context, a molecule can be thought of as a particle moving
in a high-dimensional potential landscape H, driven by fluctuations and Gaussian noise; a
chemical reaction then corresponds to the movement of that particle from one minimum of
the potential to the other. The potential H is the solution of a Schrödinger equation, which
is in practice impossible to solve explicitly, except in the case of the hydrogen atom. That
said, the Born-Oppenheimer approximation [13] in quantum mechanics, which is a kind of
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a separation of variables, provides us with an ‘approximate’ potential H by treating the
nucleus of the particle as fixed, and solving the Schrödinger equation for the electrons only.
Using this approximate potential, the chemical reaction rate then follows from a SDE, from
which Kramers [34] derived its Fokker-Planck equation and studied its large friction-limit,
whose corresponding equation is

ρt −∆ρ− (ρξ + ρH ′)ξ = 0.

However, even in this situation, the reaction rate is impossible to calculate explicitly, and
instead effort has been directed in determining the reaction rates in a special case, where
the energy barrier separating the two wells is very large. This is called the limit of large
activation energy and leads to (1.2). There are many successful results in this direction; see
the paper by Hänggi [27] and the paper by Berglund [11] for an overview, and consult the
book by Hehre [28] for a general survey of quantum chemical models. In section 1.4, we
will elaborate the chemical background even further and in particular explain how Kramers
derived (1.3) from an SDE.

1.2 The Kramers-Smoluchowski equation

In this dissertation, we investigate the behavior as ε→ 0 of solutions ρε of the Kramers-
Smoluchowski equation


τε (ρεt − aε∆ρε) =

(
ρεξ + ε−2ρεH ′

)
ξ

in U × R× [0, T ]

∂ρε

∂ν
= 0 on ∂U × R× [0, T ]

ρε = ρε0 on U × R× {t = 0} .

(1.3)

Here U is an open and bounded domain in Rn, with smooth boundary ∂U , D := U ×R,

ρε = ρε(x, ξ, t) is the density of a probability measure, with given initial condition
ρε0 = ρε(x, ξ, 0) ≥ 0,

τε := 1
ε2
e−

1
ε2 is a scaling in time that will give a nontrivial asymptotic limit,

aε = aε(ξ) ∈ C(R) is a diffusion-coefficient, with aε ≥ θ > 0, for some constant θ inde-
pendent of ε, and

H = H(ξ) is a smooth, nonnegative, and even double-well potential function with
H(0) = H(2) = 1, H(1) = 0, a local maximum at 0 and a local minimum at 1, and H is de-
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creasing on (0, 1) and increasing on (1,∞). Thus H has the W -shape as drawn in Figure 1.1.

We will often switch between the measure-theoretic formulation of (1.3) and the func-
tional formulation (1.4) below. More precisely, define

σε := e
H̄ε−H
ε2 , where H̄ε is chosen so that

ˆ
R
σεdξ = 1,

and let

uε(x, ξ, t) :=
ρε(x, ξ, t)

σε(ξ)
.

Then (1.3) becomes

σε (uεt − aε∆uε) =

(
σε

τε
uεξ

)
ξ

in U × R× [0, T ]

∂uε

∂ν
= 0 on ∂U × R× [0, T ]

uε = uε0 :=
ρε0
σε

on U × R× {t = 0} .

(1.4)

1.3 Goal of this dissertation

Our goal is to study the limits as ε → 0 of ρε and uε in (1.3) and (1.4). Here and
throughout this dissertation, we will denote δi := δ{ξ=i} and ai := a(i) (where i ∈ R). We
will show that, under certain assumptions on the initial condition uε0 and diffusion coefficient
aε, and, in a precise sense given later,

ρε
?
⇀ α δ−1 + β δ1

for some functions α = α(x, t) and β = β(x, t) which satisfy the system of reaction-
diffusion equations in U × [0, T ]{

αt − a−1∆α = κ (β − α)

βt − a1∆β = κ (α− β) ,
(1.5)

where

κ :=

√
|H ′′(0)|H ′′(1)

2π
.

is the corresponding rate constant of the chemical reaction A ⇀↽ B.
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Previous work and outline

The relationship between (1.3) and (1.5) has already been studied in previous papers. In
[48], Peletier et al. rewrite both (1.3) and (1.5) in terms of variational evolution equations,
and prove that the quadratic form associated to (1.3) Γ−converges to the one associated to
(1.5). In a later paper [29], Herrmann and Niethammer provide a novel proof of the same
problem, rewriting (1.3) as a gradient flow on the Wasserstein space of probability measures
and using an integrated Raleigh-principle. Finally, Arnrich et. al. [3] give a proof of the
same result, but this time using the Wasserstein structure of the two equations only. The
proofs given in those three papers will be outlined later, in section 1.10.

While both approaches give new and interesting insights into the problem, this disser-
tation provides a more direct proof of the same result. It is based on multiplying (1.4) by
clever test functions φ1,ε and φ2,ε which effectively cancel out the singular term σε/τε. Our
approach allows one to adapt the same proof to more complicated models, some of which are
studied in the latter portion of this dissertation. We will examine the cases where (1) H has
3 wells, (2) H is periodic, and (3) H has infinitely many wells. Moreover, in a forthcoming
paper with Lawrence C. Evans [21], we even provide a generalization to the case where ξ is
more than one-dimensional.

1.4 More detailed discussion of the chemical model

This section discusses some of the chemical quantities in play in more detail, and provides
a derivation of (1.3) from a general Fokker-Planck equation, and a derivation of (1.5) from a
more elementary reaction rate equation. For more information on the chemical background,
consult the book by McNaught and Wilkinson [40] (sometimes called the ‘Gold Book’).

The chemical variable ξ

The variable ξ is called a reaction-coordinate and represents progress of the chemical re-
action A ⇀↽ B along the reaction-pathway from A to B. It usually, but not always, represents
an actual physical quantity such as the length of a bond or angle of a bond. For example,
in the reaction diagram (Figure 1.2) on the next page, which models the conversion from
Cis-2-butene to Trans-2-butene, ξ represents the angle of twist of the 2−butene molecule,
ranging from −30◦ to 210◦.
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Figure 1.2: Cis-Trans conversion of 2-butene (taken from Moore-Davies-Collins [44])

The potential function H

In our context, the potential H represents the Gibbs free energy of a molecule (usually
denoted by G in the chemical literature) as a function of its chemical variable ξ. In theory,
the variable ξ in H could be multi-dimensional, as in the case of a molecule that can twist
in many different directions, or in the case of the water-molecule, where ξ = (ξ1, ξ2), with ξ1
being the length of the bond O−H, and ξ2 being the bond angle H −O−H. For practical
purposes, however, one may reduce ξ to a single variable, by imagining a curve that connects
two energy minima in the direction that traverses the minimum energy barrier (cf. the book
by Lewars [36]), as depicted in the Figure 1.3 on the next page. Note that the minimum
transition cost Kε in Peletier et. al. [48] is a rigorous mathematical formulation of this idea
(see section 1.10 below).

The Gibbs free energy H is defined as
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Figure 1.3: A one-dimensional reduction of the potential surface (taken from Wikipedia [62])

H = U + pV − TS,

where U is the internal energy of the system, p the pressure (assumed to be constant), V the
volume, T the temperature and S the entropy (a measure of the complexity of a system).
The term U + pV is sometimes called the enthalpy of the system, so one can think of H
as being the difference between the enthalpy and the (scaled) entropy of the system. The
significance of H lies within the fact that a chemical reaction occurs if and only if the change
∆H in the Gibbs energy is less than the change ∆W := p∆V of non−Pressure-Volume
work (which is usually 0). Therefore, one way to induce a chemical reaction then is to
either break the bonds of a molecule (which decreases U), or to increase the temperature
T . A system with ∆H = 0, such as the one that we are considering, is in an equilibrium state.

Transition-state theory

The maximum of H is called a transition state. Transition-state theory was pioneered
by Eyring, and Evans-Polanyi (see the paper by Laidler and King [35] for an overview) and
can be used to calculate the rate constant κ via the differential equation
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Figure 1.4: Transition state (taken from Wikipedia [61])

d ln(κ)

dT
=

∆G‡

RT 2
, (1.6)

where T is the thermodynamic temperature and R is the universal gas constant. The quan-
tity ∆G‡ is the change of Gibbs energy between the initial state and the the transition state.
It is called the activation energy and it is the minimum energy which must be available
to a chemical system to result in a reaction. Figure 1.4 on the next page gives a pictorial
representation of the activation energy.

The equation (1.6) has the following solution, called the Arrhenius equation (pioneered
by Arrhenius in [4] and adapted here to modern terminology):

κ = Ae−
∆G‡
RT . (1.7)

In this dissertation, we consider the limit of large activation energy, that is when ∆G‡ →
∞; This is explains why we rescale the height of H to H/ε2 in (1.3). In theory, this would

imply that κ = 0 in (1.7), but it is precisely the choice of τε = 1
ε2
e−

1
ε2 that will avoid such a

degeneracy and give us a nontrivial limit of κ.
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Derivation of the Kramers-Smoluchowski equation (1.3)

As explained in the book by Risken [52], the equation (1.3) is part of a more general class
of Fokker-Planck equations, which are equations of the form

ρt = −
n∑
i=1

(
bi(x)ρ

)
xi

+
n∑

i,j=1

(
aij(x)ρ

)
xixj

, (1.8)

where x ∈ Rn and A = [aij] is an n× n matrix satisfying the ellipticity condition

n∑
i,j=1

aij(x)ξiξj ≥ 0

for all x ∈ Rn and all ξ = (ξ1, · · · , ξn) ∈ Rn.

There is a close link between Fokker-Planck equations (1.8) and SDE. Namely, if Xt ∈ Rn

is a stochastic process satisfying the SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, (1.9)

where µ = (µ1, · · · , µn) is a n−dimensional random vector, σ = [σij] is a n×m random ma-
trix, and Bt denotes m−dimensional Brownian motion, then the probability density ρ(x, t)
for Xt satisfies the Fokker-Planck equation

ρt = −
n∑
i=1

(
µiρ
)
xi

+
1

2

n∑
i,j=1

(
Dijρ

)
xixj

, (1.10)

where

Dij :=
m∑
k=1

σikσjk.

Note that in the simple one-dimensional (n = 1) Brownian motion-case

dXt = dBt,

which corresponds to µ = 0 and σ = 1, we recover the usual (scaled) heat-equation

ρt =
1

2
∆ρ.

In order to derive (1.3), Kramers, in his original paper [34], studied the following scenario:
Consider a set of particles subject to Brownian motion with their distribution function
ρ = ρ(x, v, t) at position x, velocity v, and time t, satisfying the Kramers equation
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ρt = −ρx +

[(
γv − F (x)

m

)
ρ

]
v

+
γkT

m
ρvv, (1.11)

where γ is the friction constant, m the mass of the particle, T the temperature of the fluid, k
the Boltzmann constant, mf(x) the potential with F (x) = −mf ′(x) the external force. This
is indeed of the form (1.8) with n = 2, x = (x, v) ∈ R2, b =

(
1, F

m
− γv

)
a11 = a12 = a21 = 0,

a22 = γkT
m

. Moreover, it can be written in the form (1.10), with m = n = 2, µ = (1, F
m
− γv)

and σ11 = σ12 = σ21 = 0, σ22 =
√

2γkT
m

. The SDE (1.9) corresponding to (1.11) is then
dx = v dt

dv =

(
F (x)

m
− γv

)
dt+

√
2γkT

m
dBt,

(1.12)

which can be written more compactly as

mẍ+mγẋ = F (x) +
√

2γkTmBt, (1.13)

where ẋ denotes the time-derivative of x. Now in the so-called large friction-limit, when γ
is large, we can ignore ẍ in (1.13), thereby obtaining the SDE

dx =
F (x)

mγ
dt+

√
2kT

mγ
dBt, (1.14)

which corresponds to m = n = 1, µ = F (x)
mγ

and σ =
√

2kT
mµ

in (1.9). The corresponding

Fokker-Planck equation (1.10) for the distribution function ρ = ρ(x, t) in the (x, t)−variables
only is then

ρt = −
(
F (x)

mγ
ρ

)
x

+
kT

mγ
ρxx

In our problem, setting m = 1, k = 1, T = 1, γ = τε, and f(x) = H/ε2, so F (x) = −H ′/ε2,
and writing ξ instead of x, we indeed obtain (1.3) (without the spatial diffusion term).

Derivation of the reaction-diffusion system (1.5)

The system (1.5) is derived from the rate equation for chemical reactions. For sake of
simplicity, we will suppress the x−dependency of the quantities in question. For the general
reaction aA+ cC ⇀↽ bB + dD, the reaction rate r is defined as

r = κ1[A]a[C]c − κ2[B]b[D]d, (1.15)
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where κ1 and κ2 are the rate constants for the forward and backward reactions, that is, all
the parameters other than concentration (such as temperature) that affect r. The usefulness
of the reaction rate r lies in the rate equation, which states that

r = −1

a

d[A]

dt
= −1

c

d[C]

dt
=

1

b

d[B]

dt
=

1

d

d[D]

dt
.

This intuitively tells use that r measures how fast the concentrations of the reactants A and
C and products C and D change during the reaction.

The unimolecular case A ⇀↽ B corresponds to the case a = b = 1 and c = d = 0;
moreover, in this dissertation, we assume that κ1 = κ2 := κ. Therefore, denoting [A] and
[B] as α and β, the above expression (1.15) for r simplifies to

r = κα− κβ = κ(α− β),

and −d[A]
dt

= r is equivalent to

αt = −r = κ(β − α), (1.16)

and d[B]
dt

= r reduces to

βt = r = κ(α− β). (1.17)

The equations (1.16) and (1.17) then give us the desired reaction-diffusion system (1.5).

More general reaction-diffusion systems

Reaction-diffusion systems like (1.5) arise in a wide array of mathematical models, such as
the spread of biological populations (see the original paper by Fisher [23], and also the works
of Berestycki et. al. [10] and [9]), the propagation of flames in combustion theory (Zeldovich
et. al. [63]), the blocking of neural networks (see again the works of Berestycki et. al. [8]),
blood clotting (Lobanova et. al. [38]), and a model for gases (Purwins [50]). They generally
exhibit a wide range of behaviors, including the formation of traveling waves, as well as
pattern-formation such as stripes or hexagons, or more intricated structures like dissipative
solutions. An overview of the range of possible phenomena is given in the book by Liehr [37].
They are also of interest mathematically because, although they are generally nonlinear, they
are usually well-posed. Consult the books by Fife [22], Grindrod [26], Kerner et. al. [33],
Mikhailov [43], and Smoller [56] for an overview of the theory of reaction-diffusion equations.
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1.5 Basic estimates

Let us begin by stating and proving two regularization estimates.

Lemma 1. For all 0 ≤ t ≤ T,

ˆ
D

σε

2
|uε(x, ξ, t)|2 dxdξ +

ˆ t

0

ˆ
D

(
σεaε |∇uε(x, ξ, s)|2 +

σε

τε

∣∣uεξ(x, ξ, s)∣∣2) dxdξds =

ˆ
D

σε

2
|uε(x, ξ, 0)|2 dxdξ. (1.18)

Proof. Multiply (1.4) by uε and integrate over D × [0, t] to get

ˆ t

0

ˆ
D

σεuεtu
εdxdξds−

ˆ t

0

ˆ
D

σεaε(∆uε)uεdxdξds =

ˆ t

0

ˆ
D

(
σε

τε
uεξ

)
ξ

uεdxdξds. (1.19)

Because uεtu
ε = 1

2
∂t |uε|2 , the first term on the left-hand-side of (1.19) becomes

ˆ t

0

ˆ
D

σεuεtu
εdxdξdt =

1

2

ˆ
D

σε |uε(x, ξ, t)|2 dxdξ −
ˆ
D

σε |uε(x, ξ, 0)|2 dxdξ. (1.20)

Now after integrating by parts with respect to x and using ∂uε

∂ν
= 0 on ∂U × R × [0, t], the

second term on the left-hand-side of (1.19) equals to

−
ˆ t

0

ˆ
D

σεaε(∆uε)uεdxdξds =

ˆ t

0

ˆ
D

σεaε |∇uε(x, ξ, s)|2 dxdξds. (1.21)

Similarly, integrating by parts with respect to ξ, the term on the right of (1.19) can be
written as

ˆ t

0

ˆ
D

(
σε

τε
uεξ

)
ξ

uεdxdξds =

ˆ t

0

ˆ
D

σε

τε

∣∣uεξ(x, ξ, s)∣∣2 dxdξds. (1.22)

The result follows from (1.20) − (1.22) applied to (1.19).

Lemma 2. For all 0 ≤ t ≤ T ,

1

2

ˆ
D

(
σεaε |∇uε(x, ξ, t)|2 +

σε

τε

∣∣uεξ(x, ξ, t)∣∣2) dxdξ +

ˆ t

0

ˆ
D

σε |uεt(x, ξ, s)|
2 dxdξds

=
1

2

ˆ
D

(
σεaε |∇uε(x, ξ, 0)|2 +

σε

τε

∣∣uεξ(x, ξ, 0)
∣∣2) dxdξ. (1.23)
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Proof. This time multiply (1.4) by uεt and integrate over D × [0, t] to get

ˆ t

0

ˆ
D

σε |uεt|
2 dxdξds−

ˆ t

0

ˆ
D

σεaε(∆uε)uεtdxdξds =

ˆ t

0

ˆ
D

(
σε

τε
uεξ

)
ξ

uεtdxdξds. (1.24)

Integrating by parts with respect to x, using ∂uε

∂ν
= 0 on ∂U × R× [0, t] and ∇uε · (∇uε)t =

1
2
∂t |∇uε|2, the second term on the left of (1.24) becomes

ˆ t

0

ˆ
D

σεaε (∆uε)uεtdxdξds =
1

2

ˆ
D

σεaε |∇uε(x, ξ, t)|2 dxdξ − 1

2

ˆ
D

σεaε |uε(x, ξ, 0)|2 dxdξ.

(1.25)
Similarly, integrating by parts with respect to ξ, the term on the right of (1.24) becomes

ˆ t

0

ˆ
D

(
σε

τε
uεξ

)
ξ

uεtdxdξds =
1

2

ˆ
D

σε

τε

∣∣uεξ(x, ξ, t)∣∣2 dxdξ − 1

2

ˆ
D

σε

τε

∣∣uεξ(x, ξ, 0)
∣∣2 dxdξ. (1.26)

The result follows from (1.25) and (1.26) applied to (1.24).

Note: Assumptions (1.37) and (1.38) in the main theorem below in fact assert that the
right-hand-sides of (1.18) and (1.23) are bounded from above independently of ε.

1.6 Study of the density σε

In this section, we derive convergence results for σε and σε

τε
, which will allow us later to

extract suitable convergent subsequences of ρε. Before stating those results, let us recall the
statement of Laplace’s method, a proof of which can be found in Bender-Orszag [7].

Theorem 1 (Laplace’s method). If f = f(ξ) is a twice-differentiable function on [a, b] and
ξ0 is the unique minimum point of f with f ′′ (ξ0) > 0, then

ˆ b

a

e
−f(ξ)

ε2 dξ = e
−f(ξ0)

ε2

(
2πε2

f ′′ (ξ0)

) 1
2

(1 + o(1)) as ε→ 0.

Note: For an extension to infinite intervals (See again Bender-Orszag [7]), we can take

a = −∞ or b =∞ (or both) if we moreover assume that (1)
´ b
a
e−f(ξ)dξ is finite, and (2) f(ξ0)

is a true minimum, i.e. there exist δ > 0 small enough and η > 0 such that if |ξ − ξ0| > δ,
then f(ξ) ≥ f(ξ0) + η.
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Using the normalization
´
R σ

εdξ = 1, the fact that H is even, and finally Laplace’s
method applied to f(ξ) = H(ξ) with a = 0, b =∞, and ξ0 = 1, we obtain

e−
H̄ε
ε2 =

ˆ

R

e−
H(ξ)

ε2 dξ = 2

ˆ ∞
0

e−
H(ξ)

ε2 dξ = ε
2
√

2π√
H ′′(1)

(1 + o(1)) .

This gives us the following asymptotic expansion of e
H̄ε
ε2 :

e
H̄ε
ε2 =

1

ε

√
H ′′(1)

2
√

2π
(1 + o(1)).

To state the compactness estimates, here and in the following, let δ = δ(ε) = ε
3
4 . Notice

that with this choice of δ, we have that, for all c > 0,

lim
ε→0

δ = 0, lim
ε→0

δ

ε
=∞, lim

ε→0

δ3

ε2
= 0, lim

ε→0
ε e(

δ
ε )

2

=∞, lim
ε→0

1

ε
e−c(

δ
ε )

2

= 0. (1.27)

Lemma 3. Define Iδ := (−1−δ,−1+δ)∪ (1−δ, 1+δ) and Jδ := (−2−δ,−2+δ)∪ (−δ, δ)∪
(2− δ, 2 + δ). As ε→ 0, we have

sup
R\Iδ

σε −→ 0,

ˆ

R\Iδ

σεdξ −→ 0,

ˆ ±1+δ
±1−δ

σεdξ −→ 1

2
, (1.28)

inf
(−2,2)\Jδ

σε

τε
−→∞,

3ˆ

2

σε

τε
dξ −→ 0, (1.29)

ˆ

(−2,2)\Jδ

τε
σε
dξ −→ 0,

ˆ δ

−δ

τε
σε
dξ −→ 2

κ
. (1.30)

Proof. 1. If ε and (therefore) δ are small enough, we have, on R\Iδ, that

H(ξ) ≥ min (H(1 + δ), H(1− δ)) ≥ 1

2
H ′′(1)δ2 (1 + o(1)) (by Taylor expansion),

and therefore
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σε = e
H̄ε−H
ε2

≤ e
H̄ε
ε2 e−

1
2H
′′(1)δ2(1+o(1))

ε2

=
1

ε

√
H ′′(1)

2
√

2π
(1 + o(1))e−

1
2
H′′(1)( δε )

2
(1+o(1))

=

(
1

ε
e−( δε )

2H′′(1)
2

(1+o(1))

) √
H ′′(1)

2
√

2π
(1 + o(1)).

By (1.27), the term in parentheses goes to 0 as ε→ 0, uniformly in ξ. This proves the first
part of (1.28).

2. Again by Taylor expansion, if ξ ∈ (−δ, δ), we obtain

H(1 + ξ) =
1

2
H ′′(1)(ξ2 +O(|ξ|3)) =

1

2
H ′′(1)ξ2(1 +O(|ξ|)).

Therefore, if δ is small enough,

ˆ ±1+δ
±1−δ

σεdξ = e
H̄ε
ε2

ˆ δ

−δ
e−

1
2H
′′(1)ξ2(1+O(|ξ|))

ε2 dξ

=

(
1

ε

√
H ′′(1)

2
√

2π
(1 + o(1))

)
ε

ˆ δ
ε

− δ
ε

e−
H′′(1)

2
ξ2(1+O(ε|ξ|))dξ (Change of variables)

=
1

2

√
H ′′(1)

2π
(1 + o(1))2

ˆ δ
ε

− δ
ε

e−
H′′(1)

2
ξ2

dξ

ε→0−→1

2

√
H ′′(1)

2π

ˆ ∞
−∞

e−
H′′(1)

2
ξ2

dξ

=
1

2

√
H ′′(1)

2π

√
2π

H ′′(1)
(Gaussian integral)

=
1

2
.

The third equality follows because on (−δ/ε, δ/ε) , ξ2O(ε |ξ|) = O (δ3/ε2)→ 0 by (1.27), and
the fourth one by the Dominated Convergence Theorem and because δ/ε → ∞, again by
(1.27). This proves the third part of (1.28), and the second part follows because

´
R σ

εdξ = 1.

3. If ξ ∈ (−3, 3)\Jδ, then by Taylor expansion, we get

H(ξ) ≤ max (H(δ), H(2− δ)) ≤ 1 + o(δ)−min

(
1

2
|H ′′(0)| δ2, H ′(2)δ

)
.
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Therefore

σε

τε
=ε2e

1
ε2 e

H̄ε−H
ε2

≥

(
1

ε

√
H ′′(1)

2
√

2π
(1 + o(1))

)
ε2e

1
ε2 e

−1+o(δ)+min( 1
2 |H′′(0)|δ2,H′(2)δ)
ε2

≥

(√
H ′′(1)

2
√

2π
(1 + o(1))

)
ε min

(
e

1
2
|H′′(0)|( δε )

2

, eH
′(2) δ

ε2

)
e
o(δ)

ε2

−→∞ (by (1.27)).

From this, the first part of (1.29) and the first part of (1.30) follow.

4. Since H is increasing on (2, 3), we have H(ξ) ≥ H(2) = 1 on (2, 3), and hence

ˆ 3

2

σε

τε
= ε2e

1
ε2 e

H̄ε
ε2

ˆ 3

2

e−
H
ε2 dξ

≤ ε2e
1
ε2

(
1

ε

2
√

2π√
H ′′(1)

(1 + o(1))

)ˆ 3

2

e−
1
ε2 dξ

≤

(
2
√

2π√
H ′′(1)

(1 + o(1))

)
ε

−→ 0.

This proves the second part of (1.29).

5. Finally, if ξ ∈ (−δ, δ), then we have H(ξ) = 1 + H′′(0)
2
ξ2(1 + O(|ξ|)) by Taylor expan-

sion, and therefore, similar to Step 2,

ˆ δ

−δ

τε
σε
dξ =

e
−H̄ε
ε2

ε2

ˆ δ

−δ
e
H′′(0)

2
ξ2

ε2
(1+O(|ξ|))dξ

=

(
1

ε

2
√

2π√
H ′′(1)

(1 + o(1))

)
ε

ˆ δ
ε

− δ
ε

e−
|H′′(0)|

2
ξ2(1+O(ε|ξ|))dξ

=

(
2
√

2π√
H ′′(1)

(1 + o(1))

)
(1 + o(1))

ˆ δ
ε

− δ
ε

e−
|H′′(0)|

2
ξ2

dξ

−→ 2
√

2π√
H ′′(1)

ˆ ∞
−∞

e−
|H′′(0)|

2
ξ2

dξ
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=
2
√

2π√
H ′′(1)

√
2π√
|H ′′(0)|

=
4π√

|H ′′(0)|H ′′(1)

=
2

κ
.

We thereby obtain the second part of (1.30).

1.7 A compactness lemma

We are now ready to extract a convergent subsequence from ρε. For this, let us first
clarify the definition of weak−? convergence that we will use.

Definition. Given a measurable subset X of Rd, we say that a measure µε on X converges
weakly−? to a measure µ, and we write µε

?
⇀ µ, if, for every φ ∈ C0(X),

ˆ
X

φdµε −→
ˆ
X

φdµ.

Lemma 4. There exists a subsequence of ρε (relabeled as ρε) and functions α = α(x, t) and
β = β(x, t), with α, β ∈ H1(U × [0, T ]), such that

1. ρε is a probability measure on D × [0, T ] that converges weakly−? to αδ−1 + βδ1, such
that, as ε→ 0,

−1+δˆ

−1−δ

ρε(x, ξ, t)dξ ⇀ α(x, t),

1+δˆ

1−δ

ρε(x, ξ, t)dξ ⇀ β(x, t) (1.31)

weakly in L2(U × [0, T ]), and

ˆ

R\Iδ

ˆ

U

|ρε(x, ξ, t)| dxdξ −→ 0 (1.32)

uniformly in t ∈ [0, T ].

2. ρεt is a measure on D × [0, T ] that converges weakly−? to αtδ−1 + βtδ1, such that, as
ε→ 0,
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−1+δˆ

−1−δ

ρεt(x, ξ, t)dξ ⇀ αt(x, t),

1+δˆ

1−δ

ρεt(x, ξ, t)dξ ⇀ βt(x, t) (1.33)

weakly in L2(U × [0, T ]) and

ˆ

R\Iδ

ˆ

U

|ρεt(x, ξ, t)| dxdξ −→ 0 (1.34)

strongly in L2[0, T ].

3. For every i = 1 · · ·n, ρεxi (the i-th component of ∇ρε) is a measure on D × [0, T ] that
converges weakly−? to αxiδ−1 + βxiδ1, such that, as ε→ 0,

−1+δˆ

−1−δ

ρεxi(x, ξ, t)dξ ⇀ αxi(x, t),

1+δˆ

1−δ

ρεxi(x, ξ, t)dξ ⇀ βxi(x, t) (1.35)

weakly in L2(U × [0, T ]), and

ˆ

R\Iδ

ˆ

U

∣∣ρεxi(x, ξ, t)∣∣ dxdξ −→ 0 (1.36)

uniformly in t ∈ [0, T ].

Proof. 1. Writing ρε = uεσε =
(
(uε)2 σε

) 1
2 · (σε)

1
2 , we get

sup
t ∈ [0, T ]

 ˆ
R\Iδ

ˆ

U

|ρε| dxdξ


2

≤
sup

t ∈ [0, T ]

ˆ
D

|uε|2 σεdxdξ


 ˆ
R\Iδ

σεdξ

 −→ 0.

This follows because the first term on the right is bounded by (1.18), whereas the second
goes to 0 by the second part of (1.28). Therefore (1.32) follows.

In the same way, we get
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sup
t ∈ [0, T ]

 ˆ
R\Iδ

ˆ

U

|∇ρε| dxdξ


2

≤
sup

t ∈ [0, T ]

ˆ
D

|∇uε|2 σεdxdξ


 ˆ
R\Iδ

σεdξ

 −→ 0,

and we deduce (1.36).

Finally, this time using (1.23) instead of (1.18), we get

T̂

0

 ˆ
R\Iδ

ˆ

U

|ρεt| dxdξ


2

dt ≤
T̂

0

ˆ
D

|uεt|
2 σεdxdξ


 ˆ
R\Iδ

σεdξ

 dt −→ 0,

and we obtain (1.34).

2. Define αε = αε(x, t) and βε = βε(x, t) as

αε(x, t) :=

−1+δˆ

−1−δ

ρε(x, ξ, t)dξ =

−1+δˆ

−1−δ

uε(x, ξ, t)σεdξ,

βε(x, t) :=

1+δˆ

1−δ

ρε(x, ξ, t)dξ =

1+δˆ

1−δ

uε(x, ξ, t)σεdξ.

In the same way as above, but this time using the third part of (1.28), we obtain

T̂

0

ˆ

U

|αε|2 dxdt ≤
T̂

0

 −1+δˆ

−1−δ

ˆ

U

|uε|2 σεdxdξ

 −1+δˆ

−1−δ

σεdξ

 dt ≤ C,

T̂

0

ˆ

U

|αεt|
2 dxdt ≤

T̂

0

 −1+αˆ

−1−α

ˆ

U

|uεt|
2 σεdxdξ

 −1+δˆ

−1−δ

σεdξ

 dt ≤ C,

T̂

0

ˆ

U

|∇αε|2 dxdt ≤
T̂

0

 −1+δˆ

−1−δ

ˆ

U

|∇uε|2 σεdxdξ

 −1+δˆ

−1−δ

σεdξ

 dt ≤ C.

The argument for βε is identical, and therefore {αε}ε>0 and {βε}ε>0 are bounded in H1(U ×
[0, T ]), a reflexive Banach space, and so, by weak compactness, we can extract a subsequence
(not relabeled), such that, for some limit functions α = α(x, t), β = β(x, t),

αε, βε ⇀ α, β weakly in H1 (U × [0, T ]) as ε→ 0.
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(1.31), (1.33), and (1.35) then follow by construction.

From now on, we will chose the subsequence as above. This entails no loss of generality
because, since the limits α and β are unique, the main result below will hold for all subse-
quences.

The following lemma, pointwise in nature, concerns the convergence of uε and its rela-
tionship with α and β.

Lemma 5. For every t ∈ [0, T ], as ε→ 0, we have{
uε → 2α a.e. on U × (−2, 0)

uε → 2β a.e. on U × (0, 2).

Proof. For every a and b fixed such that −2 < a < b < 0,

ˆ b

a

ˆ

U

∣∣uεξ∣∣ dxdξ ≤ (ˆ b

a

ˆ
U

σε

τε

∣∣uεξ∣∣2 dxdξ) 1
2
(ˆ b

a

τε
σε
dξ

) 1
2

≤ C
(ˆ b

a

τε
σε
dξ

) 1
2

(by (1.18))

−→ 0 (by (1.30)).

Therefore, on U × [a, b], uε −→ u a.e. for some function u = u(x, t), and since a and b were
arbitrary, this holds on U × (−2, 0). But using ρε = σεuε, integrating with respect to ξ on
(−1 − δ,−1 + δ), and using (1.28) and (1.31), we get u = 2α. The U × (0, 2)−case follows
similarly.

Remark 1: The above proof shows that for a.e. x, the oscillation of ξ 7→ uε(x, ξ, t) on
[a, b] goes to 0. Therefore, without loss of generality, we can assume that the convergence
holds a.e. on U ×

{
ξ = ±3

2

}
.

Remark 2: Assumption (1.39) below asserts that the same result holds for t = 0 and
ξ = ±3

2
.

1.8 Main theorem

We are now ready to state and prove our main theorem.

Theorem 2. Let uε be a solution to (1.4). Assume that the initial condition uε0 satisfies
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1

2

ˆ
D

σε |uε0|
2 dxdξ ≤ C, (1.37)

1

2

ˆ
D

σεaε |∇uε0|
2 +

σε

τε
|∂ξuε0|

2 dxdξ ≤ C, (1.38)


uε0 → 2α0 a.e. on U ×

{
ξ = −3

2

}
uε0 → 2β0 a.e. on U ×

{
ξ =

3

2

}
,

(1.39)

for some smooth α0 = α0(x) and β0 = β0(x), and where C is a constant independent of ε.

Moreover, assume that the diffusion coefficient aε satisfies

sup
ξ∈R
|aε(ξ)| ≤ C, (1.40)

aε → a = a(ξ) uniformly on

(
−3

2
,−1

2

)
and

(
1

2
,
3

2

)
, (1.41)

where C is a (possibly different) constant independent of ε and ξ.

Then, on D × [0, T ], as ε→ 0, we have

ρε(x, ξ, t)
?
⇀ α(x, t)δ−1 + β(x, t)δ1,

where the functions α = α(x, t) and β = β(x, t) are weak solutions of the following system
of reaction-diffusion equations:

αt − a−1∆α =κ (β − α) in U × [0, T ]

βt − a1 ∆β =κ (α− β)

∂α

∂ν
=
∂β

∂ν
=0 on ∂U × [0, T ]

α = α0, β =β0 on U × {t = 0} .

(1.42)

1.9 Proof of the main theorem

As mentioned above, here we provide a direct proof, using a cutoff function ψ and a
cleverly designed test-functions φ1,ε and φ2,εwhich cancel out the σε/τε-term in (1.4).
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Proof. 1. Let ψ = ψ(ξ) ∈ [0, 1] be a smooth and even cutoff-function, supported on [−3, 3],
with ψ ≡ 1 on

[
−5

2
, 5
2

]
and |ψ′| ≤ C for some positive constant C independent of ξ.

Figure 1.5: The cutoff function ψ

Define the test function

φ1,ε(ξ) :=

ˆ b1(ξ)

0

τε
σε
dξ,

where

b1(ξ) :=


−3

2
if ξ < −3

2

ξ if− 3
2
< ξ < 3

2

3
2

if ξ > 3
2
,
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Figure 1.6: The functions b1 and b2

and finally, let ζ = ζ(x, t) ∈ C∞c (U × [0, T ]) be arbitrary.

Multiplying (1.4) by ψφ1,εζ, integrating on D × [0, T ] and recalling that Supp(ψ) ⊆ [−3, 3],
we obtain
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ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζuεtσ
ε dxdtdξ −

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζaε (∆uε)σε dxdtdξ

=

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ, (1.43)

and it remains to study all three terms of above identity.

2. Study of the first term on the left-hand-side of (1.43)

Write uεtσ
ε = ρεt and split the first term up into three pieces to get

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζuεtσ
ε dxdtdξ =

ˆ

R\Iδ

ˆ T

0

ˆ
U

ψφ1,εζρεt dxdtdξ +

−1+δˆ

−1−δ

ˆ T

0

ˆ
U

ψφ1,εζρεt dxdtdξ +

1+δˆ

1−δ

ˆ T

0

ˆ
U

ψφ1,εζρεt dxdtdξ

(1.44)

Notice that φ1,ε is nondecreasing because τε/σ
ε ≥ 0 and because b1,ε is nondecreasing.

Therefore, on
(
−3

2
, 3
2

)
, φ1,ε

(
−3

2

)
≤ φ1,ε(ξ) ≤ φ1,ε

(
3
2

)
, and in fact this is true for all ξ ∈ R

because φ1,ε is continuous at ξ = ±3
2

and constant on
(
−∞,−3

2

)
and

(
3
2
,∞
)
. But by (1.29)

and (1.30), φ1,ε
(
±3

2

)
→ ± 1

κ
as ε→ 0. Therefore, for small ε, φ1,ε is uniformly bounded, i.e.

there exists a constant C > 0, independent of ε, such that |φ1,ε| < C.

Hence we can estimate∣∣∣∣∣∣∣
ˆ

R\Iδ

ˆ T

0

ˆ
U

ψφ1,εζρεt dxdtdξ

∣∣∣∣∣∣∣ ≤
ˆ

R\Iδ

ˆ T

0

ˆ
U

|ψ|
∣∣φ1,ε

∣∣ |ζ| |ρεt| dxdtdξ
≤ C
ˆ T

0

ˆ

R\Iδ

ˆ
U

|ρεt| dxdξdt

≤ CT
1
2

ˆ T

0

 ˆ
R\Iδ

ˆ
U

|ρεt| dxdξ


2

dt


1
2

−→ 0 (by (1.32)).
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Now because ψ ≡ 1 on (±1 − δ,±1 + δ) for small δ, the other two integrals in (1.44)
become

ˆ T

0

ˆ
U

 ±1+δˆ

±1−δ

φ1,ερεtdξ

 ζdxdt. (1.45)

We isolate the convergence result for (1.45) in the following lemma:

Lemma 6. ˆ T

0

ˆ
U

 −1+δˆ

−1−δ

φ1,ερεtdξ

 ζdxdt −→
(
−1

κ

) ˆ T

0

ˆ
U

αtζdxdt,

ˆ T

0

ˆ
U

 1+δˆ

1−δ

φ1,ερεtdξ

 ζdxdt −→1

κ

ˆ T

0

ˆ
U

βtζdxdt.

Proof. We will only prove the second limit, as the first one is similar. Write

ˆ T

0

ˆ
U

 1+δˆ

1−δ

φ1,ερεtdξ

 ζdxdt− 1

κ

ˆ T

0

ˆ
U

βtζdxdt =

ˆ T

0

ˆ
U

1+δˆ

1−δ

(
φ1,ε − 1

κ

)
ρεtζdξdxdt+

1

κ

ˆ T

0

ˆ
U

 1+δˆ

1−δ

(ρεt − βt)dξ

 ζdxdt. (1.46)

The second term on the right-hand-side of (1.46) goes to 0 by (1.33) and the definition
of weak convergence in L2(U × [0, T ]). As for the first term, estimate it by∣∣∣∣∣∣

ˆ T

0

ˆ
U

1+δˆ

1−δ

(
φ1,ε − 1

κ

)
ρεtζdξdxdt

∣∣∣∣∣∣
≤
ˆ T

0

ˆ
U

1+δˆ

1−δ

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣ |ρεt| |ζ| dξdxdt
≤C

(
sup

(1−δ,1+δ)

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣
)ˆ T

0

ˆ
U

1+δˆ

1−δ

|ρεt| dξdxdt

=C

(
sup

(1−δ,1+δ)

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣
)ˆ T

0

ˆ
U

1+δˆ

1−δ

|uεt|σεdξdxdt
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≤C

(
sup

(1−δ,1+δ)

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣
)ˆ T

0

ˆ
U

1+δˆ

1−δ

σε |uεt|
2 dξdxdt


1
2
ˆ T

0

ˆ
U

1+δˆ

1−δ

σεdξdxdt


1
2

=CT
1
2 |U |

1
2

(
sup

(1−δ,1+δ)

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣
)ˆ T

0

ˆ
U

1+δˆ

1−δ

σε |uεt|
2 dξdxdt


1
2
 1+δˆ

1−δ

σεdξ


1
2

≤C

(
sup

(1−δ,1+δ)

∣∣∣∣φ1,ε − 1

κ

∣∣∣∣
)

(by (1.23) and (1.28)).

However, because φ1,ε converges to 1
κ

uniformly on (1− δ, 1 + δ) by (1.30), the last term
above goes to 0 as ε→ 0 as well, which concludes the proof.

It follows from Lemma 6 and (1.44) that

lim
ε→0

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζuεtσ
ε dxdtdξ =

1

κ

ˆ T

0

ˆ
U

(−αt + βt) ζdxdt.

3. Study of the second term on the left of (1.43)

Integrating by parts with respect to x and using ∂uε

∂ν
= 0 on ∂U × R× [0, T ], we get

−
ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζaε (∆uε)σε dxdtdξ =

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εaε (∇ζ) · (∇uε)σεdxdtdξ. (1.47)

Then, as before, split the right-hand-side of (1.47) up as

ˆ

R\Iδ

ˆ T

0

ˆ
U

ψφ1,εaε (∇ζ) · (∇ρε) dxdtdξ

+

−1+δˆ

−1−δ

ˆ T

0

ˆ
U

ψφ1,εaε (∇ζ) · (∇ρε) dxdtdξ +

1+δˆ

1−δ

ˆ T

0

ˆ
U

ψφ1,εaε (∇ζ) · (∇ρε) dxdtdξ. (1.48)

Using |ψ| ≤ 1, |φ1,ε| ≤ C, |∇ζ| ≤ C, and now |aε| ≤ C by (1.40), the first term in (1.48)
is estimated by

∣∣∣∣∣∣∣
ˆ

R\Iδ

ˆ T

0

ˆ
U

ψφ1,εaε (∇ζ) · (∇ρε) dxdtdξ

∣∣∣∣∣∣∣ ≤ C

ˆ T

0

ˆ

R\Iδ

ˆ
U

|∇ρε| dxdξdt −→ 0 (by (1.36)).
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Because ψ ≡ 1 on (±1− δ,±1 + δ), the second and third term in (1.48) just become

ˆ T

0

ˆ
U

 −1+δˆ

−1−δ

φ1,εaε (∇ρε) dξ

 · (∇ζ) dxdt,

ˆ T

0

ˆ
U

 1+δˆ

1−δ

φ1,εaε (∇ρε) dξ

 · (∇ζ) dxdt.

By Lemma 4, we know that for every i, ρεxi weakly−? converges to (αxi) δ−1 + (βxi) δ1
on D × [0, T ]. Moreover, by (1.29) and (1.30), φ1,ε converges uniformly to − 1

κ
on
(
−3

2
,−1

2

)
and to 1

κ
on
(
1
2
, 3
2

)
, and by (1.41) aε converges uniformly to a on those intervals, so by an

adaptation of Lemma 6 to ∇ρε, we conclude that

ˆ T

0

ˆ
U

 −1+δˆ

−1−δ

φ1,εaε (∇ρε) dξ

 · (∇ζ) dxdt −→
ˆ T

0

ˆ
U

(
−1

κ

)
a−1 (∇α) · (∇ζ) dxdt,

ˆ T

0

ˆ
U

 1+δˆ

1−δ

φ1,εaε (∇ρε) dξ

 · (∇ζ) dxdt −→
ˆ T

0

ˆ
U

(
1

κ

)
a1 (∇β) · (∇ζ) dxdt.

It follows from this and (1.47) − (1.48) that

lim
ε→0
−
ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζ (∆ρε)σε dxdtdξ =
1

κ

ˆ T

0

ˆ
U

(−a−1∇α + a1∇β) · (∇ζ) dxdt.

4. Study of the term on the right-hand-side of (1.43)

Integrating by parts with respect to ξ and using ψ(±3) = 0, we obtain

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ = −
ˆ 3

−3

ˆ T

0

ˆ
U

(
ψφ1,ε

)
ξ
ζ
σε

τε
uεξ dxdtdξ

= −
ˆ 3

−3

ˆ T

0

ˆ
U

ψξφ
1,εζ

σε

τε
uεξ dxdtdξ −

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,ε
ξ ζ

σε

τε
uεξ dxdtdξ (1.49)

For the first integral on the right-hand-side of (1.49), recall that |ψξ| = |ψ′| ≤ C,
|φ1,ε| ≤ 1

κ
, |ζ| ≤ C, and ψξ ≡ 0 on

(
−5

2
, 5
2

)
. Therefore
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∣∣∣∣ˆ 3

−3

ˆ T

0

ˆ
U

ψξφ
1,εζ

σε

τε
uεξ dxdtdξ

∣∣∣∣ ≤ ˆ 3

−3

ˆ T

0

ˆ
U

|ψξ|
∣∣φ1,ε

∣∣ |ζ| σε
τε

∣∣uεξ∣∣ dxdtdξ
≤ C

(ˆ T

0

ˆ
U

ˆ
R

∣∣uεξ∣∣2 σετε dxdtdξ
) 1

2

(ˆ 3

5
2

σε

τε
dξ

) 1
2

≤ C

(ˆ 3

5
2

σε

τε
dξ

) 1
2

(by (1.23))

−→ 0 (by (1.29)).

(1.50)

As for the second integral on the right-hand-side of (1.49), by construction

φ1,ε
ξ =

{
τε
σε

if − 3
2
< ξ < 3

2

0 if |ξ| > 3
2
,

and thus

−
ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,ε
ξ ζ

σε

τε
uεξ dxdtdξ =−

ˆ 3
2

− 3
2

ˆ T

0

ˆ
U

ψζ
τε
σε
σε

τε
uεξ dxdtdξ

=−
ˆ 3

2

− 3
2

ˆ T

0

ˆ
U

ζ uεξ dxdtdξ

(because ψ ≡ 1 on (−3/2, 3/2) )

=

ˆ T

0

ˆ
U

ζ uε
(
x, t,−3

2

)
− ζ uε

(
x, t,

3

2

)
dxdt

−→
ˆ T

0

ˆ
U

ζ (2α− 2β) dxdt (by Lemma 5).

(1.51)

Combining (1.50) − (1.51) with (1.49), we get

lim
ε→0

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ =

ˆ T

0

ˆ
U

ζ (2α− 2β) dxdt.

5. To conclude, letting ε → 0 in (1.43) and using Steps 2 − 4, we to deduce that α and
β must satisfy
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1

κ

ˆ T

0

ˆ
U

(−αt + βt) ζdxdt+
1

κ

ˆ T

0

ˆ
U

(−a−1∇α + a1∇β) · (∇ζ) dxdt

=

ˆ T

0

ˆ
U

ζ (2α− 2β) dxdt. (1.52)

Approximating general ζ ∈ H1
0 (U × [0, T ]) with ζ ∈ C∞c (U × [0, T ]), we conclude that

(1.52) holds for ζ ∈ H1
0 (U × [0, T ]) as well, and therefore α and β are weak solutions of

1

κ
(−αt + βt) +

1

κ
(a−1∆α− a1∆β) = 2α− 2β,

which we can rewrite as

(αt − βt) + (−a−1∆α + a1∆β) = 2κ (β − α) . (1.53)

6. We need another identity relating α and β. For this, repeat the same proof as above,
but this time define

φ2,ε(ξ) :=

ˆ b2(ξ)

0

τε
σε
dξ,

where (see again Figure 1.6)

b2(ξ) :=


−3

2
if ξ < −3

2

ξ if − 3
2
< ξ < −1

2

−1
2

if ξ > −1
2
.

Using ψφ2,εζ as our new test-function in (1.4), and integrating on D × [0, T ], we get

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,εζuεtσ
ε dxdtdξ −

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,εζaε (∆uε)σε dxdtdξ

=

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ. (1.54)

As before, because φ2,ε(ξ) converges uniformly to − 1
κ

on
(
−3

2
,−1

2

)
and to − 1

κ
on
(
1
2
, 3
2

)
,

the first integral on the left-hand-side of (1.54) converges to

lim
ε→0

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,εζuεtσ
ε dξdxdt = −1

κ

ˆ T

0

ˆ
U

(αt + βt) ζdxdt.

By the same argument, the second integral on the left-hand-side of (1.54) converges to
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lim
ε→0

ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,ε (∇ρε) · (∇ζ) dξdxdt = −1

κ

ˆ T

0

ˆ
U

(∇α +∇β) · ∇ζdxdt.

Finally, integrating the right-hand-side of (1.54) by parts with respect to ξ, and using that

φ2,ε
ξ =


0 if ξ < −3

2

τε
σε

if − 3
2
< ξ < −1

2

0 if ξ > −1
2
,

we see that the right-hand-side of (1.54) converges to

lim
ε→0
−
ˆ 3

−3

ˆ T

0

ˆ
U

ψφ2,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ =

ˆ T

0

ˆ
U

ζ (2α− 2α) dxdt = 0.

By (1.54) and an approximation-argument, we deduce that α and β are weak solutions of

1

κ
(−αt − βt) +

1

κ
(a−1∆α + a1∆β) = 0,

which can be rewritten as

αt + βt − (a−1∆α + a1∆β) = 0. (1.55)

7. In conclusion, putting (1.53) and (1.55) together, we get that α and β are weak
solutions to {

αt − βt + (−a−1∆α + a1∆β) = 2κ (β − α)

αt + βt + (−a−1∆α− a1∆β) = 0,

which, solving for αt and βt, gives the desired reaction-diffusion system{
αt − a−1∆α =κ(β − α)

βt − a1∆β =κ(α− β).
(1.56)

8. Initial Condition

By comparing assumption (1.39) and Lemma 5 with t = 0 and ξ = ±3
2
, we obtain that

α(x, 0) = α0(x) and β(x, 0) = β0(x).

9. Boundary condition

First of all, notice that, in the above proof, we have never used the fact that ζ vanishes on
∂U × [0, T ]. Therefore, we can repeat the same proof, this time assuming ζ ∈ C∞(U × [0, T ])
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only, and hence, by approximation, we deduce that (1.52) is valid for all ζ ∈ H1(U × [0, T ]).
Moreover, regularity theory for linear constant-coefficient systems of parabolic PDE implies
that α and β are in fact smooth. This allows us to integrate by parts with respect to x in
the second term on the left-hand-side of (1.52) again to obtain

1

κ

ˆ T

0

ˆ
U

(−αt + βt) ζdxdt+
1

κ

ˆ T

0

ˆ
∂U

(
−a−1

∂α

∂ν
+ a1

∂β

∂ν

)
ζdxdt

+
1

κ

ˆ T

0

ˆ
∂U

(a−1∆α− a1∆β) ζdxdt =

ˆ T

0

ˆ
U

(2α− 2β) ζdxdt,

which we may rewrite as

1

κ

ˆ T

0

ˆ
∂U

(
−a−1

∂α

∂ν
+ a1

∂β

∂ν

)
ζdxdt

=
1

κ

ˆ T

0

ˆ
U

(αt − βt − a−1∆α + a1∆β + 2κα− 2κβ) ζdxdt. (1.57)

However, because α and β are smooth, it follows from (1.56) that the right-hand-side of
(1.57) is 0, and therefore

ˆ T

0

ˆ
∂U

(
−a−1

∂α

∂ν
+ a1

∂β

∂ν

)
ζdxdt = 0.

Since ζ was arbitrary in H1(U × [0, T ]), we get that

−a−1
∂α

∂ν
+ a1

∂β

∂ν
= 0 (1.58)

in the weak sense on ∂U × [0, T ].

Likewise, using the integrated version of (1.55), one obtains that

−a−1
∂α

∂ν
− a1

∂β

∂ν
= 0. (1.59)

in the weak sense. Solving for ∂α
∂ν

and ∂β
∂ν

in (1.58) and (1.59) we obtain that ∂α
∂ν

= 0 and
∂β
∂ν

= 0 in the weak sense. But by (1.42) and again by the regularity theory for linear
constant-coefficient systems of parabolic PDE, this holds in the classical sense as well.

1.10 Comparison with other methods of proof

As mentioned before, the convergence result in the main theorem has already been proved
independently by Peletier-Savaré-Veneroni [48], Herrmann-Niethammer [29], and Arnrich et.
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al. [3]. In this section, we briefly outline their proofs. Notice in particular the similarity in
their approach: all three papers reformulate both (1.3) and (1.5) in a common variational
framework; an L2 gradient flow-structure for [48], and a Wasserstein structure for [29] and
[3]. This is motivated by a recent trend to use gradient-flow structures to pass to the limit
in general time-evolving systems; see for example the papers by Ambrosio et. al. [2], Mielke
et. al. [41], Mielke and Stefanelli [42], Sandier [53], Serfaty [55], or Stefanelli [59]. Moreover,
in order to pass to the limit they all use (a version of) Γ−convergence, which is one of the
most powerful tools for the rigorous study of singular variational problems. See the papers
by Dal Maso [17] and De Giorgi et. al. [18] for an overview of Γ−convergence.

Proof by Peletier-Savaré-Veneroni

The authors in [48] prove the same result as in the main theorem, but under slightly
weaker assumptions; namely, they do not assume (1.38) any more, and (1.39) is replaced
with an assumption on the weak−?-convergence of ρε0. Moreover, their potential function H
is only defined on [−1, 1], which leads to the following change in the definition of κ:

κ =

√
|H ′′(0)|H ′′(1)

π
.

The main idea in their proof is to rewrite both (1.4) and (1.5) as variational evolution
equations in a common space of measures. Inspired by the ideas of Spagnolo [57, 58, 20] (see
also the books by Attouch [5] and Brézis [14]), they rewrite both equations as L2 gradient
flow structures. The advantage of this formulation is to shift the study of the convergence
of solutions to the convergence of quadratic forms.

The second main idea is to pass to the limit in the formulation for (1.4). After stating and
proving regularization estimates similar to (1.18) and (1.23), the authors then show that the
quadratic forms associated to (1.4) Γ−converge to the ones associated to (1.5). This entails
in proving both a liminf-inequality, as well as a limsup-property. Using this, one can finally
pass to the limit as ε → 0 in the formulation of (1.4), to eventually obtain the formulation
of (1.5).

In their proof, an important role is played by the minimal transition cost

Kε(φ−, φ+) :=

{
τε

ˆ 1

−1
(φ′(ξ))

2
σεdξ : φ ∈ H1(−1, 1), φ(±1) = φ±

}
.

This can be used to construct an appropriate interpolation between the ‘boundary values’
φ±. One can moreover show that

lim
ε→0

Kε

(
−1

2
,
1

2

)
= κ. (1.60)
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This gives a new interpretation of the constant κ, which can now be seen as the limit of the
minimal transition cost. Let us note that, in our forthcoming paper with Evans [21], we use
an analog of Kε to treat the higher-dimensional version of (1.3).

The authors also prove a slightly stronger convergence-result, which says that, under the
additional assumption of ‘strong’ convergence of the initial data, we have an appropriate
‘strong’ convergence of the solutions (cf. the papers by Hutschinson [31] and Rešetnjak[51],
as well as section 5.4 in Ambrosio et. al. [1]). This notion is inspired by Hilbert spaces,
where strong convergence is equivalent to weak convergence together with convergence of
the norms. The convergence here is strong enough to pass to the limit in suitable nonlinear
functions of uε, cf. Corollary 3.3 in Peletier-Savaré-Veneroni [48].

Finally, let us remark that their proof relies heavily on the linearity of (1.4); for example
they use the parallelogram law to extend the definitions of the quadratic forms. It is not
clear to us how to adapt the proof to study nonlinear versions of (1.4).

Proof by Herrmann-Niethammer

The authors in [29] provide a different proof of the same result, in an attempt to answer
the following question posed by Peletier-Savaré-Veneroni [48]: “Can (1.3) and (1.5) be in-
terpreted within the Wasserstein gradient flow-framework?” This Wasserstein-structure was
pioneered by Otto (see the papers by Otto et. al. [47] and Jordan et. al. [32]) and relies on
the interpretation of ρε as a mass distribution that is transported so as to reduce a certain
free energy. This structure is known to arise in a wide range of models of systems; see for
example the papers by Ambrosio [1], Blanchet et. al. [12], Carrillo et. al. [16], Gangbo et.
al. [15], Gigli [25], Gianazza et. al. [24], Matthes et. al. [39], and Savaré [54].

The crux of their proof lies in expressing both (1.3) and (1.5) as integrated Rayleigh
principles. This principle has previously only been used in finite dimensions (see for exam-
ple the papers by Otto [46] and Niethammer-Oshita [45]), so the application to parabolic
PDE is new. The rough idea is to interpret the solutions of (1.3) and (1.5) as minimiz-
ers of suitable integral energy functionals on manifolds. The authors then show that the
Rayleigh principle associated to (1.4) Γ−converges to the one associated to (1.5), which, as
usual, entails a liminf-inequality and a limsup-property (technically, they only show that the
liminf-inequality only holds along a particular sequence of minimizers, but this is enough to
conclude).

It is to be noted that their proof starts out identical to ours, in the sense that they prove
the regularization estimates (1.18) and (1.23), and show that the compactness estimates
(1.28) − (1.29) in Lemma 3 hold, thereby extracting suitable convergent subsequences of
ρε, as in Lemma 4. In addition, although they do not explicitly state it, they also use the
Prahgmen-Lindelöf principle (Theorem 10 in section 2.6 of the book by Protter and Wein-
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berger [49]), a version of the maximum principle that applies to unbounded domains, to show
that we have uε > C for some constant C > 0 independent of ε. This is useful to estimate
terms involving 1/uε.

An important tool in their proof is the following first-order approximation ũε, of uε, which
can be contrasted with Lemma 5:

ũε(x, t) := 1 + (u(t)− 1)ηε(x), where ηε(x) := 2

( ´ x
0

1/σεdy´ 1
−1 1/σεdy

)
.

It says that uε is close to a step-function, but exhibits a narrow boundary-layer near x = 0,
whose shape is determined by σε (here the authors use x instead of ξ), as depicted in Figure
1.7.

Figure 1.7: uε exhibiting a boundary layer at 0

Notice that by using our test functions φ1,ε and φ2,ε, we effectively bypass this transition
layer, as witnessed by the term uε

(
x,−3

2
, t
)
− uε

(
x, 3

2
, t
)

in (1.51).

Proof by Arnrich et. al.

According to the authors in [3], the main issue with the proof of Herrmann-Niethammer
[29] is that the compactness results (Lemma 4) do not follow from the Wasserstein gradient
structure, but instead from the L2 gradient-flow structure; this is because Herrmann and
Niethammer rely on the estimates (1.18) and (1.23) instead of estimates provided by the
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Wasserstein-structure. Moreover, they note that the integrated Rayleigh-principle is gener-
ally ill-behaved with respect to perturbations of the minimizers. They provide an example
of a functional I for which, given a certain minimizer u, there is a sequence of functions un

converging to u for which the value of the integrated Rayleigh principle of I at un diverges
to −∞.

As a consequence, in their paper [3] (which can be considered as a sequel of the paper
by Peletier-Savaré-Veneroni [48]), the authors try to correct those issues, and furthermore
provide a complete answer to the question posed in the previous section. They solve the
problem (with Robin boundary-conditions) using the Wasserstein gradient flow-structure of
(1.3) only (see the papers by Otto [47], and Jordan [32]). To achieve this, they rewrite both
(1.3) and (1.5) in the form A(z; 0, T ) = 0, where A in the (1.3)-case is an action functional
that captures the property of z being a curve of ‘maximal slope,’ and A in the (1.5)-case is
a “simplified” action functional. This formulation was pioneered by DeGiorgi (see De Giorgi
et. al. [19]) and further studied in Sandier [53] and Stefanelli [59], and can be generalized to
topological spaces equipped with a lower semicontinuous pseudo-distance. It is interesting
to note that, for A in (1.5), they use a similar minimal transition cost to interpolate between
values of u at ξ = ±1.

Then, just like in the above papers, after proving a suitable compactness result for ρε,
they show that the formulation of (1.3) Γ−converges to the one of (1.5), which again involves
a liminf-inequality and a limsup-property (although, strictly speaking, the latter property is
not really needed). Their proof involves a mixture of measure theory, optimal transport and
entropy-dissipation-techniques, and the use of certain continuity-equations (see the paper by
Benamou-Brenier [6]). Interestingly, note that for the compactness result, one only needs
the fact that A(ρε) is uniformly bounded with respect to ε, which allows them to potentially
generalize this result to a wider class of equations.

A second fundamental idea in their proof is a change of variable ξ 7→ s, which changes
the function uε, which has a near-discontinuity at ξ = 0, to a smooth function ûε that has
a slope of order O(1), as in Figure 1.8 on the next page. This approach is reminiscent of
the cell-problem in homogenization (see Hornung [30]) or the ‘inner’ and ‘outer’-layers in
singular perturbation theory (see Villani [60]). This change of variable allows the authors to
desingularize the diffusion term τεu

ε
ξξ, and therefore enables them to study the limit behavior

of uε more carefully.
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Figure 1.8: The smoothing effect of the change of variable ξ 7→ s (adapted from Arnrich [3])
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Chapter 2

A Triple Well−Model

2.1 Introduction

In this chapter, H = H(ξ) is a smooth, nonnegative, and even triple-well potential
function with H(1) = H(3) = 1, H(0) = H(2) = 0, local minima at 0 and 2, a local
maximum at 1, and is increasing on (0, 1), decreasing on (1, 2), and increasing on (2,∞).
Assume furthermore that H ′′(0) = H ′′(2); we will get rid of this last assumption in section
2.4.

Figure 2.1: A triple-well potential function H
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Given that most of the proofs in the previous chapter remain unchanged, we will only
state the main results with the appropriate modifications.

2.2 Estimates

Basic estimates

The basic estimates (1.18) and (1.23) stay the same, and we make the same assumptions
(1.37) and (1.38) on the initial conditions as before.

Study of the density σε

The asymptotics for e−
H̄ε
ε2 change to

e−
H̄ε
ε2 =

ˆ

R

e−
H(ξ)

ε2 dξ

=

ˆ −1
−∞

e−
H(ξ)

ε2 dξ +

ˆ 1

−1
e−

H(ξ)

ε2 dξ +

ˆ ∞
1

e−
H(ξ)

ε2 dξ

=ε
√

2π

(
1√

H ′′(−2)
+

1√
H ′′(0)

+
1√
H ′′(2)

)
(1 + o(1))

=ε
3
√

2π√
H ′′(0)

(1 + o(1)).

In the first equality, we used our normalization condition
´
R σ

εdξ = 1, whereas in the
third equality, we used Laplace’s method (Theorem 1) and our assumption that H ′′(−2) =
H ′′(0) = H ′′(2). Therefore

e
H̄ε
ε2 =

1

ε

√
H ′′(0)

3
√

2π
(1 + o(1)).

Because of this change, we need to appropriately modify the compactness estimates
(Lemma 3). Recall that δ = δ(ε) = ε

3
4 .

Lemma 7. Define Iδ := (−2− δ,−2 + δ) ∪ (−δ, δ) ∪ (2− δ, 2 + δ) and Jδ := (−3− δ,−3 +
δ) ∪ (−1− δ,−1 + δ) ∪ (1− δ, 1 + δ) ∪ (3− δ, 3 + δ). As ε→ 0, we have

sup
R\Iδ

σε −→ 0,

ˆ

R\Iδ

σεdξ −→ 0,

ˆ ±2+δ
±2−δ

σεdξ −→ 1

3
,

ˆ δ

−δ
σεdξ −→ 1

3
, (2.1)
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inf
(−3,3)\Jδ

σε

τε
−→∞,

ˆ

(3,4)

σε

τε
dξ −→ 0, (2.2)

ˆ ±1+δ
±1−δ

τε
σε
dξ −→ 3

κ
,

ˆ

(−3,3)\Jδ

τε
σε
dξ −→ 0. (2.3)

Compactness lemma

We can therefore extract a convergence subsequence of ρε (relabeled as ρε), as well as
functions α, β, γ ∈ H1(U × [0, T ]) such that ρε ⇀ α δ−2 + β δ0 + γ δ2 with (appropriately
modified) estimates as in Lemma 4.

Lemma 8. As ε→ 0, we get
uε → 3α a.e. on U × (−3,−1)

uε → 3β a.e. on U × (−1, 1)

uε → 3γ a.e. on U × (1, 3).

Note: Without loss of generality, assume that the convergence holds a.e. on U ×{
ξ = ±5

2
,−1

2

}
.

2.3 Main theorem

Theorem 3. Under the same assumptions (1.37), (1.38), and (1.40), but changing (1.39)
to 

uε0 → 3α0 a.e. on U ×
{
ξ = −5

2

}
uε0 → 3β0 a.e. on U ×

{
ξ = −1

2

}
uε0 → 3γ0 a.e. on U ×

{
ξ =

1

2

}
,

(2.4)

for some smooth α0 = α0(x), β0 = β0(x), and γ0 = γ0(x); as well as changing (1.41) to

aε −→ a = a(ξ) uniformly on

(
−5

2
,−3

2

)
,

(
−1

2
,
1

2

)
and

(
3

2
,
5

2

)
, (2.5)

we get that, on D × [0, T ], as ε→ 0,

ρε(x, ξ, t)
?
⇀ α(x, t)δ−2 + β(x, t)δ0 + γ(x, t)δ2,
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where the functions α, β, γ are weak solutions of the following system of reaction-diffusion
equations: 

αt − a−2∆α =κ (β − α)

βt − a0∆β =κ (α− 2β + γ) in U × [0, T ]

γt − a2∆γ =κ (β − γ)

∂α

∂ν
=
∂β

∂ν
=
∂γ

∂ν
= 0 on ∂U × [0, T ]

α = α0, β =β0, γ = γ0 on U × {t = 0} .

(2.6)

Proof. Since the proof is similar to the one in chapter 1, we will only lay out the main steps.

1. Let ψ = ψ(ξ) be a smooth, even cutoff-function supported on [−4, 4] such that
0 ≤ ψ ≤ 1, ψ ≡ 1 on

[
−7

2
, 7
2

]
, and |ψ′| ≤ C, as in the following figure:

Figure 2.2: The cutoff function ψ

Also define

φ1,ε(ξ) :=

ˆ b1(ξ)

−1

τε
σε
dξ,

where
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b1(ξ) :=


−5

2
if ξ < −5

2

ξ if − 5
2
< ξ < −1

2

−1
2

if ξ > −1
2
,

Figure 2.3: The functions b1, b2, and b3

and finally, let ζ = ζ(x, t) ∈ C∞c (U × [0, T ]) be arbitrary.

Using ψφ1,εζ as our test-function in (1.4), and integrating over D × [0, T ], we get

ˆ 4

−4

ˆ T

0

ˆ
U

ψφ1,εζuεtσ
ε dxdtdξ −

ˆ 4

−4

ˆ T

0

ˆ
U

ψφ1,εζaε (∆uε)σε dxdtdξ

=

ˆ 4

−4

ˆ T

0

ˆ
U

ψφ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ, (2.7)

and it remains to study all three terms of above identity.
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2. Study of the first term on the left-hand-side of (2.7)

Since φ1,ε(ξ) converges uniformly to − 3
2κ

on
(
−5

2
,−3

2

)
, to 3

2κ
on
(
−1

2
, 1
2

)
, and to 3

2κ
on(

3
2
, 5
2

)
, the first term on the left-hand-side of (2.7) goes to

lim
ε→0

ˆ 4

−4

ˆ T

0

ˆ
U

ψφ1,εζuεtσ
ε dxdtdξ =

3

2κ

ˆ T

0

ˆ
U

(−αt + βt + γt) ζdxdt. (2.8)

3. Study of the second term on the left-hand-side of (2.7)

Similarly, by (2.5), the second term on the left-hand-side of (2.7) goes to

lim
ε→0
−
ˆ 4

−4

ˆ T

0

ˆ
U

ψφ1,εζ (∆uε)σε dxdtdξ =
3

2κ

ˆ T

0

ˆ
U

(−a−2∇α + a0∇β + a2∇γ) · (∇ζ) dxdt

(2.9)

4. Study of the term on the right-hand-side of (2.7)

Integrating by parts with respect to ξ, using ψ(−4) = ψ (4) = 0, and because by con-
struction

φ1,ε
ξ =


0 if ξ < −5

2

τε
σε

if − 5
2
< ξ < −1

2

0 if ξ > −1
2
,

the term on the right-hand-side of (2.7) goes to

lim
ε→0
−
ˆ 4

−4

ˆ T

0

ˆ
U

ψφεζ

(
σε

τε
uεξ

)
ξ

dxdtdξ = 3

ˆ T

0

ˆ
U

ζ (α− β) dxdt. (2.10)

5. Therefore, letting ε → 0, adding up all the three terms in (2.7), and using an
approximation-argument, we conclude that α, β, γ are weak solutions of

3

2κ
(−αt + βt + γt) +

3

2κ
(a−2∆α− a0∆β − a2∆γ) = 3α− 3β,

which we may rewrite as

(αt − βt − γt) + (−a−2∆α + a0∆β + a2∆γ) = 2κ (β − α) . (2.11)

6. To get the second equation, repeat the same proof, but this time define
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φ2,ε(ξ) :=

ˆ b2(ξ)

1

τε
σε
dξ,

where

b2(ξ) =


−1

2
if ξ < −1

2

ξ if − 1
2
< ξ < 5

2

5
2

if ξ > 5
2
.

In that case, using the facts that φ2,ε goes to − 3
2κ

, − 3
2κ

, and 3
2κ

uniformly on
(
−5

2
,−3

2

)
,(

−1
2
, 1
2

)
and

(
3
2
, 5
2

)
respectively, and that

φ2,ε
ξ =


0 if ξ < −1

2

τε
σε

if − 1
2
< ξ < 3

2

0 if ξ > 3
2
,

we obtain that α, β, γ are weak solutions of

3

2κ
(−αt − βt + γt) +

3

2κ
(a−2∆α + a0∆β − a2∆γ) = 3β − 3γ,

which becomes

(αt + βt − γt) + (−a−2∆α− a0∆β + a2∆γ) = 2κ (γ − β) . (2.12)

7. Finally, to get the third equation, you can either use the fact that γ = 1− α − β, or
repeat the same proof, but this time defining

φ3,ε(ξ) :=

ˆ b3(ξ)

−1

τε
σε
dξ,

where

b3(ξ) :=


−5

2
if ξ < −5

2
,

ξ if − 5
2
< ξ < 5

2

5
2

if ξ > 5
2
,

and this time, using that φ3,ε goes to − 3
2κ

, 3
2κ

, and 9
2κ

uniformly on
(
−5

2
,−3

2

)
,
(
−1

2
, 1
2

)
, and(

3
2
, 5
2

)
respectively, as well as that
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φ3,ε
ξ =


0 if ξ < −5

2

τε
σε

if − 5
2
< ξ < 5

2

0 if ξ > 5
2
,

we obtain

3

2κ
(−αt + βt + 3 γt) +

3

2κ
(a−2∆α− a0∆β − 3a2∆γ) = 3α− 3γ,

which becomes

(αt − βt − 3 γt) + (−a−2∆α + a0∆β + 3a2∆γ) = 2κ (γ − α) . (2.13)

8. In conclusion, from (2.11) − (2.13), we obtain that α, β, γ are weak solutions of the
system 

(αt − βt − γt) + (−a−2∆α + a0∆β + a2∆γ) =2κ (β − α)

(αt + βt − γt) + (−a−2∆α− a0∆β + a2∆γ) =2κ (γ − β)

(αt − βt − 3 γt) + (−a−2∆α + a0∆β + 3a2∆γ) =2κ (γ − α) ,

which, solving for αt, βt, and γt, gives us the desired reaction-diffusion system
αt − a−2∆α =κ (β − α)

βt − a0∆β =κ (α− 2β + γ)

γt − a2∆γ =κ (β − γ) .

9. Finally, we obtain the boundary conditions ∂α
∂ν

= ∂β
∂ν

= ∂γ
∂ν

= 0 on ∂U ×R× [0, T ] just
like we did in chapter 1, and likewise we obtain the initial conditions α(x, 0) = α0, β(x, 0) =
β0, γ(x, 0) = γ0 on U using assumption (2.4).

2.4 Generalization

Introduction

Assume again that H is a triple-well function, but time do not assume that H ′′(−1) =
H ′′(1) and H ′′(−2) = H ′′(0) = H ′′(2) any more. Notice that H is not necessarily even any
more.
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Figure 2.4: A generalized triple-well potential function H

In that case, define

p :=

(
1√

H ′′(−2)
+

1√
H ′′(0)

+
1√
H ′′(2)

)−1
, pi =

p√
H ′′(i)

, κ± :=
3p
√
|H ′′(±1)|
2π

.

Then the proof in the previous section remains unmodified, except that our asymptotic

estimate of e−
H̄ε
ε2 changes to

e−
H̄ε
ε2 =

ˆ

R

e−
H(ξ)

ε2 dξ

=

ˆ −1
−∞

e−
H(ξ)

ε2 dξ +

ˆ 1

−1
e−

H(ξ)

ε2 dξ +

ˆ ∞
1

e−
H(ξ)

ε2 dξ

=ε
√

2π

(
1√

H ′′(−2)
+

1√
H ′′(0)

+
1√
H ′′(2)

)
(1 + o(1))

=ε

√
2π

p
(1 + o(1)),
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and hence

e
H̄ε
ε2 =

1

ε

p√
2π

(1 + o(1)).

Study of the density σε

The only modification to Lemma 7 is that, as ε→ 0,

ˆ ±2+δ
±2−δ

σεdξ −→ p±2

ˆ δ

−δ
σεdξ −→ p0

ˆ ±1+δ
±1−δ

τε
σε
dξ −→ 3

κ±
.

Main theorem

The statement of the main theorem remains unchanged. The only difference in the proof
is that, using φ1,εψζ as our test function, we obtain that α, β, γ satisfy

3

2κ−
(−αt + βt + γt) +

3

2κ−
(a−2∆α− a0∆β − a2∆γ) =

1

p−2
α− 1

p0
β,

which can be rewritten as

(αt − βt − γt) + (−a−2∆α + a0∆β + a2∆γ) =
2κ−

3

(
1

p0
β − 1

p−2
α

)
. (2.14)

Using φ2,εψζ, we obtain

3

2κ+
(−αt − βt + γt) +

3

2κ+
(a−2∆α + a0∆β − a2∆γ) =

1

p0
β − 1

p2
γ,

which becomes

(αt + βt − γt) + (−a−2∆α− a0∆β + a2∆γ) =
2κ+

3

(
1

p2
γ − 1

p0
β

)
. (2.15)

Finally, using φ3,εψζ, we infer that

3

2κ−
(−αt + βt + γt) +

3

2κ+
γt +

3

2κ−
(a−2∆α− a0∆β − a2∆γ)− 3

2κ+
a2∆γ =

1

p−2
α− 1

p2
γ,

which we may rewrite as
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(αt − βt − γt)− 2

(
κ−

κ+

)
γt + (−a−2∆α + a0∆β + a2∆γ) + 2

(
κ−

κ+

)
a2∆γ

=
2κ−

3

(
1

p2
γ − 1

p−2
α

)
. (2.16)

Putting (2.14) − (2.16) together, we conclude that


(αt − βt − γt) + (−a−2∆α + a0∆β + a2∆γ) = 2κ−

3

(
β
p0
− α

p−2

)
(αt + βt − γt) + (−a−2∆α− a0∆β + a2∆γ) = 2κ+

3

(
γ
p2
− β

p0

)
(αt − βt − γt)− 2

(
κ−

κ+

)
γt + (−a−2∆α + a0∆β + a2∆γ) + 2

(
κ−

κ+

)
a2∆γ = 2κ−

3

(
γ
p2
− α

p−2

)
,

which, after solving for αt, βt, and γt, ultimately gives us the system of reaction-diffusion
equations (the initial and boundary conditions are treated as before)

αt − a−2∆α =
κ−

3

(
β

p0
− α

p−2

)
βt − a0∆β =

κ−

3

(
α

p−2
− β

p0

)
+
κ+

3

(
γ

p2
− β

p0

)
in U × [0, T ]

γt − a2∆γ =
κ+

3

(
β

p0
− γ

p2

)
∂α

∂ν
=
∂β

∂ν
=
∂γ

∂ν
= 0 on ∂U × [0, T ]

α = α0, β =β0, γ = γ0 on U × {t = 0} .

(2.17)

Note: Notice that if H ′′(−2) = H ′′(0) = H ′′(2) and H ′′(−1) = H ′′(1), then p−2 = p0 =
p2 := p′ and κ− = κ+ := κ′, and (2.17) indeed reduces to (2.6), with κ = κ′

3p′
.
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Chapter 3

Periodic Wells

3.1 Introduction

Similar to the previous chapter, assume here that H = H(ξ) is a smooth, nonnegative,
and even triple-well function defined on

[
−5

2
, 7
2

]
, with H(1) = H(3) = 1, H(2) = H(0) = 0

with local maxima at 1 and 3, and local minima at 0 and 2, as well as H increasing on
(0, 1), decreasing on (1, 2), increasing on (2, 3), and decreasing on

(
3, 7

2

)
. Moreover, assume

that H ′′(0) = H ′′(2) and H ′′(1) = H ′′(3). This time, however, identify the points ξ = −5
2

and ξ = 7
2
, so H becomes a potential with periodic wells, as in Figure 3.1 on the next

page. In order to get a meaningful asymptotic limit, assume furthermore that H is peri-
odic of period 2, so each well of H has the same structure. Of course, to assure that our
solutions uε of (1.4) are be periodic with respect to ξ with period 4, we need to guarantee
that both aε and our initial conditions uε0 are periodic with respect to ξ with period 4 as well.

In this case, we need to change our notation slightly: Let T =
[
−5

2
, 7
2

]
(with −5

2
and 7

2

identified) and D = U × T, and define σε := e
Hε−H
ε2 , where Hε is chosen so that

ˆ
T
σεdξ =

ˆ
T
e
Hε−H
ε2 dξ = 1,

and finally let

κ :=

√
H ′′(0) |H ′′(1)|

2π
.

3.2 Estimates

Basic estimates

The basic estimates (1.18) and (1.23) stay the same, and we make the same assumptions
(1.37) − (1.38) on the initial conditions.
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Figure 3.1: A potential H with periodic wells

Study of the density σε

As before,
´
T σ

εdξ = 1 and Laplace’s method imply

e−
H̄ε
ε2 = ε

3
√

2π√
H ′′(0)

(1 + o(1)),

whence

e
H̄ε
ε2 =

1

ε

√
H ′′(0)

3
√

2π
(1 + o(1)).

Let δ = ε
3
4 be chosen as usual.

Lemma 9. Define Iδ := (−2− δ,−2 + δ) ∪ (−δ, δ) ∪ (2− δ, 2 + δ) and Jδ := (−1− δ,−1 +
δ) ∪ (1− δ, 1 + δ). As ε→ 0, we have that

ˆ ±2+δ
±2−δ

σεdξ −→ 1

3
,

ˆ δ

−δ
σεdξ −→ 1

3
,

ˆ

T\Iδ

σεdξ −→ 0, sup
T\Iδ

σε −→ 0 (3.1)

inf
T\Jδ

σε

τε
−→∞, (3.2)
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ˆ ±1+δ
±1−δ

τε
σε
dξ −→ 3

κ

ˆ 3+δ

3−δ

τε
σε
dξ −→ 3

κ
,

ˆ

T\Jδ

τε
σε
dξ −→ 0. (3.3)

The proofs are the same, except that we ignore any terms that previously involved H ′(2).
For example, let us prove (3.2).

Proof of (3.2). If ξ ∈ T\Jδ =
[
−5

2
,−1− δ

)
∪ (−1 + δ, 1 − δ) ∪

(
1 + δ, 7

2

]
, then by Taylor

expansion, we obtain

H(ξ) ≤ max (H(1− δ), H(1 + δ)) ≤ 1 + o(δ)− δ2

2
|H ′′(1)| ,

and therefore

σε

τε
=ε2e

1
ε2 e

H̄ε−H
ε2

≥

(
1

ε

√
H ′′(0)

3
√

2π
(1 + o(1))

)
ε2e

1
ε2 e

−1+o(δ)+ δ2

2 |H′′(1)|
ε2

≥

(√
H ′′(0)

3
√

2π
(1 + o(1))

)
ε e

1
2
|H′′(1)|( δε )

2

e
o(δ)

ε2

−→∞ (by (1.27)),

from which (3.2) and the third part of (3.3) follow.

Compactness lemma

Using Lemma 9, we are now ready to extract a convergent subsequence from ρε (relabeled

as ρε) such that ρε
?
⇀ αδ−2 + βδ0 + γδ2 for some functions α, β, γ, with the appropriate

estimates. As before, we obtain that, as ε→ 0,

Lemma 10. 
uε → 3α a.e. on U ×

[
−5

2
,−1) ∪ (3, 7

2

]
uε → 3β a.e. on U × (−1, 1)

uε → 3γ a.e. on U × (1, 3)

Proof. While the U × (−1, 1)−case and the U × (1, 3)−case are the same as before, the
U ×

[
−5

2
,−1

)
∪
(
3, 7

2

]
−case needs to be modified a bit. In that case, given c such that

−5
2
< c < 1, by repeating the same proof as the other cases but integrating over

[
−5

2
, c
]
, we

can show that, on U ×
[
−5

2
,−1

)
, uε −→ u for some function u = u(x, t). Using ρε = σεuε,
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integrating with respect to ξ on (−2− δ,−2 + δ) and using (3.1), we get u = 3α. Now given
c′ with 3 < c′ < 7

2
, repeating the same proof, but integrating over

(
c′, 7

2

]
, we obtain that on

U ×
(
3, 7

2

]
, uε −→ v a.e. for some (possibly different) function v = v(x, t). Without loss of

generality, we can assume that this convergence actually holds for ξ = −5
2
, that is uε −→ u

a.e. on U ×
{
ξ = −5

2

}
. Then, because we have identified ξ = −5

2
and ξ = 7

2
we in fact get

u = v a.e., and therefore uε −→ 3α on
(
3, 7

2

]
as well.

Note: Without loss of generality, assume that the convergence in Lemma 10 moreover holds
a.e. on U ×

{
ξ = −13

4
,−11

4
,±5

4
,±3

4

}
.

3.3 Main theorem

We are now ready to state and prove our main theorem.

Theorem 4. Using the assumptions (1.37) − (1.38), (1.40) in chapter 1 and assumption
(2.5) in chapter 2, but changing (2.4) to

uε0 → 3α0 a.e. on U ×
{
ξ = −13

4

}
uε0 → 3β0 a.e. on U ×

{
ξ = −3

4

}
uε0 → 3γ0 a.e. on U ×

{
ξ =

5

4

}
,

(3.4)

and further assuming that aε ∈ C(T) and ξ 7→ uε0(x, ξ, t) is T−periodic, the statement of the
main theorem is exactly as in chapter 2, except that this time the corresponding functions
α, β, γ are weak solutions of the system of reaction-diffusion equations

αt − a−2∆α =κ (β + γ − 2α)

βt − a0∆β =κ (α + γ − 2β) in U × [0, T ]

γt − a2∆γ =κ (α + β − 2γ)

∂α

∂ν
= 0,

∂β

∂ν
= 0,

∂γ

∂ν
= 0 on ∂U × [0, T ]

α(x, 0) = α0, β(x, 0) =β0, γ(x, 0) = γ0 in U

(3.5)

Proof. The proof is similar to before, except that, on the one hand, we do not need the cutoff
function ψ, but, on the other hand, in order to handle boundary-values, we need to make
sure that each of our test-functions φ1,ε, φ2,ε, φ3,ε below has the same value at the endpoints
ξ = −5

2
and ξ = 7

2
.
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1. Define

φ1,ε(ξ) :=

ˆ b1(ξ)

−1

τε
σε
dξ,

where

b1(ξ) =



−5
4

if − 7
2
≤ ξ < −5

4

ξ if − 5
4
< ξ < −3

4

−3
4

if − 3
4
< ξ < 3

4

−ξ if 3
4
< ξ < 5

4

−5
4

if 5
4
< ξ ≤ 5

2
.

Figure 3.2: The functions b1, b2, and b3

Given an arbitrary function ζ ∈ C∞c (U × [0, T ]), using φ1,εζ as our test-function in (1.4),
and integrating over D × [0, T ], we get:
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ˆ
T

ˆ T

0

ˆ
U

φ1,εζuεtσ
ε dxdtdξ −

ˆ
T

ˆ T

0

ˆ
U

φ1,εζaε (∆uε)σε dxdtdξ

=

ˆ
T

ˆ T

0

ˆ
U

φ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ (3.6)

2. Study of the first term on the left-hand-side of (3.6)

Using that φ1,ε(ξ) converges uniformly to − 3
2κ

on
(
−5

2
,−3

2

)
, to 3

2κ
on
(
−1

2
, 1
2

)
and to − 3

2κ

on
(
3
2
, 5
2

)
by (3.3), we conclude that

lim
ε→0

ˆ
T

ˆ T

0

ˆ
U

φ1,εζuεtσ
ε dxdtdξ =

3

2κ

ˆ T

0

ˆ
U

(−αt + βt − γt) ζdxdt (3.7)

3. Study of the second term on the left-hand-side of (3.6)

In a similar fashion, we obtain

lim
ε→0
−
ˆ
T

ˆ T

0

ˆ
U

φ1,εζ (∆uε)σε dxdtdξ =
3

2κ

ˆ T

0

ˆ
U

(−a−2∇α + a0∇β − a2∇γ) · (∇ζ) dxdt.

(3.8)

4. Study of the term on the right-hand-side of (3.6)

Integrating by parts with respect to ξ and noticing that there are no boundary terms
because φ1,ε

(
−5

2

)
= φ1,ε

(
7
2

)
by construction, σε

(
−5

2

)
= σε

(
7
2

)
by assumption on H, and

uεξ
(
x, t,−5

2

)
= uεξ

(
x, t, 7

2

)
since we have identified −5

2
with 7

2
, we get

ˆ
T

ˆ T

0

ˆ
U

φ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ = −
ˆ
T

ˆ T

0

ˆ
U

φ1,ε
ξ ζ

σε

τε
uεξ dxdtdξ. (3.9)

Since by construction

φ1,ε
ξ =



0 if − 7
2
≤ ξ < −5

4

τε
σε

if − 5
4
≤ ξ < −3

4

0 if − 3
4
≤ ξ < 3

4

− τε
σε

if 3
4
≤ ξ < 5

4

0 if 5
4
< ξ ≤ 7

2
,
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the right-hand-side of (3.9) becomes

−
ˆ
T

ˆ T

0

ˆ
U

φ1,ε
ξ ζ

σε

τε
uεξ dxdtdξ = −

ˆ − 3
4

− 5
4

ˆ T

0

ˆ
U

ζ
τε
σε
σε

τε
uεξ dxdtdξ

−
ˆ 5

4

3
4

ˆ T

0

ˆ
U

ζ

(
− τε
σε(−ξ)

)
σε

τε
uεξ dxdtdξ

=

ˆ − 5
4

− 3
4

ˆ T

0

ˆ
U

ζ uεξ dxdtdξ +

ˆ 5
4

3
4

ˆ T

0

ˆ
U

ζ uεξ dxdtdξ

(since H is even)

=

ˆ T

0

ˆ
U

ζ

(
uε
(
x, t,−5

4

)
− uε

(
x, t,−3

4

))
dxdtdξ

+

ˆ T

0

ˆ
U

ζ

(
uε
(
x, t,

5

4

)
− uε

(
x, t,

3

4

))
dxdtdξ

−→
ˆ T

0

ˆ
U

ζ (3α− 3β) dxdt+

ˆ T

0

ˆ
U

ζ (3γ − 3β) dxdt

(by Lemma 10)

= 3

ˆ T

0

ˆ
U

ζ (α− 2β + γ) dxdt.

Putting everything together, we obtain

lim
ε→0

ˆ
T

ˆ T

0

ˆ
U

φ1,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ =

ˆ T

0

ˆ
U

ζ (3α− 6β + 3γ) dxdt. (3.10)

5. Therefore, letting ε→ 0 and applying (3.7) − (3.8) and (3.10) to (3.6), as well as an
approximation argument, we conclude that α, β, γ are weak solutions of

3

2κ
(−αt + βt − γt) +

3

2κ
(a−2∆α− a0∆β + a2∆γ) = 3α− 6β + 3γ,

which can be rewritten as

(αt − βt + γt) + (−a−2∆α + a0∆β − a2∆γ) = 2κ (−α + 2β − γ) . (3.11)

6. To get a second identity relating α, β, and γ, repeat the same proof, but this time
define

φ2,ε(ξ) :=

ˆ b2(ξ)

1

τε
σε
dξ,
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where

b2(ξ) :=



5
4

if − 7
2
≤ ξ < −13

4

−ξ − 2 if − 13
4
< ξ < −11

4

3
4

if − 11
4
< ξ < −3

4

ξ if 3
4
< ξ < 5

4

5
4

if 5
4
< ξ ≤ 5

2
.

Using an approximation argument and the facts that

(1) φ2,ε goes to − 3
2κ

uniformly on
(
−5

2
,−3

2

)
, to − 3

2κ
uniformly on

(
−1

2
, 1
2

)
and to 3

2κ
uni-

formly on
(
3
2
, 5
2

)
by (3.3),

(2) By construction

φ2,ε
ξ =



0 if − 7
2
≤ ξ < −13

4

− τε
σε(−ξ−2) if − 13

4
< ξ < −11

4

0 if − 11
4
< ξ < 3

4

τε
σε

if 3
4
< ξ < 5

4

0 if 5
4
< ξ ≤ 5

2

(3) σε(−ξ − 2) = σε(ξ) because H is even and 2−periodic,

we conclude that α, β, γ are weak solutions of

3

2κ
(−αt − βt + γt) +

3

2κ
(a−2∆α + a0∆β − a2∆γ) = 3α + 3β − 6γ,

which can be rewritten as

(αt + βt − γt) + (−a−2∆α− a0∆β + a2∆γ) = 2κ (−α− β + 2γ) . (3.12)

7. Finally, to obtain a third relation between α, β, and γ, you can either use the fact that
γ = 1− α− β, or repeat the same proof, but this time defining

φ3,ε(ξ) :=

ˆ b3(ξ)

−3

τε
σε
dξ,

where
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b3(ξ) :=



−13
4

if − 7
2
≤ ξ < −13

4

ξ if − 13
4
< ξ < −11

4

−11
4

if − 11
4
< ξ < −5

4

−ξ − 4 if − 5
4
< ξ < −3

4

−13
4

if − 3
4
< ξ ≤ 5

2
.

Again, by an approximation argument and because

(1) φ3,ε goes to 3
2κ

uniformly on
(
−5

2
,−3

2

)
, to − 3

2κ
uniformly on

(
−1

2
, 1
2

)
and to − 3

2κ
uni-

formly on
(
3
2
, 5
2

)
by (3.3),

(2) By construction

φ3,ε
ξ =



0 if − 7
2
≤ ξ < −13

4

τε
σε

if − 13
4
< ξ < −11

4

0 if − 11
4
< ξ < −5

4

− τε
σε(−4−ξ) if − 5

4
< ξ < −3

4

0 if − 3
4
< ξ ≤ 5

2
,

(3) σε(−4− ξ) = σε(ξ) because H is even and 2−periodic,

we conclude that α, β, γ are weak solutions of the equation

3

2κ
(αt − βt − γt) +

3

2κ
(−a−2∆α + a0∆β + a2∆γ) = −6α + 3β + 3γ,

which we may rewrite as

(−αt + βt + γt) + (a−2∆α− a0∆β − a2∆γ) = 2κ (2α− β − γ) (3.13)

8. In conclusion, combining (3.11), (3.12), (3.13), we obtain that α, β, γ satisfy the system
of reaction-diffusion equations

(αt − βt + γt) + (−a−2∆xα + a0∆xβ − a2∆xγ) = 2κ (−α + 2β − γ)

(αt + βt − γt) + (−a−2∆xα− a0∆xβ + a2∆xγ) = 2κ (−α− β + 2γ)

(−αt + βt + γt) + (a−2∆xα− a0∆xβ − a2∆xγ) = 2κ (2α− β − γ) .

Solving for αt, βt, and γt, we thereby obtain our desired reaction-diffusion system in U×[0, T ]:
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αt − a−2∆α =κ (β + γ − 2α)

βt − a0∆β =κ (α + γ − 2β)

γt − a2∆γ =κ (α + β − 2γ) .

9. The boundary condition ∂α
∂ν

= 0, ∂β
∂ν

= 0, ∂γ
∂ν

= 0 on ∂U × [0, T ] follows as in the
previous chapter, and the initial condition α(x, 0) = α0(x), β(x, 0) = β0(x), γ(x, 0) = γ0(x)
follows from Lemma 10 with t = 0 and assumption (3.4).
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Chapter 4

Infinitely-many wells

4.1 Introduction

In this chapter, we assume that H = H(ξ) is a smooth, nonnegative, and even potential
function with an infinite number of wells. This means that for every m ∈ Z, H(2m) = 0,
H(2m + 1) = 1, with local minima at ξ = 2m and local maxima at ξ = 2m + 1, and H
is increasing on (2m, 2m + 1) and decreasing on (2m − 1, 2m). Finally, assume that H is
periodic of period 2, that is, each well of H has the same structure.

Figure 4.1: An infinite-well potential H

Notation: In order to get a nontrivial asymptotic limit, we need to modify our nor-
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malization condition on σε a little bit. Assume that σε = e
Hε−H
ε2 , where Hε is chosen so

that

ˆ 1

−1
σεdξ =

ˆ 1

−1
e
Hε−H
ε2 dξ = 1,

and let

κ :=

√
H ′′(0) |H ′′(1)|

2π
.

4.2 Estimates

Basic estimates

The basic estimates (1.18) and (1.23) stay the same, and we make the same assumptions
(1.37) and (1.38) on the initial conditions.

Study of the density σε

In this case,
´ 1
−1 σ

εdξ = 1 and Laplace’s method imply

e−
H̄ε
ε2 =

1ˆ

−1

e−
H(ξ)

ε2 dξ = ε

(
2
√

2π√
H ′′(0)

)
(1 + o(1)),

and therefore

e
H̄ε
ε2 =

1

ε

(√
H ′′(0)

2
√

2π

)
(1 + o(1)).

Define δ = ε
3
4 be chosen as usual. The compactness estimates in this case are as follows:

Lemma 11. Let Ievenδ :=
∞⋃

m=−∞
(2m− δ, 2m+ δ) and Ioddδ :=

∞⋃
m=−∞

(2m+ 1− δ, 2m+ 1 + δ).

Then, for every m ∈ Z, we have, as ε→ 0,

sup
R\Ievenδ

σε −→ 0,

ˆ

R\Ievenδ

σεdξ −→ 0,

2m+δˆ

2m−δ

σεdξ −→ 1, (4.1)

inf
R\Ioddδ

σε

τε
−→∞ (4.2)
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ˆ

R\Ioddδ

τε
σε
dξ −→ 0,

2m+1+δˆ

2m+1−δ

τε
σε
dξ −→ 2

κ
. (4.3)

Compactness lemma

Using Lemma 11, we are able to extract a subsequence from ρε (relabeled as ρε) with the

property that ρε
?
⇀
∑∞

m=−∞ α
mδ2m for some functions αm ∈ H1(U × [0, T ]),m ∈ Z, with the

corresponding estimates. We also have that for every m ∈ Z, as ε→ 0,

Lemma 12. For all t ∈ [0, T ] and all m ∈ Z

uε(x, ξ, t) −→ αm(x, t) a.e. on U × (2m− 1, 2m+ 1).

Without loss of generality, assume that the convergence holds a.e. on U×{ξ = 2m | m ∈ Z} .

4.3 Main theorem

Theorem 5. Assume (1.37) − (1.38) as before, but change assumption (1.39) to

uε0 −→ 2αm0 a.e. on U × {ξ = 2m} (4.4)

for all m ∈ Z, where αm0 = αm0 (x) are smooth. Furthermore, change assumption (1.41) to

aε −→ a = a(ξ) uniformly on

(
2m− 1

2
, 2m+

1

2

)
(4.5)

Then, as ε→ 0,

ρε(x, ξ, t)
?
⇀

∞∑
m=−∞

αm(x, t)δ2m,

where the functions αm = αm(x, t) (m ∈ Z) are weak solutions of the following infinite
system of reaction-diffusion equations

αmt − a2m∆αm = κ
(
αm−1 − 2αm + αm+1

)
in U × [0, T ],m ∈ Z

∂αm

∂ν
= 0 on ∂U × [0, T ],m ∈ Z

αm(x, 0) = αm0 in U,m ∈ Z

(4.6)
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Proof. We again do not need the cutoff function ψ, but instead we need to make sure that
each test function φm,ε below has compact support.

1. Given m ∈ Z, define

φm,ε(ξ) :=

ˆ bm(ξ)

0

τε
σε
dξ,

where

bm(ξ) =



0 if ξ < 2m− 2

ξ − 2m+ 2 if 2m− 2 < ξ < 2m− 1
4

7
4

if 2m− 1
4
< ξ < 2m+ 1

4

−ξ + 2m+ 2 if 2m+ 1
4
< ξ < 2m+ 2

0 if ξ > 2m+ 2.

,

Figure 4.2: The functions bm

and finally let ζ = ζ(x, t) ∈ C∞c (U × [0, T ]) be arbitrary.

Using φm,εζ as our test-function in (1.4) and integrating on D × [0, T ], we obtain

ˆ
R

ˆ T

0

ˆ
U

φm,εζuεtσ
ε dxdtdξ −

ˆ
R

ˆ T

0

ˆ
U

φm,εζaε (∆uε)σε dxdtdξ

=

ˆ
R

ˆ T

0

ˆ
U

φm,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ. (4.7)

2. Study of the first term on the left-hand-side of (4.7)
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By (4.3), since φm,ε(ξ) converges uniformly to 1
κ

on (2m − 1
4
, 2m + 1

4
) and to 0 on(

2p− 1
4
, 2p+ 1

4

)
, whenever p 6= m, we get

lim
ε→0

ˆ
R

ˆ T

0

ˆ
U

φm,εζuεtσ
ε dxdtdξ =

1

κ

ˆ T

0

ˆ
U

αmt ζdxdt. (4.8)

3. Study of the second term on the left-hand-side of (4.7)

Likewise, we conclude that

lim
ε→0
−
ˆ
R

ˆ T

0

ˆ
U

φm,εζ (∆uε)σε dxdtdξ =
1

κ

ˆ T

0

ˆ
U

a2m (∇αm) · (∇ζ) dxdt. (4.9)

4. Study of the third on the right-hand-side of (4.7)

Integrating by parts with respect to ξ and noting that there are no boundary terms
because φm,ε(ξ) ≡ 0 for large ξ, we deduce that

ˆ
R

ˆ T

0

ˆ
U

φm,εζ

(
σε

τε
uεξ

)
ξ

dxdtdξ = −
ˆ
R

ˆ T

0

ˆ
U

φm,εξ ζ
σε

τε
uεξ dxdtdξ.

Notice that by construction

φm,εξ =



0 if ξ < 2m− 2

τε
σε(ξ−2m+2)

if 2m− 2 < ξ < 2m− 1
4

0 if 2m− 1
4
< ξ < 2m+ 1

4

− τε
σε(−ξ+2m+2)

if 2m+ 1
4
< ξ < 2m+ 2

0 if ξ > 2m+ 2,

and moreover, since we assumed H to be even and periodic of period 2, we have that
σε(ξ − 2m + 2) = σε(ξ) and σε(−ξ + 2m + 2) = σε(−ξ) = σε(ξ). Therefore, the right-hand-
side of (4.7) becomes

lim
ε→0
−
ˆ
R

ˆ T

0

ˆ
U

φm,εξ ζ
σε

τε
uεξ dxdtdξ =

ˆ T

0

ˆ
U

ζ
(
αm−1 − 2αm + αm+1

)
dxdt. (4.10)

5. Finally, letting ε→ 0 in (4.7) and using (4.8)− (4.10) and an approximation-argument,
we conclude that αm−1, αm, αm+1 are weak solutions to the equation
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1

κ
αmt −

1

κ
a2m∆αm = αm−1 − 2αm + αm+1,

which can be rewritten as

αmt − a2m∆αm = κ
(
αm−1 − 2αm + αm+1

)
.

Since m ∈ Z was arbitrary, we obtain our desired result.

6. The boundary condition ∂αm

∂ν
= 0 on ∂U × [0, T ] follows as usual, and the initial con-

dition αm(x, 0) = αm0 (x) follows from assumption (4.4) and Lemma 12 with t = 0. Notice in
particular that, although we are dealing with an infinite system of reaction-diffusion equa-
tions, the usual regularity theory for (finite) linear constant-coefficient systems of parabolic
equations still applies because, for fixed m ∈ Z, the derivative-terms in the m−th equation
depend only on αm.
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