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Abstract The problem of ranking the utility of supercom-
puter systems arises frequently in situations such as procure-
ments and other types of evaluations of architectures. It is
also central for any general ranking of supercomputers such
as the Top500. Rankings of computer systems have tradition-
ally solely focused on performance aspects. In recent years
restrictions due to power and space requirements of large su-
percomputers have become very noticeable, which has in-
creased the importance of including these factors in gener-
alized rankings. In this paper we present an overview of the
current practice for utility metrics and analyze their short-
comings. We then present and discuss in detail a new concept
for a parameterized utility metric for supercomputers, which
is based on effective performance, available memory size, ac-
tual power consumption, and (if desired) the floor space re-
quired for supercomputers. This metric is designed and pro-
posed for augmenting the current Top500 ranking.

Keywords Computer performance · Utility metrics ·
Power efficiency ·
High performance computing market analysis

1 Introduction

Power consumption of computer systems in general and su-
percomputers in particular has been rising constantly over
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the last decades and has become a major concern for facility
requirements and cost of operation. A convenient definition
of what a supercomputer is has been provided for 16 years
by the Top500 project [1, 2]. The Top500 ranks installed
computer systems by their Linpack performance [3] and
the first 500 are called “supercomputer”. The current rank-
ing methodology does not make any attempt to include any
other system features in the determination of the rank of
a system. Features of interest include available memory size,
power consumption, space requirements, and others.

Attempts have been made to overcome this shortcoming.
Most recently the Green500 is sorting the systems of the
Top500 by power-efficiency and is republishing them [4].
Unfortunately, power-efficiency as any efficiency or dens-
ity can not be used to rank objects by “size”, which leads
to substantial flaws in the Green500 approach. To overcome
these shortcomings and to provide alternative ranking pro-
cedures, we have researched how to construct generalized
utility metrics for supercomputers, which include the effects
of power consumption and other features. We analyzed the
basic requirements for any utility metrics to be useful in
our context and derived a general expandable parameterized
form for such a metric.

To further restricted the possible form of such metrics we
analyze different answers to the simple question: “When is
my new supercomputer twice as useful as my old one?” We
then characterize several system upgrade scenarios with the
new utility metric to show that our requirements for a use-
ful metric are met and our intuitive understanding of these
scenarios is properly reflected.

As an illustration of the effects of using the new utility
metric we take the subset of Top500 systems with power
consumption and memory data available and compare new
ranks with the original Top500 rank. We also analyze the
quantitative impact of individual correction factors.
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2 Current practice for ranking computers

The current practice for ranking supercomputers (and other
computer systems) is dominated by performance based met-
rics. Prominent examples are the Top500 Supercomputer
list, which ranks actual installed systems, or benchmark
suites such as HPCC [5], or SPEC [6], which rank com-
puter system models. In procurement situations the access
to actual cost data allows ranking competing offers with
econometric measures such as life-time costs and cost-
performance. New approaches for metrics, which include
other aspects of computers, include the Green500 [7], where
actual installed high performance computing (HPC) systems
from the Top500 are re-ranked by power-efficiency (per-
formance/power). Another interesting concept developed by
Tsugio Makimoto is the “Figure of Merit” for nomadic de-
vices, which inspired the work presented here [8].

2.1 Performance and efficiency metrics

It is natural to compare the progress in computational capa-
bilities with metrics such as floating point performance or
bandwidth. These metrics are “extensive” quantities as they
typically grow with the “size” or capability of a computer
system. They can be used to rank systems by capability and
track our increasing computing capabilities over time [2].

The enabling technologies, however, are often better
characterized by “intensive” quantities such as efficiencies
or densities. Intensive quantities are typically constructed
by dividing two extensive quantities. Important examples
would be the Byte/Flop ratio, the power efficiency = per-
formance/power consumption, and the power density =
power/space. These intensive quantities capture important
features of our basic technologies and can be used to com-
pare and track the progress (or decline) of these technolo-
gies. However, they cannot be used to rank or track com-
puter systems by size!

2.2 Performance rankings

Computer systems have been ranked by their achieved per-
formance for a long time. While there have been rank-
ings based on fictitious performance numbers or theoretical
peak performance numbers, most of these rankings focus on
measured performances. Benchmarks used for these rank-
ings vary in complexity greatly from simply synthetic tests
such as STREAM [9] to full (scientific) applications as often
used in focused performance studies [10, 11]. The bench-
marks and problem sizes used in these rankings often have
to be adapted or replaced to reflect the changing usage of
computer systems.

A prominent example is the Top500 List of Supercom-
puters [1]. Twice a year it ranks the 500 highest perform-

ing installed computer systems based on the Linpack bench-
mark [3]. This procedure provides a self-adapting definition
of what can be considered a supercomputer at a given point
in time and has proven its value over time. It allows follow-
ing and analyzing the HPC market despite rapidly chang-
ing architectures and performance levels. The main purposes
of the Linpack benchmark in this context are: i) Separating
real existing systems from nonfunctional ones and ii) Pro-
viding a first order correction to peak performance. Practice
has shown that it indeed does pose a serious first stability
test for new supercomputer systems. However, its ability to
reflect performance of scientific application workloads has
degraded substantially over time. Important features which
allow the usage of Linpack in the Top500 are a scalable prob-
lem definition and the implicit property that only full usage of
available memory allows to maximize performance.

The HPCC benchmark suite is the most prominent at-
tempt to overcome the later shortcoming of the Linpack
benchmark [5]. The suite consists of seven different ker-
nel benchmark (including Linpack), selected to test different
performance aspects of large scale systems. It lists perform-
ance measurements of various systems and system sizes, but
does not provide listings of actual installed systems. Prob-
lem sizes are again scalable.

The SPEC effort is a similar industry driven effort for
providing benchmark suites. It initially focused on work-
station class systems and has since then branched out into
different class of computer systems. Problem sizes of bench-
marks are fixed. To deal with increasing system capabilities,
SPEC has adopted the model of defining new benchmark
suites every several years. Recently SPEC has started to
look seriously into the question of power consumption of
computer systems and how to properly measure it.

2.3 Procurement situations

Procurement situations are different as they include access
to actual price and cost data. The main criteria for select-
ing a specific computer system might be performance or
functionality, but in many situations capital life-time cost,
operational life-time cost, and cost-performance play an im-
portant or decisive role. Accounting for the cost of the
power consumption of a computer system requires appropri-
ate definitions and measurements, but is otherwise straight
forward. Even space and general infrastructure requirements
can be evaluated in terms of cost.

The difficult aspect of procurements is the construction
of representative benchmark suites and the evaluation of the
provided performance results [13]. Once this is achieved
a ranking based on (life-time performance)/(life-time cost)
can be compiled.

Unfortunately this very desirable econometric methodol-
ogy cannot be adopted for general supercomputer rankings
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such as the Top500. It would require accurate data about the
price of a system and the utility and space cost for each site.
All of these data are highly individualized, vary greatly be-
tween different sites and systems, and cannot be obtained
with reasonable effort.

2.4 Green500

In a recent effort to promote awareness of power consump-
tion of supercomputers, the Green500 project began pub-
lishing re-rankings of the Top500 systems based on power-
efficiency [4, 7]. Unfortunately, this metric is intensive and
thus can not be used to rank computer systems by size. It
is a very appropriate metric to compare technologies, but
its usage for ranking actual installed computer systems has
serious flaws.

Power efficiency as an intensive quantity does not al-
low sorting systems by any size reflecting capability. If the
Green500 re-ranking would not limit itself to the subset of
Top500 systems it is very likely that small but very power
efficient computing devices such as laptops or even cell-
phones would be at the top of the resulting ranking. This
does not represent any capability of performing large calcu-
lations, power-efficient or not.

Power-efficiency is a feature of technology. Ranking x
systems of type A and y systems of type B, will therefore in
almost all cases lead to ranking all system of type A ahead
or behind all systems of type B. Any information about size
or capability is lost and will not be reflected in the ranking.

The Green500 extrapolates power consumption of large
system from small systems. Thus power is a linear func-
tion of system size. Linpack is a slightly sub-linear func-
tion of system size due to decreasing parallel efficiency.
Dividing a sub-linear function by a linear function leads
to a monotone decreasing function with size. Therefore, in
the Green500 smaller systems will always be ranked higher
than larger systems of the same type. Within a class of
systems with similar technologies smaller system will al-
ways rank higher than larger ones. This surely is the op-
posite of what most people would require from a listing of
supercomputers.

These flaws are a direct consequence of using an in-
tensive metric such as power-efficiency for ranking actual
systems and thus cannot be overcome. Intensive metrics can
only be used to rank technologies, for which they are very
useful.

2.5 Makimoto’s figure of merit for the nomadic age

In 1994 Tsugio Makimoto presented a “Figure of Merit” for
capturing the usefulness of mobile (nomadic) tools [8]. The
requirements of high “intelligence” (aka computing capabil-
ity), low power, low space, and low cost for such devices

lead him to define:

Figure of Merit = Intelligence

Size×Cost×Power
. (1)

This figure of merit (FM) allows tracking the progress of
e.g. hand-calculators over two decades during which their
FM increases by roughly 11 orders of magnitude [8]. As
FM is composed by dividing one intensive quantity by three
intensive quantities it greatly favors smaller systems over
larger ones, which clearly was its intention. While the metric
itself is not useful for ranking supercomputers, it provides
one of the basic ideas on how to construct a generalized util-
ity metric for such a purpose. It multiplies all desired quan-
tities (computing capability) and divides them by undesired
quantities (Size, Cost, and Space). In the next section we
will expand on this construction principle and define a fam-
ily of metrics suitable for ranking supercomputer systems.

3 Utility metrics for supercomputers

To construct a utility metric (UM) for supercomputers we
have to answer the question, how to quantify the utility
a system provides to us, as function of its basic characteris-
tics such as:

• Achieved Performance,
• Usable Memory,
• Effective Power Consumption,
• Space Requirements,

and potentially others such as disk space. We do not include
cost here for reasons discussed in Sect. 2. In essence this
problem is equivalent to the condensed and simplified ques-
tion: When is my new supercomputer twice as useful as my
old one?

One should keep in mind, that the choice of performance
metric is essential for arriving at a meaningful UM. Any sys-
tem feature of interest such as processor, memory, or I/O
should have direct influence on performance values assigned
to a system. Considering these system features only as ad-
ditional term in the UM itself can in general not lead to
a satisfactory end-result by itself.

3.1 Basic requirements for utility metrics

The relative importance of system features is different for
different users, which implies, that our factors should affect
the utility metric based on weights adjustable for individ-
ual needs. Specific usage scenarios for computer systems
can then be used to derive restricting relations between these
weight parameters.

A key requirement for a useful utility metric is that rela-
tive ranks based on it do not depend on scales or units cho-
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sen for any contributing factor x. In other words: UM(a × x)

= f(a)×UM(x) and f(a) has to be a strongly increasing,
monotone function for all features x. This requirement rules
out any simple additive metric. The simplest functional form
to fulfill this requirement is indeed multiplicative like Maki-
moto’s Figure of Merit. Including adjustable weight factors
as exponents we arrive at a weighted product of all factors as
simplest form for our utility metric (UM):

UM(xi) =
∏

xαi
i . (2)

The weights for beneficial factors will be positive, while
weights for detrimental factors will be negative.

As performance is the most important factor for typical
supercomputers, we like to construct our utility such that
it serves as correction to ranking with the extensive factor
performance alone. This is easiest to achieve if we choose
performance as first factor with a weight close to one and if
all others factors are extensive quantities such as densities or
efficiencies.

3.2 A generalized parametric utility metric

With the factors achieved performance P, usable memory
M, power consumption Power, space consumption Space,
and peak performance Peak as arbitrary scale, we hence ar-
rive for the utility metric UM of a supercomputer (SC) at:

UM(SC) = Pα ×
(

P

Peak

)β

×
(

M

Peak

)γ

×
(

Peak

Power

)δ

×
(

Peak

Space

)ε

. (3)

We have arranged our factors such that all weights are posi-
tive: α, β, γ, δ, ε ≥ 0.

Our scale Peak is arbitrary and UM must not depend on
it. This requirement gives us a relation between the weights
of our factors: β +γ = δ+ ε. We can now use this relation
to eliminate the arbitrary scale Peak and one weight (β) and
transform UM into:

UM(SC) = Pα ×
(

M

P

)γ

×
(

P

Power

)δ+ε

×
(

Power

Space

)ε

. (4)

We have chosen this form as it expresses UM as func-
tion of sustained performance, effective Byte/Flop ratio,
power-efficiency, and power-density. These four very famil-
iar quantities are often used in discussion of architectures
and technologies (see Table 1).

It should be noted that δ is still the weight for the influ-
ence of power consumption on UM even if power-efficiency
shows up in our expression with a weight of δ + ε. The

Table 1 Components of UM, their associated weights, and typical
dimensions

Factor Name Typical Weight
dimension

P Sustained Performance GFlop/s α

M

P
Effective Byte/Flop Ratio

GByte

GFlop/s
γ

P

Power
Power-efficiency

GFlop/s

kW
δ

Power

Space
Power-density

kW

m2 ε

reason is that the last factor power-density contains an addi-
tional contribution with weight ε from power consumption.
We also believe that area is the appropriate measure of space
requirements for supercomputers and not volume.

3.3 The influence of memory and power on UM

To illustrate the influence of memory and power weights in
UM we consider the relative change in utility for a system
upgrade where we keep performance constant. This implies
that the values of α has no influence here and we will also ig-
nore the influence of space in this section (ε = 0). We illus-
trate the case of quadrupling memory and doubling power
consumption for which we show the ratio UM(1× P, 4× M,

2 × Power)/UM(P, M, Power) in Fig. 1. We see that if we
put less than roughly half the emphasis on memory com-
pared to power γ < 0.5×δ, the utility of the new system will
be lower than before with a minimum of 0.5 if we put max-
imum weight on power and no value on memory. Otherwise

Fig. 1 The impact of the combined memory and power related factors
in UM illustrated for an upgrade quadrupling memory and doubling
power consumption. γ is the weight for memory and δ for power
consumption
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UM will grow rapidly with γ and has a maximum value of
4 limited by our increase of M for the case of maximum
weight on memory and no weight on power.

The values shown in Fig. 1 are examples for the effective
correction factors build into UM. They are the only reason that
a ranking of systems based on UM would be different from
a purely performance based ranking. Therefore they should
serve as guide for selecting appropriate values for δ and γ .

3.4 Different scenarios for doubling utility

Equation 4 presents a fairly general class of utility metrics.
To restrict the space of possible functions and hence the free
weights further, we now have to answer the fundamental
question we posed initially: “When is computer A x-times as
useful as computer B?” To approach this question we assume
four different answers and look at the resulting consequences
for UM. We have summarized these four scenarios in Table 2.

A: As first answer (A) we assume that doubling an existing
system doubles its utility: UM(2 × A) = 2 ×UM(A). This
seems a natural answer for a situation where we have to
choose the size of a system to buy. For UM it leaves us with
only the restriction that the weight of performance α = 1 as
the value of all the densities in our formula do not change
in this case. The remaining weights (δ, ε, γ ) can still be se-
lected arbitrarily. UM increases linear with performance P
even as power consumption increases linear. Any reduction
of the increase in power consumption would result in an ad-
ditional increase of UM above linear. In other words, this is
a primarily performance based metric with correction fac-
tors for memory, power, and other features.

B: Now, if we want to replace an existing system with a new
system, we might decide, that the new system is only twice
as useful if it provides 2 × P and 2 × M in the same physi-
cal envelope (answer B). The resulting relation now couples
some of our weights through the condition: α+ δ+ ε = 1.
Our emphasis on memory γ can still be selected indepen-
dent. One should note that the answers A and B can not be
combined meaningfully as they would imply δ+ ε = 0, and
thus for positive weights δ = ε = 0, which would remove
any influence of power or space on UM. This relation also
implies for positive δ and ε that α < 1.

Table 2 Four different scenarios for what it means to double the util-
ity of a computer system and the resulting conditions between the
weights in UM

P M Power, Resulting relation k
space

A 2 × P 2 × M 2 × α = 1 –
B 2 × P 2 × M 1 × α+ δ+ ε = 1 1
C 2 × P 1 × M 1 × α+ δ+ ε −γ = 1 0
D 2 × P 2k × M 1 × α+ δ+ ε − (1− k)γ = 1 k

C: If we have a fixed workload, which we wish to execute
faster, we might consider a system with 2× P and otherwise
unchanged characteristics as twice as useful (scenario C).
This would be equivalent to a processor upgrade e.g. dual
core to quad core in an existing system. The resulting equa-
tion now couples all four weights in: α+ δ+ ε−γ = 1. We
might try to combine this answer with answer A, but the
resulting condition δ+ ε = γ would severely limit the avail-
able choices for the remaining weights. It would imply that
our preference for memory is equal to our preference for the
combined power and space efficiencies, which seems to be
a very non-intuitive condition.

D: Based on the old saying, that job run-times are deter-
mined by job-queue limits, we might decide, that our new
system has double the utility of our old one, if the largest
problem fitting in memory executes at twice the previous
performance and finishes in the same time as before (sce-
nario D). For simplicity we assume that flop counts and
memory requirements of our problem scale with simple ex-
ponents of an input parameter n called problem size. In case
of the Linpack benchmark the number of operations scales
with O(n3) while the required memory scales with O(n2).
This implies that we have to scale the memory M in our sys-
tem only with P2/3. This result is easily generalized and we
call this scaling exponent k. We recognize the resulting con-
dition for our weights: α+ δ+ ε− (1−k)γ = 1 as super-set
of the conditions for scenarios B and C for the values k = 1
and k = 0 (see Table 2). Increasing UM linear with P is now
only possible within the same physical envelope and with
appropriate increases of memory.

Based on this we are left with A and D as the only two
fundamentally different scenarios. For our naı̈ve upgrade
A we found the condition α = 1, while for the problem scal-
ing upgrade D we have: α = 1 − δ+ (1 − k)γ − ε.

For simplicity reasons we will ignore for the remainder
of this paper space requirements: ε = 0. We will also refer
to the position taken in answer D as “problem scaling utility
metric” (UMps) with:

UMps(SC) = P1−δ+(1−k)γ ×
(

M

P

)γ

×
(

P

Power

)δ

. (5)

3.5 System upgrade scenarios for UMps

We can now go back and consider the relative changes on
UMps for upgrade scenarios which we summarize in Table 3.
All these scenarios make the simplified assumption that the
performance of our workload scales ideally and that we dou-
ble effective performance with our upgrades. Less than ideal
scaling will be considered in the next section.

A: If we consider the value of doubling an existing system
(A) we see, that the utility increase depends on the trade-off
of the memory (γ ) and power (δ) weights and the problem
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Table 3 The value of several different upgrades for the problem scal-
ing utility UMps of Eq. 5

Scenario P M Power Change in UMps

A Doubling a system 2× P 2× M 2×Power 21−δ+(1−k)γ

B Replacing a system 2× P 2× M 1×Power 21+(1−k)γ ≥ 2
C Upgrading processor 2× P 1× M 1×Power 21−kγ ≤ 2

scaling exponent (k). Large emphasis on power will reduce
the value of this upgrade while large emphasis of memory
will increase its value as long as problem sizes grow slower
than operation counts (k < 1).

B: Replacing a system by doubling performance and mem-
ory within the old system envelope and power (B) will al-
ways yield a utility increase larger than twice. This reflects
the fact that doubling the memory allows executing prob-
lems larger than the scaled problem size, used in the defin-
ition of the utility metric. This represents added value and
thus an increase in utility above the ratio of performance.

C: If we consider a power neutral upgrade of a processor
(C) such as replacing a dual-core with a quad-core, the util-
ity increase will always be less than twice. This is due to
not changing the memory size and thus not being able to run
a scaled problem size.

The analysis of these basic cases demonstrates that UM
has many desirable properties, which a utility metric for
computer systems should have.

3.6 Maximum values for UM

We now consider less than ideal scaling of performance of
our workload in an upgrade of a system. Let P(n) be the
performance of system n times as “large” as the previous

Fig. 2 The relative location of
the maxima of the speedup curve
S(n) and the utility metric UM
for different weights for memory
γ and power consumption δ.
Larger emphasis on memory
shifts the maximum of UM to
the right, larger emphasis on
power to the left

system. We set ε = 0 in Eq. 4:

UM(n × SC) = P(n)α ×
(

M(n)

P(n)

)γ

×
(

P(n)

Power(n)

)δ

. (6)

For scenario A we substitute the increased memory M(n) =
n × M and Power(n) = n × Power and transform the result-
ing expression into:

UM(n × SC) =
(

P(n)

P

)α−γ+δ

×nγ−δ

× Pα ×
(

M

P

)γ

×
(

P

Power

)δ

=S(n)α−γ+δ ×nγ−δ ×UM(SC) . (7)

where S(n) is the speedup of the larger system relative to the
original one (S(n) = P(n)/P).

We now look for the system size to maximize UM. We
differentiate Eq. 7 by n and transform the result into:

dUM(n × SC)

dn
=

(
(α−γ + δ)

dS(n)
dn

S(n)
+ (γ − δ)/n

)

×UM(n × SC) . (8)

We set the expression of equation 8 to 0 and arrive at the
condition:

(α−γ + δ)× dS(n)

dn
× n

S(n)
= δ−γ . (9)

Equivalent expressions for scenarios B and C can be derived
and they differ from Eq. 9 only by the absence of δ and δ−γ

on the right hand sides.
As long as our emphasis on performance α is larger than

on power or memory the first factor on the left hand side will
always be positive. We can then analyze the location of max-
imum UM by considering the different cases for the right
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hand side. The sign of δ−γ is now the same as of the slope
of the speedup curve dS(n)/dn, which allows us to visualize
the different cases in Fig. 2.

In case of δ = γ (or for scenario C), we conclude the loca-
tion of the maximum of UM is determined by the derivative
of the speedup by system size: dS(n)/dn. In other words
UM(n) raises and falls with S(n) and both are maximal at
the same n.

If we put larger emphasis on memory than on power,
δ ≤ γ , (or for scenario B) the slope of the speedup curve
for maximum UM will already be negative. The system size
for maximum UM will therefore be shifted to larger system
sizes n compared to the speedup curve (right half of Fig. 2).
This is due to the comparably larger benefit of the memory
increase. UM would still increase past the previous optimal
size even as speedup already goes down.

For more emphasis on power than memory, δ ≥ γ , the
slope of the speedup curve will still be positive for max-
imum UM . Thus the system size for maximum UM will be
shifted to smaller system sizes n compared to the speedup
curve, due to the larger benefit of conserving power (left half
of Fig. 2). UM would start declining even before the max-
imum speedup is reached. Again we see that UM as utility
metric for computer systems exhibits many properties we
would expect.

4 Impact on the TOP500 rankings

To visualize the potential changes in rank order on the
Top500, we took the subset of systems from the Novem-
ber 2008 edition for which we have actual measured power
consumption data and problem size values Nmax . For most
cases power consumption was communicated to us by ven-

Fig. 3 Relative metric values for
Linpack performance (Rmax ) and
UMps over the Top500 rank
which illustrates the amount of
potential reordering

dors of systems or individual sites. To approximate available
user memory we used the square of recorded Nmax values.
We selected the problem scaling utility metric (UMps) and
used the Linpack scaling parameter k = 2/3. Memory and
power weights are set arbitrarily to γ = δ = 0.2 for illustra-
tion. The effective α values is then computed with 1 − δ+
(1 − k)γ = 0.86667.

Figure 3 shows Linpack and UMps values for our sub-
set normalized to the respective value of the largest system.
We recognize that UMps provides a correction to the Top500
ranking and that reordering would indeed take place. The
amount of reordering is restricted by the size of the weight
parameters chosen. For UMps substantially larger weights
for memory and power would in turn reduce the weight
applied to performance. This would reduce the extensive na-
ture of UMps and for α → 0 would turn it into an intensive
property with all the associated undesired effects.

To analyze the effects of the correction factors for mem-
ory and power we plot both factors in Fig. 4. The ratio
between largest to smallest correction factors for memory is
about 1.4 and for power is about 1.9. While these are siz-
able corrections an anti-correlation between the two factors
for individual systems is also clearly visible and we calcu-
lated it to be −0.7. A possible interpretation is that systems
with smaller memory consume less power. However, our ex-
ample was meant for illustration only and sample selection
for this analysis was most certainly biased. Therefore this
interpretation should be considered with care.

5 Conclusions

The power consumption of supercomputers has become
a major concern for the HPC users and industry. In most
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Fig. 4 Effective memory (left
axis) and power (right axis)
related correction factors in
UMps for the Top500 systems.
They show an anti-correlation off
−0.7 which indicates that system
with less memory in this sample
use less energy

situations rankings of supercomputer systems ignore the
effects of power consumption or similar system features.
A prominent example is the Top500 project which ranks in-
stalled systems with the Linpack performance. Some recent
attempts to improve this situation such as the Green500 have
fundamental problems resulting from their use of inten-
sive metrics such as power-efficiency for ranking individual
computer systems. Intensive quantities such as efficiencies
or densities are very useful to compare technologies but can
not be used to rank objects by size.

In this paper we develop a new concept for a general-
ized parameterized utility metric (UM) to overcome pre-
vious limitations. We describe in detail how to incorpo-
rate any desired system feature in the metric (Eq. 3). In
our framework a UM incorporating the effects of perform-
ance, memory, power, and space can be formulated naturally
as a weighted product of performance, Byte to Flop ratio,
power-efficiency, and power-density (Eq. 4). This is a very
aesthetically pleasing result as all these quantities are com-
monly used in architecture and technology discussions.

Analyzing different answers to the question “When is my
new supercomputer twice as useful as my old one?” we find
relations between the free weights in UM. Based on these
we define a problem scaling utility metric UMps, which in-
creases linear with performance only if systems grow within
the same physical envelope and with increases in memory
appropriate for their workload (Eq. 5). Naı̈ve doubling of
systems will no longer yield twice the utility for this metric.
This clearly demonstrates that UM incorporates the effects
of power consumption and overcomes limitations of previ-
ous attempts to rank systems with performance and power
related metrics.

This new metric can be used to redefine what a super-
computer is and help us to track how a realistic utility

of our supercomputer systems truly improves over time.
To illustrate this potential we calculated UMps values for
the subset of systems in the Top500 for which power and
memory are available and show the resulting changes in
ranking.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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