
UC Irvine
ICS Technical Reports

Title
A new partitioning approach for layout synthesis from register-transfer netlists

Permalink
https://escholarship.org/uc/item/9100h8w3

Authors
Wu, Allen C.H.
Gajski, Daniel

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9100h8w3
https://escholarship.org
http://www.cdlib.org/

A ~ew Partitioning Approach for Layout Synthffiis
from Register-Transfer Netlists

. ,---

by

Allen C. H. Wu
::::=-- -:::-

Daniel Gajski

Technical Report 90-10

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Abstract

Most of the IC today are described and documented using heiarchical
netlists. In addition to gates, latches, and flip-flops, these netlists include
sliceable register-transfer components such as 'registers, counters, adders, AL Us,
shifters, register files, and multiplexers. Usually, these components are
decomposed into basic gates, latches, and flip-flops, and are laid out using
standard cells. The standard cell architecture .requires excessive routing area,

· and does. nqt exploit the bit-sliced nature of ·register-transfer components. In
this paper, we present a new sliced-layout architecture to alleviate the preceding
problems. We also describe partitioning algorithms that are used to generate
the floorplan for this layout architecture. The partitioning algorithms not only
select the best suited layout style for each component, but also. consider critical
paths, I/ 0 pin locations, and connections between blocks. This approach
improves the overall area utilization and minimizes the total wire length.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

z
077
C3

~ o, fr5-/(J

~--------- --

·:;!-

TABLE OF CONTENTS

1. Introduction _... 1

2. Sliced Layout Archit~cture -... 2

3. Component Partitioning _... 5

4. Stack Partitioning .. 11

5. Glue-Logic Partitioning .n-....................................... 15

5.1. Block Partitioning with Layout Estimation ... 18

5.2. Seed Implantation ... 22

5.3. Multiway Seed Partitioning -... 25

6. Experimental Results ... -........... 30

7. Conclusions ... _... 31

8. References 38

Page i

LIST OF FIGURES

Figure 1. Three partitioning methods for layout generation from RT schemat-

ics .. 3 ·

Figure 2. Switch box insertion for wire alignment ... 4

Figure 3. Two sliced layout architectures .. 6

Figure 4. Graph representation of the RT netlist ... 8

Figure 5. Stack .folding process ... ·................. 12

. Figure 6. Stack partitioning based on folding ... 13

Figure 7. Placement of glue-logic components in regions 1 and 2 16

c Figure ,8. The example of the glue-logic of size n being partitioned into block

1, 2, and 3 with size ml, m2, and m3. .. 17

Figure 9. (a) Proper placement through clustering and seed implantation (b)

Possible placement without clustering arid seed implantation 19

Figure 10. Two orientations of transistor placement ... 20

Figure 11. Glue-logic block partitions according to given size constraints 21

Figure 12. Seed implantation using a multi-stage clustering method 24

Figure 13. Bi-partition graph .. 25 ·

Figure 14. Partition· cost including the external connections 27

Figure 15. Pa:i;tltion cost calculation based on external connections 28

Figure 16. The controlled counter schematic 33

Page ii

Figure 17. The layout of the controlled counter ... 34

Figure 18. The layout of a DSP example 35

Figure 19. The layout of the MARKI simple computer .. 36

Page iii

•

LIST OF TABLES

Table 1. The comparisons of our partitioning and floorplanning with a manual

partitioning and :floorplanning: (a) total area and (b) critical-path wire

lengths ; ... ~........ 37

Page iv·

1. Introduction

Surveys of VLSI products reveal that most fabricated chips_ can be described by

register-transfer schematics or netlists. In addition to gates, latches, and flip-fl.ops,

schematics include register-transfer components such as registers, counters, adders,

ALU s, shifters, multiplexers, and register files. The products in this category include

DMA controllers, bus controllers, disc controllers, and programmable I/O interfaces;

that is, basically. all chips for computer design with the exception of CPUs and

memories.

The common used layout strategy for such designs is the use of standard cells.

Standard cell methodology, however, does not take into account the regular nature

(bit-slice property) of register-transfer components, since those components are

decomposed into basic gates, latches, and flip-fl.ops- before layout. Greater layout

density can be achieved if register-transfer components are laid out in a bit-sliced layout

architecture.

The general bit-sliced layout architecture has two weaknesses, however. First, if all

sliceable components do not have the same number of bits, then- some bit-slices are not

used. For example, when a 4-bit counter and a 12-bit register are laid out in the bit­

sliced style, 8 bit-slices are wasted since the 4-bit counter occupies only 4 bit-slices.

Second, routing of bit-_slices with different indices is difficult. For example, if bits 7 and

8 of the register must be connected to bits 1 and 2 of the counter of the previous

example, routing across bit-slices must be introduced.

- In this p'aper, we .describe a new layout architecture to alleviate the problems of

general bit-sliced layout architecture. We also present. a top-down layout methodology

Page 1

and algorithms that generate layouts for register-transfer schematics. In most

conventional hierarchical layout approaches, placement and routing are carried out in a

bottom-up fashion [Ayre90, DaEs89]. I~ this approach, each predefined block is

designed individually, then the blocks are connected using routing channels between

blocks. However, our layout methodology. is performed in a top-down fashion [U eKi85]

that implements three partition phases: (i) partition the regist~r-transfer schematic into

bit-slice and glue-logic components, (ii) partition the bit-sliced stack to minimize the

layout area of the bit-sliced components, and (iii) partition glue-logic components into

blocks based on the target architecture (Figure 1). In addition, pins are assigned to the

proper sides of blocks in order to minimize the wire crossing between blocks.

The remainder of this paper is organized as follows. We present a sliced layout

architecture in Section 2. Three partitioning algorithms· are described in detail in

Section 3-5. The experimental results are shown in Section 6. Finally, Section 7 contains

the conclusions.

2. Sliced-Layout Architecture

There are two common layout architectures for bit'-sliced ·components: bit-slice

abutment [JaJe85, Joha79] and bit-sliced macros or standard cells with routing channels

[HsGr87, RoWa87, ThKo87, LuDe89]. The first layout architecture abuts bit-sliced

cells with over-the-cell routing for connecting bit-slic.es with the same indices. This

architecture, however, wastes area if units with varying bit-widths are in the same stack

or if different indices of the bit-slices must be connected. The second layout architecture

stacks bit-sliced macros or standard cells vertically with routing channels between units.

Using this layout architecture, several units with smaller bit-widths can be placed in the

Page 2

RT Schematic

Component Partitioning·

Bit-Sliced Stack Partitioning

Glue-~ogic Partitioning

·Layout Synthesis

Layout

Figure 1. Three partitioning IIEthocls for layout generation from RT
schenntics

same row m order to reduce wasted space. However, routing channels for wire

connections between the units contribute to low area utilization.

The sliced-layout architecture use a stack of bit-sliced register-transfer units. This

bit-sliced stack (Figure 2) combines cell abutment, over-the-cell routing, and switch box

alignment to alleviate the problems of previous approaches.· Each bit-slice has the same

width and has ·a fixed number of metal2 routing tracks over each cell. Unit heights

vary with the. unit functionality. Each bit-sliced cell, such as an ALU, multiplexer,

register, adder, or shifter, is designed manually. The layout of each unit is produced by

a parameterizable generator according to, the given bit-width and I/O pin positions.

Page 3

Reg1
Reg2
Reg3

Reg1
SW BOX

Reg2
Reg3

(a) register-transfer schematic

(b) initial placement
0

exit

M@tt~;1~t;;111;L 0::: ;:~ht
(c) switch box insertion

glue-logic
placement

Figure 2. Switch box insertion for wire aligmnmt

The units are stacked in the vertical direction: Using an over-the-cell routing strategy,

the data signals run vertically in 2nd metal over the bit-slices. Power, ground, carry,

and control lines are routed horizontally in the 1st metal or polysilicon between the

bit-slices. An example consisting of three registers (Regl, 2, and 3) is shown in Figure

2(a). Regl has 8 bits, while Reg2 and Reg3 have 5 and 4 bits respectively. The five

least significant bits of Regl are connected to Reg2 while the 4 most significant bits of

Regl are connected to Reg3. The floorplan of this layout is shown in Figure 2(h).

Registers are ·ordered by bit-width from top to bottom and aligned by the least

significant bit.

Page~

When several units of different bit-widths are stacked by width as shown in Figure

2(b), a step-shaped triangular area will be created within the stack bounding box. This

area can be ·used for stack folding or for placement of the non-sliceable -glue-logic

components. Furthermore, a routing channel called a switch box must be inserted in

the stack for connecting bit-slices with different indices. In our example, the

interconnections between Regl (bits 4-7) and Reg3 (bits 0-3) are not routable without a

switch box. Therefore, a switch box is inserted as shown in Figure 2(c). Using the same

switch box, signals may enter or exit the sliced stack from the left -or right as indicated

in Figure 2(c).

In the sliced-layout architecture, the st~ck can be laid ·out in two different styles. If

the netlist contains only a few sliceable components then we use an unfolded stack

structure as shown in Figure 3(a). In this case, the glue-logic components are placed

into the empty space in the stack bounding box. However, if more space is needed then

the glue-logic components are then placed on the left, right, top, and bottom sides of

the stack. On the other hand, if the stack contains a large number of sliceable units

with highly varying bit widths, the stack structure. can be folded as shown in Figure

3(b). The glue-logic components are placed at the sides. of the stack bounding box.

When the stack height is higher than a given height constraint, the stack must be

partitioned into several. stacks that can be either folded or unfolded.

3. Corr.ponent Partitioning

The purpo~e of component partitioning is to determine the layout style (bit-slice or

glue-logic) for each. register-transfer component. The component layout style depends

on the component type, the component's connectivity, ·and the overall floorplan. First,

Page 5

unfolded units

·switch box (b) folded stack

stack· bounding
box

glue-logic module

folded units

glue-logic module

Figure 3. Two sliced layout architectures

components must be partitioned by type since some components such as counters,

registers and ALU s are sliceable while· others like decoders and encoders are not.

Second, small size components can be implemented in two ways. For example, a 2-bit

ALU can be implemented using NAND and .NOR gates or as a bit-sliced unit. The

implementation decision for such a component depends on the component's

connectivity. For example, if a component in question is strongly connected to other

glue-logic components, then a glue-logic layout style may be more suitable for this

component in order to reduce the wiring area between bit-sliced stack and glue-logic

Page6

module. Third, the component layout style also depends on the final fl.oorplan. For

example, using the folded stack architecture, small bit-sliced units are folded into empty

space in the stack bounding box. If a· small unit doesn't fit into the stack, this unit.

might better be laid out a glue-logic component in order to reduce the overall layout

area. By exploiting the bit-slic~ property of register-transfer components and selecting

the best suited layout style for each component, better area utilization can be achieved.

A weighted and labeled undirected graph G is formed from the schematic by a set

? of nodes and a set E.of edges. The node U.i E U is the component in the schematic

where j =· l..n, and n is the total number of components. The sub-node port(i.) C u. is
. J J

the port in the component 11; where i = 1..m and m is the number of ports in the

component u.. The attribute type of a port(i.), port_type(i.), indicates that port(i.) is a
J . J J J

control port or a data port. Let e(ik, j 1)· be the edge between port(ik) and port(j1), where

. uk ,u1 E U, port(ik) C uk, and port(j1) C u1. The weight of an edge e E E, w[e(ik,j1)], is the

number of wires between these two ports. Thus, the edges correspond to connections

between ports, while weights are equal to the multiplicity of connections. A graph

generated from the schematic in Figure 4(a) is shown in Figure 4(b). There are two

components in the schematic, a 4-bit Reg and a 4-bit Mux. In the graph, Reg and l\1ux

form two nodes (Ul and U2). Each node has two data ports, (port(3i), (c1) C Ul and

port(<b), (t;) C U2), and ~ne control port (port(b1) C Ul and port(~) C U2). In Figure

4(b), e(cl' ~) is the edge between port(c1) and port(~) and w[e(c1 ,~)]=4.

A linking- cost is used to evaluate the connectivities between components. The

linking cost fu,n~tions are:

Page 7

1
elk

sel 2

input

4
U1

(b)
(a)

Reg (4)
c

4

(d)
e(c1 ,d2) w[e(c1 ,d2)]=4

(e) Mux (4)

4 U2

output

(a)

ports a, c, d, and f: data port
ports b and e : control port

W:4
output

(b)

Figure 4. Graph representation of the RT netlist

implementation and port_type(j1) is a control port

port

In the linking ~ost function, Wcontriu.1:) is the number of wires connected to uk from

other Glue-~c nodes or from control ports of other Bit-Slice nodes. Wdata(u1J is the.

number of wires connected to '\ from data ports of other Bit-Slice nodes. For example,

if Ul in Figure 4(b) is a Bit-Slice and port(t;) of U2 connects to another Bit-Slice th.en

Page 8

The component partitioning is divided into three steps:

(1) Init_ial corq>onent type assignments. The algorithm first labels nodes as Glue-Logic

if components are not sliceable such as single gates, decoders, encoders, etc. The

components that meet the following two conditions are labels as Bit-Slice: (i) the

component can be laid out as a bit-sliced and (ii) the component's bit widths are

larger than a user specified threshold. If these conditions· are not meet, the

algorithm will label nodes as "nndecided" component type.

(2) Component type assignments for the undecided nodes. The algor~thrh c~lculates

the linking cost for the undecided nodes. For an undecided node uk, if Wcontrol(w)

> W data(u,1J then. node uk is labeled as Glue-Logic, otherwise node uk is labeled as

Bit-Slice.

(3) Partitioning improvement. In this step, the algorithm re-evaluates the

connectivities among nodes to finalize the component type assignments. The

algorithm first calculates the linking cost for all of the nodes. Then the algorithm

. evaluates the connectivities of nodes that can be laid out as both Glue-Logic and

Bit-Slice. For evaluating a node uk, there are three possible cases: (i) If Wcontrol(uk)

> Wdata(uk) and. node uk is a Bit-Slice then node. uk is re-labeled as Glue-Logic, (ii) If

Wdata(uk) > Wcontrol(u1J and node Uk is a Glue-Logic then node Uk is re-labeled as

Bit-Slim, and (iii) If condi~ions (i) or (ii) do not apply, a node uk keeps its original

component type.

Page 9

(4) FloorpJan driven component type assigmumts. During the stack folding stage, the

algorithm may re-label nodes as Glue-Logic if the components can not Jit into the

bit-sliced stack. Details of this phase will be described in the "stack partitioning"

section of this paper.

ALGORITHIM I. Component Partitioning
ComponentYartitioning(){

Build graph from register-transfer netlist;
/*Initial component type assignment*/
for component i = 1 to n do{
if (component i is not slice ab le) then{

type(i) = Glue-Logic;
}
else if (component i is slieeable and bit-width(i) > requir~d minimal bit-width f9r bit­
sliced units) thm{

type(i) = Bit_Slice;
.}
else{

}
}

type(i) = undecide;

/*Assign component type to the undecided nodes*/
for component j = 1 to n do{
if (type(j) = = nndecide) then{

Calculate linking cost of node j;

if (Wcontro/j) > W data (j)) then{
type(j) = Glue-Logic;

}
else{

type(j) = Bit-Slice;
}

}
/*Partitioning improvement*/
for component j = 1 to n do{

Calculate linking cost of node j;
}
for i = 1 to n do{

Page 10

if (component i can be iaid out as both Bit-Slice and Glue-logic) then{

if (Wcontrol(i) > Wdata(i) and type(i) == Bit-Slice) then{
tn>e(i) = Glue-logic;

}
·else if (W data(i) > Wcontrol(i) and type(i) == Glue-Logic) th~{

type(i) = Bit-Slice;
}

}

}
}
Floorplan driven component type assignments (see Algorithm II);

4. Stack Partitioning

· The goal of stack partitioning is to minimize. the layout area of the bit-sliced

components. Since bit-sliced units often have varying bit-widths, the sliced layout

architecture generates an empty space within the stack bounding box. A folding method

is used to place small units into the empty space and thus reduce the stack height.

The folding process includes two steps: (i) unit folding and (ii) overlap checking

and avoidance. The main constraint of stack folding is that bit-sliced units must not

overlap. The algorithm folds one unit at a time. The folding process includes two steps:

(i) move the unit ui to the ri?ht edge of stack's bounding box and rotate it around the

center (Figure 5(a)) and (ii) push all of the folded units above the the base-line (Figure

5(b)).

After unit fo_lding, an overlap checking is performed to check whether the units in

the folded part overlap with the unfolded part. The bounding box of unit ·ui is defined

by the upper-left point (xul.i,YuiJ and the lower-right point (xlr.i,Ytr.i) of unit ui (Figure

5(a)). The overlapping conditions are

(1) There exists a (:xzr.i,Ylr.i) and ui E {unfolded bit-sliced units};

(2) There exists a (x 1 . y 1 .) and u. E {folded bit-sliced units}; - u .,, u .,]

(3) ·x 1 . < x1 . and y 1 . < y1 .• u .] r.1 · u .J r.1

If an overlap occurred as shown in Figure 5(b), the folded units will be shifted to

the right to avoic;l the overlap (Figure 5(c)).

Page 11

(Xul1, Yul1) .,
.,._ max bit-width ~

............... ~~ r~ (Xlr1,Ylr1)
baseline (Xul2, Yul2)

[SS) -fZ2I : folded units

Figure 5. Stack folding process

(XI r2, YI r2)

Using the folding method, we describe a stack partitioning algorithm for

minimizing the area of the bit-sliced uni ts as follows:

(1) Calculate the routing area cost between unfolded and folded units. The routing

area is in proportion to the number of wires between unfolded and folded units.

For instance, the number of wires crossing the cutline between compA and compB is

four (Figure 6(a)). By folding compB, the routing area will contain four wires

(Figure 6(h)). The number of wires crossing any cutline can be determined after

the unit placement and routing. The unit placement and routing consists of three

Page 12

f
·height

1
Area

Page 13

comp A

(a)

shift folded units to the right

(c)

1 2 3 4

(e)

unfolded units overlap

......... ,,~ -compC

folded
untts

D:~~~~~~~D comps

area

5

routing channel

(b)

unfolded units

compress
routing channel

(d)

6 7
Stack
Partttions

Figure 6. Stack partitioning based on folding

steps: (i) Sort the units by width, (ii) Permute the order of the units of the same

width to minimize the track density, and (iii) Assign routing tracks to the units.

Thereafter, the number of wires between units is calculated.

(2) The algorithm uses our folding method to minimize the area of the bit-sliced units

subject to the given stack height and width requirements. If an overlap occurs

during. the folding process, the folded units will be shifted to the right to avoid

overlap until the required width is reached. However, if some folded units still

overlap the unfolded units after shifting, the overlapped folded units will be

deleted to form a new stack. In Figure 6(c), compC overlaps with unfolded units

when allowed width is reached. Thus, it will be moved to form a separate stack.

Moreover, the stand-alone or leftover small bit-sliced uni ts that do not tit in any

stacks will be moved to the glue-logic module (i.e. it will relabeled compC as

Glue-Logic as mentioned in the previous section "component partitioning" of this

paper).

(3) The algorithm calculates the total stack area. There are two cost functions: (i) For

one stack, the total area is the minimal -bounding box that encloses all of the units

and the routing area for connecting the unfolded and 'the folded units and (ii) For

multiple stacks, the total area is the sum of bounding boxes of individual stacks

and the routing area between stacks.· The algorithm executes repeatedly and

selects the best stack partition with the minimal area that also satisfies the stack

height and width constraints. For example, Figure 6(e) shows an area curve that

was gene~ated by executing the folding proc~ss repeatedly. Each data point in

Figure 6(e) represents the total area for a particu~ar stack partition. The partition

Page.14

with the minimal area (partition #4 in.Figure 6(e)) is selected as the final stack

partition.

·(4) After selecting the stack partition, the algorithm performs a width compression

}

step to reduce the empty space be.tween the unfolded and folded units (Figure

6(d)). The empty space in the bounding box can be used for placing the glue-logic

components.

ALGORITHl\.1 II. Stack Partitioning
StackJ> artitioning(){

Sort bit-sliced units in descending order according to bit-width;
Perform unit placement and routing;
Calculate cut-lines between units and empty space in the bounding box;
if (empty space is too large for glue-logic·

}

or stack height > the allowed stack height) then{
for unit 1 to n do{ .

}

Perform unit folding;
if (unfolded units overlap with folded units) t.lien{

Shift folded units to avoid overl~p;
if (stack width > the allowed stack width) then{

Shift folded units to the allowed width boundary;

}
}

Move the overlapping folded units to form a new stack;

Choose the minimal area partition;

Move stand-alone and small units into Glue-Logic module;
Compress unfolded and folded units;

5. Glue-Logic Partitioning

After forming the bit-sliced stacks, the floorplanner first places the stacks

according to a given layou_t height, width, and aspect ratio. The glue-logic partitioning

algori~hm places the glue-logic components into the empty space in the stack bounding

Page 15

. region 2

bounding box
·(RB stack)

glue-logic

Figure 7. Placement of glue-logic components
in regions 1 and 2

region 2

box (region 1) and a.round the stack bounding box (region 2) according to the given

total aspect ratio and I/ 0 pin location (Figure 7).

The glue-logic partitioning algorithm consists of three steps: (i) Block partitioning

with layout estimation, (ii) Seed implantation and (iii) Multiway seed partitioning. The

block partitioning algorithm partitions the rectilinear area around the bit-sliced stacks

into rectangular blocks with estimated block sizes (number of transistors) based on the

required aspect ratio and the number of transistors in the glue-logic module. For

example, if the glue-logic module is of size n and the given aspect ratio is 1:1 (Figure 8),

Page 16

the algorithm partitions the empty space in to blockl, block2, and block3 with block

sizes of ml, m2, and m3, respectively, where n=ml+m2+m3.

In order to minimize the wire lengths on the critical paths, all components on the

critical path must clustered together. Moreover, the components connected to the stack

and the external I/ 0 ports should be placed in blocks that are as close as possible to

the connecting ports. The _components on the critical path as well as the components

connected to either the stack or the external I/ 0 ports are called seed components.

Seed implantation places the seed components into proper blocks in order to minimize

wire lengths,. For instance, consider a critical path connected to the control line of a

Page 17

block 2
size: m2

glue-logic size: n = m1 +m2+m3

Figure 8. The example of the glue-logic of size n being
·partitioned into block 1·, 2, and 3 with size ml, m2, and m3.

bit-sliced _stack is placed in blockl, and a glue-logic component, compA, connected to

the right external I/O port is placed in block2 as shown in Figure 9(a). Without

clustering and ~eed implantation, the critical path could be distributed over both

blocks, while compA could be placed into blockl. That would introduce a long wire

which contributes to increase in signal delay (Figure 9(b)). Using seed implantation,

however, the seeds are forced to reside in blocks with the shortest distance to the

connecting ports. In our example the critical path is forced into blockl and compA is

forced into block2 (Figure 9(a)).

Finally, the multiway seed partitioning algorithm partitions glue-logic components

into pre-defined blocks according to block sizes, I/O pin positions, and critical paths.

Moreover, pin assignment for the glue-logic blocks is performed to minimize the wire

crossing between blocks.

5.1. Block Partitioning with Layout F.stirmtion

Since the bit-sliced units often have varying bit widths, the empty space in the

bounding box forms a ladder-shaped rectilinear geometry ·as shown in Figure 10. The

block partitioning algorithm first partitions the empty space in the stack bounding box

into rectangles. This empty space can he decomposed into rectangles of size wi X hi

where ~i and hi are the width and height of each rectangle i, for 1 <i<n, where n is the

number of rectangles.

The rectangles are sorted in descending order by width. The algorithm first places

glue..:logic components into the widest rectangle ,REC_A, as shown in Figure 10.

Transistors can be pla~ed "into rows with vertical or horizontal orientation. Using the

horizontal orientation, the dead-space indicated as spaceA in Figure 10 will be wasted.

Page 18

block 1

bit-sliced
stack

L-.:b.:.:lo:.:c~k.:2:....._c::; c=o=m=p :A:R-c-1 1/0 port

(a)

bit-sliced
stack

block 2

(b)
1/0 port

Figure 9. {a) Prope~ placeDEnt through clustering and seed
· implantation {b) Possible placement without clustering and seed

implantation

Using the vertical orientation, however, a portion of life-space indicated by spaceB in

. Figure 10 can be propagated to the next widest rectangle, REC_B, as shown in Figure

10.

In our implementation, we use LES [LiGa87] for glue-logic block generation. In the

LES architecture, transistors are arranged in a horizontal strip and wires are connected

between the P and N transistor rows. The area estimation for the LES architecture is

provided by an estimator embedded in the databas~ ·.[ChGa90]. By considering the

Page 19

REC_B h2
w2

REC_A

· empty space

w1

h1

vertical
orientation

transistor
rows

horizontal
orientation

Figure 10. Two orientations of transistor placenEnt

routing area between transistors rows, the estimator provides area utilization and block

size information according to the rectangular size. Both orientations are tried on each·

rectangle. The algorithm selects the one with the highest area utilization. This process

continues until the glue-logic components fill the entire ladder-shaped area.

If .more space is needed, the algorithm then uses a constructive method to define

the blocks around the bounding box according to the given aspect ·ratio and size

constraints. The overall asp·ect ratio and size constraints are:

Page· 20

Hccn1traint ~ ~odule

Aspect_Ratiocon1traint = Wmooule/ Hmodule

An example with a given 1:1 aspect ratio is shown in Figure 11. After filling blockl

and block2, the algorithm first places glue-logic components into block3. If more space

is needed, the algorithm then places components into block4. The process continues

until the glue-logic components are all placed into blocks. Since block3 can be also

placed on the left of the bounding box while block4 can be placed on the top of the

bounding box, a connectivity evaluation is performed to determine the block locations.

Page 21

W contraint

H constraint
eight

block 2

block 4

Figure 11. Glue-logic block partitions according to given size
constraints

For instance, if there are 10 bottom external 1/0 ports and 2 top external 1/0 ports in

the glue-logic module, then block4 is more suitable to be placed on the bottom of the

bounding box .

. Let Mi be the glue-logic block i which is denoted by a 4-tuple < si,wi'hi,oi> where

si is the number of transistors in block i, w, is the block width, hi is the block height,

and o. is the orientation. Let M={M. lil"".=< s.,w.,h.,o.>} be the set of glue-logic blocks. I 1fLVJ.I I I I I

ALGOIDTHl\1 III. Glue-Logic Block Partitioning
Glue_Logic_Block_Partitioning(){
M= ¢;
/*Define the blocks in the stack bounding box*/
Sort rectangles in descending order according to width;
for rectangle 1 to n do{
if (total #of transistors in Glue-Logic > 0) then{

Perform vertical and horizontal placement;
MU the block with the highest area utilization;
Update the total #of transistors in Glue-Logic;
if (vertical _orientation is selected) then

Pass live.....space to the next rectangle;
}

}
/*Define the blocks around the stack bounding box*/
while (total #of transistors in Glue-Logic_ > 0) do{

}

Define the empty space according to the given aspect ratio and module sizes;
Place transistor rows into empty space;
Update the, total #of transistors in Glue-Logic;

MU blocks around the stack bounding box;
} .

5.2. See<J Irr.plantation

Seed implantation uses a multi-stage clustering method [Hohn67] to cluster seeds

for each glue-logic block. The glue-logic blocks can be divided into four sections: top,

bottom, left, and right (Figure 12(a)). We define four clustering groups: glue-logic-tbp,

glu.&-logic-bottom, glue-logic-left, and glue-logi~right. Each group contains the glue-logic

components connected to the same side of the stack or the external I/O ports. For

Page 22

example, consider two glue-logic components compA and compB such that oompA

connects to the left external I/ 0 port and compB connects to the left boundary of the

st~ck (Figure 12(a)). Then both components should be placed in the left section.

Therefore, compA and compB are both clustered into the group glue-logic-lat (Figure

12(c)). In the first clustering stage, glue-logic clustering is based on five criterions: (i)

critical-path, (ii) glue-logic-top, (iii) glue-logic-bottom, (iv) glue-logic-left, and (v)

glue-logic-right (Figure 12(c)). If a component GL can be placed in more than one

group, the following rules are applied:

(1) If GL is on the critical path then GL C CcriticaJ...path, where Ccritical..path is the critical

path cluster.

(2) Otherwise, the component clustering depends on the number of wire connections

betwe~n ~Land the four different glue-logic sections (top,.bottom, left, and right).

GL will be assigned to the cluster with the maximum connections.

In the second stage, the algorithm conti_nues to cluster the critical paths to

determine the preferred location for the critical paths. There are two cases. In the first

case, if ccritical-iJath nglue-logic-section = </> where section E {top, bottom, left, or right},

then C .t. 1 th is not strongly connected to any sections. This C ·e·ca1 th becomes a en 1ca ...pa · · · cri 1 ...pa

stand alone cluster and will not be ~mplanted into blocks as a seed. In the second case,

if ccritical...pathn glue-logic-section * </> then the rule (2) in the first stage is used to

dete~mine the new clusters for Ccriticai...path' For example, in Figure 12(a) there is a critical

path that strongly connects to the left section. Therefore, the critical path cluster and

the glu~logic-ieft cluster are clustered further (Figure 12(d)). In the third stage, the

seed clusters are grouped into blocks. For example, there are two glue-logic blocks,

Page 23

Page 24

(d)

compA comp&

2nd stage
clustering

(c)

block1

(e)

clustering
1st stage

Figure 12. Seed implantation using a multi-stage cl~ering
Irethod

3rd stage
clusterfng

blockl and block2, in the. layout module (Figure 12(b)). Obviously, the glue--logic-1£ft

cluster should be clustered into blockl (Figure 12(e)). Ideally, the glu~logic--top cluster

should reside in the glue-logic block on the top section. However, if there is no glue-

logic block on the top section then the glue-logic-top cluster will clustered with blockl

that is close to the top section (Figure 12(e)).

5.3. Mul~iway Seed Partitioning

The multiway seed partitioning method is an extension of the min-cut partition

algorithm [KeLi70]. The original two-way uniform partition is to find a minimal-cost

Page 25

Cut-set A

size:n/2

I
I

I
I

I·

minimize
cut-lines

Cut-set B

Figure 13. Bi-partition graph

partition of a given graph of n nodes connected by edges into two equal subsets of n/2

nodes_ (Figure 13). The min-cut partition algorithm uses heuristics to find the minimal

partition by exchanging the elements in cut-set A and cut-set B based on a partition

cost function. Let's define Ii as the number of wire connections between element i and

other eiem~nts in the same cut-set, and Ei as the number of wire connections between

element i and other elements in the different cut-set. For example in Figure 13, E is 1 . a

and Ia is 2. Then, Di is the difference between external and internal costs of element i,

that is, D. = E.· - I.. Cab is a double counting correction function if element A and
I I I .

element B are connected to the same net. The partitioning cost (gainab) calculation for

exchanging element A and element B is Da + Db - 2Cab. If gainab is positive then the

total cost can be reduced by gainab by swapping element A and eiement B. In each

partition pass, it obtains a sequence of gains g~, ... ,gain
11

with corresponding swapped

pairs. K swapped pairs are selected to maximize the total gain G(k) where G(k) =

~gain. for 1 <i<k. The partitioning process continues until G(k) :S 0.
t .

In our case, the goal of multiway seed partitioning is to partition glue-logic

components into blocks with minimal cut-lines between blocks subject to block size

constraints. To achieve the minimal wire lengths of global nets, it is not adequate to

partition glue-logic . components into blocks without considering the external

connections (DuKe85, LaDi86]. For instance, by swapping elemen~ X and element Y

(Figure 14), the partitioning cost increases by 1 if the external connections between the

elements in tlie block A and the element X in block B are not taken into account.

However, the .actual partitioning· cost decrease by 1 when the external connections are

taken into account.

Page 26

block A block B block C

after partitioning
I .

current partitioning sets

external boundary·

Figure 14. Partition cost including the external
connections

To take the external connections between blocks into account, a penalty external

cost PEco•t is added to calculate the partitioning cost. PEcoat can be (i) zero, (ii)

negative, or (iii) positive. For example in case (i) (Figure 15(a)), block B and block C

are adjacent to the block A. Thus, PEcoat can be set to zero by swapping element X and

. element Y. In case (ii) (Figure 15(b)), if element X connects to the block A and the

block D is not adjacent to the block A, PEcoat will be made negative by swapping ·

element X and element Y (it needs one more extra vertical routing track). In case (iii)

(Figure 15(c)), if element X connects to the block B and block D is adjacent to the

block A, PEcoat will be made positive by swapping ele~ent X and ~lement Y (it reduces

Page 27

Page 28

A B

lli1 y

c
(a)

A c

B

.... l
I

. I - - I

.A

B

llJ : blocks after
partitioning

D

(b)
,c

D

x

-
-o

y

y

(c) D : current partitioning
blocks

••---••• before swapping

c::>- - c after swapping

Figure 15. Partition cost calculation based on external
connections

one vertical routing trac~).

As a result, the total partitioning cost gainab for swapping element A and element B is

Da + Db - 2Cab + PEco.i·

To consider the I/O port locations, the critical paths, and the connections between

blocks, a seed partitioning scheme is used to ensure the proper partitioning decisions for

reducing the wire lengths .of global nets. The idea of seed partitioning is to force certain

components to be placed in the particular blocks as seeds. During the partitioning

process, the seeds are treated as non-swapable cells. Using· the seeding strategy, the

critical paths will be tightly clustered and placed in the same block close to the

connecting ports. The wire lengths of the critical paths is thus reduced.

In the glue-logic· block partitioning step, the glue-logic module is divided into

blocks. Let n be the n u_mber of pre-defined glue-logic blocks and Si be the size of block i.

Thus, the size of glue-logic mod~le SGlue- Logic = ~ Si for 1 <i<n ..

The multiway ~eed partitioning algorithm performs min-cut partitioning repeat~y

based on the cut-set size of (CA, CB) where CA=Si and CB=~Si for 1 < i ~ n and i+l

< j < n. Since there are pre-implanted seeds in each. block, the seeds in the cut-sets

need to be rea~range~ before the partitioning process takes place. Let SEEDi be the

seeds in block i. In every partitioning iteration, the seeds are rearranged as SEEDi C CA

and (SEEDi+1USEEDi+2U ... USEEDn) C CB for 1 < i < n. Frequently, CA and CB are

not equal; the~efore, a set of dummy elements are added to the original set to allow

unbalanced partitioning.

Page 29

ALGORITHI\'1 IV. .Glue-Logic Partitioning
G lue_Logk .. Pa.rtitioning() {

/*Block partitioning*/
G lue_Logic_13lock_Partitioning();
/*Seed implantation.*/
Cluster components as seeds based on the critical path and the external 1/0 pin positions;
Build multi-stage clustering tree to place seeds into blocks;
/*Multiway seeding partitioning*/
for block i=l ton do{

}

/*Arrange seeds for cut-sets*/
SEED; C Cut-Set A;
SEEDi+i USEED;+2U ... USEEDn C Cut-Set8 ;

/*Calculate cut-set sizes*/
Size(Cut-Set A) = Size(Blocki);
Size(Cut-SetB) = E sk for i+lSkSn;

/*Min-cut partitioning*/
Partition Glue-Logic components into Cut-SetA and Cut-Set8 ; .

for block i= 1 to n do{
1/0 pin order assignments for Block i;

} .

}

6. Experiirental Results

The previously described algorithms are embedded in SLAM [WuCG90] which

currently runs on SUN3/SUN4 workstations under the UNIX operating system. Several

examples have been tested. The layouts were generated using a 3-micron CMOS

technology.

The first. example is a controlled counter [Arms89] that consists of approximately

503 sliceable components and 503 non-sliceable components. The register-transfer

schematic (Figure 16) .was generated by VSS [LiGa88]·. SLAM partitions the LIM

register and the up/down counter into bit-sliced units and partitions the glue-logic

module into two blocks to satisfy a given 1:1 aspect ratio requirement. The final layout

is shown in Figure 17. The second example is the digital section of a DSP chip supplied

by local industry that consists of an ALU, registers, fl.ip-:flops, a shifter, counters,

. Page 30

latches, and simple gates. The final layout which consists of one bit-sliced stack and

three glue-logic blocks is shown in Figure 18. The third example is the MARKI simple

computer [SiBN82J which includes 32, 16, 13, and 3 bits register-transfer components

and simple gates. The final layout is shown in Figure 19. It consists of a unfolded stack

and a folded stack with a glue-logic block.

Using the same layout system, we compare our method with a manual

floorplanning and automatic placement and routing method for layout generations of

the previous examples. Using the second method~ the register-transfer schematic was

first partitioned into blocks. For example, the original DSP design was partitioned into

three parts: program counter, control unit, and arithmetic unit. Each block was

generated individually. Then we used the GDT's interactive floorplannel'. to find the

best floorplan and to determine the shape and I/ 0 pin locations of the glue-logic block.

The results in Table 1 show that the layouts generated using our layout method are

10% better than those using the manual fl.oorplanning and automatic placement and

·routing method. Moreover, the wire lengths on the critical path produced using our

layout architecture are 30%-503 sh~rter than those produced using the manual

floorplanning and automatic placement and routing method.

7. Conclusions

In this· paper, we have presented a new layout style for netlists with sliceable

components. 1'he empty space created by abutting the bit-slices of different bit-widths

can be fully utilized by filling it with glue-logic components or folding the bit-sliced

stack. As a result, better area utilization can be achieved using this sliced layout

architecture.

Page 31

We also presented partitioning algorith~ns for layout generation of register-transfer

netlists. The partitioning algorithms not only select the best suited layout style for each

component, but also consider critical paths, I/O pin locations, and connections. between

blocks. This improves the overall area utilization and minimizes the total wire lengths.

Future work includes developing different stack folding algorithm such as

interleaved folding method and investigating timing issue based 6n our layout

architecture.

8. AcknowledgenEnts

This work was supported by NSF grant #MIP-8711025, California MICRO grant

#88-134, and contributions from Rockwell- International, Western Digital, Silicon

Systems, and S-MOS Inc. We are grateful for their support.

Page 32

Strobe

CON ln(2)

in
CON elk Reg1ster(2)

out

in
Decoder

00 01 10 11

a -------f--~---1--------1
Clk

LIM ln(4)

In

lk Re~Wer(4)
out

Aln

Comparator Bin
A=B

cir load
Counter .

up/down

Figure 16. The controlled counter schematic

Page 33 ·

- ~ - -- - - -- - - - - - - - -- - -- - - - - - - -- - -- - - - - - - -·- - -- - -

Figure 17. The layout of the controlled counter

Page 34

Figure 18. The layout of a DSP example

Page 35

Figure 19. The layout of the MAR.Kl simple corq:mter

Page 36

Page 37

example
our manual

% layout method layout method

Controlled 2 2
-10.8

Counter 450,328 um 498,883Um

DSP
. 2

7 ,056,000 um
2

7 ,896,042 um -11.9

MARK1
2

11,220,000 ·um
2

12,701,040 um -13.2

(a)

example
our manual

% layout method layout method

Controlled 495 um 765 um -54.5
Counter

DSP 2,665 um 3,650 um -36.9

MARK1 3,885 um 4,950 um -27.4

(b)

Table 1. The comparisons of our partitioning and floorplanning with a
mmual partitioning and floorplanning: (a) total are.a and (b)

critical-path wire lengths

9. References

[Arms89] Armstrong, J., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

[Ayre90] Ayres, R. F: "Completely Automatic Completion of VLSI Designs," IEEE
Trans.Computer-Aided Design Vol. 9, No. 2, pp.194-202. 1990.

[ChGa90] Chen, G. D. and Gajski, D., "An Intelligent Component Database System for
Be~avioral Synthesis," Proc. 27th DAC, 1990.

[DaEs89] Dai, W. M., Eschermann, B., Kuh, E. S., and Pedram, M., "Hierarchical
Placement and Floorplanning in BEAR," IEEE Trans.Computer-Aided Design Vol. 8,
No. 12, pp.1335-1349, 1989.

[DuKe85] Dunlop, A. E. and Kernighan, B. W., "A Procedure for Placement. of
Standard-Cell VLSI Circuits," IEEE Trans.Computer-Aided Design Vol. CAD-4, No. 1,
pp .92-98, 1985.

[Hohn67] Hohnson, S. C., "Hierarchical Clustering Schemes," Psychometrika, pp.241-
254, 1967 ..

[HsGr87] Hsu, D., Grate, L., Ng, C., Hartoog, M., and Bohm, D., "The ChipCompiler,
An Automated Standard Cell/Macrocell Physical Design Tool," Proc. CICC, 1987.

[JaJe85] Jamier, R. and Jeraya, A., "APOLLON: A Datapath Compiler," Proc. ICCD,
1985. .

[Joha79] Johannsen, D. L., "Bristle Blocks: A Silicon Compiler," Proc. 16th DAC, 1979.

[KeLi70] Kernighan, B. W. and Lin, S., "An Efficient Heuristic Procedure for
Partitioning Graphs," Bell System Technical Journal, Vol. 49, pp.291-308., (2), 1970.

[LaDi86] LaPotin, D. P. and Director, S. W., "Mason: A Global· Floorplanning
Approach for VLSI Design," IEEE Trans.Computer-Aided Design Vol. CAD-5, No. 4,
pp.477-489, 1986.

[LiGa87] Lin, Y.L. and Gajski, D., "LES: A Layout Expert System," Proc. 24th DAC,
1981. -

[LiGa88] Lis, J. S. and Gajski, D., "Synthesis from VHDL, ... Proc. ICCD, 1988.

[LuDe89] Luk, W. K. and Dean, A. A., "Multi-Stack Optimization for Data-Path Chip
(Microprocessor) Layout," Proc. 26th Design Automation Conf., pp.110-_115, 1989.

' .

[RoWa87] Rowson, J., Walker,. B., and Dholakia, S., "A Datapath Compiler for
Standard Cells and Gate Arrays," Proc. CICC, 1987.

Page 38

[SiBN82] Siewiorek, D. P., Bell, C. G., and Newell, A., Computer Structures: Principles
and Examples, McGraw-Hill, 1982.

[ThKo87] Thonemann, H. G., Kolonko, M., Severloh, H., "VENUS-An Advanced VLSI
Design Environment for Custom Integrated Circuits with Macros Cells, Standard Cells
and Gate Arrays," Proc. CICC, 1987.

[U eKi85] Ueda, K.; Kitazawa, H. and Adachi, T., "A Highly Automated Top-Down·
Layout Design System for Hierarchical Custom VLSis," Proc. Custom IC Conf., pp.452-
455, 1985.

[WuCG90] Wu, A. C. H., Chen, G. D. and Gajski, D., "Silicon Compilation from
Register-Transfer Schematics," Proc. ISCAS, 1990.

Page 39

