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Abstract

Most of the IC today are described and documented using heiarchical .
netlists. In addition to gates, latches, and flip-flops, these netlists include
sliceable register-transfer components such as registers, counters, adders, ALUs,
shifters, register files, and multiplexers. Usually, these components are
decomposed into basic gates, latches, and flip-flops, and are laid out using
standard cells. The standard cell architecture requires excessive routing area,
-and does not exploit the bit-sliced nature of register-transfer components. In
this paper, we present a new sliced-layout architecture to alleviate the preceding
problems. We also describe partitioning algorithms that are used to generate
the floorplan for this layout architecture. The partitioning algorithms not only
select the best suited layout style for each component, but also. consider critical
paths, I/O pin locations, and connections between blocks. This approach
improves the overall area utilization and minimizes the total wire length.
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1. Introduétion }

Surveys of VLSI products reveal that most fabricated chips can be described by

register-transfer schematics or netlists. In addition to gates, latches, and flip-flops,

“schematics include register-transfer components such as registers, counters, adders,
ALTUs, shifteré, multiplexers, and register files. The products in this category include
DMA controllers, bus controllers, disc con,trb].lers, and progrémma.blé I/O interfaces;
that ié, basically. all chips for computer design with the exception of CPUs and

memories.

The common used layout strategy for such designs is the use of standard cells.
- Standard cell methodology, however, does not take into account the regular nature
.(bit-slice property) of register-transfer components, since those components are
decomposed into basic éates, latches, and ﬂip-ﬂopS' before layout. Greater layout
density can be achieved if registerftransfer components are laid out in a bit-sliced layout

architecture.

‘ The general bit-sliced layout architécture has two weaknesses, however. First, if all
sliceable components do not have the same number of bits, then some bit-slices are not
used. For example, when a 4-bit counter and a 12-bit register are laid out in the bit-
sliced style, 8 bit;slices are wasted since the 4-bit counter occupiés only 4 bit-slices.
Second, routing of bit-slices with d_ifferent indices is difficult. For example, if bits 7 and
8 of the register must be connected to bits 1 and 2 of the counter of the previous

example, routing across bit-slices must be introduced.

In this paper, we describe a new layout architecture to alleviate the problems of '

general bit-sliced layout architecture. We also present'é, top-down layout methodology
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and algorithms that | generate layouts for register-transfer schematics. In most
conventional hierarchical layout approaches, placement and routing are carried out in a -
bottom-up fashion [AyreéO, DaEs89]. In this approach, each predefined block is
designed individually, then the blocks are connected usingv’routing channels between
blocks. However, our layout methodology is performed in a top-down fashion [UeKi85]
that implements three partition phases: (i) partition the register-transfer schema.ti(; into
bit-slice and glue-logic components, (ii) partition the 'bit-sliced stack to minimize the
layout area of the bit-sliced components, and (iii) partition glue-logic components into
blocks based on the target architec’turek(Figure 1) In addition, piné are assigne& to the

proper sides of blocks in order to minimize the wire crossing between blocks.

The remainder of this paper is organized as follows. We present a sliced layout
architecture in Section 2. Three partitioning algorithms-are described in detail in

. Section 3-5. The experimental results are shdwn in Section 6. Finally, Section 7 contains

the conclusions.

2. Sliced-Layout Architecture

There are two common layout architectures for bit-sliced -components: bit-slice
abutment [JaJe85, Joha79] and bit-sliced macros or standard célls with routingrchannels
[HsGr87, RoWa87, ThKo87, LuDe89]. The first layout architecture abuts bit-sliced
cells with over-the-cell routing for connecting bit-slices with the same indices. This
érchitec’cure, however, wastes area if units Withvva.rying bit-widths are in the same stack
or if different indices of the bit-lsli;es must be connected. Th-e second layout architecture’
stacks bit-slice;d macros or standard cells vertically with routing channels between units.

Using this layout ai‘chitecture, several units with sma]lg‘exf bit-widths can be placed in the
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Component Partitioning

v

Bit-Sliced Stack Partitioning
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‘Layout Synthgsis
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< Layout - >

Figure 1. Three partitioning methods for layout generation from RT
o schematics

same row in order to reduce wasted space. However, routing channels for wire

connections between the units contribute to low area utilization.

The slice.d-layout architecture use a stack of bit-'slice.d register-transfer units. This
bit-sliced stack (Figure 2) combines cell abutment, over-the-cell routing, and switch box
ah'gnment to alleviate the problems bf previous approaches. Each bit-slice has the same
width and has 'a fixed number of metal2 routing tracks over each cell. Unit heights
vary with the unit functionality. Each bit-sliced cell, such as an ALU, multiplexer,
registér, adder, ‘or shifter, is designed manually. The layout of each unit is p;‘oducéd by

a parameterizable generator according to the given bit-width and I/O pin positions.
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(a) register-transfer schematic

0 1 3 4 7
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Reg2 4l L4l 1 <
Reg3 | 1 ] o not routable

(b) initial placement

0_1 4 5 6 7
Reg1 I
SW BOX A A7 - exit
Reg2 JJLTHITL on the right
Regd . s1if i area for
(c) switch box insertion g::gzr?ageﬁt

Figure 2. Switch box insertion for wire alignment

The units are stacked in the vertical direction. Using an over-the-cell routing strategy,
the data signals run vertically in 2nd meta.l.over the bit-slices. Power, ground, carry,
and control lines are routed horizontally in the 1st metal or polysilicon between the
bit-slices. An example éonsisting of tﬂree registers (Regl, 2, and 3) is shown in ‘Fivgure
2(a). Regl has 8 bits, while Reg2 and Reg3 have 5 and 4 bits respectively. The five
least significant bits of Regl are connected to Reg2 while the 4 most significant bits of
Regl are com;ected to Reg3. The floorplan of this layout is shown in Figure 2(b).

Registers are ordered by bit-width from top to bottom and aligned by the least

significant bit.
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When several uniié of different bit-widths are stacked by width as shown inFigure
2(b), a step-shaped triangular area will be created within the stack bounding box. This
area can be. used for stack folding or for placement of thé non-sliceabie -glue-logic
components. Furthermore, a routing channel called a switch box must be inserted in
the stack for connecting bit-slices with different indices. In our example, the
interconnections between Regl (bits 4-7) and Reg3 (bits 0-3) are not routable withoﬁt a
switch box. Therefore, a switch box is inserted as shown in Figure 2(c). Using the same
sWitéh box, signéjls may enter or exit the sliced stack frofn the left.or right aé indicated
in Figure 2(c).

In thé sliced-layout architecture, the stack can be laid out in two different styles. If
the netlist confa.ins only a few sliceable compbnents then we use an unfolded stack
strucfure as shown in" Figure 3(a). In this case, the glue-logic compénents are placedr
into the empty space in the stack bounding box. However, if more space is needed then
the glue-logic components are then placed on the left., right, top, and bottom sides of
the stack. On the othér hand, if the stack contains a large number of sliceable units
with highly va,rying bit widths, the stack structure can be,foldeti' as shown in Figure‘
3(b). The glue-logic components are placed at the sides of the stack bounding box.
When the stack héight is higher théui a given height constraint, the stack must be

partitioned into several stacks that can be either folded or unfolded.

3. Component Partitioning
The purpose of component partitioning is to determine the layout style (bit-slice or
glue-logic) for each.registér-transfer component. The component layout style depends

on the component type, the component’s connectivity, and the overall floorplan. First,
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stack bounding
unfolded units , box ‘

s /o portstopexit: ...

f‘mp

N3Ny f

N e B

(a) unfolded stack glue-logic module

unfol edqnits | | empty space
- _ ifo ports top exit e
NANNANNNNN

folded units

“switch box (b) folded stack  glue-logic module
Figure 3. Two sliced layout architectures

components must be partitioned by type since some components such as countefs,
registers and ALUs are sliceable while others like decodérs and encoders are not.
Second, srﬁall size components can be implemented in two ways. For example, a 2-bit
ALU cah beb implemented using NAND and NOR gates or as a bit-sliced unit. The
implementation decision for such a coﬁponent depends on the component’s
connectivity. For example, if a component in question‘ is strongly tonnected to other
glue-logic ‘componeﬁts, then a glue-logic layout style may be more suitable for this

~ component in order to reduce the wiring area between bit-sliced stack and glue-logic
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module.‘ Third, the component layout style also depends on the final floorplan. For
example, ﬁsing the folded stack architecture, small bit-sliced units are folded into empty
spaée in Ithe stack bounding box. If a small unit doesn’lt fit into the stack, this unit.
might better be laid out a glue-logic component in order to reduce the overall layout
area. B& exploiting the bitfslice property of register-transfer components'a.nd selecting
the b.est suited layout style for each component, better area ut_iliz'ation can be achieved.

A Weighted and la,bel’ed ﬁndirected graph G is formed from the schematic‘ by a set
U of nodes and a set E of edges. The node ixj € Uis the component in the schematic
where j = 1..n, and n is the total number of components. Thé sub-node port(ij) Cuis
the port in the component u; where i = 1.m and m is the number of ports in the
| component u. The attribute type of a port(i), pott_type(ij), indicates that port(i;) is a
-control port or a data port. Let e(i,, j) be the edge between port(i,) and port(j,), where
-, v, € U, port(i,) C u,, and port(j) C u. The weight of an edge e € E, wle(i, j;)], is the
number of wireg between these two ports. Thus, the edges correspond to connections
between ports, while weights are equal to the multiplicity c;f conneétions. A graph
generated from the schema.tic in Figure 4(a) is shown in Figure 4(b). There are two
components in the schematic, a 4-bit Reg and a 4-bit Mux. In the graph, Reg and Mux‘
form two nodes (U1 and U2). Each node has two data pbrts, (port(él), (¢c;) C UL aﬁd
port(q?), (f,) € U2), and one control port (port(b,) C Ul and port(e,) C U2) In Figuré
4(bj, (¢, d,) is the edge between p(;rt(cl).a,nd port(d,) and wie(c,,d,)]=4.

A linking cost is used to evaluate the connectivities between combonents. The

linking cost functions are:
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input
l 4

1 a
cik—1 (®) R(e)g (4)
(c)

4

2 d
s> () mux (4
(f)
| 4
output

~ (a)

ports a, ¢, d, and f : data port
ports b and e : control port (b)

Figure 4. Graph representation of the RT netlist

c

1 w,_, . (q) = Z‘ bw[e(ik,i,)] for all u where u is a GlueLogic or a Bit-Slice

implementation and port_type(j) is a control port | |

(2) w, (o)=Y w[e(i,é,j,)] for all u, whgre u, is a Bit-Slice and port_type(j;) is a data
: o :

In the linking cost function, W___ d(u‘k) is the number of wires connected to u, from

~other Glue-Logic nodes or from control ports of other Bit-Slice nodes. W, (u,) is the

number of wires connected to u, from data ports of other Bit—Slice nodes. For example,

if Ul in Figure 4(b) is a Bit-Slice and port(f,) of U2 connects to another Bit-Slice then

Wcontrd(“z)=2 and wdata(u2)=8'
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The component partitioning is divided into three steps: |

(1) Initial component type assignments. The algorithm first labels nodes as Glue-Logic
if components are not sliceable such as single gates, decod.ebrs, encoders, etc. The
components that meet the following two conditions are labels as Bit-Slice: (i) the
component can be laid out as a Bit-sliced and (ii) the component’s bit widths are
larger than a user specified threshold. If these conditions are not meet, the

algorithm will label nodes as "undecided” component type.

(2) Component type aséignments for the undecided nodes. The algorithm calculates

the linking cost for the undecided nodes. For an undecided node u,if W_ . (q)

> W, .(u,) then node u, is labeled as Glue-Logic, otherwise node u, is labeled as
Bit—Slice.

(3) Partitioning improvement. In this step, the algorithm re-evaluates the
connecfivities among nodes to finalize the component type assignments. The
algorithm first calculates the linking cost for all of fhe nodes. Then the é,lgorithm
.evaluates the‘connectivities of nodes that can be laid out as both Glue-Logic and

Bit-Slice. For evaluating a node u,, there are three possible cases: (i) f W, (u,)

> W

data

(u,) and node u, is a Bit-Slice then node u, is re-labeled as Glue-Logic, (i) If
W, .(0) > W . (u) and node u, is a Glue-Logic then node u, is re-labeled as
Bit—Slice, and (iii) If conditions (i) or (i) do not apply, a node u, keeps its original

component type.
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(4) Floorplan driven component type assignments. During the stack folding stage, the
algorithm may re-la,bel nodés as Glue-Logic if the components can not fit into the
bit-sliced stack. Details of this phase will be described in the “stack partitioning"
'sectioﬁ of this paper.

ALGORITHM I Component Partitioning
Component_Partitioning(){
Build graph from register-transfer netlist;
/*Initial component type assignment*/
for component i = 1 to n dof
if (component i is not sliceable) then{
type(i) = Glue-Logic;

else if (component i is sliceable and bit-width(i) > required minimal bit-width for bit-
sliced units) then{ ' '
type(i) = Bit_Slice;

type(i) = undecide;
}
}

/*Assign component type to the ‘undecided nodes*/
for component j = 1 to n dof
if (type(j) == undecide) then{
Calculate linking cost of node j;
(W, 0(3) > Wy, () thenf
type(j) = Glue-Logic;
}
elsef
type(j) = Bit—Slice;

}

/*Partitioning improvement*/

for component j = 1 to n dof
Calculate linking cost of node j;

} ,

fori =1 to n dof

if (component i can be laid out as both Bit-Slice and Glue-Logic) then{
if (W_,,.«(1) > W, (i) and type(i) == Bit—Slice) then{

type(i) = Glue-Logic;
-else if (W, (i) > W, (i) and type(i) == Glue—Logic) then{

type(i) = Bit—Slice;
}
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}
}

Floorplan driven component type assignments (see Algorithm II);

}

4. Stack Partitioning

"The goal of stack partitioning is to minimize the layout area of the bit-sliced
components. Since bit-sliced units. often have varying bit-widths, .the sliced layout
architecture generates an empty space within the stack bounding box. A folding method
is used to place small units into the empty space and thus reduce the stack height.

The folding process includes two steps: (i) unit foldx;ng and (ii) overlap checking
and avoidance. The main constraint of stack folding is that bit-sliced units must not
oveﬂap. The algorithm folds one unit at a time. The folding process includés two steps:
(i) move the unit u; to the right edge of st@ck’s b01'1nding box and rotate it around the
center (Figure 5(a)) and (ii) push all of the folded units above the the base-line (Figure
5(b)).

After unit folding, an overlap checking is performed to check whéther the units in
the folded part overlap with the unfolded part. The bounding box of unit-u, is defined

by the upper-left point (x

ul i,

Vi) ami the lower-right point (x,;y,,) of unit v, (Figure
5(a)). Thé overlapping conditions are |

(1) The1:e exists a (x;,;y,,) and u, ‘€ {unfolded bit-sliced units};

(2) There exists a (x,;;y,,;) and € {folded bit-sliced units};
(3) xy; < X and ¥y < Wiy

If an overlap occurred as shown in Figure 5(b), the folded units will be shifted to

the right to avoid the overlap (Figure 5(c)).
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N , overlap
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R ‘
—_—
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(c)

: unfolded units
BB  : empty spaces
: folded units

Figure 5. Stack folding process

‘Using the folding method, we describe a stack partitioning algorithm for
minimizing the area of the bit-sliced units as follow_s:
(1) Calculate the routing area cost between unfolded and folded units. The routing
area is in proportion to the number of wires between unfolded and folded units.
For instance, the nurﬁber of wires c'ro‘ssin’g the cutljne between compA and compB is
four (Figlilre \6(a.)). By folding compB, the routing area will .contain four wires
(Figure 6(b)) The number of wires crossing any cutline can be determined ‘a,fter.

- the unit placement and routing. The unit placement and routing consists of three
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Figure 6. Stack partitioning based on folding
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(3)

steps: (i) Sort the units by width, (ii) Permute the order of the units of the same
width to minimize the track density, and (iii) Assign routing tracks to the units.

Thereafter, the number of wires between units is calculated.

The algorithm uses our foldingv method to minimize the area of the bit-sliced units
subject to the given stack height and width requirements. If an ovérldp occurs
during the folding process, the folded ﬁnits will be shifted to the right to avoid
overlap until the required width is reached. However, if some folded units still
overlap the unfolded units after shifting, the overlapped folded units will be
deleted to form a new stack. In Figure 6(c), compC ovérl'a.ps with unfolded ‘units
when allowed Width is reached. Thus, it will be moved to form a separate stack.
Moreover, the stand-alone or leftover small bit-sliced units ;chvat do not fit in any
stacks will be inoved to the glue-lc;gic module (i.e. it will relabeled compC as

Glue-Logic as mentioned in the previous section "component partitioning” of this

paper).
The algorithm calculates the total stack area. There are two cost functions: (i) For
one stack, the total area is the minimal bounding box that encloses all of the uﬁits
and the routing area for connecting the unfolded and the folded units and (ii) For
multiple stacks, the total area is the sum of bounding boxes of individual stacks
and the routing area between stécks; The algorithm executes repeatedly and
selects .the best stack pa,rtitio.n with the minimal area that also satisfies the stack
height and width constraints. For example, Figure 6(e) shows an area curve that
was genefa.ted by executing the folding proce;ss repeatedly. Each ‘da,ta, point in

Figure 6(e) represents the total area for a particular stack partition. The partition
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with the minimal a,rea.‘(pa,rtition #4 in_Figure 6(e)) is selected as the final stack
partition.

(4) After selecting the stack partition, the algorithm .performs a width compression
step to reduce the empty space between the unfolded and folded units (Figure
6(d))."The empty space in the bounding box can be used for placing the glue-logic

components.

ALGORITHM II.  Stack Partitioning

Stack_Partitioning(){
Sort bit-sliced units in descending order according to bit- wxdth

Perform unit placement and routing;
Calculate cut-lines between units and empty space in the bounding box;
if (empty space is too large for glue-logic "
or stack height > the allowed stack height) then{
for unit 1 to n dof :
Perform unit folding;
if (unfolded units overlap with folded units) then{
Shift folded units to avoid overlap,
if (stack width > the allowed stack width) then{
Shift folded units to the allowed width boundary;
Move the overlapping folded units to form a new stack;
-}
}
Choose the minimal area partition;
Move stand-alone and small units into Glue-Logic module;
Compress unfolded and folded units;

}
}

5. Glue-Logic Partitioning
After forming the bit-sliced stacks, the floorplanner first places the stacks
according to a given layout height, width, and aspect ratio. The glue-logic partitioning

algorithm places the glue-logic components into the empty space in the stack bounding
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bounding box
'(RB stack)

. region 2 region 2

/ reéion1
= *

A regioh

glue-logic

Figure 7. Placement of glue-logic components
in regions 1 and 2

box (region 1) and around the stack bounding box (region 2) according to the given
total aspect ratio and I/O pin location (Figure 7).

The glue-logic partitioning algorithm consists of thrée steps: (i) Block partitioning
with layout estimation, (ii) Seed implantation énd (iii) Multiway seedvpartitioning. The
block partitioning algorithm partitions the rectilinear area é,round the bit-sliced stacks
into rectangﬁlar blocks with estimated block sizes (number of transistors) based on.the
required aspeét ratio and the number of transistors in the glue-logic module. For

example, if the glue-logic module is of size n and the given aspect ratio is 1:1 (Figure 8),
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the algorithm partitions the empty space into blockl, block2, and block3 with block
sizes of ml, m2, and m3, respectively, where n=ml +m2+m3. |

In order to minimize the wire lengths on the critical paths, all components on the
critical path must clustered together. Moreover, the components connected to the stack
and the external I/O ports should be placed in blocks that are as close as possible to
the connecting ports. The components on the critical path as well as the components
corinected to either the stack or the external I/O ports are called seed components.
Seed implantation places the seed components into proper blocks in order to minimize

wire lengths. For instance, consider a critical path connected to the control line of a

7
//// e
:} d latch ' -7
—_}__

glue-logic size: n = m1+m2+m3

lock 3
size: m3

N

or

Figure 8. The example of the glue-logic of size n being
partitioned into block 1, 2, and 3 with size m1, m2, and m3.
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bit—éliced Stack is placed in blbckl, and a glue-logic componént, compA, connected to
the right external I/O port is placed in block2 as shown in Figure 9(a). Without
clustering an(i seed implantatioﬁ, the critical path could be distributed over both
blocks, while compA could be placed into blockl. Tha,t‘would introduce a long wire
which contributes to increase in signal delay (Figure 9(b)). Using seed implantation,
howéver, the seeds are forced to reside in bloqks with the shortest distance to the
. connecting ports. In our example the critical p.ath is forced into blockl and compA is
forced into block2 (Figure 9(a)).

Finally, the multiway seed partitioning algorithm partitions glue-logic components
into pre-defined blocks according to block sizes, I/O pin positions, and critical pa,ths.'
Moreover, pin assignment for the glue-logic blocks is performed to minimize the wire

crossing between blocks.

5.1. Block Partitioning with Layout Estimation

Since the bit—siiced' units offen have varying bit widths, the empty space in the
bounding box forms a ladder-shaped rectilinear geometry as shown in Figure 10. The
block partitioning a.lgorithm first partitions the empty space in the stack boundjng box
into rectangles. This empty spa,ce. c;am be decompose_éd into rectangles of size w,X h,
where w, and h, are the width and height of each rectangle i, for 1=<i=<n, where n is the
number of rectaﬁgles.

The rectangles are sorteﬂ in descending orde;’ by width. The algorithm first places
glue-logic co'mpohen‘ts into the widest rectangle ,REC_A, as shown in Figure 10.
Transist(:ors can be placed into rows with vertical or horizontal orieﬁtation.‘ Using the

horizontal orientation, the dead-space indicated as spaceA in Figure 10 will be wasted.

Page 18




critical ‘bit-sliced

block 1
oc block2  (Semp_ A)~—03 /O port
(a) |
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: -1 1/0 port

(b)

Figure 9. (a) Proper placement through clustering and seed
“implantation (b) Possible placement without clustering and seed
implantation

Using the vgrtical orientation, however, a portion of life-space indicated by spaceB in
‘]:J‘iguie 10 can be propagated to the next widest rectangle, REC_B, as shown in Figure
10.

In our implementation, we use LES [LiGa87] for glue-logié block generation. In the
LES arc'hitectu‘re, transistors are arranged in a horizontal strip and wires are connect_ed
between the P and N transistor rows. The area estimation for the LES aréhit.ecture is

provided by’a,n estimator embedded in the database [ChGa90]. By considering the
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‘ A ‘empty space
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Figure 10. Two orientations of transistor placement

routing area between transistors rows, the estimator provides area utilization and block

size information according to the rectangular size. Both orientations are tried on each’

rectangle. The algorithm selects the one with the highest area utilization. This process

continues until the glue-logic components fill the entire ladder-shaped area.

If more space is needed, the algorithm then uses a constructive method to define
the blocks around the bounding box according to the given aspect ratio and size
constraints. The overall aspect ratio and size constraints are:

=W

constraint module
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constraint 2 Hmodule

Aspect_Ratio, ., ..., = W, .../ Hrr;odule

An example with a given 1:1 aspect ratio is éhown in Figﬁré 11. After filling blockl
a;nd block2, tﬁe algorithm first places glue-logic components into block3. If more space
is needed, the algorithm then places c'omponents into block4. The prdcess continues
until the glue-logic components are all placed into blocks. Si‘nce block3 can be also
placed on the left of the bounding box while block4 can be placed on the top of the

bounding box, a connectivity evaluation is performed to determine the block locations.

W contraint

«——— width —

7
block 3
% block 1 H ° heigm Hconstraint
% block 2

~ block 4 i

Figure 11. Glue-logic block partitions according to given size
constraints
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For instance, if there are 10 bottom external I/O ports and 2 top external I/O ports in

the glue-logic module, then block4 is more suitable to be placed on the bottom of the
bounding box.

‘Let M, be the glue-logic block i which is denoted by a 4-tuple <s,,w,,h;,0,> where
s is the number of transistors in block i, w, is the block width, h, is the block height,
and o, is the orientation: Let M={M,[M,=<s,,w,,h,,0.>} be the sth of glue-logic blocks.

ALGORITHMIIL.  Glue-Logic Block Partitioning
Glue_Logic_Block_Partitioning(){

M=¢;

/*Define the blocks in the stack bounding box*/

Sort rectangles in descending order according to width;

for rectangle 1 to n dof

if (total # of transistors in Glue-Logic > 0) then{

Perform vertical and horizontal placement;
M U the block with the highest area utilization;
Update the total # of transistors in Glue-Logic;
if (vertical orientation is selected) then

Pass live_space to the next rectangle;

}
}

/*Define the blocks around the stack bounding box*/ -

while (total # of transistors in Glue-Logic > 0) do{
Define the empty space according to the given aspect ratio and module sizes;
Place transistor rows into empty space; '
Update the total # of transistors in Glue-Logic;

}
M U blocks around the stack bounding box;

}
5.2. Seed Implantation

Seed implantation uses a multi-stage clustering method [Hohn67] to cluster seeds
for each glue-logic block. The glue-logic blocks can be divided into four sections: top,

bottom, left, and right (Figure 12(a)). We define four clustering groups: glue-logic—top,

glue-logic-bottom, glue-logic-left, and gluelogic#x-ight. Each group contains the glue-logic

components connected to the same side of the stack or the external I/O ports. For
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example, consider two‘ glue-logic components compA and compB such that compA
connects to the left external I/O port and compB connects tp the left boundary of the
stack (Figure 12(a)). Theﬁ both components should be placed in the left section.
Therefore, compA and compB are both clustered into the group glue—logic—-ld% (Figure
12(c)). In the first clustering sfage, glue-logic clustering is based on five criterions: (i)
criticai—path, (ii) glue-logic-top, (iii) gluedogic-bottom, (iv) gluelogicleft, and (v)

glue-logic-right (Figure 12(c)). If a component GL can be placed in more than one

group, the following rules are applied:

(1) If GLis on the critical path then GL C C_. , ... wherg C.iticat_parn 15 the critical

path cluster.

(2) Otherwise, the component clustering depends on the number of wire connections
between GL and the four different glue-logic sections (top,.bottom, left, and right). -

GL will be assigned to the cluster with the maximum connections.

In the second stage, the algorithm continues to cluster the critical paths to
determine the preferred location for the critical paths. There are two cases. In the first
case, if C, .y o NBluelogicsection = ¢ where section € {top, bottom, left, or right},

cri

then C_. . s 18 ROt strongly connected to any sections. This C .y s becomes a
stand alone cluster and will not be implanted into blocks as a seed. In the second case,
i Cicat_parn|) @luelogic—section # ¢ then the rule (2) in. the first stage is. used to
determine the new clusters for C_; ., .- For example, in Figure 12(a) there is a critical
path that strongly connects to the left section. Therefore, the critical path cluster and

‘the glue-logicleft cluster are clustered further (Figure 12(d)). In the third stage, the

seed clusters are grouped into blocks. For example, there are two glue-logic blocks,
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Figure 12. Seed implantation using a multi-stage clustgring
' method
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blockl and block2, in the layout module (Figure 12(b)). Obviously, the glue-logic-left
cluster should be clustered into blockl (Figuré 12(e)). Ideally, the glue-logic-top cluster
should reside in the glue-logic block on the top section. However, if there is no glue-

logic block on the top section then the glue-logic—top cluster will clustered with blockl

that is close to the fop section (Figure 12(e)).
5.3. Multiway Seed Partitioning

The multiway seed partitioning method is an extension of the min-cut partition

algorithm [KeLi70]. The original two-way uniform partition is to find a minimal-cost

Cut-set A . Cut-set B
l .
I
|
I
a |
. I ,
I
[|
size=n/2 j l \ size=n/2
l
i
I
|
]
minimize
cut-lines

Figure 13. Bi-partition graph
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partition of a given graph of n nodes connected by edges into two equal subsets of n/2
nodes (Figure 13). The min-cut partition algorithm uses heuristics to find the minimal
partition i)y exchanging the elements in cut-set A and cut-set B based on a partition
cost function. Let’s define I, as the number‘ of wire connections bétween element i and

other elements in the same cut-set, and E; as the number of wire connections between

element i and other elements in the different cut-set. For example in Figure 13, E, is 1

and I is 2. Then, D, is the diﬁ'efence bétween external and internal costs of element i,
that is, D, = E, - L. C, is a double counting correction function if element A and
element B are connected to »the same net. The partitioning cost (gam ) calculation for
exchanging elementiA and element B is D, + Db'- 2C,,. If gain, is positive then the
total cost can be reduced‘ by gain, by swappiﬂg element A and elemént B. In‘ea.ch
partition pass, it obtains a sequence of gains gain,,...,gain, with corresponding swapped

pairs. K swapped pairs are selected to maximize the total gain G(k) where G(k) =

3 gain, for 1=<i=<k. The partitioning process continues until Gk) = 0.

In our case, the goal of fnultiway seed partitioning is to.partition glue-logic
componenté into blocks with minimal cut-lines between blocks subject to block size
constraints. To achieve the minimal wire lengths of global nets, it is not adequate to
partition glue—logié- ‘componehts into blocks without considering the external
connections [DuKe85, LaDi86]. For instance, by swapping element X and element Y
(Figure 14), the partitioning cost increases by 1 if the external _connectilons between the

elements in the block A and the element X in block B are not taken into account.

However, the actual partitioning cost decrease by 1 when the external connections are .

" taken into account.
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™"

after partitioning current partitioning sets

external boundary

Figure 14. Partition cost including the external
connections '

To take the external connections between blocks into account, a penalty external

cost PE
cos

, is added to calculate the partitioning cost. PE_, can be (i) zero, (ii)

negative, or (iii) positive. For example in case (i) (Figure 15(a)), block B and block C
are adjacent to the block A. Thus,. PE_,, can be set to zero by swapping element X and
_élement Y. In case (ii) (Figure 15(b)), if element X connects to the block A and the
block D is not adjacent to the block A, PE_, will be made negative by swapping
element X and element Y (it needs one more extra vertical routing track). In case (iii)
(Figure 15(c)).,' if element X conﬁects to t;he. bloék B and block D is adjacent to the

. will be made positive by swapping element X and éle_ment Y (it reduces

block A, PE_
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one vertical routing track).
As a result, the total partitioning cost gain, for swapping element A and element B is
D, + D,-2C, + PE_,.

To consider the I/O port locations, the critical paths, and the connections between
blocks, a seed partitioning scheme is used to ensurevthe proper partitioning decisions for
reducing the wire lengtﬂs of global nets. The idea of seed partitioning is to force certain
comﬁonents to be placed in the particular blocks as seeds. During the partitioning
process, the seeds are treated as non-swapable cells. Using the seeding strategy, the
critical paths wiﬂ be tightly clustered and placed in the same block close to ﬁhe

connecting porfé. The wire lengths of the cfitical paths is thus reduced.

In the glue-logic bloék partitioning step, the glue-logic module is divided into
blocks. Let n be the number of pre-defined glue-logic blocks and S; be the size of block i.
= Y} S, for 1<<i<n.

Thus, the size of glue-logic module S, Logic

The multiway seed partitioning algorithm performs min-cut partitioning repeatly

based on the cut-set size of (C,, C5) where C,=S; and C;=33S; for 1 <i =< nand i+l

=< j =< n. Since there are pre-implanted seeds in each block, the seeds in the cut-sets
need to be rea.;ré.nged before the partitioning process takes place. Let SEED, be the
seeds in block i. In every partitioning iteration, the seeds are rearranged as SEED, C C,
and (SEED,, USEED, U ..USEED,) C C, for 1 < i =< n. Frequently, C, and C; are
not equal; therefore, .a. set of dummy elements are added to the original set to allow

unbalanced partitioning.




- ALGORITHM IV. Glue-Logic Partitioning
Glue_Logic_Partitioning(){
/*Block partitioning*/
Glue_Logic_Block_Partitioning();
/*Seed implantation*/
Cluster components as seeds based on the critical path and the external I/O pin positions;

Build multi-stage clustering tree to place seeds into blocks;
/*Multiway seeding partitioning*/ '
. for block i=1 to n dof

/*Arrange seeds for cut-sets*/

SEED, C Cut-—Set ,;

SEED, .| USEED, , ,U ...USEED, C Cut-Set;

/*Calculate cut-set sizes*/

Size(Cut—Set,) = Size(Block,);

Size(Cut-Sety) = Y, S, for i+1=<k=n;

/*Min-cut partitioning*/ '

Partition Glue-Logic components into Cut—Set, and Cut—Sety; .

}
for block i=1 to n dof
I/O pin order assignments for Block i;

}

6.. Experimenfal Results

The previously descﬂbed algorithms are embedded in SLAM [WuCG90] which
* currently runs on SUN3/SUN4 workstations under the UNIX operating system. Several
examples have been tested. The layouts were generated using a 3-micron CMOS
technblogy.

The first example is a controlled couhter [Arms89] that consfsts of approximately
50% sliceable components and 50% non-sliceable components. The register-transfer
schematic (Figure 16) was generated by VSS [LiGa88]. SLAM partitions the LIM
register and the up/down counter into bit-sliced units and pa,rtitions‘.the glue-logic
module into two blocks 'to satisfy a given 1:1 aspect ratio requirement. The final layout
is shown in Figure 17. The second example is the'digital_ séction of a DSi’ chip supp]_jed

by local industry that consists of an ALU, registers, flip-flops, a shifter, counters,
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latches, and simple Iga.tes. The final layout which consists of one bit-sliced stack and
three glue-logic blocks is shown in Figure 18. The third example is the MARK1 simple
computer [SiBN82] which includes 32, 16, ‘13, and 3 bits register-transfer cbmponents
and simple gates. The final layout is shown in Figure 19. It consists of a unfolded stack

and a folded stack with a glue-logic block.

| Using the same lla,yout system, we compare oﬁr method with a manual
ﬁoorpianning and a.utomatic placement and routing method for layout generations of
the previous examples. Using the second method, the register-transfer schematic wés
first partitioned into blocks. For example, the original DSP design was partitioned into
three parts: program counter, control unit, and arithmetic unit. Each block was
generated individually. Then we usgd the GDT’s interactive floorplanner to ﬁndr the
best ﬁobrplg.n and to determine the shape and I/O pin locations of the glue-logic block.
The results in Table 1 show tha,t‘ the layouts generate& using our layout method are

10% better than those using the manual floorplanning and automatic placement and

' routing method. Moreover, the wire lengths on the critical path produced using our

- layout architecture are 30%-50% shorter than those produced using the vma,nual

floorplanning and automatic placement and routing method.

7. Conclusions

In this paper, we have presented a new layout style for netlists with sliceable
components. The empty space created by abt;tting the bit-slices of different bit-widths
can be fully utlilizéd by filling it with glﬁe-logic cofnponénts 6r folding the bit.-sliced
stack. As a rlesglt,'better area utilization can be achieved using this sliced layout

architecture.
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We also presented partitioning algorithms for layout generation .of register—transfer
netlists. The partitioning algorithms not only select the best suited layout style for each
component, but also consider critical paths, I/O pin locations, and connections between
blocks. This improves the overall area utilization and minimizes the total wire lengths.

Future work includes developiyngb different stack folding algorithm such as
interleaved folding method and investigating timing issue based on our layout

architecture.
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our manual
example | 5uout method | layoutmethod | %
Controlled 2 21
Counter 450,328 umjr 498,883 um 10.8
DSP 7,056,000 um |  7,896,042un’| -11.9
MARK1 | 11,220,000 unt | 12,701,040 unt| -13.2
(a)
our manual
example layout method | layout method | %
Controlled 495 um .
Counter 765 um 54.5
DSP 2,665 um 3,650 um | -36.9
MARK1 3,885 um 4,950 um | -27.4

(b)

Table 1. The comparisons of our partitioning and floorplanning with a
'~ manual partitioning and floorplanning: (a) total area and (b)
critical-path wire lengths
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