
UC Irvine
ICS Technical Reports

Title
A new partitioning approach for layout synthesis from register-transfer netlists

Permalink
https://escholarship.org/uc/item/9100h8w3

Authors
Wu, Allen C.H.
Gajski, Daniel

Publication Date
1990
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9100h8w3
https://escholarship.org
http://www.cdlib.org/


A ~ew Partitioning Approach for Layout Synthffiis 
from Register-Transfer Netlists 

. ,---

by 
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Abstract 

Most of the IC today are described and documented using heiarchical 
netlists. In addition to gates, latches, and flip-flops, these netlists include 
sliceable register-transfer components such as 'registers, counters, adders, AL Us, 
shifters, register files, and multiplexers. Usually, these components are 
decomposed into basic gates, latches, and flip-flops, and are laid out using 
standard cells. The standard cell architecture .requires excessive routing area, 

· and does. nqt exploit the bit-sliced nature of ·register-transfer components. In 
this paper, we present a new sliced-layout architecture to alleviate the preceding 
problems. We also describe partitioning algorithms that are used to generate 
the floorplan for this layout architecture. The partitioning algorithms not only 
select the best suited layout style for each component, but also. consider critical 
paths, I/ 0 pin locations, and connections between blocks. This approach 
improves the overall area utilization and minimizes the total wire length. 
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1. Introduction 

Surveys of VLSI products reveal that most fabricated chips_ can be described by 

register-transfer schematics or netlists. In addition to gates, latches, and flip-fl.ops, 

schematics include register-transfer components such as registers, counters, adders, 

ALU s, shifters, multiplexers, and register files. The products in this category include 

DMA controllers, bus controllers, disc controllers, and programmable I/O interfaces; 

that is, basically. all chips for computer design with the exception of CPUs and 

memories. 

The common used layout strategy for such designs is the use of standard cells. 

Standard cell methodology, however, does not take into account the regular nature 

(bit-slice property) of register-transfer components, since those components are 

decomposed into basic gates, latches, and flip-fl.ops- before layout. Greater layout 

density can be achieved if register-transfer components are laid out in a bit-sliced layout 

architecture. 

The general bit-sliced layout architecture has two weaknesses, however. First, if all 

sliceable components do not have the same number of bits, then- some bit-slices are not 

used. For example, when a 4-bit counter and a 12-bit register are laid out in the bit­

sliced style, 8 bit-slices are wasted since the 4-bit counter occupies only 4 bit-slices. 

Second, routing of bit-_slices with different indices is difficult. For example, if bits 7 and 

8 of the register must be connected to bits 1 and 2 of the counter of the previous 

example, routing across bit-slices must be introduced. 

- In this p'aper, we .describe a new layout architecture to alleviate the problems of 

general bit-sliced layout architecture. We also present. a top-down layout methodology 
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and algorithms that generate layouts for register-transfer schematics. In most 

conventional hierarchical layout approaches, placement and routing are carried out in a 

bottom-up fashion [Ayre90, DaEs89]. I~ this approach, each predefined block is 

designed individually, then the blocks are connected using routing channels between 

blocks. However, our layout methodology. is performed in a top-down fashion [U eKi85] 

that implements three partition phases: (i) partition the regist~r-transfer schematic into 

bit-slice and glue-logic components, (ii) partition the bit-sliced stack to minimize the 

layout area of the bit-sliced components, and (iii) partition glue-logic components into 

blocks based on the target architecture (Figure 1 ). In addition, pins are assigned to the 

proper sides of blocks in order to minimize the wire crossing between blocks. 

The remainder of this paper is organized as follows. We present a sliced layout 

architecture in Section 2. Three partitioning algorithms· are described in detail in 

Section 3-5. The experimental results are shown in Section 6. Finally, Section 7 contains 

the conclusions. 

2. Sliced-Layout Architecture 

There are two common layout architectures for bit'-sliced ·components: bit-slice 

abutment [JaJe85, Joha79] and bit-sliced macros or standard cells with routing channels 

[HsGr87, RoWa87, ThKo87, LuDe89]. The first layout architecture abuts bit-sliced 

cells with over-the-cell routing for connecting bit-slic.es with the same indices. This 

architecture, however, wastes area if units with varying bit-widths are in the same stack 

or if different indices of the bit-slices must be connected. The second layout architecture 

stacks bit-sliced macros or standard cells vertically with routing channels between units. 

Using this layout architecture, several units with smaller bit-widths can be placed in the 
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RT Schematic 

Component Partitioning· 

Bit-Sliced Stack Partitioning 

Glue-~ogic Partitioning 

·Layout Synthesis 

Layout 

Figure 1. Three partitioning IIEthocls for layout generation from RT 
schenntics 

same row m order to reduce wasted space. However, routing channels for wire 

connections between the units contribute to low area utilization. 

The sliced-layout architecture use a stack of bit-sliced register-transfer units. This 

bit-sliced stack (Figure 2) combines cell abutment, over-the-cell routing, and switch box 

alignment to alleviate the problems of previous approaches.· Each bit-slice has the same 

width and has ·a fixed number of metal2 routing tracks over each cell. Unit heights 

vary with the. unit functionality. Each bit-sliced cell, such as an ALU, multiplexer, 

register, adder, or shifter, is designed manually. The layout of each unit is produced by 

a parameterizable generator according to, the given bit-width and I/O pin positions. 
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Reg1 
Reg2 
Reg3 

Reg1 
SW BOX 

Reg2 
Reg3 

(a) register-transfer schematic 

(b) initial placement 
0 

exit 

M@tt~;1~t;;111;L 0::: ;:~ht 
(c) switch box insertion 

glue-logic 
placement 

Figure 2. Switch box insertion for wire aligmnmt 

The units are stacked in the vertical direction: Using an over-the-cell routing strategy, 

the data signals run vertically in 2nd metal over the bit-slices. Power, ground, carry, 

and control lines are routed horizontally in the 1st metal or polysilicon between the 

bit-slices. An example consisting of three registers (Regl, 2, and 3) is shown in Figure 

2(a). Regl has 8 bits, while Reg2 and Reg3 have 5 and 4 bits respectively. The five 

least significant bits of Regl are connected to Reg2 while the 4 most significant bits of 

Regl are connected to Reg3. The floorplan of this layout is shown in Figure 2(h). 

Registers are ·ordered by bit-width from top to bottom and aligned by the least 

significant bit. 
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When several units of different bit-widths are stacked by width as shown in Figure 

2(b ), a step-shaped triangular area will be created within the stack bounding box. This 

area can be ·used for stack folding or for placement of the non-sliceable -glue-logic 

components. Furthermore, a routing channel called a switch box must be inserted in 

the stack for connecting bit-slices with different indices. In our example, the 

interconnections between Regl (bits 4-7) and Reg3 (bits 0-3) are not routable without a 

switch box. Therefore, a switch box is inserted as shown in Figure 2(c). Using the same 

switch box, signals may enter or exit the sliced stack from the left -or right as indicated 

in Figure 2( c ). 

In the sliced-layout architecture, the st~ck can be laid ·out in two different styles. If 

the netlist contains only a few sliceable components then we use an unfolded stack 

structure as shown in Figure 3( a). In this case, the glue-logic components are placed 

into the empty space in the stack bounding box. However, if more space is needed then 

the glue-logic components are then placed on the left, right, top, and bottom sides of 

the stack. On the other hand, if the stack contains a large number of sliceable units 

with highly varying bit widths, the stack structure. can be folded as shown in Figure 

3(b ). The glue-logic components are placed at the sides. of the stack bounding box. 

When the stack height is higher than a given height constraint, the stack must be 

partitioned into several. stacks that can be either folded or unfolded. 

3. Corr.ponent Partitioning 

The purpo~e of component partitioning is to determine the layout style (bit-slice or 

glue-logic) for each. register-transfer component. The component layout style depends 

on the component type, the component's connectivity, ·and the overall floorplan. First, 
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unfolded units 

·switch box (b) folded stack 

stack· bounding 
box 

glue-logic module 

folded units 

glue-logic module 

Figure 3. Two sliced layout architectures 

components must be partitioned by type since some components such as counters, 

registers and ALU s are sliceable while· others like decoders and encoders are not. 

Second, small size components can be implemented in two ways. For example, a 2-bit 

ALU can be implemented using NAND and .NOR gates or as a bit-sliced unit. The 

implementation decision for such a component depends on the component's 

connectivity. For example, if a component in question is strongly connected to other 

glue-logic components, then a glue-logic layout style may be more suitable for this 

component in order to reduce the wiring area between bit-sliced stack and glue-logic 
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module. Third, the component layout style also depends on the final fl.oorplan. For 

example, using the folded stack architecture, small bit-sliced units are folded into empty 

space in the stack bounding box. If a· small unit doesn't fit into the stack, this unit. 

might better be laid out a glue-logic component in order to reduce the overall layout 

area. By exploiting the bit-slic~ property of register-transfer components and selecting 

the best suited layout style for each component, better area utilization can be achieved. 

A weighted and labeled undirected graph G is formed from the schematic by a set 

? of nodes and a set E.of edges. The node U.i E U is the component in the schematic 

where j =· l..n, and n is the total number of components. The sub-node port(i.) C u. is 
. J J 

the port in the component 11; where i = 1..m and m is the number of ports in the 

component u.. The attribute type of a port(i.), port_type(i.), indicates that port(i.) is a 
J . J J J 

control port or a data port. Let e(ik, j 1)· be the edge between port(ik) and port(j1), where 

. uk ,u1 E U, port(ik) C uk, and port(j1) C u1. The weight of an edge e E E, w[e(ik,j1)], is the 

number of wires between these two ports. Thus, the edges correspond to connections 

between ports, while weights are equal to the multiplicity of connections. A graph 

generated from the schematic in Figure 4( a) is shown in Figure 4(b ). There are two 

components in the schematic, a 4-bit Reg and a 4-bit Mux. In the graph, Reg and l\1ux 

form two nodes (Ul and U2). Each node has two data ports, (port(3i), ( c1) C Ul and 

port(<b), (t;) C U2), and ~ne control port (port(b1) C Ul and port(~) C U2). In Figure 

4(b ), e( cl' ~) is the edge between port( c1) and port(~) and w[e( c1 ,~)]=4. 

A linking- cost is used to evaluate the connectivities between components. The 

linking cost fu,n~tions are: 
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1 
elk 

sel 2 

input 

4 
U1 

(b) 
(a) 

Reg (4) 
c 

4 

(d) 
e(c1 ,d2) w[e(c1 ,d2)]=4 

(e) Mux (4) 

4 U2 

output 

(a) 

ports a, c, d, and f: data port 
ports b and e : control port 

W:4 
output 

(b) 

Figure 4. Graph representation of the RT netlist 

implementation and port_type(j1) is a control port 

port 

In the linking ~ost function, Wcontriu.1:) is the number of wires connected to uk from 

other Glue-~c nodes or from control ports of other Bit-Slice nodes. Wdata(u1J is the. 

number of wires connected to '\ from data ports of other Bit-Slice nodes. For example, 

if Ul in Figure 4(b) is a Bit-Slice and port( t;) of U2 connects to another Bit-Slice th.en 
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The component partitioning is divided into three steps: 

( 1) Init_ial corq>onent type assignments. The algorithm first labels nodes as Glue-Logic 

if components are not sliceable such as single gates, decoders, encoders, etc. The 

components that meet the following two conditions are labels as Bit-Slice: (i) the 

component can be laid out as a bit-sliced and (ii) the component's bit widths are 

larger than a user specified threshold. If these conditions· are not meet, the 

algorithm will label nodes as "nndecided" component type. 

(2) Component type assignments for the undecided nodes. The algor~thrh c~lculates 

the linking cost for the undecided nodes. For an undecided node uk, if Wcontrol(w) 

> W data( u,1J then. node uk is labeled as Glue-Logic, otherwise node uk is labeled as 

Bit-Slice. 

(3) Partitioning improvement. In this step, the algorithm re-evaluates the 

connectivities among nodes to finalize the component type assignments. The 

algorithm first calculates the linking cost for all of the nodes. Then the algorithm 

. evaluates the connectivities of nodes that can be laid out as both Glue-Logic and 

Bit-Slice. For evaluating a node uk, there are three possible cases: (i) If Wcontrol(uk) 

> Wdata(uk) and. node uk is a Bit-Slice then node. uk is re-labeled as Glue-Logic, (ii) If 

Wdata(uk) > Wcontrol(u1J and node Uk is a Glue-Logic then node Uk is re-labeled as 

Bit-Slim, and (iii) If condi~ions (i) or (ii) do not apply, a node uk keeps its original 

component type. 
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( 4) FloorpJan driven component type assigmumts. During the stack folding stage, the 

algorithm may re-label nodes as Glue-Logic if the components can not Jit into the 

bit-sliced stack. Details of this phase will be described in the "stack partitioning" 

section of this paper. 

ALGORITHIM I. Component Partitioning 
ComponentYartitioning(){ 

Build graph from register-transfer netlist; 
/*Initial component type assignment*/ 
for component i = 1 to n do{ 
if (component i is not slice ab le) then{ 

type( i) = Glue-Logic; 
} 
else if (component i is slieeable and bit-width(i) > requir~d minimal bit-width f9r bit­
sliced units) thm{ 

type( i) = Bit_Slice; 
.} 
else{ 

} 
} 

type( i) = undecide; 

/*Assign component type to the undecided nodes*/ 
for component j = 1 to n do{ 
if ( type(j) = = nndecide) then{ 

Calculate linking cost of node j; 

if (Wcontro/j) > W data (j)) then{ 
type(j) = Glue-Logic; 

} 
else{ 

type(j) = Bit-Slice; 
} 

} 
/*Partitioning improvement*/ 
for component j = 1 to n do{ 

Calculate linking cost of node j; 
} 
for i = 1 to n do{ 
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if (component i can be iaid out as both Bit-Slice and Glue-logic) then{ 

if (Wcontrol(i) > Wdata(i) and type(i) == Bit-Slice) then{ 
tn>e(i) = Glue-logic; 

} 
·else if (W data(i) > Wcontrol(i) and type(i) == Glue-Logic) th~{ 

type( i) = Bit-Slice; 
} 



} 

} 
} 
Floorplan driven component type assignments (see Algorithm II); 

4. Stack Partitioning 

· The goal of stack partitioning is to minimize. the layout area of the bit-sliced 

components. Since bit-sliced units often have varying bit-widths, the sliced layout 

architecture generates an empty space within the stack bounding box. A folding method 

is used to place small units into the empty space and thus reduce the stack height. 

The folding process includes two steps: (i) unit folding and (ii) overlap checking 

and avoidance. The main constraint of stack folding is that bit-sliced units must not 

overlap. The algorithm folds one unit at a time. The folding process includes two steps: 

(i) move the unit ui to the ri?ht edge of stack's bounding box and rotate it around the 

center (Figure 5( a)) and (ii) push all of the folded units above the the base-line (Figure 

5(b )). 

After unit fo_lding, an overlap checking is performed to check whether the units in 

the folded part overlap with the unfolded part. The bounding box of unit ·ui is defined 

by the upper-left point (xul.i,YuiJ and the lower-right point (xlr.i,Ytr.i) of unit ui (Figure 

5(a)). The overlapping conditions are 

(1) There exists a (:xzr.i,Ylr.i) and ui E {unfolded bit-sliced units}; 

(2) There exists a (x 1 . y 1 .) and u. E {folded bit-sliced units}; - u .,, u ., ] 

(3) ·x 1 . < x1 . and y 1 . < y1 .• u .] r.1 · u .J r.1 

If an overlap occurred as shown in Figure 5(b ), the folded units will be shifted to 

the right to avoic;l the overlap (Figure 5( c )). 
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(Xul1, Yul1) ., 
.,._ max bit-width ~ 

............... ~~ r~ (Xlr1,Ylr1) 
baseline (Xul2, Yul2) 

[SS) -fZ2I : folded units 

Figure 5. Stack folding process 

(XI r2, YI r2) 

Using the folding method, we describe a stack partitioning algorithm for 

minimizing the area of the bit-sliced uni ts as follows: 

(1) Calculate the routing area cost between unfolded and folded units. The routing 

area is in proportion to the number of wires between unfolded and folded units. 

For instance, the number of wires crossing the cutline between compA and compB is 

four (Figure 6( a)). By folding compB, the routing area will contain four wires 

(Figure 6(h )). The number of wires crossing any cutline can be determined after 

the unit placement and routing. The unit placement and routing consists of three 
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Figure 6. Stack partitioning based on folding 



steps: (i) Sort the units by width, (ii) Permute the order of the units of the same 

width to minimize the track density, and (iii) Assign routing tracks to the units. 

Thereafter, the number of wires between units is calculated. 

(2) The algorithm uses our folding method to minimize the area of the bit-sliced units 

subject to the given stack height and width requirements. If an overlap occurs 

during. the folding process, the folded units will be shifted to the right to avoid 

overlap until the required width is reached. However, if some folded units still 

overlap the unfolded units after shifting, the overlapped folded units will be 

deleted to form a new stack. In Figure 6( c ), compC overlaps with unfolded units 

when allowed width is reached. Thus, it will be moved to form a separate stack. 

Moreover, the stand-alone or leftover small bit-sliced uni ts that do not tit in any 

stacks will be moved to the glue-logic module (i.e. it will relabeled compC as 

Glue-Logic as mentioned in the previous section "component partitioning" of this 

paper). 

(3) The algorithm calculates the total stack area. There are two cost functions: (i) For 

one stack, the total area is the minimal -bounding box that encloses all of the units 

and the routing area for connecting the unfolded and 'the folded units and (ii) For 

multiple stacks, the total area is the sum of bounding boxes of individual stacks 

and the routing area between stacks.· The algorithm executes repeatedly and 

selects the best stack partition with the minimal area that also satisfies the stack 

height and width constraints. For example, Figure 6(e) shows an area curve that 

was gene~ated by executing the folding proc~ss repeatedly. Each data point in 

Figure 6( e) represents the total area for a particu~ar stack partition. The partition 
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with the minimal area (partition #4 in.Figure 6(e)) is selected as the final stack 

partition. 

·( 4) After selecting the stack partition, the algorithm performs a width compression 

} 

step to reduce the empty space be.tween the unfolded and folded units (Figure 

6(d)). The empty space in the bounding box can be used for placing the glue-logic 

components. 

ALGORITHl\.1 II. Stack Partitioning 
StackJ> artitioning(){ 

Sort bit-sliced units in descending order according to bit-width; 
Perform unit placement and routing; 
Calculate cut-lines between units and empty space in the bounding box; 
if (empty space is too large for glue-logic· 

} 

or stack height > the allowed stack height) then{ 
for unit 1 to n do{ . 

} 

Perform unit folding; 
if (unfolded units overlap with folded units) t.lien{ 

Shift folded units to avoid overl~p; 
if (stack width > the allowed stack width) then{ 

Shift folded units to the allowed width boundary; 

} 
} 

Move the overlapping folded units to form a new stack; 

Choose the minimal area partition; 

Move stand-alone and small units into Glue-Logic module; 
Compress unfolded and folded units; 

5. Glue-Logic Partitioning 

After forming the bit-sliced stacks, the floorplanner first places the stacks 

according to a given layou_t height, width, and aspect ratio. The glue-logic partitioning 

algori~hm places the glue-logic components into the empty space in the stack bounding 
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. region 2 

bounding box 
·(RB stack) 

glue-logic 

Figure 7. Placement of glue-logic components 
in regions 1 and 2 

region 2 

box (region 1) and a.round the stack bounding box (region 2) according to the given 

total aspect ratio and I/ 0 pin location (Figure 7). 

The glue-logic partitioning algorithm consists of three steps: (i) Block partitioning 

with layout estimation, (ii) Seed implantation and (iii) Multiway seed partitioning. The 

block partitioning algorithm partitions the rectilinear area around the bit-sliced stacks 

into rectangular blocks with estimated block sizes (number of transistors) based on the 

required aspect ratio and the number of transistors in the glue-logic module. For 

example, if the glue-logic module is of size n and the given aspect ratio is 1:1 (Figure 8), 
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the algorithm partitions the empty space in to blockl, block2, and block3 with block 

sizes of ml, m2, and m3, respectively, where n=ml+m2+m3. 

In order to minimize the wire lengths on the critical paths, all components on the 

critical path must clustered together. Moreover, the components connected to the stack 

and the external I/ 0 ports should be placed in blocks that are as close as possible to 

the connecting ports. The _components on the critical path as well as the components 

connected to either the stack or the external I/ 0 ports are called seed components. 

Seed implantation places the seed components into proper blocks in order to minimize 

wire lengths,. For instance, consider a critical path connected to the control line of a 
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Figure 8. The example of the glue-logic of size n being 
·partitioned into block 1·, 2, and 3 with size ml, m2, and m3. 



bit-sliced _stack is placed in blockl, and a glue-logic component, compA, connected to 

the right external I/O port is placed in block2 as shown in Figure 9(a). Without 

clustering and ~eed implantation, the critical path could be distributed over both 

blocks, while compA could be placed into blockl. That would introduce a long wire 

which contributes to increase in signal delay (Figure 9(b) ). Using seed implantation, 

however, the seeds are forced to reside in blocks with the shortest distance to the 

connecting ports. In our example the critical path is forced into blockl and compA is 

forced into block2 (Figure 9(a)). 

Finally, the multiway seed partitioning algorithm partitions glue-logic components 

into pre-defined blocks according to block sizes, I/O pin positions, and critical paths. 

Moreover, pin assignment for the glue-logic blocks is performed to minimize the wire 

crossing between blocks. 

5.1. Block Partitioning with Layout F.stirmtion 

Since the bit-sliced units often have varying bit widths, the empty space in the 

bounding box forms a ladder-shaped rectilinear geometry ·as shown in Figure 10. The 

block partitioning algorithm first partitions the empty space in the stack bounding box 

into rectangles. This empty space can he decomposed into rectangles of size wi X hi 

where ~i and hi are the width and height of each rectangle i, for 1 <i<n, where n is the 

number of rectangles. 

The rectangles are sorted in descending order by width. The algorithm first places 

glue..:logic components into the widest rectangle ,REC_A, as shown in Figure 10. 

Transistors can be pla~ed "into rows with vertical or horizontal orientation. Using the 

horizontal orientation, the dead-space indicated as spaceA in Figure 10 will be wasted. 
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block 1 

bit-sliced 
stack 

L-.:b.:.:lo:.:c~k.:2:....._c::; c=o=m=p :A:R-c-1 1/0 port 

(a) 

bit-sliced 
stack 

block 2 

(b) 
1/0 port 

Figure 9. {a) Prope~ placeDEnt through clustering and seed 
· implantation {b) Possible placement without clustering and seed 

implantation 

Using the vertical orientation, however, a portion of life-space indicated by spaceB in 

. Figure 10 can be propagated to the next widest rectangle, REC_B, as shown in Figure 

10. 

In our implementation, we use LES [LiGa87] for glue-logic block generation. In the 

LES architecture, transistors are arranged in a horizontal strip and wires are connected 

between the P and N transistor rows. The area estimation for the LES architecture is 

provided by an estimator embedded in the databas~ ·.[ChGa90]. By considering the 
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REC_B h2 
w2 

REC_A 

· empty space 

w1 

h1 

vertical 
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transistor 
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horizontal 
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Figure 10. Two orientations of transistor placenEnt 

routing area between transistors rows, the estimator provides area utilization and block 

size information according to the rectangular size. Both orientations are tried on each· 

rectangle. The algorithm selects the one with the highest area utilization. This process 

continues until the glue-logic components fill the entire ladder-shaped area. 

If .more space is needed, the algorithm then uses a constructive method to define 

the blocks around the bounding box according to the given aspect ·ratio and size 

constraints. The overall asp·ect ratio and size constraints are: 
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Hccn1traint ~ ~odule 

Aspect_Ratiocon1traint = Wmooule/ Hmodule 

An example with a given 1:1 aspect ratio is shown in Figure 11. After filling blockl 

and block2, the algorithm first places glue-logic components into block3. If more space 

is needed, the algorithm then places components into block4. The process continues 

until the glue-logic components are all placed into blocks. Since block3 can be also 

placed on the left of the bounding box while block4 can be placed on the top of the 

bounding box, a connectivity evaluation is performed to determine the block locations. 
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For instance, if there are 10 bottom external 1/0 ports and 2 top external 1/0 ports in 

the glue-logic module, then block4 is more suitable to be placed on the bottom of the 

bounding box . 

. Let Mi be the glue-logic block i which is denoted by a 4-tuple < si,wi'hi,oi> where 

si is the number of transistors in block i, w, is the block width, hi is the block height, 

and o. is the orientation. Let M={M. lil"".=< s.,w.,h.,o.>} be the set of glue-logic blocks. I 1fLVJ.I I I I I 

ALGOIDTHl\1 III. Glue-Logic Block Partitioning 
Glue_Logic_Block_Partitioning(){ 
M= ¢; 
/*Define the blocks in the stack bounding box*/ 
Sort rectangles in descending order according to width; 
for rectangle 1 to n do{ 
if (total #of transistors in Glue-Logic > 0) then{ 

Perform vertical and horizontal placement; 
MU the block with the highest area utilization; 
Update the total #of transistors in Glue-Logic; 
if (vertical _orientation is selected) then 

Pass live.....space to the next rectangle; 
} 

} 
/*Define the blocks around the stack bounding box*/ 
while (total #of transistors in Glue-Logic_ > 0) do{ 

} 

Define the empty space according to the given aspect ratio and module sizes; 
Place transistor rows into empty space; 
Update the, total #of transistors in Glue-Logic; 

MU blocks around the stack bounding box; 
} . 

5.2. See<J Irr.plantation 

Seed implantation uses a multi-stage clustering method [Hohn67] to cluster seeds 

for each glue-logic block. The glue-logic blocks can be divided into four sections: top, 

bottom, left, and right (Figure 12(a)). We define four clustering groups: glue-logic-tbp, 

glu.&-logic-bottom, glue-logic-left, and glue-logi~right. Each group contains the glue-logic 

components connected to the same side of the stack or the external I/O ports. For 
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example, consider two glue-logic components compA and compB such that oompA 

connects to the left external I/ 0 port and compB connects to the left boundary of the 

st~ck (Figure 12(a)). Then both components should be placed in the left section. 

Therefore, compA and compB are both clustered into the group glue-logic-lat (Figure 

12( c) ). In the first clustering stage, glue-logic clustering is based on five criterions: (i) 

critical-path, (ii) glue-logic-top, (iii) glue-logic-bottom, (iv) glue-logic-left, and (v) 

glue-logic-right (Figure 12( c) ). If a component GL can be placed in more than one 

group, the following rules are applied: 

(1) If GL is on the critical path then GL C CcriticaJ...path, where Ccritical..path is the critical 

path cluster. 

(2) Otherwise, the component clustering depends on the number of wire connections 

betwe~n ~Land the four different glue-logic sections (top,.bottom, left, and right). 

GL will be assigned to the cluster with the maximum connections. 

In the second stage, the algorithm conti_nues to cluster the critical paths to 

determine the preferred location for the critical paths. There are two cases. In the first 

case, if ccritical-iJath nglue-logic-section = </> where section E {top, bottom, left, or right}, 

then C .t. 1 th is not strongly connected to any sections. This C ·e·ca1 th becomes a en 1ca ...pa · · · cri 1 ...pa 

stand alone cluster and will not be ~mplanted into blocks as a seed. In the second case, 

if ccritical...pathn glue-logic-section * </> then the rule (2) in the first stage is used to 

dete~mine the new clusters for Ccriticai...path' For example, in Figure 12(a) there is a critical 

path that strongly connects to the left section. Therefore, the critical path cluster and 

the glu~logic-ieft cluster are clustered further (Figure 12( d) ). In the third stage, the 

seed clusters are grouped into blocks. For example, there are two glue-logic blocks, 
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blockl and block2, in the. layout module (Figure 12(b )). Obviously, the glue--logic-1£ft 

cluster should be clustered into blockl (Figure 12( e )). Ideally, the glu~logic--top cluster 

should reside in the glue-logic block on the top section. However, if there is no glue-

logic block on the top section then the glue-logic-top cluster will clustered with blockl 

that is close to the top section (Figure 12(e)). 

5.3. Mul~iway Seed Partitioning 

The multiway seed partitioning method is an extension of the min-cut partition 

algorithm [KeLi70]. The original two-way uniform partition is to find a minimal-cost 
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partition of a given graph of n nodes connected by edges into two equal subsets of n/2 

nodes_ (Figure 13). The min-cut partition algorithm uses heuristics to find the minimal 

partition by exchanging the elements in cut-set A and cut-set B based on a partition 

cost function. Let's define Ii as the number of wire connections between element i and 

other eiem~nts in the same cut-set, and Ei as the number of wire connections between 

element i and other elements in the different cut-set. For example in Figure 13, E is 1 . a 

and Ia is 2. Then, Di is the difference between external and internal costs of element i, 

that is, D. = E.· - I.. Cab is a double counting correction function if element A and 
I I I . 

element B are connected to the same net. The partitioning cost (gainab) calculation for 

exchanging element A and element B is Da + Db - 2Cab. If gainab is positive then the 

total cost can be reduced by gainab by swapping element A and eiement B. In each 

partition pass, it obtains a sequence of gains g~, ... ,gain
11 

with corresponding swapped 

pairs. K swapped pairs are selected to maximize the total gain G(k) where G(k) = 

~gain. for 1 <i<k. The partitioning process continues until G(k) :S 0. 
t . 

In our case, the goal of multiway seed partitioning is to partition glue-logic 

components into blocks with minimal cut-lines between blocks subject to block size 

constraints. To achieve the minimal wire lengths of global nets, it is not adequate to 

partition glue-logic . components into blocks without considering the external 

connections (DuKe85, LaDi86]. For instance, by swapping elemen~ X and element Y 

(Figure 14 ), the partitioning cost increases by 1 if the external connections between the 

elements in tlie block A and the element X in block B are not taken into account. 

However, the .actual partitioning· cost decrease by 1 when the external connections are 

taken into account. 

Page 26 



block A block B block C 

after partitioning 
I . 

current partitioning sets 

external boundary· 

Figure 14. Partition cost including the external 
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To take the external connections between blocks into account, a penalty external 

cost PEco•t is added to calculate the partitioning cost. PEcoat can be (i) zero, (ii) 

negative, or (iii) positive. For example in case (i) (Figure 15(a)), block B and block C 

are adjacent to the block A. Thus, PEcoat can be set to zero by swapping element X and 

. element Y. In case (ii) (Figure 15(b )), if element X connects to the block A and the 

block D is not adjacent to the block A, PEcoat will be made negative by swapping · 

element X and element Y (it needs one more extra vertical routing track). In case (iii) 

(Figure 15( c )), if element X connects to the block B and block D is adjacent to the 

block A, PEcoat will be made positive by swapping ele~ent X and ~lement Y (it reduces 
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one vertical routing trac~). 

As a result, the total partitioning cost gainab for swapping element A and element B is 

Da + Db - 2Cab + PEco.i· 

To consider the I/O port locations, the critical paths, and the connections between 

blocks, a seed partitioning scheme is used to ensure the proper partitioning decisions for 

reducing the wire lengths .of global nets. The idea of seed partitioning is to force certain 

components to be placed in the particular blocks as seeds. During the partitioning 

process, the seeds are treated as non-swapable cells. Using· the seeding strategy, the 

critical paths will be tightly clustered and placed in the same block close to the 

connecting ports. The wire lengths of the critical paths is thus reduced. 

In the glue-logic· block partitioning step, the glue-logic module is divided into 

blocks. Let n be the n u_mber of pre-defined glue-logic blocks and Si be the size of block i. 

Thus, the size of glue-logic mod~le SGlue- Logic = ~ Si for 1 <i<n .. 

The multiway ~eed partitioning algorithm performs min-cut partitioning repeat~y 

based on the cut-set size of (CA, CB) where CA=Si and CB=~Si for 1 < i ~ n and i+l 

< j < n. Since there are pre-implanted seeds in each. block, the seeds in the cut-sets 

need to be rea~range~ before the partitioning process takes place. Let SEEDi be the 

seeds in block i. In every partitioning iteration, the seeds are rearranged as SEEDi C CA 

and (SEEDi+1USEEDi+2U ... USEEDn) C CB for 1 < i < n. Frequently, CA and CB are 

not equal; the~efore, a set of dummy elements are added to the original set to allow 

unbalanced partitioning. 
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ALGORITHI\'1 IV. .Glue-Logic Partitioning 
G lue_Logk .. Pa.rtitioning() { 

/*Block partitioning*/ 
G lue_Logic_13lock_Partitioning(); 
/*Seed implantation.*/ 
Cluster components as seeds based on the critical path and the external 1/0 pin positions; 
Build multi-stage clustering tree to place seeds into blocks; 
/*Multiway seeding partitioning*/ 
for block i=l ton do{ 

} 

/*Arrange seeds for cut-sets*/ 
SEED; C Cut-Set A; 
SEEDi+i USEED;+2U ... USEEDn C Cut-Set8 ; 

/*Calculate cut-set sizes*/ 
Size( Cut-Set A) = Size(Blocki); 
Size(Cut-SetB) = E sk for i+lSkSn; 

/*Min-cut partitioning*/ 
Partition Glue-Logic components into Cut-SetA and Cut-Set8 ; . 

for block i= 1 to n do{ 
1/0 pin order assignments for Block i; 

} . 

} 

6. Experiirental Results 

The previously described algorithms are embedded in SLAM [WuCG90] which 

currently runs on SUN3/SUN4 workstations under the UNIX operating system. Several 

examples have been tested. The layouts were generated using a 3-micron CMOS 

technology. 

The first. example is a controlled counter [Arms89] that consists of approximately 

503 sliceable components and 503 non-sliceable components. The register-transfer 

schematic (Figure 16) .was generated by VSS [LiGa88]·. SLAM partitions the LIM 

register and the up/down counter into bit-sliced units and partitions the glue-logic 

module into two blocks to satisfy a given 1:1 aspect ratio requirement. The final layout 

is shown in Figure 17. The second example is the digital section of a DSP chip supplied 

by local industry that consists of an ALU, registers, fl.ip-:flops, a shifter, counters, 
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latches, and simple gates. The final layout which consists of one bit-sliced stack and 

three glue-logic blocks is shown in Figure 18. The third example is the MARKI simple 

computer [SiBN82J which includes 32, 16, 13, and 3 bits register-transfer components 

and simple gates. The final layout is shown in Figure 19. It consists of a unfolded stack 

and a folded stack with a glue-logic block. 

Using the same layout system, we compare our method with a manual 

floorplanning and automatic placement and routing method for layout generations of 

the previous examples. Using the second method~ the register-transfer schematic was 

first partitioned into blocks. For example, the original DSP design was partitioned into 

three parts: program counter, control unit, and arithmetic unit. Each block was 

generated individually. Then we used the GDT's interactive floorplannel'. to find the 

best floorplan and to determine the shape and I/ 0 pin locations of the glue-logic block. 

The results in Table 1 show that the layouts generated using our layout method are 

10% better than those using the manual fl.oorplanning and automatic placement and 

·routing method. Moreover, the wire lengths on the critical path produced using our 

layout architecture are 30%-503 sh~rter than those produced using the manual 

floorplanning and automatic placement and routing method. 

7. Conclusions 

In this· paper, we have presented a new layout style for netlists with sliceable 

components. 1'he empty space created by abutting the bit-slices of different bit-widths 

can be fully utilized by filling it with glue-logic components or folding the bit-sliced 

stack. As a result, better area utilization can be achieved using this sliced layout 

architecture. 
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We also presented partitioning algorith~ns for layout generation of register-transfer 

netlists. The partitioning algorithms not only select the best suited layout style for each 

component, but also consider critical paths, I/O pin locations, and connections. between 

blocks. This improves the overall area utilization and minimizes the total wire lengths. 

Future work includes developing different stack folding algorithm such as 

interleaved folding method and investigating timing issue based 6n our layout 

architecture. 
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Figure 17. The layout of the controlled counter 
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Figure 18. The layout of a DSP example 
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Figure 19. The layout of the MAR.Kl simple corq:mter 
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example 
our manual 

% layout method layout method 

Controlled 2 2 
-10.8 

Counter 450,328 um 498,883Um 

DSP 
. 2 

7 ,056,000 um 
2 

7 ,896,042 um -11.9 

MARK1 
2 

11,220,000 ·um 
2 

12,701,040 um -13.2 

(a) 

example 
our manual 

% layout method layout method 

Controlled 495 um 765 um -54.5 
Counter 

DSP 2,665 um 3,650 um -36.9 

MARK1 3,885 um 4,950 um -27.4 

(b) 

Table 1. The comparisons of our partitioning and floorplanning with a 
mmual partitioning and floorplanning: (a) total are.a and (b) 

critical-path wire lengths 
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