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Targeted diversity generation by intraterrestrial
archaea and archaeal viruses
Blair G. Paul1, Sarah C. Bagby1, Elizabeth Czornyj2, Diego Arambula2, Sumit Handa3, Alexander Sczyrba4,5,

Partho Ghosh3, Jeff F. Miller2,6,7 & David L. Valentine1,8

In the evolutionary arms race between microbes, their parasites, and their neighbours, the

capacity for rapid protein diversification is a potent weapon. Diversity-generating retro-

elements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad

variants of a target gene. Originally discovered in pathogens, these retroelements have been

identified in bacteria and their viruses, but never in archaea. Here we report the discovery of

intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to

infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from

the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding

domains, potentially generating 41018 protein variants. The two single-cell nanoarchaeal

genomes each possess Z4 distinct DGRs. Against an expected background of low genome-

wide mutation rates, these results demonstrate a previously unsuspected potential for rapid,

targeted sequence diversification in intraterrestrial archaea and their viruses.
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E
nergy-limited marine and terrestrial subsurface environ-
ments harbour a microbial reservoir of exceptional
magnitude1. Archaea are both numerically dominant2 and

well adapted to energy limitations faced in various intraterrestrial
environments3,4. Although little is understood about their
physiology, metabolism, evolution, or mortality in these
environments, current research predicts that they will be
characterized by slow growth and low genome-wide mutation
rates5.

Independent of the sporadic mutation rate, microbial genetic
variation can be increased by processes such as gene conversion
and horizontal gene transfer. The single most powerful such
mechanism known in nature is the diversity-generating retro-
element (DGR)6,7. DGRs use a process called mutagenic
retrohoming for the targeted replacement of a variable repeat
(VR) coding region with a sequence derived from reverse
transcription of a cognate non-coding template repeat (TR)
RNA6–9. Crucially, the reverse transcriptase (RT) used is error-
prone at template adenine bases10, but has high fidelity at other
template bases, modulating the rate of diversification to permit
rapid exploration of target protein (TP) variants within a
recognizable structural framework. Over successive waves of
replication, DGR activity leads to rapid evolution of TPs, typically
altering ligand-binding specificity11 and even permitting phage
recognition of novel host ligands9. To date, DGRs have been
found widely in bacteria and their viruses, but never in an
archaeal system.

Because parasitism is expected to be an important driver of
evolution and mortality in intraterrestrial archaea12, we set out to
identify and characterize viruses of anaerobic archaea from one
system in the marine subsurface, a methane seep in a California
borderlands basin. Our survey uncovers the complete genome
of a virus that appears to infect archaea. Remarkably, this
genome encodes a complete and apparently active DGR.
We examine existing sequence data from archaeal systems,
discovering multiple DGRs in the genomes of two subterranean
nanoarchaea. These findings demonstrate that subsurface archaea
and archaeal viruses maintain a mechanism for generating

protein hypervariability within targeted genes, bringing the
capacity for massive diversification to the archaea-dominated
deep biosphere.

Results
A putative archaeal virus encodes a DGR. We collected sub-
surface sediments from a methane seep at 820 m water depth in
Santa Monica Basin. After confirming that these sediments
exhibited anaerobic oxidation of methane (Supplementary Fig. 1),
we prepared and sequenced a viral metagenome, uncovering a
novel and apparently complete viral genome (termed ANMV-1;
Fig. 1a). Examination of ANMV-1 coding sequences offered two
key lines of evidence that this virus infects an archaeal host. First,
the ANMV-1 genome encodes a TATA-box binding protein, an
essential component of the transcriptional machinery in archaea
and eukarya that is absent from bacteria13. Second, the ANMV-1
genome contains six genes that show sequence similarity (e-value
10� 7 to 10� 26) with proteins from methanotrophic archaea
(ANME-1 and ANME-2D) and none with comparable similarity
to eukaryotic proteins (Supplementary Table 1). We further
hypothesize that ANMV-1’s archaeal host is anaerobic;
ribonucleotide reductase activity is essential for phage genome
replication14, and ANMV-1 encodes an oxygen-sensitive
ribonucleotide reductase. In light of the active anaerobic
oxidation of methane metabolism observed in the sample from
which ANMV-1 was sequenced, the anaerobic archaeal host may
belong to an anaerobic methane-oxidizing (ANME) clade.

Analysis of ANMV-1 identified a cassette bearing a RT gene,
two 114-bp proximal repeats that vary from each other at positions
corresponding to adenines, and a short inverted repeat with
potential for hairpin formation (Fig. 1b). Together, these features
are hallmarks of a DGR6–9. Since the discovery of these remarkable
elements, 4300 DGRs have been identified, all within the bacteria
and their viruses15,16. ANMV-1 represents the first identification
of a DGR that appears to operate in an archaeal system.

Although the ANMV-1 VR lies within a gene of unknown
function (best BLASTp e-value 410� 3, to uncharacterized
proteins), the predicted secondary structure of the gene product
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Figure 1 | Retroelement-containing ANMV-1 genome obtained from methane seep sediment. (a) Annotated coding sequences (CDS) designated by
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offered important functional insights. The ANMV-1 DGR target
(termed AdtA) shares greatest structural homology (37% of
residues modelled with 99% Phyre confidence; r.m.s.d. 1.6 Å;
Z¼ 13.6) with the major tropism determinant (Mtd) of Bordetella
phage BPP-1, a DGR-targeted tail fibre protein responsible for
binding host ligands. AdtA contains 21 codons with potential for
adenine-specific amino-acid substitutions (versus 12 in Mtd),
including nine AAY codons, with potential for 41018 variants.
Thus, ANMV-1 demonstrates a degree of coding variability that
is comparable to bacterial DGR systems11 and outpaces the
vertebrate immune system’s capacity to generate variants of
antibodies or T-cell receptor proteins17,18. Predicted AdtA
structural homology to Mtd is greatest in its C terminus, which
corresponds to the C-type lectin (CLec)-fold common to many
known bacterial DGR targets11,15. As in Mtd, the targeted AdtA
residues map to partially solvent-exposed sites in the CLec

domain (Supplementary Fig. 2). Together, these findings point to
a binding-related role for AdtA, and the genomic proximity of the
adtA gene to phage tail fibre genes (Fig. 1a) suggests host
attachment as a possible function.

The discovery of a mechanism for rapid genetic diversification
in ANMV-1 raises questions about the distribution and evolution
of this virus. We conducted a search for close relatives of the
ANMV-1 genome in environmental metagenomic databases,
identifying a group of highly similar sequences (Supplementary
Fig. 3) found in seafloor sediments of the Nyegga methane seeps,
offshore Norway19, and in Coal Oil Point hydrocarbon seeps,
offshore Santa Barbara, California. Metagenomes from both seeps
cover portions of the ANMV-1 DGR cassette, including a closely
related and intact RT open reading frame (ORF) from Nyegga
seep sediments. These results indicate that ANMV-1 relatives are
widespread in methane seeps. Furthermore, the persistence of
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DGR sequences in related viruses from widely separated ocean
basins suggests a selective pressure to maintain the mechanism
for targeted protein diversification.

Two Nanoarchaeota maintain multiple DGRs. Having identi-
fied the first DGR-containing archaeal system, an apparently
widespread virus from the marine subsurface, we asked whether
distinct DGRs might occur in intraterrestrial archaea themselves.
We searched genomic databases for archaeal RT genes and
nearby repeats with adenine variability, finding multiple putative
DGRs in the two operational taxonomic units (OTU1 and OTU2)
of DUSEL4, a clade of uncultivated subterranean Nanoarchaeota
established from four sequenced cells20. Whereas the sequenced
genomes of the other known nanoarchaea, Nanoarchaeum
equitans21 (completely sequenced) and Nanoarchaeote Nst-1
(ref. 22) (B91% sequenced), so far appear to contain neither
DGRs nor RT genes, the DUSEL4 genomes have an abundance,
with four distinct (non-redundant) DGR cassettes in a single
genome (Fig. 2a). Examination of DUSEL4 RT and TP sequences
revealed four distinct groups of DGRs with conserved cis- and
trans-acting features, each with a single representative in both
OTU1 and OTU2 (Figs 2b and 3). Intriguingly, a further search
within these genomes for VR-containing genes revealed two
partial DGRs—consisting only of a target gene, VR, and cis-acting
elements—in OTU1, the representative with higher estimated
genome coverage20. Evidence of adenine-directed mutagenesis in
these VRs (Supplementary Fig. 4) suggests a history of DGR
activity in these sites that do not contain an RT gene, indicating
either that the fragments are fossils, left behind when the RT was

recruited to a different genomic location or simply lost, or that
they are diversified remotely by DGRs elsewhere in the genome.

Archaeal DGR components have distinct evolutionary histories.
The possibility that DGRs might not move as a unit led
us to examine the evolutionary histories of key DGR cassette
components. First, we analysed the phylogeny of the
newly identified archaeal DGR RTs. Canonical DGR-type RTs have
been shown to form a distinct clade most closely related to
bacterial group-II introns7,23,24; while known archaeal RTs are
most similar to bacterial group-II and group-II-like introns, they
fall outside the DGR clade24. We find that the RTs from ANMV-1
and DUSEL4 DGRs lie in a monophyletic group within the
DGR clade (Fig. 4a), branching separately from bacterial sequences
(97% bootstrap support; Fig. 4b). Underscoring the likelihood
that ANMV-1 has an archaeal host, this pattern suggests that
ANMV-1 and DUSEL4 DGR RTs share a common archaeal
ancestry.

We next compared the tetranucleotide composition of
DUSEL4 DGRs to that of their host genomes (for individual
genome signatures, see Supplementary Fig. 5) at two levels:
the concatenated DGRs, and separately concatenated DGR
TP genes and RT genes. While TP fragments lie well within
the core genomic pattern, RT fragments present as outliers,
pulling the overall DGR signature away from the genome
core (Fig. 5a,b). Together with the RTs’ phylogenetic
relationships, this pattern suggests that DUSEL4 may
have acquired its DGR RTs via horizontal transfer, perhaps
from another archaeal host. The sequence conservation
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across multiple DGR RTs in DUSEL4 (Supplementary Fig. 6a)
suggests that they have a common source, perhaps a single
acquisition followed by repeated gene duplications as new DGRs
formed.

Nanoarchaeal DGRs target orphan genes. Most previously
identified bacterial and phage DGRs diversify ligand-
binding proteins, predominantly C-type lectin-like9,11,15 or
immunoglobulin-like folds23,25. By contrast, primary sequence
analysis of all DUSEL4 Nanoarchaeota DGR and DGR fragment
TPs reveals that they share no protein sequence homology with
either AdtA or any database representatives, but rather constitute
a set of orphan genes (Supplementary Fig. 6b); this finding is
supported by Phyre analysis, which predicted no structural
homology between characterized proteins and any nanoarchaeal
TP. Initial structural investigation of one nanoarchaeal TP
(OTU1 contig 3 DGR2 TP; Fig. 2b) by circular dichroism (CD)
revealed that the purified protein adopts a thermostable fold
(TmB70 �C; Supplementary Fig. 7) even with limited secondary
structure (12% a-helix and 25% b-strand)26. Pairwise sequence
alignments of the nanoarchaeal TPs (Supplementary Fig. 6b)
suggest that the targets of groups i–iv are unlikely to share
substantial structural homology with each other, raising the
possibility that nanoarchaeal DGRs may target a broader range of
protein activities than are known for bacterial and phage DGRs.

Discussion
Comparison of the putative archaeal DGRs with the canonical
bacterial and viral DGRs reveals both similarities and distinctive
features that may influence DGR function. In Bordetella phage
BPP-1, certain cis-acting elements appear critical for efficient
retrohoming, including (1) an initiation of mutagenic homing
(IMH) motif that lies at the 30 end of VR and an IMH*
homologue at the 30 end of TR; and (2) a short inverted repeat
downstream of VR, capable of forming a hairpin/cruciform
structure, typically with a GRNA tetraloop10. DUSEL4 DGRs
appear to maintain versions of these canonical cis- acting
elements under additional constraints. First, IMH sites in
DUSEL4 include a TGGGGT motif, while DUSEL4 IMH* sites
carry a corresponding TGGAAT. Second, all DUSEL4 DGR
hairpins have highly constrained GRA trinucleotide loops, and
each hairpin lies within its DGR’s TP gene, placing this region
under selection at the level of both protein structure and DNA
sequence. Investigation into the influence of these features on
archaeal DGR activity may shed light on differences in the
molecular mechanism of DGR retrohoming in bacterial and
archaeal systems.

Examination of nanoarchaeal TRs suggests the capacity for
individual DGRs to generate 7� 1010 to 9� 1012 variants of their
TPs, with no risk of nonsense mutations (Supplementary Fig. 4).
Although this range is low by comparison with typical bacterial
and viral DGRs, the potential evolutionary impact must be
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considered in light of the multiplicity of DGRs in DUSEL4
Nanoarchaeota; whereas no bacterial or viral genome has been
found to harbour 42 distinct DGRs, these nanoarchaea have Z4.
This profusion may enable subterranean nanoarchaea to explore a
multidimensional fitness landscape far more rapidly than would
sporadic mutation at the low rates observed for other intrater-
restrial microbes5. Moreover, the fragmentary DGRs elsewhere in
OTU1 suggest either that a single nanoarchaeal DGR can
concurrently target multiple genes with homologous VRs, or
that these DGRs are dynamic, with mobile RT/TR elements
recruited from one locus to another over time. In either case, the
diversity of nanoarchaeal DGR target sequences so far discovered
raises the possibility that these organisms have used DGRs as a
general tool for protein engineering—a hint that scientists might
be able to do the same.

It is striking that these first discoveries of DGRs in archaeal
systems should occur in a virus and in the Nanoarchaeota, a
phylum associated with parasitism21,22. Whether the uncultivated
organisms represented by the DUSEL4 clade live as obligate
parasites remains to be determined; their more important
commonality with ANMV-1 may be their occurrence in Earth’s
subsurface. While massive and low-risk protein diversification
offers clear advantages to any organism caught up in the Red
Queen’s race, the occurrence of a DGR in the globally distributed
virus ANMV-1 and the proliferation of DGRs in subterranean
nanoarchaea suggests that these elements may confer additional
selective advantages in a compartmentalized and energy-limited
subsurface environment.

Methods
Study site and sampling. Paull’s Pingo is a seafloor mound feature (latitude
33.799� N and longitude 118.646� W, depth B820 m) formed by the expansion of
subsurface methane hydrate27. We accessed active methane seeps at the pingo to
collect sediment cores using deep submergence vehicle Alvin, during R/V Atlantis

Leg AT15-53 (September 2009). Sediment core processing was conducted
shipboard in an anaerobic chamber, flushed with a nitrogen headspace. One
sediment core was subsectioned between 5 and 15 cm (relative to seafloor) and
dedicated to methane-amended incubations. Two subsamples of 60 ml sediment
were homogenized with 20 ml of sterile, anoxic artificial seawater medium28.
Incubations with the homogenized sediments were prepared in 120-ml serum vials,
under a 40-ml headspace of B3% CH4 and 97% N2. Incubations were amended
with 13C-labelled methane (99 atom-% 13C) as an exogenous tracer to track
methane oxidation (Supplementary Fig. 1). Stable isotope ratios (d13C) for CO2

were measured by isotope ratio mass spectrometry (Thermo Finnigan Delta XP
Plus in continuous flow mode). After 1 month of enrichment, the incubation was
terminated and viruses were purified for DNA sequencing.

Virome purification and DNA sequencing. Incubation slurry samples (1:2
sediment:aqueous phase) were used for virus particle purifications. Samples were
vigorously homogenized by vortexing (15 min), followed by centrifugation (10 min,
500g). Supernatant was filtered (0.22 mm) to separate viruses from cells. Viruses
were concentrated and viral DNA was extracted as previously described29.
Briefly, virus particles were concentrated via caesium chloride density gradient
ultracentrifugation (2 h, 22,000 g, 4 �C) and treated with DNase-I. DNA was
extracted by cetrimonium bromide (CTAB)-chloroform and phenol-chloroform
separation. Before viral DNA amplification, a 16S PCR assay to screen for cellular
DNA contamination was performed with universal bacterial primers Bact27F
(50-AGAGTTTGATCCTGGCTCAG-30) and Bact1492R (50-GGTTACCTT
GTTACGACTT-30). Following this check, we performed Phi29 polymerase
multiple displacement amplification (MDA) using the Illustra Genomiphi HY
DNA Amplification Kit (GE Healthcare). Thermal cycling steps for denaturing
template DNA, polymerase amplification, and post-amplification enzyme
inactivation were performed according to the manufacturer’s specifications, except
that the MDA amplification reaction was incubated for 2 h instead of 4 h (2 h,
30 �C). Amplified product was pyrosequenced on 454-titanium plates at the
Broad Institute, as part of the Moore Marine Phage Metagenome Initiative30.
Metagenomic reads can be obtained under the NCBI BioSample accession code
PRJNA47435.DV-ANM1.

Read preprocessing, binning, and assembly. Raw sequencing reads were first
scanned for sequencing primers, which were identified and removed using
TagCleaner31. The reads were then preprocessed to remove low-quality sequence
following the method of Hurwitz et al.32, using a custom R script. Preprocessing
included, first, removal of any reads with ambiguous (N) bases; second, removal of
the shortest 2.5% and longest 2.5% of reads; third, removal of reads with mean
quality score 42 s.d. below the mean; and finally, de-replication with CD-Hit 454
(ref. 33).

Reads that passed preprocessing and quality control (QC) steps were subjected
to de novo assembly using CAMERA’s meta-assembler34. As this assembler does
not permit user manipulation of read overlap parameters, we compared the meta-
assembler output with a custom reassembly approach using Geneious v7.0
(Biomatters Ltd) with the following parameters: minimum overlap 35 bases,
overlap pairwise identity 90% and index word length 12 nt. The ANMV-1 contig
described in this study was generated from the meta-assembly and aligned globally
with 97.7% pairwise nucleotide similarity to a contig obtained by the second
custom de novo assembly. PCR screening confirmed the authenticity of the
ANMV-1 DGR cassette in both template and MDA-amplified viral DNA,
using primers that partially overlap TP, RT and VR/TR regions: ANMVdgrF
(50-AGGCGATGCAGACGAATGGC-30) and ANMVdgrR (50-TTGCCCAGA
GTTACACCGAGCG-30).

Metagenome annotations. Prediction of open reading frames was performed
using Glimmer3 (ref. 35) with default parameters. Translated ORF sequences were
annotated via CAMERA-HMM and BLASTp36 searches against the following
databases: TIGRfam, Pfam, COG and NCBI-nr (e-value o10� 3). To determine
which ORFs from ANMV-1 genome share similarity to viral and prophage
sequences, we compared our contig’s translated ORFs with the ACLAME
prophage-specific database37. To assess similarity to proteins from anaerobic
methane-oxidizing archaea, we inspected NCBI-nr BLASTp results for ANME
protein hits (uncultured archaeon, ANME-1; ‘Candidatus Methanoperedens
nitroreducens’, ANME-2D; and uncultured archaeon, Gfoz37D1). A BLASTn
survey was conducted against environmental metagenomic databases, including
NCBI metagenomic sequences (env_nt), Moore Marine Virus Metagenomes30 and
Pacific Ocean Virome sequences38, to find representatives sharing high nucleotide
similarity (e-value o10� 20; 28-nt word size) with ANMV-1.

The putative DGR TP of ANMV-1, AdtA, was analysed using Phyre2 (ref. 40)
to find functional representatives based on secondary structural homology.
Residues of TP that aligned with high confidence to the CLec fold region of the
Mtd protein Bordetella phage BPP-1 (Phyre confidence 490%) were used to
predict a three-dimensional model. Residue positioning was assessed by
Ramachandran analysis and C-terminal variable residues were mapped from
the primary sequence onto the predicted structure using Geneious v7.0
(Biomatters Ltd).
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Figure 5 | Tetranucleotide distributions of DUSEL4 Nanoarchaeota.

(a,b) Non-metric multidimensional scaling plots of tetranucleotide

distributions of (a) concatenated DUSEL4 DGRs (red) and (b) separately

concatenated DUSEL4 DGR RT (blue) and TP genes (green), compared

with the rest of the DUSEL4 Nanoarchaeota OTU1 and OTU2 genomes

(greyscale circles). Each point on the ordination plots represents one 5-kb

fragment. Dashed ellipses indicate the 95% confidence region.
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Comparative analysis of Nanoarchaeota genomes. We identified DGR-like RTs
via BLASTp searches against the NCBI-WGS database. For an initial proxy of DGR
repeat features, we used the EMBOSS tool Dotmatcher40 to perform a dotplot
analysis of homologous regions with moderate proximity (±5 kb) to RT. TR/VR
regions were confirmed from candidates that comprised mostly adenine-specific
variability, with at least 10 adenine-specific mismatches, with respect to one strand,
and no more than 2 non-adenine mismatches in 100 bp of aligned sequence.

DGR-containing sequences that were analysed in this study are from single-cell
genomes belonging to DUSEL4 Nanoarchaeota, which were broadly described as
part of a genome and metagenome annotation study on ‘microbial dark matter’,
published elsewhere20. DUSEL4 Nanoarchaeota representatives were previously
assigned into two OTUs comprising four single-cell genomes. We describe
Nanoarchaeota DGRs with reference to their occurrence in combined single-cell
sequence assemblies: OTU1 (genomes AAA011-G17 and AAA011-L22) and OTU2
(genomes AAA011-J02 and AAA011-K22). To confirm the presence of multiple
distinct DGRs in one single-cell genome, we aligned OTU1 sequences with contigs
from Nanoarchaeota AAA011-G17, which has the highest genome completeness of
the DUSEL4 representatives20.

Nanoarchaeota RT sequences were aligned using ClustalW41 with sequences
containing the catalytic RT domain, representing DGRs, group-II introns, retrons,
long terminal repeats (LTRs), retroviruses, non-LTR elements and retroplasmids.
The alignment was compared with a position-specific scoring matrix for the RVT-1
protein family (PF00078), and was manually realigned to conserve motifs
considered essential for RT activity. Trees were constructed in MEGA v5.2 (ref. 42)
using PhyML42 with the model LGþGþ F. In addition, a PhyML tree was
constructed from concatenated alignments of RT and TP amino-acid sequences to
compare sequence similarities amongst Nanoarchaeota DGR cassettes.

TP expression and purification. Coding sequences of nanoarchaeal TPs were
synthesized with codons optimal for expression in Escherichia coli (GENEWIZ,
Inc.) and cloned into a modified pET28b expression vector with an N-terminal
His-tag followed by a PreScission protease cleavage site. Construct integrity was
confirmed by DNA sequencing. TPs were expressed in Escherichia coli BL21-Gold
(DE3) cells. Bacteria were grown with shaking at 37 �C to an optical density
(OD600) of 0.6–0.8 and then cooled to room temperature, followed by induction
with 0.5 mM isopropyl b–D-1-thiogalactopyranoside. Bacteria were grown with
shaking at room temperature for 5–6 h further, then harvested by centrifugation
(25 min, 4,000g, 4 �C); the bacterial pellet was frozen at � 80 �C.

Cells were thawed and resuspended in buffer A (300 mM NaCl, 50 mM Tris
(pH 8) and 5 mM b-mercaptoethanol; 20 ml l� 1 of bacterial culture) supplemented
with 1 mM phenylmethylsulfonyl fluoride (PMSF). The bacteria were lysed by
sonication and the lysate was centrifuged (30 min, 35,000 g, 4 �C). The following
steps were performed at 4 �C. The supernatant was applied to a column containing
His-Select Nickel affinity gel (Sigma, 1 ml of resin per 20 ml of bacterial lysate),
which had been equilibrated with buffer A. The column was washed with five
column volumes of buffer B (300 mM NaCl, 20 mM Tris (pH 8) and 5 mM b-
mercaptoethanol) containing 20 mM imidazole, and the TP was eluted with buffer
B containing 250 mM imidazole. The His-tag was removed by PreScission protease
cleavage (1:50 TP: protease mass ratio) overnight at 4 �C. Cleaved TP was separated
from non-cleaved proteins by applying the sample to a His-Select Nickel affinity gel
column (Sigma) and collecting the flowthrough. The TP was further purified by gel
filtration chromatography (Superdex 75) in 300 mM NaCl, 20 mM Tris (pH 8) and
1 mM dithiothreitol. Purified protein was concentrated to 2 mg ml� 1 using
ultrafiltration (10 kDa MWCO Amicon, Millipore); the concentration of TP was
determined using a calculated molar extinction coefficient at 280 nm of
28,880 M� 1 cm� 1.

CD spectroscopy. CD spectra were collected for the purified nanoarchaeal TP at
10mM in 300 mM NaF, 20 mM sodium phosphate buffer, pH 8, 1 mM dithio-
threitol on an Aviv 202 CD spectrometer using a 1-mm pathlength cuvette. Spectra
were recorded from 195 to 260 nm at 25 �C, with 1 nm wavelength steps and the
measurement at each wavelength being averaged for 30 s. A temperature melt study
was carried out by increasing the temperature of the sample from 4 to 90 �C in 1 �C
increments, with the ellipticity being monitored at 216 nm. The sample was then
incubated at 90 �C for 2 min and cooled from 90 to 4 �C in 1 �C decrements, with
the ellipticity being monitored at 216 nm.

Tetranucleotide composition analysis. Tetranucleotide composition analysis can
be used to identify core genome signatures to aid in taxonomic assignment, or to
differentiate conserved protein-coding regions from those that were horizontally
acquired44–46. Tetranucleotide distributions of Nanoarchaeota genomes were
determined as previously described43, using a custom Python script. Briefly,
sequences were fragmented with a 5-kb sliding window (500-bp overlapping step).
Tetranucleotide frequencies were calculated by a zero-order Markov method,
which applies odds ratios of observed counts for the 256 unique 4-mers,
normalized to their respective mononucleotide frequencies. In order to assess
tetranucleotide signatures for DGR regions (B2 kb each), while avoiding a
compositional bias of flanking sequence, we concatenated DGR cassettes from both
OTU1 and OTU2 and fragmented this DGR-specific sequence (B21 kb) with a

sliding window as above. In addition, sequences from RT genes and TP genes were
separately concatenated and fragmented with a sliding window as above to
compare tetranucleotide compositions for the two DGR components.
Dimensionality reduction was performed via non-metric multidimensional scaling
on Euclidean distances, using the vegan package in R47, and ordination ellipses
representing the 95% confidence region were drawn with the ‘ordiellipse()’
function.
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Dworkin, M., Harder, W. & Schleifer, K.-H.) (Springer, 1992).

29. Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory
procedures to generate viral metagenomes. Nat. Protoc. 4, 470–483 (2009).

30. Henn, M. R. et al. Analysis of high-throughput sequencing and annotation
strategies for phage genomes. PLoS ONE 5, e9083 (2010).

31. Schmieder, R., Lim, Y., Rohwer, F. & Edwards, R. TagCleaner: identification
and removal of tag sequences from genomic and metagenomic datasets. BMC
Bioinformatics 11, 341 (2010).

32. Hurwitz, B., Deng, L., Poulos, B. & Sullivan, M. Evaluation of methods to
concentrate and purify ocean virus communities through comparative,
replicated metagenomics. Environ. Microbiol. 15, 1428–1440 (2013).

33. Niu, B., Fu, L., Sun, S. & Li, W. Artificial and natural duplicates in
pyrosequencing reads of metagenomic data. BMC Bioinformatics. 11, 187
(2010).

34. Sun, S. et al. Community cyberinfrastructure for advanced microbial ecology
research and analysis: the CAMERA resource. Nucleic Acids Res. 39,
D546–D551 (2011).

35. Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial
genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679
(2007).

36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

37. Leplae, R., Hebrant, A., Wodak, S. J. & Toussaint, A. ACLAME: a
CLAssification of Mobile genetic Elements. Nucleic Acids Res. 32, D45–D49
(2004).

38. Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean Virome (POV): a marine
viral metagenomic dataset and associated protein clusters for quantitative viral
ecology. PLoS ONE 8, e57355 (2013).

39. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case
study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

40. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology
open software suite. Trends Genet. 16, 276–277 (2000).

41. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23,
2947–2948 (2007).

42. Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software
for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9,
299–306 (2008).

43. Guindon, S. et al. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59,
307–321 (2010).

44. Pride, D. T., Meinersmann, R. J., Wassenaar, T. M. & Blaser, M. J. Evolutionary
implications of microbial genome tetranucleotide frequency biases. Genome
Res. 13, 145–158 (2003).

45. Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glöckner, F. O.
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