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Highlights

• Two South American regions have been referred to
as the South American dry diagonals.

• The first comprises the Caatinga, Cerrado and Chaco
domains. The second encompasses Patagonia, Monte,
Prepuna, dry Puna and Pacific Desert.

• These two diagonals are key in structuring South
American distribution patterns, acting both as
dispersal barriers and corridors.

• They appear to have little in common, both floristically
and faunistically.

Abstract

South American drylands roughly form two diagonals 
both termed in the biogeographical literature as the 
“South American dry diagonal” (SADD). However, they 
correspond to two different geographical areas. One 
comprises the Caatinga, Cerrado and Chaco domains, 
thus encompassing the areas between northeastern Brazil 
and northwestern Argentina. The other stretches from 
Patagonia in southern Argentina to the Pacific deserts of 
northern Chile and Peru, thus also including the Monte, 
Prepuna and dry Puna domains. I termed them the 
eastern and western SADDs, respectively (i.e., eSADD 
and wSADD). In this mini review I attempt to summarize 
the major climatic features of the two South American 
dry diagonals, their possible origins, biogeographical 
patterns within and around them and to explore possible 
interconnections. The eSADD is generally more humid 
than the wSADD and has more pronounced rainfall 
seasonality, with precipitation concentrated in summer, 
while the wSADD tends to be less seasonal due to year-
round aridity, with little precipitation largely occurring in 
winter. The origin of both diagonals appears to go back 
to the middle Miocene, associated with global cooling. 
Biogeographical studies show that these diagonals are 
important in structuring South American distribution 
patterns south of the Equator, both acting as barriers for 
humid-adapted lineages and corridors for arid-adapted 
taxa. Remarkably, the two diagonals appear to have few 
plant and animal taxa in common, which may explain 
why biogeographers speaking about one diagonal seem 
to ignore the existence of the other.

Introduction
A rapid appraisal of the literature on South 

American biogeography reveals that when authors 
speak about the “South American dry diagonal” 
(SADD) they refer to two completely different things, 
resulting in two bodies of literature, which appear to 
largely ignore each other. The first notion of SADD 
refers to the concatenation of sub-humid, dry and 
semiarid domains stretching from northeastern Brazil 
into northwestern Argentina formed by the Caatinga, 
Cerrado and Chaco domains (Fig.  1A; Prado and 

Gibbs 1993, Werneck et al. 2012, Santos-Silva et al. 
2013, Fouquet  et  al. 2014, Azevedo  et  al. 2020a, 
Collevatti et al. 2020, Ledo et al. 2020, Neves et al. 
2020, Rocha  et  al. 2020, Masa-Iranzo  et  al. 2021). 
The second refers to the arid and hyperarid domains 
distributed from southern Argentina into southwestern 
Ecuador formed by Patagonia, Monte, Prepuna, 
dry Puna and the Atacama and Peruvian deserts 
(Fig.  1B; Eriksen 1983, Houston and Hartley 2003, 
Bräuning 2009, Garreaud 2009, Moreira-Muñoz 
2011, Marín et al. 2013, Aszalós et al. 2016). While 
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the former is sometimes referred to as the “diagonal 
of open formations” (e.g., Vanzolini 1963, Ab’Sáber 
1977, Werneck 2011, Zanella 2011, Fonseca  et  al. 
2020), the latter is commonly referred to as the “South 
American arid diagonal” (SAAD; Martonne 1935, 
Ab’Sáber 1977, Bruniard 1982, Garleff and Schäbitz 
1991, Messerli et al. 1997, Villagrán and Hinojosa 1997, 
Veit 1998, Ochsenius 1999, Abraham et al. 2000, 2009, 
2020, Baranzelli  et  al. 2020, Salariato and Zuloaga 
2020) or rarely as the “xeric diagonal” (Marín et al. 
2013). To avoid confusion, I will henceforth refer to 
them as the eastern and western SADDs, respectively 
(i.e., eSADD and wSADD). The first mention of any 
of these diagonals in the literature appears to come 
from Martonne (1935) who referred to the wSADD 
(Abraham et al. 2020). The eSADD was probably first 
mentioned by Vanzolini (1963; see Ab’Sáber 1977, 
Werneck 2011). There seems to be few integrative 
studies addressing the biogeography of these two 
diagonals. Apparently, Ab’Sáber (1977) was the first 
to recognize the existence and notice the structuring 
role of the two dry diagonals on South American 
biogeographical patterns. In this communication I 
selectively review the literature and compare these 
diagonals in terms of climatic conditions, possible 
origins and biogeograhical patterns. Based on this 
review, I address the question of whether these two 

diagonals are biogeographically related or whether 
they do correspond to distinct evolutionary arenas thus 
justifying the apparent lack of connection observed 
in the literature.

Climatic conditions of the dry diagonals
Most climatologists have defined aridity or dryness 

in terms of water balance (see Ward 2009), i.e., the 
ability of precipitation (P) to compensate water 
loss through evapotranspiration (ETP). Thus, one 
of the most widely used indices is the Aridity Index 
(AI), corresponding to the P/ETP ratio (Kimura and 
Moriyama 2019). The annual AI in South America 
shows that drylands are located both east and west of 
the Central Andes (Atacama and Peruvian Deserts, dry 
Puna, Chaco and Monte), east of the southern Andes 
(Patagonia and Prepuna), in the Brazilian Nordeste 
(Caatinga) and in the Caribbean coast (Fig. 2). The South 
American dry diagonals include all of these regions 
except for the Caribbean coast. They also exclude areas 
typically considered as dry, such as central Chile under 
Mediterranean-type climate or the dry inner-Andean 
valleys and includes the Cerrado, located between 
the Caatinga and Chaco in the eSADD (Fig.  1). The 
wSADD can be classified as either arid or hyperarid 
(AI<0.2; Fig. 2A). It thus appears that the denomination 

Figure 1. The two South American dry diagonals. A: Caatinga, Cerrado and Chaco (taken from Olson et al. 2001). B: Patagonia, 
Monte, Prepuna, dry Puna, Atacama and Peruvian deserts (taken from Romano 2017, based on Morrone 2015, except 
for the dry Puna, which was taken from Olson et al. 2001, because Morrone’s definition of Puna includes humid regions)
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of “Arid Diagonal” (see above) and the exclusion of 
central Chile and the dry inner-Andean valleys from it 
is appropriate. Though not customary in the literature 
(see Abraham et al. 2020), including central Chile and 
the dry inner-Andean valleys in the wSADD would make 
it geographically larger and climatically broader (i.e., 
incorporating semi-arid zones), but would not affect 
its approximate geographical location. To understand 
the eSADD, seasonality needs to be taken into account. 
While Caatinga and Chaco prevail semiarid throughout 
the year (0.2<AI<0.5; Fig. 2A) most of the Cerrado can 
be classified as humid (AI>0.65). This pattern also holds 
if only sites of dry formations are considered (i.e., 
the local climate of specific sites with xeromorphic 
vegetation; Neves et al. 2015). However, the Cerrado 
becomes arid to semiarid during the austral winter 
(Fig. 2C). Partially due to this lack of climatic identity, 
de Queiroz et al. (2017) argued that the term “Dry 
Diagonal” is conceptually equivocal to designate the 
eSADD. While most references cited above refer to 
the eSADD as composed of the Catinga, Cerrado and 
Chaco domains, Neves et al. (2015) also included the 
Pantanal, a seasonally flooded savanna formation 
located between Cerrado and Chaco (Junk and Nune da 
Cunha 2016) and the Chiquitania, a mosaic of savanna, 
savanna wetland and dry forests in eastern Bolivia 
(Killeen et al. 1990), in their assessment of the eSADD.

Climatic controls and possible origins
There is no single factor that can explain aridity 

throughout the continent. Therefore, there are likely 

multiple origins of aridity responding to different 
combinations of factors. Aridity of the wSADD forms in 
a zone where the influence of both austral winter and 
summer rainfall is marginal. Winter rainfall is caused 
by the Pacific westerlies (air masses originating in 
the Pacific Ocean and reaching southwestern South 
America from the west), while summer rainfall is caused 
by air masses from the Amazon moving southwards 
due to the summer formation of the continental low 
(a low-pressure system situated over the Chaco region) 
(Garreaud et al. 2009). Patagonian aridity is largely 
the consequence of the rain-shadow effect of the 
austral Andes that prevents the Pacific westerlies to 
reach eastern locations (Garreaud et al. 2013). On the 
other extreme, aridity in the Atacama and Peruvian 
deserts is largely controlled by the position the Pacific 
Anticyclone, which prevents northward penetration 
of the westerlies (Garreaud and Aceituno 2007). This 
is reinforced by the effect of the Humboldt current 
and central Andean rain-shadow with respect to the 
influence of tropical air masses from the Amazon basin 
(Houston and Hartley 2003).

Rainfall occurs during winter over the western 
coast of subtropical South America (Fig. 3; Schulz et al. 
2011), when the Pacific anticyclone reaches its 
northernmost position (Montecinos and Aceituno 
2003). North of Patagonia, on the Monte region, the 
influence of the westerlies declines both because 
of distance and increasing elevation of the Andes, 
but the effect of the Pacific Anticyclone is also weak. 
Tropical air masses from the Amazon exert marginal 
seasonal influence over this region, causing a slight 

Figure 2. Distribution of the Aridity Index (AI) in South America calculated for annual values (A) and for the austral summer 
(B) and winter (C). Data was directly obtained from Trabucco and Zomer (2018) for A and from Trabucco and Zomer (2018)
and Fick and Hijmans (2017) for calculating B and C. Categories of aridity are those of Middleton and Thomas (1997):
Hyperarid (AI<0.03), Arid (0.03<AI<0.2), Semiarid (0.2<AI<0.5), Dry sub-humid (0.5<AI<0.65) and Humid (AI>0.65). Lines
and letters correspond to the boundaries of the regions comprising the SADDs depicted in Figure 1.
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increase of summer rainfall, the same being true 
for the dry Puna (Fig.  3), when the Intertropical 
Convergence Zone (ITCZ) reaches its southernmost 
position (Garreaud et al. 2009). This trend intensifies 
northward and is responsible for summer rainfall over 
the Chaco and Cerrado (Fig. 3). Year-round greater 
aridity of the Caatinga appears to be the consequence 
of the combination of the local intensification of the 
Hadley cell (Garreaud  et  al. 2009) associated with 
African teleconnections (the influence of heating over 
Africa on South American precipitation patterns), the 
latter inducing considerable suppression of summer 
rainfall over northeastern Brazil (Cook et al. 2004).

Since global atmospheric circulation does not 
appear to depend on the regional distribution of 
land and sea, it is likely that the major features of 
anticyclonic aridity have not dramatically changed 
throughout the Cenozoic (Hartley 2003). However, the 
well-documented global cooling since the Mid Miocene 
(Zachos  et  al. 2001) and the subsequent decrease 
of sea surface temperature and changes in oceanic 
circulation due to a long-term trend in expansion 
of the Antarctic ice sheet during the late Pliocene 
compared to previous times (McKay  et  al. 2012) 
have probably led to increasing subtropical aridity 
(Herbert et al. 2016). The expansion of the Antarctic 
ice sheet may have also pushed the ITCZ northward 

(Chiang and Bitz 2005; Hyeong et al. 2016), giving rise 
to present-day rainfall seasonality over subtropical 
latitudes of the eSADD. This is also well correlated 
to the Miocene expansion of C4 taxa (Latorre et al. 
1997), the origin of fire-adapted plants of the Cerrado 
(Simon et al. 2009), the expansion of seasonally dry 
tropical forests of the Caatinga (Almeida et al. 2018) 
and other arid-adapted plant groups (Arakaki et al. 
2011). In Patagonia, the rain-shadow effect of the 
Andes can be traced back to its uplift that also took 
place during the Mid Miocene (Blisniuk et al. 2005), 
which along with the cooling trend may have led to 
the formation of xeromorphic vegetation towards the 
late Miocene (Palazzesi et al. 2014). The fossil record 
of Patagonia further supports the idea of late Miocene 
aridification in southeastern South America (Barreda 
and Palazzesi 2007, Palazzesi et al. 2014). The onset 
of aridity in the Atacama Desert probably took place 
during the late Oligocene (Dunai  et  al. 2005) and 
intensified during the Miocene due to increasing rain-
shadow associated with positive feedbacks with central 
Andean uplift (Lamb and Davis 2003) as well as with the 
development of the Humboldt current (Sepulchre et al. 
2009). Miocene intensification of aridity in the Atacama 
Desert is further supported by cosmogenic nuclide 
exposure dating (Ritter et al. 2018). This is coincident 
with Miocene-to-Pliocene divergence time estimates 

Figure 3. Climate diagrams of representative meteorological stations of each domain of the two South American dry 
diagonals. The horizontal line divides the diagrams of the wSAAD (above the line) and the eSADD (below the line). Bars 
correspond to mean monthly precipitation. Red lines correspond to mean maximum and minimum monthly temperature. 
MAT: Mean annual temperature; TS: Temperature seasonality (standard deviation of mean monthly temperatures); MAP: 
Mean annual precipitation; PS: Precipitation seasonality (coefficient of variation of mean monthly precipitation); Cont: 
Continentality (difference between mean monthly temperature of the warmest and coldest months). Diagrams built 
following Mucina et al. (2006). Data obtained from FAO (2001) except for Cerrado and Caatinga, obtained from Banco de 
Dados Meteorológicos do INMET (https://bdmep.inmet.gov.br, accessed 7 September 2020).

https://bdmep.inmet.gov.br/$2a$10$d.L4hbCLgVw9J5tzTrgN.ovlzm2WUaFDNUE04gj6P5iXfJN4Ay82.zip
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for the origin and diversification of several plant taxa 
of the Atacama Desert (e.g., Luebert and Wen 2008, 
Heibl and Renner 2012, Böhnert et al. 2019).

Biogeographic patterns within and 
around the dry diagonals

Both SADDs may be seen as structuring a number of 
South American biogeographical patterns. On the one 
hand, both constitute environments for colonization 
and diversification of arid-adapted lineages. On the 
other hand, they act as a barrier for lineages that 
are not capable to survive in such arid environments 
and have been suggested to be responsible for 
biogeographical disjunctions on both sides of the 
diagonals. However, little has been documented about 
potential biogeographical connections between them. 
As shown below, this is possibly due to the fact that 
they actually have little in common.

The eSADD separates the Amazon and Atlantic 
Forest, two domains dominated by tropical rain 
forests. The Amazon-Atlantic Forest disjunction is one 
of the biogeographical patterns identified by Fiaschi 
and Pirani (2009). Atlantic Forest shows a stronger 
floristic connection to the Amazon at the species 
level than to any other Neotropical evergreen forest 
(Cupertino-Eisenlohr et al. 2021), suggesting recent 
floristic exchanges between Atlantic Forest and the 
Amazon (Antonelli  et  al. 2018). These exchanges 
have been suggested to be most intensive through 
the western portion of both Atlantic Forest and the 
Amazon (Batalha-Filho et al. 2013, Thode et al. 2019), 
though evidence also suggests that this route may 
have been continuously used by vertebrates since 
the Oligocene (Fouquet et al. 2014; Ledo and Colli 
2017, Antonelli  et  al. 2018). The formation of the 
Pantanal during the late Pliocene (Ussami et al. 1999), 
and Pleistocene climatic cycles (Sobral-Souza  et  al. 
2015) may have contributed to the intensification of 
these exchanges. Even more recent exchanges have 
been suggested for vertebrates through the coastal 
region of the Caatinga on the eastern portion of both 
rainforests, possibly associated with Pleistocene 
climatic cycles (Ledo and Colli 2017). These studies, 
however, underscore the importance of the eSADD 
as a barrier between Amazon and Atlantic Forest, 
which may explain early vicariant events in both 
vascular plants and vertebrates (e.g., Fouquet et al. 
2012, Batalha-Filho  et  al. 2013, Thode  et  al. 2019, 
Almeida and van den Berg 2020; Masa-Iranzo et al. 
2021) as a consequence of the formation of these 
dry environments during the Miocene (see above).

Biotic connections within the eSADD have been 
widely documented. High floristic similarity and 
numerous examples of species and higher taxa 
distributed across the Caatinga, Cerrado and Chaco 
are available for vascular plants (Prado and Gibbs 
1993, DRYFLOR et al. 2016), though many of them 
are presently absent in the Cerrado. Prado (2000) 
suggested that observed distribution patterns indicate 
that areas of the Cerrado had been inhabited by taxa 
currently distributed only in the Caatinga and Chaco 

domains in the recent geological past. Current absence 
of taxa in the Cerrado may thus be due to more humid 
conditions and more pronounced rainfall seasonality 
(Neves et al. 2015; see Figs. 2 and 3) that also favor 
the occurrence of fires (Miranda  et  al. 2009), but 
general climate of the area currently occupied by 
Cerrado appears to have been drier during Quaternary 
glacial periods (Collevatti et al. 2020, Oliveira et al. 
2020). Examples of other species distributed across 
the eSADD are also available for anurans (Santos et al. 
2009; Vasconcelos et al. 2019), geckos (Werneck et al. 
2012), lizards (Fonseca et al. 2018; Ledo et al. 2020), 
birds (Rocha  et  al. 2020), and arthropods (Zanella 
2011, Bartoleti et  al. 2018), though many of these 
groups show connections to the neighboring domains, 
especially the Atlantic Forest.

Similar to what has been proposed for the eSADD, 
the wSADD has been considered as a vicariant barrier 
that had shaped disjunctions, especially in plants 
(Villagrán and Hinojosa 1997, 2005, Moreira-Muñoz 
2011). Evidence for the formation of vicariant disjunct 
patterns has been found in plant groups disjunctly 
distributed in the southern Andes (Mediterranean 
woodlands and temperate rainforests domains) 
and southern Brazil (mainly Atlantic Forest domain) 
that split during the Miocene (Chacón  et  al. 2012, 
Murillo  et  al. 2016, Luebert  et  al. 2020, Moreira-
Muñoz  et  al. 2020), though not all groups sharing 
this disjunction can be explained by the origin of the 
wSADD, with some groups probably having dispersed 
more recently across already formed arid environments 
(Luebert et al. 2020). A disjunct distribution pattern 
between the southern and the tropical Andes with 
a distribution gap at the arid zones of Atacama and 
Peruvian deserts has also been documented in several 
plant groups (reviewed in Lörch et al. 2021). Some 
of them have been shown to have also split during 
the Miocene, coinciding with the formation of the 
Atacama and Peruvian deserts (Drew and Sytsma, 2013, 
Renner et al. 2020, Lörch et al. 2021). This arid barrier 
has also been suggested to limit north-south dispersal 
in wild South American camelids (Marín et al. 2013, 
Casey et al. 2018) and appears to split the distribution 
of Neotropical snakes on the western side of the Andes 
(Azevedo et al. 2020b).

On the other hand, Palma et al. (2005) suggested 
that the formation of the wSADD “provided new 
environments for the differentiation of local biota”. 
There appears to be only few groups distributed 
along the entire wSADD. Kelt  et  al. (2000) showed 
high similarity of small mammal faunas within the 
wSADD, though no species were shared between 
the geographically extreme areas of the Atacama 
Desert and Patagonia, perhaps because the Andes 
act as a geographical barrier within the wSADD (see 
Ab’Sáber 1977, Luebert and Weigend 2014). While 
most of the endemisms are restricted to portions 
of it, several plant groups that occupy the entire 
wSADD are also present in other neighboring regions, 
such as Ephedra, (Ephedraceae; Ickert-Bond  et  al. 
2009), Leucheria (Asteraceae; Jara-Arancio  et  al. 
2017), Montiopsis (Montiaceae; Hershkovitz 2019), 
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Nassauvia (Asteraceae; Grossi et al. 2017) and Proustia 
(Asteraceae; Sancho et al. 2018). Unlike the eSADD, 
it is questionable that the wSADD has acted as a 
corridor for arid adapted taxa. Rather, it has probably 
functioned as a receptor area for immigration and, 
in some cases, subsequent local diversification (e.g., 
Katinas and Crisci 2000, Gengler-Nowak 2002, Luebert 
and Wen 2008, Dillon  et  al. 2009, Luebert  et  al. 
2009, Heibl and Renner 2012). Still, there are some 
examples of plant groups that appear to be distributed 
along the wSADD, such as Atriplex South American 
clade 2 (Chenopodicaceae; Brignone  et  al. 2019), 
Cristaria+Lecanophora (Malvaceae; Böhnert  et  al. 
2019), Eulychnia+Austrocactus  (Cactaceae; 
Merklinger et al. 2021), and Monttea (Plantaginaceae; 
Baranzelli et al. 2014).

Biogeographical relationships between 
the dry diagonals

The first attempt known to me to compare South 
American dry formations based on floristic similarity 
was undertook by Sarmiento (1975). While he included 
South American Caribbean drylands of Colombia and 
Venezuela in his analysis, Chaco and Cerrado were 
not considered, perhaps because they are evidently 
less arid than the other regions (see Fig. 2A), and due 
to the lack of knowledge about species composition 
of these areas up to that time. In his analysis, the 
Caatinga appears on one end, related to the Caribbean 
formations, which in turn are more related to the 
northern Andean dry valleys and the dry coastal 
lowlands of Ecuador and N Peru. On the other end, 
Patagonia, Monte, Prepuna, Central Chile, Puna and 
central high-Andean formations form a floristic group. 
The other formations (Central Andean dry valleys, 
Pacific Desert) are floristically intermediate between 
them. This network points to gradual north-to-south 
floristic transitions. Ab’Sáber (1977) pointed to the 
Chaco domain as the connecting area between the 
two SADDs. Subsequent studies have focused on 
the floristic connections between the seasonally dry 
tropical formations of the Caribbean, Caatinga, Cerrado, 
Chaco and the inter-Andean dry valleys (e.g., Prado & 
Gibbs 1993, Prado 2000, Linares-Palomino et al. 2003, 
2011, 2015, Pennington et al. 2009; DRYFLOR et al. 
2016), thus leaving the wSADD aside.

In another analysis, Roig-Juñent et al. (2006) studied 
arthropod assemblages of all South American dry plant 
formations except the Caribbean. They suggested that 
biogeographical relationships between both diagonals 
are weak. Indeed, Magalhaes  et al. (2019) showed 
some connections between both SADDs in spiders, 
but Caatinga lineages seem to be more related to 
dry forest species from Mesoamerica and Colombia. 
For small mammals, Kelt et al. (2000) reported high 
faunistic similarity within regions of the wSADD, but 
no similarity of these with the Caatinga. This is also 
in line with phylogenetic differentiation of South 
American tropical and extra-tropical tree assemblages 
(Segovia  et  al. 2020). Furthermore, while modern 
worldwide biogeographical classifications tend to 

group the whole of South America together (e.g., 
Cox 2001, Holt et al. 2013, though amphibians and 
mammalian faunas of each diagonal are not grouped 
together), biogeographical regionalizations of South 
America (e.g., Rivas-Martínez  et al. 2011, Morrone 
2014) consider the southern part of the wSADD 
outside the Neotropical region. Above the species 
level, however, some biogeographical connections 
have been reported between both SADDs. In plants, 
Luebert (2011) conducted a systematic review of 
phylogenies involving Atacama Desert taxa and 
showed that some groups may be related to the 
Chaco, forming a disjunction that was termed the 
“Trans-Andean element”, representing nearly 13% 
of the analyzed taxa. One example of this disjunction 
is the genus Bulnesia (Zygophyllaceae), the origin of 
which has been suggested to be linked to the Andean 
uplift (Böhnert  et  al. 2020). The genus Skytanthus 
(Apocynaceae) is the only example of a plant taxon 
which is disjunctly distributed in the Caatinga and the 
wSADD. Although its monophyly is yet to be assessed, 
this genus comprises two species, one endemic to the 
seasonally dry tropical forests of the Caatinga domain 
and the other to the xeric scrubs of the Atacama Desert 
(Prado 2003). A similar pattern was documented for the 
South American representatives of the bee subfamily 
Rhophitinae (Zanella and Martins 2003).

Concluding Remarks
Researchers referring to the so-called South 

American dry diagonal actually refer to two different 
set of biogeographical regions, one corresponding to 
Caatinga + Cerrado + Chaco and the other to the Pacific 
deserts + dry Puna + Prepuna + Monte + Patagonia. 
The latter has also (and most commonly) been referred 
to as the South American arid diagonal. To avoid 
confusion, researchers could make a clear difference 
when talking about the South American dry diagonal, 
so that they are not wrongly cross-referenced (e.g., as 
in Chacón et al. 2012, Thode et al. 2019). Accordingly, 
the biogeoeographical literature on South American 
drylands can be separated into two clearly distinct 
bodies and only few studies have addressed all of 
them in an integrative fashion. These studies tend 
to show that biotic connections between both South 
American dry diagonals are scarce and weak, which 
may also explain the lack of unity in studies about 
them. Such weak connections are likely the result 
of both distinct climatic conditions and diverging 
biogeographical histories. Nonetheless, this might also 
be due to the isolation of the scientific communities 
in South America, which calls for more integrative 
biogeographical studies in this region.
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