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 The Annals of Probability
 1998, Vol. 26, No. 4, 1703-1726

 THE STANDARD ADDITIVE COALESCENT'

 BY DAVID ALDOUS AND JIM PITMAN

 University of California, Berkeley

 Regard an element of the set

 A-(XI, x2, Xi ..):xl> x2 > > 0, xi= i}

 as a fragmentation of unit mass into clusters of masses xi. The additive
 coalescent of Evans and Pitman is the A-valued Markov process in which

 pairs of clusters of masses {xi, x;} merge into a cluster of mass xi + x;
 at rate xi + x;. They showed that a version (XO?(t), -o0 < t < oc) of this
 process arises as a n - o weak limit of the process started at time - 1 log n
 with n clusters of mass 1/n. We show this standard additive coalescent
 may be constructed from the continuum random tree of Aldous by Poisson

 splitting along the skeleton of the tree. We describe the distribution of

 X?(t) on A at a fixed time t. We show that the size of the cluster containing

 a given atom, as a process in t, has a simple representation in terms of

 the stable subordinator of index 1/2. As t -+ -o0, we establish a Gaussian
 limit for (centered and normalized) cluster sizes and study the size of the

 largest cluster.

 1. Introduction. Consider a uniform random tree Yn on n labeled ver-
 tices. Let

 57-n(n) := y, Yn(n - 1), Y7n(n - 2), 5n(l)

 be the sequence of random forests obtained by deleting the edges of 5n one
 by one in uniform random order. In reversed time, this forest-valued Markov
 chain has transition probabilities of the following simple form (explicit in Pit-

 man [27] and implicit in earlier work of Yao [35]). Write #t for the size (number
 of vertices) of a tree t.

 LEMMA 1. The transition probabilities of (Fn(m), 1 < m < n) are as fol-
 lows. Given the current forest consists of trees (t1, .. ., tk), pick a pair (i, j)
 with 1 < i < j < k with probability (#ti + #tj)/n(k - 1), pick uniform vertices
 of ti and tj, and add an edge joining these vertices.

 Let yn be the continuous-time chain derived from $n by incorporating
 exponential (rate k - 1) holds between jumps, where k is the current number
 of trees. For a forest f, write #f for the ranked vector of sizes of the trees
 comprising f (ranked means in decreasing order). Consider for each n the
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 1704 D. ALDOUS AND J. PITMAN

 continuous-time process

 Xn( ) -1 #f-n 11 ) t >-2lgn

 where, by appending an infinite sequence of zeros, Xn(t) is regarded as a
 random element of the set

 A:= (X1, X2,.) X1 > X2 > ... > , xi=1

 which we give the e1 topology. Lemma 1 implies that the process Xn is a
 (ranked) additive coalescent [14], that is, a A-valued Markov process in which

 pairs of clusters of masses {xi, xj} merge into a cluster of mass xi + x; at
 rate xi + xj, and the state is reranked as mergers occur. The process Xn starts
 at time - 2 logn from the configuration u: (1/n, 1/n, . ..., 1/n, 0, 0, ...) con- 2 lo
 sisting of n clusters of mass 1/n. From [14] (Proposition 18 and subsequent
 discussion), there is the following result.

 PROPOSITION 2. As n - > o0,

 (1) Xn( ) d X(

 in the sense of Skorokhod convergence on D((-oo, oc), A), where the limit pro-
 cess (X00(t), -oo < t < oo) is an additive coalescent.

 Call X?? the standard additive coalescent. The central result of this paper,
 Theorem 3, is the following more explicit construction of this process. In the

 uniform random tree Yn, put mass 1/n on each vertex and let each edge have
 length 1/n1/2. As n - 00, a weak limit is obtained, the Brownian continuum
 random tree (concisely, the CRT) studied by Aldous [2, 3, 4] and reviewed in

 Section 2.1 (the precise weak limit assertion we need is Lemma 9). A realiza-
 tion of the CRT is equipped with a mass measure of total mass 1 concentrated
 on the leaves of the tree, and a o-finite length measure, such that for vertices
 v, w which are distance d apart, the path [[v, w]] from v to w has length mea-
 sure d. The skeleton of the CRT is the union over pairs of leaves {v, w} of the
 open paths ]]v, w[[.

 In the CRT, the analog of deleting randomly chosen edges in YAf is to cut

 the skeleton by a Poisson process of cuts with some rate A per unit length.
 These cuts split the CRT into a continuum forest, that is, a countably infinite

 set of smaller continuum trees. Varying A gives a continuum forest-valued
 fragmentation process (Section 2.2). Let

 (Y(A), A > 0) = (Yi(A), i > 1, A > 0)

 be the process of ranked masses of tree components in the continuum forests
 obtained by cutting at various intensities A. We call Y the A-valued fragmen-
 tation process derived from the CRT.
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 STANDARD ADDITIVE COALESCENT 1705

 THEOREM 3. Let X(t) :_ Y(e-t) where Y is the A-valued fragmentation
 process derived from the CRT. Then the process (X(t), -oc < t < 0o) is a
 version of the standard additive coalescent.

 To be precise, the finite-dimensional distributions of the A-valued process X

 defined in Theorem 3 are identical to those of X00 defined by weak convergence
 in Proposition 2. We will work with a version of Y which has right continuous

 paths and left limits. Then X will have left continuous paths with right limits,
 and the process of right limits of X will serve as X? in (1). We prove Theorem
 3 in Section 2 after collecting background facts about the CRT.

 The additive coalescent is the special case K(x, y) = x + y of the general
 stochastic coalescent, in which clusters of masses {x, y} merge at rate K(x, y).
 Aldous [7] gives a lengthy survey of scientific literature related to stochastic
 coalescence (see our Section 6.2 for one aspect). Evans and Pitman [14] con-
 struct various coalescents with infinite numbers of clusters as strong Markov
 processes with appropriate state spaces. Similarities and difference between
 the additive and multiplicative coalescents [6] will be listed in Section 6.3.

 Theorem 3 not only brings together the several recent lines of research men-

 tioned above but also suggests an extensive range of new questions. Some are

 answered by results stated in the remainder of this introduction and proved
 in the main body of the paper, and others are posed in Section 6. It turns out

 to be more convenient to state results in terms of Y(A) = X(- log A).
 Some features of the process (Y(A), 0 < A < oc) will now be described in

 terms of a stable subordinator of index 1/2, denoted (Sl/2(A), 0 < A < 0o),
 which is the increasing process with stationary independent increments such
 that

 E exp(-OS1/2(A)) = exp(-Ad20), 0, A > O0

 (2) P(S112(1) E dx) = (27r) 1/2x-3/2 exp(2- ) dx, x > 0.

 We consider first the distribution of Y(A) on A for fixed A. The following
 theorem is proved in Section 3.1.

 THEOREM 4. Fix 0 < A < 0o. Let J1 > J2 > ... be the ranked jump sizes of

 S1/20 )over the interval [0, 1]. Then there is the following equality of distribu-
 tions on A:

 (3) Y(A) =d (sj()' S (1)' .S/2.=

 The finite-dimensional distributions of the random vector in (3) are de-
 scribed explicitly in [25] and [31], Section 8.1, but they are rather complicated.

 Suppose now that U1, U2, ... is a sequence of random leaves of the CRT
 picked independently and uniformly at random according to the mass mea-

 sure. Let Yt(A) be the mass of the tree component of the random forest that

 contains Uj when the cutting intensity is A, and let Y*(A) be the subsequence
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 1706 D. ALDOUS AND J. PITMAN

 of distinct masses in the sequence (Yr(A), i > 1). Then for each fixed A > 0,
 the sequence Y*(A) is a size-biased random permutation of Y(A). That is (see,

 e.g., [10], [26], [28]), Y7(A) = YI(j)(A), where for j f {I(1), ..., I(i -1),

 Y (A)
 (4) P(I(i) = jIY(A), I(1), ... . I(i - 1)) = j()

 Ek{Il)..,Ii-)}Yk(A)'

 Theorem 4 combined with results of [26] yields (Section 3.2) the following
 simpler description of the distribution of Y*(A).

 COROLLARY 5. Let Z1, Z2, ... be independent standard Gaussian variables,
 and let Sm = m Zi2. Then for each fixed A > 0,

 A2 A2A
 (5) Y*(A) =d A2 + S 1 - A2 + Sm m
 In particular,

 z2
 (6) Yt(A) =d A2 ? Z2

 (7) P(Y* < y) = 2F(Ay1/2(1 _ y)-1/2) - 1, 0 < y <
 where (D is the standard normal distribution function, and Y*(A) has density
 function

 (8) fA (y) (2)-1/2Ay-1/2(1 y)-3/2 exp(-A2y/(l - y)), 0 < y < 1.

 We note, as a consequence of (8) and (4) for i = 1, the following formula for
 every nonnegative Borel function g defined on (0, 1):

 (9) E(g(Yi(A))) y-1f A(y)g(y)dy.

 Consider now the real-valued process (Y*(A), 0 < A < 0o), that is, the mass
 of the tree-component containing the random leaf U1 in the fragmentation
 process of the CRT. Equivalently, X*(t) := Yt(e-t) is the size at time t of
 the cluster of the standard additive coalescent containing a point picked at
 random from the mass distribution. In Section 4 we show that this process
 admits the following simple representation.

 THEOREM 6.

 (Y*(A),0 < A < 00)=d (0j(A) <A< )

 Theorem 6 implies that as A --? o0 most of the mass is in clusters whose size
 is order A-2. In Section 5 we strengthen this result as follows to a Gaussian
 limit for the empirical measure of rescaled cluster sizes:
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 STANDARD ADDITIVE COALESCENT 1707

 THEOREM 7. Define HA(.) = A-2 EFA(.). As A -- o0,

 HA(.) - X(),

 where X is the measure on (0, oc) with u-finite density (2T)-1/2x-3/2e-x/2 and
 convergence is weak convergence on each (e, oc). Define

 GA(.) = A-' (FA(.) -A2X()) .

 Then GA(.) --* G(.), where G(.) is the mean-zero Gaussian random field with

 (10) Var G(dy) = X(dy),

 (11) EG(dy1)G(dy2) = -Y1Y2X(dY1)X(dY2), Y1 #4 Y2,

 where convergence is convergence in distribution of the continuous path pro-
 cesses (GA(s, oc), 0 < s < oc) to (G(s, oc), 0 < s < oc).

 We interpret (10) and (11) in their integrated form

 r000 0 00

 EG(s1, oo)G(s2, 00) = f EG(dy1)G(dy2) + f Var G(dy).
 S1 S2 1 VS2

 As will be described in Section 6.2, Theorem 7 is loosely related to existing

 scientific literature. The A -- oo asymptotics of the largest cluster size are
 discussed in Section 5.1, while asymptotics as A -O 0 are considered in Sec-
 tion 3.3.

 2. Construction of the standard additive coalescent.

 2.1. The CRT Fix k > 2 and consider a tree with k leaves labeled
 {1, ..., k} in which each internal node has degree 3 and each edge e has a
 positive real-valued length le. See Figure 1. Such a tree has 2k - 3 edges,
 and when edge lengths are ignored there are Hfk-12(2i - 1) different possible
 shapes t for the tree. (Formally, the shape t is a combinatorial tree with k
 leaves labeled by {1, . . ., k} and k - 2 unlabeled internal nodes.)

 Consider a random such tree W(k) whose shape and edge lengths (Li)

 satisfy

 P(shape(W(k)) = t, L, E d, ..., L2k3 E dl2k-3)
 (12) 2k-3

 sexp(-s2/2)dl ... dl2k-3 where s = I
 i=1

 Thus the shape is uniform on the set of possible shapes, the edge lengths

 are independent of shape, and the edge lengths are exchangeable, so that no
 labeling convention for edges need be specified. Figure 2 shows a realization

 of W(50). Lemma 21 of [4] says that such a distribution exists (k here is
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 1708 D. ALDOUS AND J. PITMAN

 n4

 FIG. 1.

 k - 1 there), and that the family (W(k), 2 < k < oc) is consistent in that

 the subtree of W(k + 1) spanned by leaves {1, ..., k} is distributed as (k).
 Therefore we can construct simultaneously the family (W(k), 2 < k < 0o) so

 that the subtree of W(k + 1) spanned by leaves {1, ..., k} is exactly W(k).
 A realization of W(k) can be viewed as a compact metric space, where the
 distance between two points is the length of the path between them. De-
 fine the realization of the CRT Y to be the completion of the increasing
 union Uk W(k). Discarding a null event, results of [2] and [4] include the
 following.

 0.5 unit

 F- .

 FIG. 2.
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 STANDARD ADDITIVE COALESCENT 1709

 THEOREM 8. Each realization of Y has the following properties (i)-(iii):

 (i) Y is compact and topologically a tree.

 (ii) There is a a--finite length measure f on 7, whose restriction to W(k) c

 $9 is the natural length measure on the edges of W(k), and which is null
 outside the skeleton Uk W(k).

 (iii) There is a mass measure g on 9- with g($7) = 1 and ,9(Uk W(k)) = 0,
 characterized as the weak limit

 (13) / := lim /k
 k

 where 9k is the uniform probability distribution on leaves {1...., k} c S.
 (iv) [vertex-exchangeability] Given a, let {U1, ..., Uk} be random elements

 of 7 chosen independently according to g(.), and let M(k) be the subtree
 spanned by {U1, ..., Uk, with Ui relabeled by i for 1 < i < k. Then un-
 conditionally W(k) =d W(k).

 (v) The total length Dk of the edges of W(k) has distribution

 (14) P(Dk > d) = P(N(d2/2) < k - 1),

 where N(v) has Poisson(v) distribution.

 Here (i) is part of Theorem 3 of [2], and (ii) and (v) are implicit in the
 construction [2] of Y from Poisson cutting of the half-line [0, 0o). Section
 4.2 of [4] connects the construction in [2] to the family (W(k)) at (12) and

 establishes (iv) with a different definition of g, but then the property (13)
 is just the Glivenko-Cantelli theorem on a metric space. See [9] for further
 discussion.

 How .7 arises as weak limits of random finite trees is discussed in detail in

 [4]. A simple aspect of such convergence is provided by the next lemma (which
 is a special case of (49) of [4], weaker than the main result, Theorem 23, of

 that paper). Recall that En is the uniform random tree on {1, . .., n}.

 LEMMA 9. Assign length 1/n1/2 to each edge of En. Let W(n, k) be the sub-
 tree of 9n spanned by vertices {1, . . ., k}. Then for each fixed k > 2,

 (n,k)-ad W(k) asn--*oo
 in the sense that the joint distributions of shape and edge lengths converge to
 the distribution (12).

 REMARKS. For many purposes, a construction [4] of Y from standard Brow-

 nian excursion (BeX, 0 < u < 1) is useful. In that construction, g is the mea-
 sure on 7 induced by Lebesgue measure on [0, 1]. Elaborations of this con-
 struction, the Brownian snake, are used in studying superprocesses: see [18],
 [17] and [12]. Thus it is not surprising that many of our distributional expres-
 sions (e.g., Theorem 6) have a "Brownian flavor." But it is harder to interpret
 the length measure f in the construction of Y from a Brownian excursion,
 and the symmetry and self-similarity properties which the CRT inherits from
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 1710 D. ALDOUS AND J. PITMAN

 the discrete random tree En tend to be obscured. While in principle one must

 be able to derive these properties in terms of a Brownian excursion (see, e.g.,
 [16] for a derivation of (12)), we find it useful to take a more combinatorial
 approach to the CRT. Different "hidden symmetries" of Brownian excursion
 revealed in this way are the subject of [5].

 2.2. The fragmentation process of the CRT Any countable subset v of I,
 viewed as a cut set, splits 57 into a forest S1, where two elements x, y of 7

 are in the same tree component of Y iff the unique path from x to y contains
 no element of 4. Now fix 0 < A < oo and let VA be a Poisson point process of
 mean measure Ae(.) on S7. That is, for each k the restriction of VA to W(k)
 is a Poisson point process of rate A per unit length. Then VA splits 7 into

 a random forest 7A (for remarks on the state space of YA, see Section 3.5).
 Figure 2 shows a (genuine) simulation of W(50) and its cut points with rate
 e = 2.718... ; the 50 leaves are the endpoints of line segments in Figure 2,
 and the cut points are marked *.

 Figure 3 is the same picture, with the various tree components moved apart.

 The reader should imagine Figures 2 and 3 as portions of the forest Se obtained

 FIG. 3.
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 STANDARD ADDITIVE COALESCENT 1711

 by using we to split S. Of course, in the real Y, each tree has infinitely more
 smaller and smaller branches, and there are infinitely more small trees.

 Write Y(A) = (Y1(A), Y2(A), .. .) for the ranked 1c-masses of the tree com-

 ponents of YA. A countable cut set might produce, a priori, an uncountable
 number of tree components each with zero 1t-mass, but the following technical
 lemma proves that this does not happen with our Poisson process of cuts.

 LEMMA 10. YF=1 Yj(A) = 1 a.s. for each A > 0.

 Suppose now that the family of Poisson processes (HA, 0 < A < co) is

 constructed so that for Al < A2 the process eA1 is obtained by retaining each
 point of -A2 independently with chance A1/A2 and deleting the other points.
 In this way we obtain the A\-valued fragmentation process (Y(A), 0 < A < cD)
 which is the central focus of this paper. Note that by Lemma 10, Y(A) takes
 values in the space i\, which is a Polish space in the topology it inherits as a
 subset of 11.

 PROOF OF LEMMA 10. Write M = >j Yj(A) < 1. Write Ak for the event
 that the leaves {1, ..., k} are all in different tree components. By vertex-
 exchangeability [Theorem 8(iv)],

 P(AklM > (I1- M)k

 because, given V- and M, a leaf picked at random according to ,t has chance
 1 - M to be in a tree component of zero 1t-mass. So P(Ak)> 8kP(M < 1 -),
 and it suffices to prove

 (15) (P(Ak))l/k _> 0 as k -> oo.

 Now for event Ak to occur, the tree W(k) must contain at least k - 1 of the
 cut points -A, and so

 P(Ak) < P(N(ADk) > k - 1),

 where N(.) is a rate-1 Poisson counting process and Dk is the total edge
 length of W(k). The distribution of Dk is given by (14), and then routine large
 deviation estimates establish (15). C

 2.3. Proof of Theorem 3. We do not know how to show that (Y(e-t)) evolves
 as an additive coalescent by direct calculations with continuous parameter
 processes. Rather, we use discrete approximation arguments. Effectively, this
 reproves the weak convergence result of Proposition 2 in parallel with corre-
 sponding approximations to the CRT fragmentation process. The present proof
 of Proposition 2 differs from the proof in Section 6.1 of [14] in that it does not
 involve the explicit description of the distribution of sizes of components in the
 discrete approximation, displayed in formula (20) of the next section. But both
 proofs make essential use of the existence and Feller property of the additive
 coalescent semigroup on i\, which was established in [14] by a pathwise con-
 struction of the additive coalescent from an arbitrary initial state in i\ based
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 1712 D. ALDOUS AND J. PITMAN

 on partition-valued processes derived from an extension of the random forest
 representation of Lemma 1.

 Recall that (Xn(t); - 'log n < t < co) is the additive coalescent started
 in state u: (1/n, 1/n,...,1/n,O,O,...) E i\ at time -logn. From the
 discussion following Lemma 1, there is the following explicit construction of

 Xn in terms of the forest-valued Markov chain (Sn(m), 1 < m < n):

 (16) Xn(-1 log n + t) = n-1 #3yn(Mn(t)),

 where

 (17) Mn(t) :=minjm: >n_ 1 t_* 1

 where the (i) are i.i.d. exponential(1), and where #Y is the ranked vector of
 sizes of tree components of Y. Fix k > 2. Recall from Lemma 9 that W(n, k)
 denotes the subtree of En spanned by vertices {1, . . ., k}, where each edge of
 En is given length 1/n1/2. Take a random sample of m(n) edges of En and
 write W(n, k, m(n)) for W(n, k) with each sampled edge marked by a cut at
 its midpoint. Suppose m(n)/nl/2 A > 0. Then Lemma 9 easily extends to
 show that

 (18) W(n, k, m(n)) ad W(??, k, A),

 where W(oo, k, A) denotes the tree W(k) with a Poisson, rate A per unit length,
 process of marked points on its edges, and the space of trees with k leaves and
 a finite number of marked points is given an appropriate topology. It follows
 that

 #,(n, k, m(n)) ad #,(oo, k, A),

 where in each case #IW denotes the decreasing vector counting numbers of
 vertices {1, . . ., k} in each of the tree components obtained by cutting at the
 marks. Now by the characterization of the mass measure ,t as the weak limit
 (13), and by definition of Y(A),

 k-1#,(oo, k, A) -+d Y(A) as k -- oo.

 It follows that for kn -> o sufficiently slowly,

 kniW #(n, In m (n)) >dY (k).

 In the uniform random tree n&, vertices {1, . . ., kn} are distributed as a simple
 random sample of kn vertices, so by Lemma 11 below,

 (19) n-l#n(n -m(n)) = n-1#,(n, n, m(n)) a Y(A).

 Recall (17) that Mn(.) is the inverse function of

 m 1

 Sn'(m) i-
 i=1 -
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 STANDARD ADDITIVE COALESCENT 1713

 It is easy to check that for fixed a > 0,

 Sn(n -an 1/2)- log n > plog a

 and then to check that

 n-1/2 (n - M' (2 log n + t)) p e-t

 for fixed -o < t < oo. By inserting into (19)

 n-l#Yt7 (M" (1 log n + t)) _d Y(e-t)

 and from the representation (16), this says

 X' (t) A_>~d Y (e -t) for fixed - oc < t < oo.

 By the Feller property of the additive coalescent semigroup, this implies that

 there is a version X"(t) of the additive coalescent such that Xn(.) Ad X"O(.) in
 the Skorokhod sense (i.e., Proposition 2) and that Xo(t) =d Y(e-t) for fixed t.
 To complete the proof of Theorem 3, we need to identify the finite-dimensional

 distributions of X"(t) with those of Y(e-t). But this just requires repeating the

 argument, starting with mi(n)/nl/2- Ai, 1 < i < j and the j-dimensional
 analog of (18). We omit the details. a

 In the course of the proof we used the following routine consequence of the
 WLLN for sampling without replacement.

 LEMMA 11. Let kn -> o with kn = o(n). For each n take a simple random
 sample of kn vertices from a forest ffn on n vertices, and write yn for the vec-
 tor whose entries count the number of sampled vertices in each tree of fn, in
 decreasing order. Then, for any y c i\,

 kn-ly n ,p y iff n- 1#f n > Y.

 In the case where ffn is a random forest, for any random element Y of i\

 kjyn nd Y iff nl#fn Ed Y.

 3. The distribution of Y(X). In this section we prove Theorem 4, ex-
 tract some of its consequences and remark on its interpretation in terms of
 Brownian bridge.

 3.1. Proof of Theorem 4. Recall that n #yn(n - k + 1) for 1 < k < n is
 the random vector of ranked relative sizes of the k tree components in the
 random forest obtained by deleting a random sample of k - 1 edges picked

 from the set of n - 1 edges of En, a uniform random tree on n vertices. It is
 known [27] that

 (20) nl#yn(n - k + 1) =d ((Jl,k/>k, J2,kl/k, ... , Jk,kl/k) I Ik = n),
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 1714 D. ALDOUS AND J. PITMAN

 where J1, k > J2,k > > Jk, k are the ranked values of k independent
 random variables X1, ..., Xk with the Borel(l) distribution

 P(X m) = e-mmm-1/m!, m = 1,2, ...

 and where

 k:= Xl? + + Xk = J1, k + + Jk, k-

 By (19), if k(n)/nl/2 -> A > 0, then

 n-l#yn(n - k(n) + 1) dY(A).

 So to show (3) we need to show that for k = k(n) satisfying n'k2(n) A-2
 the right side of (20) converges in distribution to the right side of (3); that is,

 (21) (Ji/s1/2(1), J2/S1/2(1), * * * I S1/2(1) = A-2),
 where J1 , .>* are the ranked jump sizes of S1/2 over the interval
 [0, 1]. However, this convergence follows from standard results regarding the
 asymptotic joint distribution of sums and order statistics of a sequence of
 independent random variables in the domain of attraction of the stable law of
 index 1/2. See, for instance, Lemma 11 of [8].

 3.2. Proof of Corollary 5. By the identity in distribution (3) just estab-
 lished, the size-biased random permutation Y*(A) of Y(A) satisfies

 (22) Y*(A) =d (Ji/y2, J2/1, .. > I= A-2),

 where (J*, J*, ...) is a size-biased random permutation of the jump sizes (Ji)
 of the stable subordinator S1/2 over the interval [0, 1], and : i J* =
 S1/2(1) almost surely. The Ji are the ranked points of a Poisson random mea-
 sure (PRM) on (0, oo) governed by the Levy measure (27)-1/2 x-3/2 dx of the
 stable(1/2) subordinator. The joint density of the first m components of the
 random vector in (22) can now be read from the following lemma (Theorem 2.1
 of [26]).

 LEMMA 12. Let (J*, J*,...) be a size-biased random permutation of the
 points of a PRM on (0, oo) with intensity p(x) dx, let I : i J* and suppose
 P(I E dx) = f (x) dx where f is strictly positive and continuous on (0, oc). For
 m > 0, let

 m oc

 (23) ,8=,_E J*k= Jk-
 k=1 m+1

 Then the sequence (1* , m > 0) is a Markov chain with stationary transition
 probabilities determined by the formula

 (24) P(J +1/1* E dy I 1* = t) = f*(ylt), 0 < y < 1,

 where

 (25) f*(ylt):= ytp(yt) f((O-At) 0 < y < 1
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 In particular, for p(x) = (2T)-1/2x-3/2 and f(x) = P(S112(1) E dx)/dx as
 displayed in (2),

 (26) f*(y A 2) = fA(Y)

 as displayed in (8). Thus (22) and (24) imply that fA is the density of Y*(A),
 and then (6) and (7) are elementary reformulations of this fact. To establish the
 representation (5) of the distribution of the entire sequence [Y*(A), m > 1],
 fix A > O and let R1: 1- Z=> Y*(A). Then the assertion (5) can be rewritten
 as

 I A2
 (27) (Rin m>1)=d(A2+S >

 or again as

 (28) (R -Rrv m I =d (A2 m>

 But from (24) and (26),

 P(l -Rm+i/Rm c dy I R,..., Rm ) = f A/a, R(y) dy, 0< y <1

 By (6), if 1 - Y has density fA, then (1 - Y)/Y =d Z2/A2. So

 i 1- Rm+11Rm Z2 Rm
 t Rm~l/Rm IRj,.. RmJ =d A2 IRj,. .., Rm

 where Z1 is standard Gaussian, independent of (R1, ..., Rm), and hence

 ( _ 1- Rm Ri,..., Rm) =d A2

 which yields (28).

 3.3. Asymptotics as A -> 0. Theorem 4 and the calculations of the previous
 section yield the following description of how the fragmentation process Y(A)
 gets started with A near zero. This translates into a description of how the
 additive coalescent X(t) terminates as t -- oo. See [13] for further develop-
 ments.

 COROLLARY 13. As A -> O0

 A-2(1- Y1(A), Y2(A), Y3(A), ..) _d (Sl/2(l), J1, J2, )
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 PROOF. It suffices [10] to establish the corresponding result for size-biased
 permutations, that is,

 (29) A2(1 - Y1(A), Y2(A), Y3(A), *)>d (S1/2(1), J1, J2*)

 for (J*), a size-biased random permutation of (Ji). For m > 0, let Rm(A)
 1->jm1 Y*(A), previously denoted Rm in (27), and as in (23) let m
 Ykm J*. Then (29) amounts to

 (30) A2(Rm(A), m > 1) d (1M1, m > 1).

 However, from (27),

 A- 2(R m() > = (A, In > I> M( > >1

 as A 0, so it only remains to check the identity in distribution

 (31) (I ) d j > ?)

 To check this, write simply E instead of 0 = S1/2(1), and observe from (27)
 and (22) that

 (32) (ems , M> ME) d (I, + S' m > )

 where the sequence (Sm) is independent of E. Now (31) follows easily, because

 1-1=d Z2 by Levy's observation that for each fixed A > 0,

 (33) S112(A)=d A2/Z2 where Z1 is standard Gaussian. C

 Corollary 13 is the continuous analog of the following asymptotic result
 for the discrete approximating scheme, which can be verified using (20). Let

 #~n(n - k + 1) = (Yn' k yn ky . y n, k), say, be the random vector of ranked
 sizes of the k tree components in the random forest obtained by deleting a
 random sample of k - 1 edges picked from the set of n - 1 edges of Vn?. Then
 as n and k tend to oc with k/fI -> 0,

 (34) k -2 (n _ yn k~ Y~n, kI Yn, ..)>kS/(l^J 2

 where the limit distribution is the same as in Corollary 13. A result equivalent
 to the convergence in distribution of the first component in (34), that is, k-2(n-

 Yfk) d S1k2(1) was obtained by Pavlov [24].

 3.4. Emergence of the majority cluster. The density gA(y) of the largest
 cluster Y1(A) relates partially to the density fA(y) of YI(A) via the formula

 (35) fA(y) = ygA(y) on < y < 1
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 because only the largest cluster can have size greater than 1/2. Thus

 P(Y1(A) > = 11/2 AY) dy = 2 f A(Y) dy,

 which combines with (8) to give an explicit integral formula for P(Y1(A) > 2)
 and hence for P(X1(t) > 2). Here are some numerical values:

 t -1.0 -0.5 0 0.5 1.0 1.5

 P(X1(t)> 1) 0.012 0.167 0.484 0.747 0.891 0.956

 3.5. Remarks on a Brownian bridge representation. Let

 vbr := (Vbr, vbr .)

 be the sequence of ranked lengths of excursions of the standard Brownian
 bridge Bbr. Write Lbr for the local time of Bbr at 0 up to time 1. Then Theorem
 4 can be rewritten (see, e.g., [8, 30, 31])

 (36) Y(A) = (Vbr I Lbr = A).

 The following elaboration suggests itself Described in [4], Theorem 13 is a de-
 terministic mapping from a set of continuous "excursion" functions f: [0, 1] >
 [0, o) satisfying f (0) = f (1) = 0,

 (37) f(u) > 0, 0 < U <1

 and certain technical conditions, into a set of continuum trees. By removing
 requirement (37) and applying a similar mapping to each excursion of f, one
 can define a mapping from a set of "reflecting" functions into a set of continuum
 forests, where the mass measure of a tree component equals the length of the
 corresponding excursion of f. The upshot of (36) is that this mapping applied
 to (Bbr L Lbr A) yields a continuum random forest distributed like YAj. But we
 do not see how to obtain this result more directly in the Brownian setting and
 so deduce Theorem 4.

 4. The subordinator representation. In this section we prove Theo-
 rem 6. The key ingredient is the formula (40) for the splitting rate of the
 CRT.

 4.1. The splitting rate of the CRT Each point v of the skeleton Uk M(k) of
 a realization Y of the CRT (except for the countable number of branch points)
 specifies a bipartition Y \ {v} = B1(v) U B2(v) where the two components
 are written in random order. Thus the unit mass of Y is split into masses
 ,u(Bl(v)) and 1c(B2(v)) = 1 - (Bj(v)). Choosing v according to the 0--finite
 length measure f on Uk W(k) gives a o--finite measure on (0, 1),

 s(.1Y) := ?{v: A(Bl(v)) c }

This content downloaded from 108.226.241.26 on Mon, 19 Feb 2018 18:19:40 UTC
All use subject to http://about.jstor.org/terms



 1718 D. ALDOUS AND J. PITMAN

 Now define unconditionally

 s(-) = Es(j1Y).

 Similarly, if B*(v) denotes the component of the split containing a leaf of

 YV picked at random according to ,t, that is, a ,t-mass-biased choice from
 { B1(v), B2(v)}, then we can define

 (38) s*= Ef {v: ,(B*(v)) E}

 LEMMA 14.

 (39) s(dx) = (8,7T)-112X-312(l - X)-312 dx, < x < 1,

 (40) s*(dx) = (2v)-1/2x-1/2(I _ x)-312 dx, < x <1.

 PROOF. We will prove (40), and then (39) follows from the relationship
 s*(dx) = 2x s(dx).

 In the random tree 5g, let B*(e) be the component containing vertex 1 when
 edge e is cut, and let B* be the random component obtained by taking e to be
 a uniform random edge. An elementary counting argument based on Cayley's
 formula (there are nn-2 trees on vertices {1, 2, .. ., n}) shows

 (n- )aa-2bb2 ab

 P(#B~ = a) = ( -1) a b-where b = n-a.
 n ~nn-2 (n-1

 Using Stirling's formula, we obtain

 (41) P(#B =a) n-3/2(2v)-1/2y-1/2(l_ y)-3/2 as n ->~ , a/n -- y.

 Write en for the measure assigning weight n-1/2 to each edge, and set

 15?n) = nf{e: n-1#Bn(e) c}

 S*( ) = Es* ( n-).

 Then (41) implies

 sn converges vaguely to s**,

 where s** denotes the measure with density given by (40). Lemma 9 implies
 that the joint distribution of W(n, k) and the midpoint of an edge chosen with

 measure en restricted to W(n, k) converges vaguely (as n -- oo) to the joint
 distribution of W(k) and a point chosen with measure f restricted to W(k).
 Applying this with k(n) - oo slowly, and then using Lemma 11 and (13), we
 see that the vague limit s** is indeed the splitting rate s* defined by (38).
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 4.2. Transition rates.

 LEMMA 15. (Y* (A), A > 0) is a decreasing process on (0, 1] with conditional
 jump rate density

 (42) q*(x, y) = (27)-112x3/2y 1/2(x - y)-3/2 0 < y < X,

 by which we mean that the process jumps from x into [y, y + dy] at rate

 q*(x, y) dy.

 PROOF. When x = 1 (that is, when A = 0) the jump rate has density s*(.)
 at (40), which coincides with the formula for q*(1, .). The general case will be
 derived by scaling.

 We first discuss scaling of the CRT S?. For 0 < c < oo, write 5c for the
 rescaled tree obtained from Y by replacing the mass measure ,u(.) and the

 length measure f (.) by tLJ.) = cct(.) and f JQ) = c1/2f (.). To motivate the
 definition of Vc, consider the uniform random tree on j(n) vertices. When we
 assign mass 1/j(n) to each vertex and length 1/1/j(n) to each edge, then (e.g.,
 in the sense of Lemma 9) the random tree converges in distribution to S. If

 instead we assign mass 1/n to each vertex and length 1/,/ni to each edge,

 where j(n)/n -- c, then the random tree converges in distribution to Vcj.
 By the scaling construction, the instantaneous splitting rate s* (.) of Vc anal-

 ogous to (38) when Vc is split by a fc-distributed point is

 s*(dy) = cl/2s*(dy'), Y = cy'

 (43) = c-l/2q*(1, y/c)

 = q*(c, y).

 Regard Y*(A) as the ,t-mass of the tree component Y*(A) of the continuum
 forest 9A- containing a fixed ,ut-random atom. By (43), to show that (Y* (A)) is
 Markov with transition rates q* it is enough to show

 conditional on (YI (A'), 0 < A' < A) with Y* (A) = c
 (44) 1

 we have I8*(A) =d Vc-'

 Now, as the discrete analog, let Y*n(m) be the tree component containing
 vertex 1 in the forest-valued process (yn(m), n > m > 1) in the beginning of
 the introduction. Conditional on (yn(m'), n > m' > m) with #Y*n = j, and
 conditional on the vertex set of Y*n(m) being A, it is clear that the random
 tree Y*n(m) is uniform on all trees with vertex set A. By considering the limit

 (19) n-l#n(n - m(n)) d Y(A) for m(n)/nl/2 _> A and taking j(n)/n -> c,
 these uniform conditioned distributions of rescaled 8*n(n - m(n)) converge
 to $:, establishing (44).

 PROOF OF THEOREM 6. We prove the equivalent assertion that

 S(A) := -1
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 is the stable subordinator of index 1/2. We first show that the jump rate

 density q for S(A) is

 (45) q(s, t) = (27)-1/2(t-s)-3/2 0 < s < t,

 which is the jump rate density for the subordinator. This is just a calculation.
 In terms of the rate q*(x, y) for YI(A),

 q(s, t) = q*(x y) dy

 where

 X =(I + S)l~ y= (I +t-l Sddy=(I+ t)-2. dy

 So using Lemma 15,

 q(s, t) = (27T)n/2(l+ S)-3/2(l + t)1/2( 1 -1 ( 3 +

 which reduces to (45).

 Thus the jumps of the processes S(A) and S1/2(A) form the same Pois-
 son point process. Lemma 15 does not preclude the possibility that Y*(A)
 and hence S(A) might have an additional (monotone) drift term. But this is
 not possible because (33) and (6) imply the identity of marginal distributions

 S(A) =d S1/2(A) for each A.

 5. Asymptotics as X -+ oo. We start by proving Theorem 7, and then
 briefly describe the behavior of the largest cluster.

 Recall from Section 3.1 that the Ji in Theorem 4 are the ranked points
 of a PRM on (0, oo) whose intensity measure is the Levy measure p(dx) :=
 (27)-1/2 X-3/2 dx of the stable(1/2) subordinator. The image of p(dx) via the

 map h(x) = A4x is A2p(dh). Let Hi(A2):= A4J, to see that Theorem 4 can be
 rewritten as

 (46) A2Y(A) =d (Hi(A2), H2(A2), ... | Hi(A2) = A2),

 where Hi(A2) is the ith largest point in a PRM on (0, oo) with intensity
 A2p(dh). Moreover, by a well-known change of measure formula for Poisson
 processes [22], formula (46) holds also when Hi(A2) is the ith largest point
 in a PRM on (0, oo) with intensity A2e-bhp(dh) for any fixed b > 0. Choosing
 b = 1/2, this intensity measure is A2e-h/2p(dh) = A2X(dh) for X as in Theorem
 7. For this choice of b we find that

 E(LHi(A)) = A2 hX(dh)= A2

 and

 Var( E Hi (A)) = A2 h2X(dh) = A2.
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 As A -? oo, the central limit theorem implies that the asymptotic distribution
 of (>i Hi(A2) -A2)/A is standard normal, and the local limit theorem gives
 convergence of densities. It follows that the asymptotic behavior of the se-

 quence A2Y(A) for large A can be read from classical (cf. [11], [21]) conditioned
 limit theorems for independent random variables.

 Theorem 7 concerns the empirical measure

 FA(.) = S l (A2Yi(A) E)

 Consider

 F*A )= E 1(Hi(A2) E.)

 so F* is a PRM with intensity measure A2X. For a measure ,u on (0, o) with
 fot xli(dx) < X let f be the finite measure ft(dx) := xt(dx), so - (0, h]
 f(0,h] xji(dx). By the invariance principle, there is the convergence in distri-
 bution of processes on D[O, oo),

 (47) A(F*(O, h] - A2X(O, h], h > 0) B(f x2K(dx), h >

 where (B(t), t > 0) is a standard Brownian motion. We assert that conver-
 gence still holds after conditioning that the h = oc values of the processes
 equal 0, that is, we assert that

 (48) !(FA(O, h] -A2 X(0, h], h > 0) d Bbr(f x2X(dx), h > 0 := G[O, h], A '7

 where (Bbr(t), 0 < t < 1) is a standard Brownian bridge. Though we cannot
 find a precise reference for such a result, the methods are standard. Check
 the hypotheses of the local CLT in the setting (47); use the conclusion of the
 local CLT to establish convergence of finite-dimensional distributions in (48);

 check tightness by using a sufficient condition such as [1]. We omit details.
 From the familiar variances and covariances of Brownian bridge

 Var Bbr(dh) = dh,

 EBbr(dh1)Bbr(dh2) = -dhldh2

 we get

 Var G(dh) = X(dh),

 EG(dh1)G(dh2) = -h h x(dhl)x(dh2)

 Now (48) is equivalent to the convergence GA(.) ad G(.) asserted in Theorem
 7, where G is defined via its density

 G(dx) = xG(dx).

 Clearly G has covariances specified at (11).
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 5.1. The largest cluster It is not hard to show that for large A the condi-
 tioning in (46) has a negligible effect on the joint distribution of the first few
 terms. This leads to the result that, as A -?> o

 (49) P(A2Y1(A) < h) = exp (A2f X(dx)) + o(1) uniformly in h.

 Routine calculations (or comparison with classical i.i.d. extreme value theory
 [15, page 158, Example 24]), then show

 A2
 (50) 2 Y1(A) - a(A) Ad where P(f < x) = exp(-exp(-x)),

 2

 where the centering constant a(A) is the solution of

 A2 jk y-3/2e Ydy = 1,
 2> a~(A)

 which is

 A2 3 A2
 a(A) = log --loglog + o(1).

 2N[, 2 2NF

 From (50) we deduce easily that

 lim -Y1(A) =4
 A-lmo A2lg AogA

 in the sense of convergence in probability, and in fact this can be sharpened
 to give a.s. convergence. Rather than give the details of (49) and (50), let us
 give a simple alternate proof of an upper bound.

 LEMMA 16.

 lim sup Y. (A) a.s.
 A__>.o A-2logA -

 PROOF. By size biasing, P(Y*(A) > y) > yP(Y1(A) > y), and so

 P(Y1(A) A< Y 2 + Z2 '

 < y?1((Ay1/2)

 < (27)-1/2A-1y-3/2 exp(-A2y/2).

 So for fixed ? > 0 we have

 P(Y1(A) > (4 + 38)A-2 log A) = O(A-') as A -> o

 and a routine Borel-Cantelli argument through Ai = (1 + 8)i leads to the
 lemma.
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 6. Final remarks.

 6.1. Further distributional properties. Recall that Y<(A) is the mass of the

 tree component of the random forest that contains Ui when the cutting inten-
 sity is A, for independent Ui picked according to the mass distribution on
 leaves of the CRT. Write FIn(A) for the partition of [n] :={1, .. ., n} gener-

 ated by the values of Yt(A), i E [n]. One can derive a formula for the joint
 distribution of Yt(A), i E [n], extending the n = 1 case (8), and it is then pos-
 sible by integration to obtain a formula for the distribution of fIn(A). These
 results, which refine those of [29], and related descriptions of the processes

 ((Yi(A), i E [n]), 0 < A < oc), and (FIn(A), 0 < A < oc), will be treated in a
 subsequent paper.

 6.2. The additive Marcus-Lushnikov process. The scientific literature [7]
 on mean-field models for stochastic coalescence of mass focuses on the Marcus-
 Lushnikov process, which is the continuous-time finite-state Markov chain in

 which n unit mass atoms merge into clusters according to the rule:

 for each pair of clusters, of masses {xi, xj} say, they merge
 into a cluster of mass xi + xj at rate K(xi, xj)/n,

 where K(x, y) is a specified rate kernel. The particular case of the additive
 kernel K(x, y) = x + y is one of several tractable kernels, and formulas for
 the time-t distribution have been given [23] and [20]. The additive Marcus-
 Lushnikov process may be constructed as #Sn(t), in the notation of the in-
 troduction. The qualitative import of Theorem 3 is that the transition from
 clusters being all of size o(n) to a single cluster containing mass n-o(n) occurs
 over the critical time interval 1 log n ? 0(1). (This fact isn't stated clearly in
 the scientific literature, though Tanaka and Nakazawa [33] make related as-
 sertions.) Quantitatively, the sizes of the largest clusters at time 2 log n + t are
 asymptotically like the (random) sizes nX(t). So our distributional results for
 the standard additive coalescent are immediately interpretable as n -o n lim-
 its in the additive Marcus-Lushnikov process over the critical time interval.

 One could alternatively consider the initial time period [where t = 0(1) as

 n -> oo] and the intermediate time-period (where t -- o and 1 og n - t --> o).
 On the initial period, the distribution of the cluster at time t containing a given

 atom tends to the Borel(1 - et) distribution, where the Borel(tL) distribution
 is the total progeny in the Galton-Watson branching process with Poisson(tL)
 offspring:

 BAi( i) =(t eni L =12, ....

 This may readily be deduced from the construction of yn(t), and leads to

 an asymptotic result for the number Nn(i, t) of size i clusters at time t: as
 n -> o0,

 (51) n-EEN1 (i, t) -> n(i, t) := i-1Blie-t(i), i = 1, 2,
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 The scientific literature (surveyed in [7]) historically started by analytic

 derivation of the formula for n(i, t) as the solution of the deterministic

 Smoluchowsky coagulation equations. This derivation goes back at least to

 Golovin [19]; see [34], Section Al or [32] for recent treatments and fur-
 ther references. The explicit interpretation of n(i, t) as a limit (51) of the
 (stochastic) additive Marcus-Lushnikov process was studied in most detail

 by van Dongen [34]. Equation (3.3) of that paper presents a simple formula,

 analogous to (11), for cov(Nn(i, t), Nj(j, t)). However, its derivation ([34],
 Section 2) is via "ft-expansion of the master equation ... up to [second-order]

 terms... the higher terms are neglected," which we interpret as tantamount

 to an assumption that (Nj(i, t); i > 1) is Gaussian. The upshot is that, while
 it seems intuitively clear that in the initial and intermediate time periods the

 limit result (51) may be refined to a Gaussian limit result, this has not been

 rigorously proved.

 6.3. Comparisons with the standard multiplicative coalescent and entrance
 boundary. We list similarities and differences between the standard additive

 coalescent (X(t)) introduced here and the standard multiplicative coalescent,

 (Z(t)) say, studied in [6].

 1. The natural time parameter set for both process is (-oc, oc).

 2. Analogous to Proposition 2, (Z(t)) also arises as a weak limit of a sim-
 ple discrete process, the process of component sizes in the random graphs

 4(n, A/n).
 3. Z(t) takes values in 12 rather than 11; its total mass is infinite.
 4. The distribution of Z(t) for fixed t can be described in terms of excursion

 lengths in a Brownian-type process; compare the Brownian excursion con-

 struction of the CRT.

 5. However, the distribution of Z(t) does not seem to permit such explicit
 formulas as those implied by Theorem 4.

 In a sequel [9] we study the entrance boundary, that is, the set of extreme

 distributions for an additive coalescent (X(t), -oc < t < oc). It turns out
 there is a generalization of the CRT 3 to a family (3c) parametrized by

 c = (c1, c2,...) with ci > 0 and >ij c 2 < oc. The constuction analogous to
 Theorem 3 (time reversal of the fragmentation process) can be applied to 9c

 to yield different instances of additive coalescents, and these are essentially
 the only such instances.
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