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GLOBAL REGULARITY VS. FINITE-TIME SINGULARITIES:

SOME PARADIGMS ON THE EFFECT OF BOUNDARY

CONDITIONS AND CERTAIN PERTURBATIONS

ADAM LARIOS AND EDRISS S. TITI

Abstract. In light of the question of finite-time blow-up vs. global well-
posedness of solutions to problems involving nonlinear partial differential equa-
tions, we provide several cautionary examples which indicate that modifica-
tions to the boundary conditions or to the nonlinearity of the equations can
effect whether the equations develop finite-time singularities. In particular,
we aim to underscore the idea that in analytical and computational investiga-
tions of the blow-up of three-dimensional Euler and Navier-Stokes equations,
the boundary conditions may need to be taken into greater account. We also
examine a perturbation of the nonlinearity by dropping the advection term in
the evolution of the derivative of the solutions to the viscous Burgers equa-
tion, which leads to the development of singularities not present in the original
equation, and indicates that there is a regularizing mechanism in part of the
nonlinearity. This simple analytical example corroborates recent computa-
tional observations in the singularity formation of fluid equations.

MSC Classification. 35B44, 35Q35, 76B03, 76D03, 35K55, 35A01, 35Q30, 35Q31
Keywords: Finite-Time Blow-Up, Global Existence, Boundary Driven Flows,
Kuramoto-Sivashinsky, Viscous Hamilton-Jacobi, Kardar-Parisi-Zhang,
Burgers Equation, Navier-Stokes Equations, Euler Equations.

1. Introduction

A fundamental goal in the study of non-linear initial boundary value problems
involving partial differential equations is to determine whether solutions to a given
equation develop a singularity in finite time. Resolving the issue of finite-time
blow-up is important, in part because it can have bearing on the physical relevance
and validity of the underlying model. However, determining the answer to this
question is notoriously difficult for a wide range of equations; the 3D Navier-Stokes
and Euler equations for incompressible fluid flow being perhaps the most well-
known examples. Given that attacking the question directly is so challenging,
many researchers have looked for other routes. One route is to try to simplify
or modify the boundary conditions in an attempt to gain evidence for or against
the occurrence of finite-time blow-up. A second route is to modify the equations in
some way, and to study the modified equations with the hope of gaining insight into
the blow-up of solutions to the original equations. In this paper, we will examine
several case studies related to such approaches. A major aim of the present work
is to provide examples which demonstrate that one must be extremely cautious in
generalizing claims about the blow-up of problems studied in idealized settings to
claims about the blow-up of the original problem. A second aim is to demonstrate
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a phenomenon which has been observed computationally in the difficult setting of
fluid flows in 3D, by means of a simple 1D example, which is amenable to analysis;
namely, that a seemingly harmless alteration (from the perspective of enstrophy
balance) to the nonlinearity of a problem can cause the formation of a singularity,
where no such singularity is present in the unaltered equation.

We will focus on three major cases. The first case examines the effect of replacing
Dirichlet boundary conditions with periodic boundary conditions. This is often
done in both analytical and numerical studies of, e.g., the Navier-Stokes and Euler
equations. The original, physical equations come equipped with physical boundary
conditions, such as, e.g., Dirichlet boundary conditions in the case of the Navier-
Stokes equations. However, many such studies have tried to search for singularities
of the solutions of the equations in the setting of periodic boundary conditions (see,
e.g., [23, 40, 42, 43, 47]; in particular, see the surveys [34, 35], and the references
therein). With this in mind, in section 3, we provide an example of an equation
which develops a singularity in finite time when Dirichlet boundary conditions are
imposed, and yet is globally well-posed in the case of either periodic boundary
conditions or the case where the domain is the full space (i.e., in the absence
of physical boundaries). Therefore it may be the case that physical boundary
conditions need to be taken into greater consideration in analytic and computational
searches for blow-up of the solutions. Indeed, in a recent computational study,
the authors of [44, 50] observe the formation of a finite-time singularity near the

boundary in the 3D Euler equations, of axi-symmetric flow confined in a physical
cylinder, subject to no-normal flow boundary conditions. Notably, a new blow-up
criterion for the 3D Euler equations in bounded domains, subject to no-normal flow
boundary conditions, has been established in [36]. It is worth stressing that this new
criterion does apply for the periodic boundary conditions case or when the domain
is full space, i.e. in the absence of physical boundaries. For other issues regarding
boundary behavior of the Navier-Stokes and Euler equations see the recent surveys
[4, 5] and the references therein.

The above discussion is particularly relevant due to the notion of “boundary
driven” mechanisms for possible blow-up. To illustrate how such a mechanism
might work, we give a heuristic scenario in the context of the Navier-Stokes equa-
tions for fluid flow. It was shown in the celebrated work [6] that blow-up of
the Euler equations occurs if and only if the vorticity becomes infinite (see also
[6, 13, 14, 18, 19, 55, 59] for additional blow-up criteria). Infinite vorticity would
also cause the Navier-Stokes solutions to become singular. Now, in the setting of vis-
cous incompressible fluids, physical boundaries are the source of vorticity shedding.
Indeed, near the physical boundary of a fluid, the “no-slip” (Dirichlet) boundary
conditions can cause the development of boundary layers, where the vorticity is
large. If the viscous diffusion of the fluid velocity is sufficiently small in comparison
to the advection, then large magnitudes of the gradient and the vorticity can be
propagated from the boundary layer to the interior of the domain by the nonlin-
ear advection term. The vorticity can then be further intensified by the nonlinear
vorticity stretching term, which may thus lead to blow-up of the solution. Such a
physical mechanism does not exist in the periodic setting, nor in the full space R3.
It may therefore be illuminating to pay greater attention to the effect of boundary
conditions in the search for the blow-up of solutions to the Navier-Stokes and Euler
equations. We do not explore these ideas in greater detail as they are only meant
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to give motivation. Instead we examine a different, simpler equation in section 3,
for which we can provide a definite answer.

In section 4, we examine the Kuramoto-Sivashinsky equation in a bounded do-
main with two different types of boundary conditions. The question of global
well-posedness of this equation, when equipped with certain physically relevant
boundary conditions, is still open. Recently, in [54], it was shown that, by apply-
ing a different (non-physical) set of third-order boundary conditions, a singularity
develops in finite time. In contrast to this, we provide a different set of (also
non-physical) third-order boundary conditions for which the equation is globally
well-posed. Therefore, we maintain that it is difficult to obtain information about
the blow-up or global well-posedness of an equation by altering its boundary con-
ditions.

We note that such questions relating boundary conditions to blow-up can be
highly relevant to applied and computational problems in science. Indeed, we re-
call here that such an issue occurred in the study of the planetary geostrophic model
used in ocean dynamics. The model is derived asymptotically by keeping only the
hydrostatic balance of the vertical momentum and the leading order geostrophic
balance of the horizonal momentum, where the latter is damped by the friction
with the continental shelf, while retaining the relevant physical boundary condi-
tions. In [15], it was observed that this model is over determined and hence is
ill-posed (it has more boundary conditions than needed for the underlying PDEs).
This observation explains the numerical instabilities that had been observed near
the boundary in simulations of this model. The resulting oscillations had proven
difficult to eliminate, and were dealt with in [15] by adding artificial higher-order
diffusion corresponding to the additional boundary conditions in the model.

It is commonly believed that adding hyper-viscosity into a numerical scheme
enhances the stability of the underlying scheme. In section 5 we provide in example
which questions the validity of this claim. That is, even though the hyper-viscous
term enhances the dissipation of small scales, it destroys the maximum principle,
which is an essential property for the global stability in certain physical systems.

Finally, in section 6 we consider a certain type of perturbation of the nonlinearity.
In particular, in the context of the Navier-Stokes or Euler equations, by removing
the advection term in the vorticity formulation, several recent works [23, 40, 41,
44, 50] have observed computationally that the solutions of the altered equations
seem to blow up in finite time, naming this phenomenon, “advection depleting

singularity”. We give an analogous simple example based on a similar alteration
of the 1D viscous Burgers equation, and we show analytically that a singularity
develops in finite time, which adds credence to the numerical observations of the
aforementioned works. Indeed, since the viscous Burgers equation is globally well-
posed, the development of a singularity in the altered model indicates that the
removed portion of the nonlinearity has a regularizing effect. However, it is worth
stressing that these alterations turn out to be non-local in nature, and in the context
of the hydrodynamics equations they translate to modification in the representation
of the pressure term.

Many of the results and proofs are not completely new, but, for the sake of
being somewhat self-contained, are collected, compared, and contrasted here. We
also aim to state specific, as opposed to general results, whenever doing so simpli-
fies the exposition. The reason for this approach is that our goal is to lay out a
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simple set of examples and counter-examples for the use of the reader in consider-
ing potential mechanisms for singularity formulation or prevention, in particular,
in computational studies.

2. Preliminaries

In this section, we set some notation and recall basic results used below. We denote
by Lp, W s,p the usual Lebesgue and Sobolev spaces. We denote by C, C′, CΩ, etc.
generic constants which may vary from line to line.

We recall some basic facts about the Laplace operator △ :=
∑n

i=1 ∂
2
xi

in the
setting of either periodic or homogeneous Dirichlet boundary conditions (see, e.g.,
[24] for proofs and further discussion). Recall that the operator (−△)−1, subject
to the appropriate boundary conditions, is a positive-definite, self-adjoint, compact
operator from L2 into itself, and therefore it has an orthonormal basis of positive
eigenfunctions {ϕk}∞k=1 (which are also eigenfunctions of −△), corresponding to a
sequence of positive eigenvalues. Since the eigenvalues of (−△)−1 can be ordered
to be non-increasing, we can label the eigenvalues of −△, which we denote by λk,
to be such that 0 < λ1 ≤ λ2 ≤ · · · .

We will pay special attention to the first eigenfunction of −△, subject to homo-
geneous Dirichlet boundary condition, namely ϕ1, corresponding to λ1. We recall
Hopf’s Lemma, which states that −∂ϕ1

∂ν > 0 on ∂Ω, where ν is the outward-pointing
normal of Ω. It can also be shown that ϕ1 is strictly positive on Ω. For proofs of
these facts, see, e.g., [24].

We denote the distance function to the boundary by

dist(x, ∂Ω) := inf {|x− y| : y ∈ ∂Ω} .
Let Ω ⊂ R

n be a domain which is bounded in at least one direction. For all
u ∈ W 1,p

0 (Ω), p ≥ 1, the following Poincaré inequality holds

(2.1) ‖u‖Lp ≤ CΩ‖∇u‖Lp,

with C = λ
−1/2
1 if p = 2.

We next recall the Gevrey classes of spatially analytic functions.

Definition 2.1. We define the Gevrey classes G
s/2
σ (Tn) of spatially analytic func-

tions on the torus T
n := R

n/(2πZ)n, to be the set of all u ∈ L2(Tn) such that
‖u‖

G
s/2
σ (Tn)

< ∞, where

‖u‖
G

s/2
σ (Tn)

:=

(

∑

k∈Zn

|uk|2(1 + |k|2)se2σ(1+|k|2)1/2

)1/2

,(2.2)

where uk are the Fourier coefficients of u, and where σ > 0.

Such functions are called Gevrey regular. Note that formally setting σ = 0, we
recover the usual Sobolev spaces Hs(Tn). Furthermore, it can be shown that for
σ > 0, σ is comparable to the minimal radius of analyticity.

3. Periodic Vs. Dirichlet Boundary Conditions

Consider the Cauchy problem for the following viscous Hamilton-Jacobi equation,

ut −△u = |∇u|p, in Ω× (0, T ),(3.1a)

u(0) = u0, in Ω,(3.1b)
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equipped with either periodic boundary conditions or homogeneous Dirichlet bound-
ary conditions. Many authors have studied the cases p ∈ [0,∞) (see, e.g., [1, 2, 8–
10, 37, 38]), but in this work, we will focus on the case p = 4 for simplicity. In the
case p = 2, is an integrated version of the viscous Burgers equation, and is some-
times referred to as the Kardar-Parisi-Zhang equation, which is used to model the
growth and roughening of certain surfaces, as derived in [46]. Furthermore, (3.1) is
an important test equation, since it is one of the simplest examples of a parabolic
PDE with non-linear dependence on the gradient.

In the case of periodic boundary conditions, (3.1) with p ≥ 2 is well-posed,
globally in time. However, in the Dirichlet case, and for p > 2, a singularity will
develop in finite time, for certain initial data. We give a relatively simple proof of
the well-posedness in the periodic case with p = 4. The proof for p > 2 is given in
[38]. For the proof of blow-up in the Dirichlet case, choosing p = 4 does not appear
to make things significantly simpler than allowing p > 2, so we give the proof for
p > 2. We follow closely the proof in [61] to show that a singularity occurs in finite
time in the Dirichlet case, at least for sufficiently large initial data in the sense
given in (3.7), below.

It is worth noting that the following identity holds for sufficiently smooth func-
tions u = u(t, x):

(∂t −△)eu = (∂tu−△u− |∇u|2)eu,
Thus, (3.1) can be solved explicitly in the case p = 2, by making the change of
variables v = eu (known as the Cole-Hopf transformation for the Burgers equation),
and noting that if u solves (3.1), then v solves the linear heat equation, with the
corresponding boundary conditions.

3.1. Global Well-Posedness in the Periodic Case. We prove the global exis-
tence of solutions to (3.1), for p = 4 under the assumption of periodic boundary
conditions. We begin by stating a special case of a theorem in [25] (which follows
ideas from [30]), that gives short-time existence, uniqueness, and regularity.

Theorem 3.1 ([25]). Let u0 ∈ Hs(Tn), with s > n/2, and ‖u0‖Hs(Tn) ≤ M0 for

some M0 > 0. Then there exists a T > 0 depending only upon M0 such that equation

(3.1), with p and positive even integer, has a unique solution u on the interval [0, T )
with the initial value u0, which satisfies u ∈ C([0, T );Hs(Tn))∩L2((0, T );H2(Tn)),
du
dt ∈ L2((0, T );L2(Tn)). Moreover, u(·, t) ∈ G

s/2
t (Tn) for t ∈ [0, T ).

With this theorem in hand, we now state and prove a global existence theorem
for (3.1) with p = 4 and n = 1. For global well-posedness in the general case, see
[37, 38].

Theorem 3.2. Suppose u0 ∈ H1(T), and consider (3.1) in the one-dimensional

case with periodic boundary conditions, and p = 4. Then the unique, Gevrey regular

solution given by Theorem 3.1 can be extended to an arbitrarily large time interval

[0, T ].

Proof. First note that, since p = 4, the right-hand side of (3.1) is real analytic in
ux, and we have short-time existence and uniqueness (say, on a time interval [0, T ])
of (3.1) under periodic boundary conditions by using, e.g., the Galerkin method.
Furthermore, as shown in [25], the solution is Gevrey regular in space. In particular,
it has continuous derivatives of all orders. It remains to show that the solution exists
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globally in time. Suppose [0, T ∗) is the maximal interval of existence. If T ∗ = ∞
there is nothing to prove. Therefore, we assume by contradiction that T ∗ < ∞.
From the above regularity, we infer in particular, that u(·, T∗

2 ) ∈ H2(T). We use
a technique of E. Hopf and G. Stampacchia (cf. [48, 64]) to prove a maximum

principle for ux. Write v := ux and v∗(·) := ux(·, T∗

2 ). For any function f ∈ H1,
we use the standard notation f+ := max {f, 0}. It is a standard exercise (see, e.g.,
[24], section 5.10) to show that f ∈ H1 implies f+ ∈ H1. Taking the derivative of
(3.1a), we have vt − vxx = 4v3vx. Let us denote

θ(x, t) := v(x, t)− ‖v∗‖L∞ .

Since ‖v∗‖L∞ is a constant, θx = vx and θt = vt, so that

θt − θxx − 4v3θx = 0.(3.2)

Taking the inner product in L2 of (3.2) with θ+, we integrate by parts several times
and use the fact that θ+θ = (θ+)2 to find

1

2

d

dt
‖θ+‖2L2 + ‖θ+x ‖2L2 =

∫

T

4v3θxθ
+ dx =

∫

T

2v3((θ+)2)x dx

= −
∫

T

6v2vx(θ
+)2 dx = −

∫

T

2v2((θ+)3)x dx

=

∫

T

4vvx(θ
+)3 dx =

∫

T

v((θ+)4)x dx

= −
∫

T

vx(θ
+)4 dx = −

∫

T

1

5
((θ+)5)x dx = 0.

Thus, integrating in time, for a.e. t ∈ [T
∗

2 , T ∗) we have

‖θ+(t)‖2L2 ≤ ‖θ+(T∗

2 )‖2L2 = 0.

Thus, θ+(t) ≡ 0, and so, v(x, t) ≤ ‖v∗‖L∞ , for t ∈ [T
∗

2 , T ∗). Similarly, one can
show that −v(x, t) ≤ ‖v∗‖L∞, and thus we have

‖ux(t)‖L∞ ≤ ‖ux(
T∗

2 )‖L∞ ,

for t ∈ [T
∗

2 , T ∗). Next, taking the inner product of (3.1a) with u and using the

Lions-Magenes Lemma, we have, for t ∈ [T
∗

2 , T ∗),

1

2

d

dt
‖u‖2L2(T) + ‖ux‖2L2(T) =

∫

T

(ux)
4u dx ≤ ‖ux(

T∗

2 )‖4L∞‖u‖L1 ≤ C‖v∗‖4L∞‖u‖L2.

Integrating the above inequality now yields

‖u(t)‖L2(T) ≤
(

‖ux(
T∗

2 )‖4L∞(T)T + ‖u0‖1/2L2(T)

)2

< ∞,

for t ∈ [T
∗

2 , T ∗). Thus, from the above and Theorem 3.1 one can extend the solution
beyond T ∗, which leads into a contradiction. Consequently, T ∗ = ∞. �

3.2. Finite-Time Blow-Up in the Dirichlet Case. In this section, we investi-
gate the existence, uniqueness, and the finite-time blow-up, of solutions to (3.1),
under the assumption of Dirichlet boundary conditions. The short time existence
and uniqueness of solutions to (3.1) can be proven by using, e.g., Duhamel’s prin-
ciple and the Schauder fixed point theorem, see, e.g. [31]. We state the theorem
without proof here.
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Theorem 3.3 (Short time existence). Let Ω ⊂ R
n be a bounded C2 domain. Sup-

pose u0 ∈ C1+α(Ω) for some α ∈ (0, 1) and u0 ≡ 0 on ∂Ω. Then there exists a

T > 0 such that (3.1) has a unique solution in C1+α(Ω × [0, T ]) ∩ C(Ω × [0, T ]),
with u ≡ 0 on ∂Ω.

In [1] it is shown that (3.1) under homogeneous Dirichlet boundary conditions,
cannot have a global solution if u0 is very irregular (namely, if u0 is a positive
measure satisfying certain conditions). In [61] it is shown that for smooth, but
sufficiently large initial data (in a sense of (3.7), below), the solution u blows up in
finite time for p > 2. In particular, it is shown that so-called “gradient blow-up”
occurs; that is, u remains uniformly bounded, but lim supt→T∗ ‖∇u(t, ·)‖L∞ = ∞,
where T ∗ < ∞ is the maximal existence time for u. The idea is to exploit properties
of the first eigenvalue of the negative Laplacian operator, subject to homogeneous
Dirichlet boundary conditions. Let λ1 > 0 be the smallest eigenvalue of −△, with
homogeneous Dirichlet boundary conditions, and ϕ1 a corresponding eigenfunction,
chosen as in section 2. We begin with two lemmas. The first is used to support the
second, and the second is that

∫

Ω
(ϕ1(x))

−α dx < ∞ for α ∈ (0, 1). This means that
we have a certain growth of ϕ1 near the boundary, and will be needed in subsequent
calculations.

Lemma 3.4. Assume that Ω ⊂ R
n is a bounded domain with C2 boundary. Then

there exists a constant C > 0 such that for all x ∈ Ω,

ϕ1(x) ≥ C · dist(x, ∂Ω).
The proof is a fairly straight-forward application of Hopf’s Lemma, but we

include it here for completeness. Note that in the one-dimensional case, with
Ω = (0, π), we have ϕ1(x) = π

2π sin(x), and the results of Lemmas 3.4 and 3.5
are trivial in this case.

Proof. Since Ω is C2, it satisfies the interior sphere condition. Therefore for x ∈ Ω
sufficiently close to ∂Ω, we may write x = x0 − sν for some x0 ∈ ∂Ω, s > 0 and
where ν is the exterior normal of Ω. Then dist(x, ∂Ω) = dist(x, x0) = s. Note that
by Hopf’s Lemma, lims→0+ s−1ϕ1(x0− sν) > 0. Since ∂Ω is C2, and Ω is bounded,
we have sufficient regularity on ϕ1 to conclude that this limit is uniform in x0.
Thus (choosing x closer to ∂Ω if necessary), there exists a constant C̃ > 0 such that

s−1ϕ1(x0−sν) ≥ C̃, that is, ϕ1(x) ≥ C̃ ·dist(x, ∂Ω) for all x sufficiently close to the
boundary, say within ǫ−neighborhood, for some ǫ ∈ (0, 1). Since Ω is bounded, the
set E := {x ∈ Ω : dist(x, ∂Ω) ≥ ǫ} is compact. By the elliptic maximum principle,

ϕ1 ≥ C̃ǫ on E. Setting C = C̃ǫ/(1 + diam(Ω)), we have ϕ1(x) ≥ C · dist(x, ∂Ω), as
desired. �

Using this lemma, we next show that ϕ1 satisfies a certain growth condition near
its zeros (that is, near the boundary). This is the main property that is exploited
in [61] to show finite-time blow-up. A crucial lemma, proved in [61], but also stated
(without proof) in [1] and [26], is the following.

Lemma 3.5. Assume that Ω is a bounded domain in R
n with C2 boundary, and

let α ∈ (0, 1). Then
∫

Ω

ϕ−α
1 (x) dx < ∞.
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Proof. We follow closely the proof in [61]. We can use a partition of unity to
reduce to a local argument. Since Ω is bounded with C2 boundary, it can be locally
represented as the graph of a C2 function, say f : U0 → (−ǫ, ǫ), for some ǫ > 0,
where x = (x′

n, xn) ∈ R
n−1 × R, and

U := {x ∈ R
n : |x′

n| ≤ ǫ, |xn| < ǫ} , U0 :=
{

x′
n ∈ R

n−1 : |x′
n| ≤ ǫ

}

, ǫ > 0,

and f(0) = 0. Furthermore, we define

ω := {x ∈ U : xn < f(x′
n)} , Γ := {x ∈ U : xn = f(x′

n)} .
By projecting the vector (~0, f(x′

n) − xn) onto the inward-pointing normal of the
graph of f , it follows that

dist(x, ∂Ω) ≥ f(x′
n)− xn

√

1 + ‖∇f‖2L∞

.

Using this and Lemma 3.4, we estimate
∫

ω

(ϕ1(x))
−α dx ≤ c−α

∫

ω

(dist(x,Γ))−α dx = c−α

∫

U0

∫ f(x′

n)

−ǫ

(dist(x,Γ))−α dxn dx′
n

≤ c−α
(

1 + ‖∇f‖2L∞

)α/2
∫

U0

∫ f(x′

n)

−ǫ

(f(x′
n)− xn)

−α dxn dx′
n < ∞,

since α < 1. �

Next, we seek a lower bound on
∫

Ω
|∇u|pϕ1(x) dx.

Lemma 3.6. Let p > 2, and suppose Ω ⊂ R
n is a C2 bounded domain. Then there

exists a constant CΩ,p > 0 such that for any function v ∈ W 1,p
0 (Ω),

CΩ,p

∣

∣

∣

∣

∫

Ω

v(t, x)ϕ1(x) dx

∣

∣

∣

∣

p

≤
∫

Ω

|∇v|pϕ1 dx.(3.3)

Furthermore, no such constant exists for 1 ≤ p ≤ 2.

Proof. For the proof we follow closely [61]. Using Hölder’s inequality, we have
∫

Ω

|∇v| dx =

∫

Ω

|∇v|ϕ1/p
1 ϕ

−1/p
1 dx ≤

(
∫

Ω

|∇v|pϕ1 dx

)1/p(∫

Ω

ϕ
−1/(p−1)
1 dx

)1−1/p

≤ C′
Ω,p

(
∫

Ω

|∇v|pϕ1 dx

)1/p

,(3.4)

where, due to Lemma 3.5,

C′
Ω,p :=

(
∫

Ω

ϕ
−1/(p−1)
1 dx

)1−1/p

< ∞,

since p > 2 implies 1
p−1 ∈ (0, 1).

Since Ω is bounded, we have by Poincaré’s inequality (2.1), that there exists a
constant CΩ such that

(3.5)

∫

Ω

|v(x, t)| dx ≤ CΩ

∫

Ω

|∇v(x, t)| dx.
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Therefore, (3.4) and (3.5) give
∣

∣

∣

∣

∫

Ω

v(t, x)ϕ1(x) dx

∣

∣

∣

∣

p

≤
(

‖ϕ1‖L∞

∫

Ω

|v(t, x)| dx
)p

(3.6)

≤
(

‖ϕ1‖L∞CΩ

∫

Ω

|∇v(x, t)| dx
)p

≤
(

‖ϕ1‖L∞CΩC
′
Ω,p

)p
∫

Ω

|∇v(x, t)|pϕ1(x) dx,

Setting CΩ,p =
(

‖ϕ1‖L∞CΩC
′
Ω,p

)−p
yields (3.3).

We next give a counterexample to show that (3.3) cannot hold for all v ∈ W 1,p(Ω)
in the case p = 2. Here, for simplicity, we only show the one-dimensional case, with
Ω = (0, 2π), since similar counterexamples can be constructed in higher dimensional
cases based on the one-dimensional case, using the fact that the domain satisfies
the interior ball condition and comparing to the distance function, as in the proof
of Lemma 3.5.

For ǫ ∈ (0, π/4), consider the function vǫ defined on [0, π], given by

vǫ(x) :=



















0 for x ∈ [0, ǫ2] ∪ [π − ǫ2, π],

log(x/ǫ2) for x ∈ [ǫ2, ǫ],

log(1/ǫ) for x ∈ [ǫ, π − ǫ],

log((π − x)/ǫ2) for x ∈ [π − ǫ, π − ǫ2].

We calculate the derivative

v′ǫ(x) =











0 for x ∈ (0, ǫ2) ∪ (ǫ, π − ǫ) ∪ (π − ǫ2, π),

1/x for x ∈ (ǫ2, ǫ),

1/(x− π) for x ∈ (π − ǫ, π − ǫ2).

Notice that vǫ ∈ W 1,2
0 ((0, π)). Furthermore, using the fact that sin(x) ≥ 2

πx on
[0, 2/π] and that 0 < ǫ < π/4 we have

∫ π

0

vǫ(x) sin(x) dx = 2

∫ π/2

0

vǫ(x) sin(x) dx ≥ 4

π

∫ π/2

0

vǫ(x)x dx

≥ 4

π

∫ π/2

ǫ

log

(

1

ǫ

)

x dx =
2

π
log

(

1

ǫ

)(

π2

4
− ǫ2

)

>
3π

8
log

(

1

ǫ

)

,

Thus,
(
∫ π

0

vǫ(x) sin(x) dx

)2

>
9π2

64

(

log

(

1

ǫ

))2

.

On the other hand, notice that
∫ π

0

(v′ǫ(x))
2 sin(x) dx = 2

∫ ǫ

ǫ2

(

1

x

)2

sin(x) dx ≤ 2

∫ ǫ

ǫ2

(

1

x

)2

x dx = 2 log

(

1

ǫ

)

.

Taking ratios of the above inequalities, we observe
(∫ π

0
vǫ(x) sin(x) dx

)2

∫ π

0 (v′ǫ(x))
2 sin(x) dx

≥
9π2

64

(

log
(

1
ǫ

))2

2 log
(

1
ǫ

) =
9π2

128
log

(

1

ǫ

)

→ ∞

as ǫ → 0+, and therefore no finite number C > 0 can be chosen to make (3.3) true

for all functions v ∈ W 1,2
0 ((0, π)). �
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Remark 3.7. The counterexample for p = 2 we believe to be new. A counterex-
ample, based on a piecewise linear function, was given in the case 1 ≤ p < 2, for
n = 1, in [7].

With the above lemmas in hand, we are now ready to prove the main theorem for
blow-up of (3.1) under homogeneous Dirichlet boundary conditions. As mentioned
earlier, the proof is very similar to the one given in [61], where it is also given in
greater generality. The proof is given here for the sake of completeness.

Theorem 3.8. Let p > 2 and suppose u0 ∈ C2(Ω) ∩ L∞(Ω). There exists K > 0,
given by equation (3.10) below, such that if

∫

Ω

u0(x)ϕ1(x) dx ≥ K,(3.7)

then any solution to (3.1), taken with homogeneous Dirichlet boundary conditions

and initial data u0, develops a singularity in finite time.

Proof. By Theorem 3.3, we know that there exists a time T > 0 and a unique
solution u ∈ C1+α([0, T ]× Ω) ∩ C([0, T ]× Ω) to (3.1) satisfying u ≡ 0 on ∂Ω. Let
T ∗ > 0 be the maximal time of existence of the solution to (3.1). If T ∗ < ∞ then
there is nothing to prove. Therefore, we assume by contradiction that T ∗ = ∞.
Following [61], let

z(t) =

∫

Ω

u(t, x)ϕ1(x) dx.(3.8)

The use of z(t) will allow us to use standard non-existence results for ODEs, ex-
ploiting properties of ϕ1. Integrating by parts, we calculate in (0, T ∗),

z′(t) + λ1z(t) =

∫

Ω

ut(t, x)ϕ1(x) dx −
∫

Ω

u(t, x)△ϕ1(x) dx(3.9)

=

∫

Ω

(

ut(t, x) −△u(t, x)
)

ϕ1(x) dx =

∫

Ω

|∇u|pϕ1(x) dx.

Applying Lemma 3.6 to (3.9) gives

z′(t) + λ1z(t) ≥ CΩ,p(z(t))
p.

Now, if

z(0) ≥ (2λ1/CΩ,p)
1/(p−1)

=: K,(3.10)

then the above estimate implies that z′(t) ≥ 0 for a short interval of time, and thus
z(t) ≥ K for all t ≥ 0. Let y(t) := eλ1tz(t). Notice that y(0) = z(0). We then have

y′(t) ≥ CΩ,pe
λ1(1−p)t(y(t))p

Integrating, we obtain

(y(0))1−p − (y(t))1−p ≥ CΩ,pλ
−1
1 (1− eλ1(1−p)t).

Thus,

(y(t))p−1 ≥
(

(z(0))1−p − CΩ,pλ
−1
1 (1 − eλ1(1−p)t)

)−1

.(3.11)

Now, since z(0) ≥ K, then the right-hand side of (3.11) become infinite at finite
time t = T ∗∗, where eλ1(1−p)T∗∗

= 1/2. Hence T ∗ ≤ T ∗∗, which contradicts the
assumption that T ∗ = ∞. In particular, we have shown that a singularity of u
develops in finite time. �
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Remark 3.9. Regarding the previous theorem, note that, by the maximum principle,
since u ≡ 0 on ∂Ω, the extreme values must occur at the initial time, so that

(3.12) sup
(x,t)∈Ω×[0,T∗)

|u(x, t)| ≤ ‖u0‖L∞ < ∞.

Thus, since the solution ceases to exist after finite time, it must do so in a norm
other than L∞.

Remark 3.10. In the previous theorem, the condition p > 2 is sharp, since (3.1)
has global existence in the Dirichlet case when p ≤ 2, (see, e.g., [25, 37, 38]).
Furthermore, one can see that the reason why the proof of Lemma 3.8 fails is
because inequality (3.3) fails in this case.

Let us conclude by remarking that in this section, we have seen that in the
Dirichlet case, if one chooses smooth initial data, say u0 ∈ C1+α(Ω) such that
∫

Ω
u0ϕ1 dx is sufficiently large, then the solution to (3.1) will blow up in finite time.

However, in the case of periodic boundary conditions, specifying that u0 ∈ H1(T)
(in fact, as shown in [37, 38], one only needs u0 ∈ C(Tn)), the solution to (3.1)
will exist globally in time. Similar results hold in full space, if one assumes, e.g.,
that u0 ∈ C(Rn) ∩ L∞(Rn) (see, e.g., [37, 38]). Thus, it may be the case that
computational and analytic searches for blow-up in more complicated situations
(e.g., the Navier-Stokes and Euler equations) might not provide evidence for blow-
up, due to the fact that full-space or periodic boundary conditions essentially neglect
any effects of the boundary, even if blow-up does occur in the case of physical
boundary conditions.

4. Inferences From Adjusting Boundary Conditions

In this section, we consider the claims that can be made with reference to certain
boundary conditions. Previously, we saw that changing from periodic boundary
conditions to physical (e.g., Dirichlet-like) boundary conditions could determine
whether or not a solution is globally well-posed. Next, we will show an example
in which a problem, given by the Kuramoto-Sivashinsky equations, is, in the one-
dimensional case, globally well-posed under periodic, full-space, or Neumann-like
boundary conditions, but loses its global regularity, in any dimension, under an-
other set of boundary conditions given by (4.4), below. That is to say, in certain
settings, one may engineer certain (possibly non-physical) boundary conditions to
force finite-time blow-up of to occur.

We consider the Kuramoto-Sivashinsky equations, given by

ut +△2u+△u+ 1
2 |∇u|2 = 0 in Ω× (0, T ),(4.1a)

u(x, 0) = u0(x) in Ω.(4.1b)

This form of the Kuramoto-Sivashinsky equations is sometimes called the integrated
version of the Kuramoto-Sivashinsky equations. Here, we consider Ω ⊂ R

n to be
a smooth domain. We will discuss several variations on the boundary conditions
below, as these are the major focus of this section. Currently, even in the one-
dimensional case, the question of global existence of solutions to (4.1) under the
physical Dirichlet-like boundary conditions

u ≡ △u ≡ 0 on ∂Ω,(4.2)
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is still open. Moreover, for n ≥ 2, the question of global well-posedness of (4.1) in
the periodic case, or in R

n is also an open challenging question.
As it turns out, dealing with the spatial average of the solution can be the main

obstacle in showing global regularity for (4.1), (4.3), and to avoid this issue, many
authors set v = ∇u, and consider instead the differentiated version of (4.1), i.e.,
the system

vt +△2v +△v + (v · ∇)v = 0 in Ω× (0, T ),(4.3a)

v(x, 0) = v0(x) := ∇u0(x) in Ω.(4.3b)

It is well-known that in the one-dimensional case, with either periodic (Ω = T :=
R/Z) or full-space (Ω = R) boundary conditions, (4.3) is globally well-posed, and in
the periodic case, has a finite-dimensional global attractor and an inertial manifold
(see, e.g., [17, 21, 22, 27–29, 39, 45, 58, 62, 64] and the references therein). It
was shown in [12] that the only steady-state solutions to (4.1) in either Rn or Tn,
n = 1, 2, are constant functions. The question of the global well-posedness of (4.1)
for n ≥ 2 in the periodic case, or Rn is still open. There have been partial results in
bounded domains in dimension n ≥ 2, assuming special geometries. For instance,
global well-posedness for (4.1) in dimension n = 2, 3 was shown in [7] for the case
of radially symmetric initial data, in an annular domain Ω = {x : 0 < r < |x| < R},
where r, R are fixed positive numbers, and the Neumann boundary conditions ∂ru =
∂r△u = 0 on ∂Ω are imposed. However, the general case is currently an outstanding
open problem.

One can also consider a generalization of (4.1a), namely

ut +△2u+△u+ 1
2 |∇u|p = 0,

for some p ≥ 0. This equation was considered in [7], where it was shown that when
p > 2, under the boundary conditions (4.2), a singularity develops in finite-time,
provided that the initial data is sufficiently large in a certain sense, similar to (3.7).
(In fact, in [7], the authors proved an even stronger result, as they did not need
the destabilizing term △u.) The result and proof are similar in character to that
of Theorem 3.8, although care needs to be taken due to the fact that one no longer
has a maximum principle.

Recently, in [54], it has been shown that, for any dimension, a finite-time sin-
gularity will develop in solutions to (4.1) for a certain class of initial conditions, if
one imposes the boundary conditions

u = 0,
∂

∂ν
(u+△u) = 0 on ∂Ω× (0, T ).(4.4)

The blow-up can be shown by the following calculation, which occurs in [54] (see
also [33]). Integrating equation (4.1a) in space and using the divergence theorem
with boundary conditions (4.4), the Poincaré inequality, and the Cauchy-Schwarz
inequality, we find

d

dt

∫

Ω

u dx =

∫

Ω

(−△2u−△u+ 1
2 |∇u|2) dx =

1

2

∫

Ω

|∇u|2 dx

≥ λ1

2

∫

Ω

|u|2 dx ≥ λ1

2|Ω|

(
∫

Ω

u dx

)2

.
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Grönwall’s inequality then yields
∫

Ω

u(t, x) dx ≥
(

1− λ1t

2|Ω|

∫

Ω

u0(x) dx

)−1 ∫

Ω

u0(x) dx.

Thus, if we choose the initial data such that
∫

Ω

u0 dx > 0,

the solution will blow up at least by time T ∗ = 2|Ω|
λ1

(∫

Ω
u0(x) dx

)−1
< ∞.

Thus, we have seen that one can impose boundary conditions, namely conditions
(4.4), to cause the solution of (4.1) to blow up for certain initial data. However,
we observe again that problem (4.1) under boundary conditions (4.2) still remains
open. Furthermore, we show below that if one imposes somewhat looser boundary
conditions than (4.4), one can show that the solution does not blow up in finite
time, at least in the one-dimensional case.

Theorem 4.1. Consider the one-dimensional version of (4.1) on the domain Ω =
(0, L) ⊂ R, with the boundary conditions

ux(0) = uxxx(0) = ux(L) = uxxx(L) = 0.(4.5)

Given T > 0 and u0 ∈ H1((0, L)) satisfying (4.5), there exists a solution u of (4.1)
such that u ∈ L∞([0, T ];L2((0, L))) ∩ L2([0, T ];H3((0, L))) to (4.1). Furthermore,

this solution is unique, and is Gevrey regular in space for t > 0.

Proof. We give only a formal existence proof here, but we remark that the proofs
can be made rigorous by using, e.g., the Galerkin procedure. First, we notice that
one can show the short-time existence by using the Galerkin procedure based on
the eigenfunctions of −∂xx with Neumann boundary conditions ux = 0 for x = 0, L
(i.e., functions of the form cos(πkx/L). The proof of this is similar to standard
proofs in periodic boundary conditions. We refer to [58, 64] for a demonstration of
this method, and also a proof of uniqueness. Furthermore, as in [16, 25, 30, 49],
one can show that the solutions are Gevrey regular (analytic) in space for t > 0. It
remains to show that the solution remains bounded for all time.

Formally taking the L2 inner-product of (4.1a) with −uxx and integrating by
parts, we find

1

2

d

dt
‖ux‖2L2 + ‖uxxx‖2L2 = ‖uxx‖2L2 +

∫ L

0

u2
xuxx dx.

Notice that
∫ L

0 u2
xuxx dx =

∫ L

0
1
3∂x(ux)

3 dx = 0. Furthermore, integrating by parts
and using the Cauchy-Schwarz inequality, we have

‖uxx‖2L2 = −
∫ L

0

uxuxxx dx ≤ ‖ux‖L2‖uxxx‖L2 .(4.6)

Young’s inequality gives ‖ux‖L2‖uxxx‖L2 ≤ 1
2‖ux‖2L2+

1
2‖uxxx‖2L2. Combining these

estimates, we have

d

dt
‖ux‖2L2 + ‖uxxx‖2L2 ≤ ‖ux‖2L2(4.7)

Dropping the term ‖uxxx‖2L2 and using Grönwall’s inequality, we find

‖ux(t)‖2L2 ≤ et‖ux(0)‖2L2 ,
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so that ux ∈ L∞([0, T ];L2(0, L)). Moreover, integrating (4.7) on [0, t], t ≤ T , we
have

‖ux(t)‖2L2 +

∫ t

0

‖uxxx(s)‖2L2 ds ≤ ‖ux(0)‖2L2 +

∫ t

0

‖ux‖2L2 ds

≤ ‖ux(0)‖2L2 +

∫ t

0

es‖ux(0)‖2L2 ds = et‖ux(0)‖2L2 .

Thus, uxxx ∈ L2([0, T ];L2(0, L)). Using (4.6) and the above estimates, we find
that uxx ∈ L4([0, T ];L2) ⊂ L2([0, T ], L2). In order to show u ∈ L2([0, T ], H3), it
remains to prove u ∈ L2([0, T ], L2). (Note that this does not follow directly from
the Poincaré inequality, due to the boundary conditions (4.5).)

Integrating (4.1a) over [0, L], we find

d

dt

∫ L

0

u dx = −
∫ L

0

uxxxx dx−
∫ L

0

uxx dx−
∫ L

0

u2
x dx = −‖ux‖2L2.(4.8)

Denoting ϕ :=
∫ L

0
ϕ(x) dx, and integrating (4.8) on [0, t], t ≤ T , we have u(t) =

u(0)−
∫ t

0
‖ux(s)‖2L2 ds, so that

|u(t)| ≤ |u(0)|+
∫ t

0

‖ux(s)‖2L2 ds ≤ |u(0)|+ (et − 1)‖ux(0)‖2L2.

Thus, u ∈ L∞([0, T ]). Now, by the Poincaré inequality, we have

‖u‖L2(0,L) − L1/2|u| = ‖u‖L2(0,L) − ‖u‖L2(0,L) ≤ ‖u− u‖L2(0,L) ≤ C‖ux‖L2(0,L).

Combining the above estimates, we find

‖u(t)‖L2(0,L) ≤ L1/2|u(t)|+ C‖ux(t)‖L2(0,L)

≤ L1/2
(

|u(0)|+ (et − 1)‖ux(0)‖2L2

)

+ Cet/2‖ux(0)‖L2 .

Thus, we have u ∈ L∞([0, T ];L2), and therefore from the above estimates, it follows
that u ∈ L2([0, T ];H3), where the bound depends only upon |u(0)|, ‖ux(0)‖L2, T ,
and L. Thus, the solution can be extended globally in time. In particular, ux ∈
L2((0, T ), H3) ⊂ L2((0, T ), L∞). �

Remark 4.2. Observe that in the previous proof, one can see that v := ux satisfies
(4.3) in the one-dimensional case, with v(0) = v(L) = vxx(0) = vxx(L) = 0.
Furthermore, notice that, by extending v as an odd function on [−L,L], this is
equivalent to the case with periodic boundary conditions on [−L,L], where the
functions are restricted to be odd functions, where it is well-known that one has
global well-posedness and Gevrey regularity, as studied, e.g., in [45, 58, 62, 64] and
the references therein.

5. Is Hyper-viscosity Stabilizing?

In many numerical simulations, especially for geophysical flows, a hyper-viscosity
term of the form (−△)α, with α > 1, is used to stabilize the underlying numerical
scheme. In the presence of physical boundaries, such as in ocean dynamics models,
these artificial hyper-viscosity operators require additional non-physical boundary
conditions. Even if we set aside this issue with the artificial boundary conditions,
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we are still faced with the question: is hyper-viscosity is always a stabilizing mech-
anism? To make our point we consider, for example, the 2D and 3D differentiated
form of the viscous Burgers equations:

(5.1)
∂u

∂t
− ν△u+ u · ∇u = 0,

subject to periodic boundary conditions. On the one hand, and as it was observed
in the section 3, system (5.1) is globally well-posed for initial data, thanks to the
maximum principle, namely, ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ , for all t ≥ 0 (see, e.g., [60]).
On the other hand, if one adds a hyper-viscosity term to (5.1), and consider instead

(5.2)
∂u

∂t
+ κ(−△)αu− ν△u+ u · ∇u = 0, with α > 1,

subject to periodic boundary conditions, nothing is known about the global reg-
ularity of (5.2), for large initial data, even in the two-dimensional case. This is
because we lose the maximum principle in the hyper-viscous case, which is the only
global a priori bound available for (5.1). Indeed, it would be interesting if one could
show that (5.1) develops a finite-time singularity, while (5.1) is globally well-posed.
In particular, any global regularity result concerning (5.1) will shed light on the
question of global regularity for the 2D and 3D Kuramoto-Sivashinsky equation
(see, e.g., [7, 12] for further discussion of this problem). We observe that in the 1D
case, global regularity can be established by standard energy methods (see, e.g.,
[17, 21, 39, 62, 64] and references therein).

6. Singularity Formation by Altering the Nonlinearity

In this section, we remove the advection term in the evolution of the derivative of the
Burgers equation and show that the resulting equation blows up in finite time. The
alteration in nonlinearity, and the resulting blow-up phenomenon, are analogous to
a phenomenon observed computationally in [23, 40, 41] for much more complicated
equations governing fluids. Namely, it was noticed in simulations that, by removing
the advection term in the vorticity evolution of the 3D axi-symmetric Navier-Stokes
or Euler equations, one can seeming cause these equations to blow up in finite time
via a certain mechanism. However, when the nonlinearity is restored to its original
form, the mechanism seems to disappear, and therefore, it is claimed that it is
reasonable to expect that the advection is depleting the singularity. Our purpose
in this section has two folds. First, to show analytically that this phenomenon
does indeed occur, at least in simpler setting of the 1D viscous Burgers equation.
The second is to shed more light on this mechanism and to stress that it is not
precisely the advection term that depletes singularity; but it is rather a non-local
alteration of the nonlinear and the pressure terms that cause this effect, and that,
sometimes, such a nonlocal alteration might cause the opposite effect. In other
words, we observe that this alteration of the advection term, in the evolution of
the derivative in our example, and in the evolution of the vorticity in [23, 40, 41],
are in fact non-local in nature and are not as naive as they might seem. This is
because any non-local change in the nonlinearity of the hydrodynamic equations is
in effect an alteration in the representation of the pressure term, which is the major
obstacle in the study of three-dimensional hydrodynamic equations.
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To illustrate the observation made in [23, 40, 41], we consider the unforced 3D
Navier-Stokes equations for incompressible flow, namely

−∂tu+ (u · ∇)u = −∇p+ ν△u,(6.1a)

∇ · u = 0,(6.1b)

in the whole space R
3, and with a given initial condition. Here u = u(x1, x2, x3, t)

is the vector-valued velocity of a fluid, and p = p(x1, x2, x3, t) is the pressure. Let
us define ω := ∇× u, which is known as the vorticity of the fluid. Taking the curl
of (6.1a) and using (6.1b), we obtain the well-known vorticity equation namely,

∂tω + (u · ∇)ω = (ω · ∇)u+ ν△ω.(6.2)

Recently, in [41], a reformulation of (6.2) was given in the axi-symmetric case.
Furthermore, it was suggested in [40, 41], based on numerical simulations, that in
this new formulation, the analogue of the advection term (u ·∇)ω may prevent the
blow-up of solutions. Specifically, it is suggested that this term may be responsible
for depleting the singularity. It is worth noting that a similar phenomenon is also
conjectured to occur in a generalization of the Constantin-Lax-Majda equation; see,
e.g., [53] and the references therein.

In comparison to the above remarks about the Navier-Stokes equations, we con-
sider the one-dimensional viscous Burgers equation with Neumann boundary con-
ditions on the interval (0, π):

ut + uux = νuxx, ux(0, t) = ux(π, t) = 0, u(x, 0) = u0(x),(6.3)

with viscosity ν > 0. In [11], it was proven that, for u0 ∈ C(Ω), there exists a
unique (global) solution u to (6.3) satisfying u ∈ L2

loc((0, T ], H
3) ∩ C((0, T ], H2) ∩

L2((0, T ], H1)∩C([0, T ], L2). If u0 ∈ H1(Ω)∩C(Ω), one can additionally show that
u ∈ C([0, T ], H1). (See also [56, 60] for classical results on Burgers’ equation.)

Differentiating the equation in (6.3) with respect to x and denoting ω := ux, we
obtain

ωt + uωx = νωxx − ω2.(6.4)

We show that removing the advection term uωx from (6.4) allows for solutions
which develop a singularity in finite time. We note that this phenomenon was also
pointed out, without proof, in [52], which is a review of [53]. Consider the problem

ωt = νωxx − ω2, ω
∣

∣

∂Ω
= 0, ω(x, 0) = ω0(x).(6.5)

A generalized version of the equation in (6.5) was studied in [32] (see also [3,
57]). Since (6.5) is the viscous (PDE) version of the Riccati equation ẏ = y2, it
is not surprising that it can develop a singularity in finite time. Indeed, in [57]
it was proven that for initial data which is everywhere positive, solutions must
develop a singularity in finite time. Here, for the sake of completeness, we give a
different proof, which shows that blow-up may also occur for initial data which is
not everywhere positive.

Theorem 6.1. There exists an M > 0 such that if the initial data ω0 ∈ C([0, π])
satisfies

∫ π

0

ω0(x) sin(x) dx < −M,
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then the corresponding solution ω to (6.5) blows up in finite time. More precisely,

there exists a time T ∗ ∈ (0,∞) such that

lim
t→T∗−

∫ π

0

ω(x, t) sin(x) dx = −∞.(6.6)

Proof. We proceed somewhat formally, as we only wish to illustrate the main ideas.
For notational simplicity, ϕ(x) = sin(x). Taking the inner product of (6.5) with ϕ
and integrating by parts twice gives

d

dt

∫ π

0

ωϕdx = ν

∫ π

0

ωϕxx dx−
∫ π

0

ω2ϕdx.(6.7)

By the Cauchy-Schwarz inequality,
(
∫ π

0

ωϕdx

)2

=

(
∫ π

0

ωϕ
1
2ϕ

1
2 dx

)2

≤
(
∫ π

0

ω2ϕdx

)(
∫ π

0

ϕdx

)

= 2

∫ π

0

ω2ϕdx.

Furthermore,
∫ π

0

ωϕxx dx =

∫ π

0

ωϕ
1
2ϕxxϕ

− 1
2 dx

≤
(
∫ π

0

ω2ϕdx

)
1
2
(
∫ π

0

ϕ2
xxϕ

−1 dx

)
1
2

=
√
2

(
∫ π

0

ω2ϕdx

)
1
2

.

Using these estimates in (6.7) along with Young’s inequality yields

d

dt

∫ π

0

ωϕdx ≤ ν
√
2

(
∫ π

0

ω2ϕdx

)
1
2

−
∫ π

0

ω2ϕdx

≤ ν2 − 1

2

∫ π

0

ω2ϕdx ≤ ν2 − 1

4

(
∫ π

0

ωϕdx

)2

.

Setting y(t) :=
∫ π

0 ωϕdx, we have ẏ ≤ ν2 − y2/4. Choosing y(0) < −
√
8ν, we have

by continuity that y(t) < −
√
8ν for all t ∈ [0, δ], for some δ > 0. Thus, ẏ < − 1

8y
2

on [0, δ], so y is decreasing [0, δ], and we therefore have that y(t) < −
√
8ν for all

time. Therefore, ẏ < − 1
8y

2 for all time. Integrating on [0, t], we find

y(t) < ( t8 + (y(0))−1)−1.

Thus, setting M = −
√
8ν and T ∗ = −8(y(0))−1 = −8

(∫ π

0
ω0ϕdx

)−1
> 0, we

obtain (6.6). �

We notice that in eliminating the advection term uωx from (6.4), we have gone
from a non-local equation to a local equation, since u is the anti-derivative of ω,
which is non-local in ω. Thus, perhaps the regularizing effect of the term uωx is
due in part to its non-local nature.

An analogous effect appears in the context of the Navier-Stokes equations. No-
tice that dropping the advection term in (6.2) will affect the pressure term. Indeed,
if we make a drastic alteration to the Navier-Stokes equations and formally drop
the pressure term entirely (and also drop (6.1b), so that the system is not overde-
termined), the result is the 3D viscous Burgers equation, which is known to be
globally well-posed (see, e.g., [60]). On the other hand, consider the 2D Euler
equations. These equations are known to be globally well-posed, but by formally
dropping the pressure term (and again the divergence-free condition), we arrive at
the 2D inviscid Burgers equation, which blows up in finite time.
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In conclusion any non-local alteration of the nonlinearity in the hydrodynamic
equations is in effect leading to alteration in the pressure representation. This in
turn might be a stabilizing or destabilizing mechanism of the modified equation.
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[33] V. A. Galaktionov, È. Mitidieri, and S. I. Pokhozhaev. Existence and nonexistence of global
solutions of the Kuramoto-Sivashinsky equation. Dokl. Akad. Nauk, 419(4) (2008), 439–442.

[34] J. D. Gibbon. The three-dimensional Euler equations: where do we stand? Phys. D, 237(14-
17):1894–1904, 2008.

[35] J. D. Gibbon, M. Bustamante, and R. M. Kerr. The three-dimensional Euler equations: singular

or non-singular? Nonlinearity, 21(8) (2008), T123–T129.
[36] J. D. Gibbon and E. S. Titi. 3D incompressible Euler with a passive scalar: a road to blow up?

Journal of Nonlinear Science, 23(6) (2013), 993–1000.
[37] B. H. Gilding. The Cauchy problem for ut = ∆u + |∇u|q, large-time behaviour. J. Math. Pures

Appl., 84(6) (2005), 753–785.
[38] B. H. Gilding, M. Guedda, and R. Kersner. The Cauchy problem for ut = ∆u+ |∇u|q. J. Math.

Anal. Appl., 284(2) (2003), 733–755.
[39] J. Goodman. Stability of the Kuramoto-Sivashinsky and related systems. Comm. Pure Appl.

Math., 47(3) (1994), 293–306.
[40] T. Y. Hou. Blow-up or no blow-up? A unified computational and analytic approach to 3D

incompressible Euler and Navier-Stokes equations. Acta Numer., 18 (2009), 277–346.
[41] T. Y. Hou and Z. Lei. On the stabilizing effect of convection in three-dimensional incompressible

flows. Comm. Pure Appl. Math., 62(4) (2009), 501–564.
[42] T. Y. Hou and R. Li. Blowup or no blowup? The interplay between theory and numerics. Phys.

D, 237(14-17) (2008), 1937–1944.
[43] T. Y. Hou and R. Li. Numerical study of nearly singular solutions of the 3-D incompressible

Euler equations. Mathematics and computation, a contemporary view, volume 3 of Abel Symp.,
pages 39–66. Springer, Berlin, 2008.

[44] T. Y. Hou and G. Luo, On the finite-time blowup of a 1D model for the 3D incompressible Euler

equations, (2013), arXiv:1311.2613.
[45] J. S. Il′yashenko. Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation.

J. Dynam. Differential Equations, 4(4) (1992), 585–615.
[46] M. Kardar, G. Parisi., and Y.-C. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett.,

56 (1986), 889–892.
[47] R. M. Kerr. Evidence for a singularity of the three-dimensional, incompressible Euler equations.

Phys. Fluids A, 5(7) (1993), 1725–1746.
[48] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their

Applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace
Jovanovich Publishers], New York, 1980.

[49] X. Liu. Gevrey class regularity and approximate inertial manifolds for the Kuramoto-Sivashinsky

equation. Phys. D, 50(1) (1991), 135–151.
[50] G. Luo and T. Y. Hou, Potentially singular solutions of the 3d incompressible Euler equations,

(2013), arXiv:1310.0497.
[51] A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow, volume 27 of Cambridge

Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.
[52] K. Ohkitani. AMS review article of the paper, ”On a generalization of the Constantin-Lax-Majda

equation” by H. Okamoto, T. Sakajo, and M. Wunsch; Nonlinearity, 2008.
[53] H. Okamoto, T. Sakajo, and M. Wunsch. On a generalization of the Constantin-Lax-Majda

equation. Nonlinearity, 21(10), (2008), 2447–2461.
[54] S. I. Pokhozhaev. On the blow-up of solutions of the Kuramoto-Sivashinsky equation. Mat. Sb.,

199(9) (2008), 97–106.
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