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Abstract of The Thesis

Analysis of longitudinal diffusion weighted imaging data

By

Fumitaro Masaki
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The linear model (LM) is typically used to analyze the relationship between imaging data

and demographic/cognitive parameters. Each imaging measurement is considered as indepen-

dent in this model. Recent neuroimaging studies collect time-series data, for which the assump-

tion of independence is invalid. Instead, we use the linear mixed model (LMM) that gives us

population effects and subject effects as regression coefficients. A downside of LMM is the

computation burden. The purposes of this research are: (1) to develop the tools for analyzing

large data, (2) to interpret results, and (3) to demonstrate how to use subject wise information.

We focused on a large dataset of diffusion weighted MR images. 730 images and demo-

graphic/cognitive tests were acquired in 176 subjects by the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI). Our code can successfully analyze the 30GB dataset within one day. We

found that the population effects coefficients of LMM are roughly similar to the coefficients

estimated by LM, and the statistical significance of regressors in the LMM is typically lower

than in the LM. We demonstrated that subject wise information can be used to determine an

onset of deterioration for each healthy control. Results suggest that this parameter is helpful to

model the general aging process.
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1 Introduction

1.1 Motivation
Alzheimer’s disease (AD) is a type of dementia that leads to irreversible damage to the brain.
At earlier stages of AD, patients forget their daily routine activities. Over the course of time,
they lose understanding of where they are, are unable to understand time such as seasons and
dates, are unable to have conversation with others, and are confused as to what to do next. In
addition, they also experience a decrease in their emotional stability. For instance, they may
show less facial expressions, along with exhibiting involuntary actions or loss of interests in
surroundings and in themselves, etc. They may also show the symptom of depression, sleeping
disorders, and eating disorders. Finally, they are fully dependent of help by their surroundings,
and die.

According to the report of the Alzheimer’s Association [1], the number of patients with AD
in the United States is more than five million people, and AD is the sixth leading cause of death.
Liesi, the author of this study, calculated the number of patients in 2040 using a longitudinal,
population-based study, and he reported the expected number is 13.8 million unless preventive
measures are developed [2]. Even now, the cost of AD is a huge burden for the health care
system, and it is estimated to be $183 billion in the US [3] at this point. Of course, this burden
will increase as the number of patients increase.

Figure 1: Comparison between healthy brain and AD. The brain of patients with AD is smaller
than the brain of healthy people: [8]

Unfortunately, AD is considered as an incurable disease at this point, but several drugs
approved by the Food and Drug Administration (FDA) can delay the progression of AD [4].
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Slowing down the onset of AD can make it possible for families to make financial plans, orga-
nize their living environment, and to search for support from their communities.

What causes AD currently is unknown, but there are several aspects confirmed in the brain
of AD patients, such as the presence of amyloid plaques (β-amyloid: Aβ), neurofibrillary tan-
gles, neuronal loss, and cerebral amyloid angiopathy. Representatives from the Alzheimer’s
Association cite several methods for diagnosing AD, including a thorough medical history,
mental status testing, a physical and neurological exam, and tests (such as blood tests and brain
imaging) to rule out other causes of dementia-like symptoms. For this purpose, the NINCDS-
ADRDA Alzheimer’s Criteria is widely used [5].

Imaging methods widely used for diagnosing AD are Positron Emission Tomography (PET)
and Magnetic Resonance Imaging (MRI) [7]. Several studies suggest that patients with AD
show significant atrophy in the cerebral cortex of the brain, especially, the parahippocampal
gyrus and posterior cingulate (Fig. 1). Due to the brain loss with aging, it is difficult to de-
termine who will develop AD on the basis of images. PET, on the other hand, can detect the
earliest onset of AD before the brain shows any significant atrophy [9]. β-amyloid (Aβ), one of
the causative agents of AD, starts deposition before severe memory dysfunction occurs (Fig. 2).
PET depicts how much Aβ is in the brain, the amount of which is associated with the progres-
sion of the AD. This is called amyloid PET imaging, and for example, Pittsburgh compound B
(PiB) used as a tracer in PET imaging has shown excellent correspondence with Aβ deposition
in the brain. While PET can be a powerful tool to find the earliest onset of AD, access to PET is
limited. Now, there is great demand to develop the method that can find who will develop AD
at an early stage, and which must also be accessible for everyone.

Figure 2: Dynamic biomarkers of the Alzheimer’s pathological cascade: [9]
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1.2 MRI
General Description
Magnetic Resonance Imaging (MRI) is an imaging modality, which utilizes signals from Nu-
clear Magnetic Resonance (NMR) with a strong magnetic field [6]. Two-thirds of the human
body consist of water, and MRI can detect the signal from these water molecules. Since 1973,
strong and stable magnets, reliable detectors, and other hardware have been developed for ob-
taining higher spatial resolution. Today, MRI is one of the most useful imaging modalities.
Compared to other modalities, the advantages of MRI are as follows:

1. In addition to anatomical information, MRI can obtain functional information including
brain activity and metabolism.

2. The procedure is non-invasive, and subjects are not exposed to ionizing radiation.

3. MRI has a high contrast between different tissues.

4. Compared to X-ray tomography, bones do not laed to imaging artifacts.

Imaging Protocol
Depending on the purpose of measurement, researchers can select an imaging acquisitions.
There are many MRI protocols, and the development of new protocols are an active area of
research. Typical imaging methods and their features are as follows.

1. T1 weighted imaging
This imaging method shows anatomical structures of the brain. Water has low signal and
appears dark.

2. T2 weighted imaging
This image weighting is useful for detecting edema, revealing white matter lesions.

3. Fluid-attenuated inversion recovery (FLAIR)
The FLAIR procedure suppresses signals emitted from cerebrospinal fluids (CSF), so this
procedure is used for imaging periventricular hyperintense lesions.

4. Diffusion Weighted Imaging (DWI)
DWI can visualize the diffusion of water molecules. Details are shown in the next section.

Diffusion Weighted Imaging (DWI)
DWI measures the diffusion of water molecules inside the body. Because the diffusion of the
water molecules in the brain is restricted by obstructions in the environment, such as cell mem-
branes, vascular structures and axons, DWI gives us information about microscopic details of
the structure of the brain. The left panel of Fig. 3 shows schematic representation of elongate
tissues such as the white matter (axon). The direction of greatest diffusivity is assumed to be
parallel to the local direction of the white matter.

The signal ratio diffusion-weighted (S) to non diffusion-weighted signal (S0) is:

3



S

S0

= exp[−γ2G2δ2(∆− δ

3
)D] = exp[−bD], (1)

where γ is the gyromagnetic ratio, G is the strength of the gradient pulse, δ is the duration
of the pulse, ∆ is the time between the two pulses, and D is the diffusion coefficient. From the
above equation, D is derived as:

D = − log(S/S0)

b
(2)

The spatial anisotropy of the diffusivity is characterized by at least six different measure-
ments with different magnetic gradients. Thus the diffusion is modeled as a 3x3 tensors. In or-
der to analyze the results of DWI quantitatively, we use several index values, such as fractional
anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). The diffusivity of each
voxel is described as an ellipsoid of three eigenvectors (ε1, ε2, ε3) and eigenvalues (λ1, λ2, λ3)
(shown in the right image of Fig. 3) [11]. The three eigenvectors correspond to the direction of
diffusion, and the three eigenvalues describe the magnitude of diffusivity along each eigenvec-
tor. FA, MD, and RD are defined as follows:

FA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

2(λ21 + λ22 + λ23)
(3)

MD =
(λ1 + λ2 + λ3)

3
(4)

RD =
(λ2 + λ3)

2
, λ1 > λ2, λ3 (5)

Figure 3: The three-dimensional diffusivity as an ellipsoid: [11]

By definition, FA shows a value from 0 to 1, the former meaning that the diffusion in the
voxel is completely isotropic and the latter meaning that the direction of the water molecules in

4



the voxel is completely anisotropic. As explained above, motion of water molecules in the white
matter area is restricted by the myelin. Therefore, if the myelin is damaged, FA will typically
be smaller. MD will typecally be larger because MD shows how large the diffusion in the voxel
is, and the damaged myelin will make more room for the extracellular water. Solodkin et al
[10] reports that, by comparing the AD patients to health controls, some indexes of DTI (e.g.
FA and MD) show significant group differences.

1.3 Linear Mixed Model (LMM)
1.3.1 Linear Model (LM) and its Limitations

Several studies show that the size of the brain shrinks as people age. For example, Hommer et
al [12] reported that the brain size of male and female linearly decrease as they get older. We
can assume the relationship between two or more parameters in order to obtain general trends
and see how parameters affect each other. Because of its simplicity, the linear model (LM) is
widely used. LM is described as:

y = Xβ + ε, (6)

where y is a vector of n observations, X is a n ∗ p regressor matrix, β is a p-dimensional
vector of regression coefficients, and ε is a n-dimensional vector of residuals. The mean of y is
calculated as E(y) = Xβ. The regression coefficients β are estimated by

β = (X tX)−1X ty = X+y (7)

Only q of p regressors may have a significance on the prediction of observations y. The
F-test for a reduced model and the complete model is described as follows.

f =
n− p
q

SSH

SSE
, (8)

where SSH and SSE are the error variance for the reduced and complete model. A p-value
is calculated from this f test, and then the p-value is converted to z-score using the inverse of
the error function.

z(p) =
√

2erfc−1(2p− 1), p ∈ [0, 1] (9)

Typically, regression coefficients with p < 0.05(z > 1.96) are considered as significant.
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Figure 4: A part of the data of this research: GEN=gender (Male or Female), WT=weight,
GRP=clinical grouping (Healthy Controls (HC), Mild Cognitive Impairment (MCI), or
Alzheimer’s Disease (AD))

Fig. 4 shows a part of the data of this research. For example, age, gender, weight, and the
clinical grouping can be used as regressors in X . Gender and the clinical grouping are categri-
cal variables. As for gender, the column in X corresponding to gender has 0 for male, and 1 for
female. As for the clinical grouping, two columns are assigned in X for describing the clinical
grouping, one of which corresponds to MCI, and the other corresponds to AD. 1 in the column
for MCI means that the subject is MCI at that measurement, 1 in the column for AD means that
the subject is AD at that test.

The LM assumes that each observation is independent. In reality, however, patients in clin-
ical studies often take several tests over the course of years. In this case, observations within
each patient are not independent. This means that the LM cannot handle this model correctly.
In our case, as shown in Fig. 4, each patient has taken several MRI acquisitions. In this case,
we want to know the trends of DTI scalars that are common in all patients, as well as the dif-
ferences between each patient. The former refers to population effects, and the latter refers to
subject effects.

1.3.2 Linear Mixed Model (LMM)

The linear mixed model (LMM) is used to explicitly analyze the data where repeated measure-
ments are made on the same statistical units. The details and theory of LMM will be described
in the later section. Basically, the LMM extends the LM by considering the differences between
each patient. Observations y are described as:

y = Xβ + Uγ + ε, (10)
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where y is a vector of observations, with mean E(y) = Xβ, β is a vector of regression
coefficients for population effects, γ is a vector of regression coefficients for subject effects
with mean E(γ) = 0, and variance-covariance matrix var(γ) = G. ε is a vector of residuals
with mean E(ε) = 0 and variance var(ε) = R. X and U are matrices of regressors relating the
observations y to β and γ, respectively.

The first term on the right-hand side corresponds to the population effects, and the second
term represents the subject effects, which is unique in each subject. In the example of the brain
measurement above, the first term corresponds to the dependence of brain size and age with
respect to the whole sample, and the second term describes the difference in each subject. By
analyzing the subject effects, we can detect individual inferences on brain degeneration. For
our AD research, we will study both effects.

1.4 Aims
The final goal of developing the imaging technology for AD is to detect the onset of AD as
early as possible, which will make it possible to delay or stop the progression of AD at the early
stage, and increase patients’ quality of life. LMM can greatly help to analyze images because
the model gives us subject wise information as explained above. However, a downside of LMM
is the much increased computation burden. So far, no useful LMM code was available that
could be applied to big data. The aims of this research are:

1. To develop the tools that can analyze a large amount of images of the brain.
There are several software programs, like R, that allows us to analyze statistical data. These

software programs are widely used in many academic fields, and greatly benefits us with this
data. However, in regards to the data size, the computational burden is one of the most difficult
problems in analyzing statistical data, and current software cannot complete the image analysis
of our data within a reasonable time frame. Therefore, we employ compiled code and parallel
processing to achieve an acceptable analysis time.

2. To interpret results.
We use an exploratory strategy to determine which variables such as age, weight and gender

significantly influence brain structures.

3. To demonstrate how to use subject-wise information.
The LMM yields population information as β, and subject-wise information as γ. Because

applying the LMM to big data about brain aging is new, it is unclear whether the subject related
information formed in γ contains neurobiologically relevant information. Through this study,
we try to demonstrate an application that provides meaningful interpretation of subject wise
information.

7



2 Method
In the first part of this section, the theory of LMM will be explained, and then the brief intro-
duction of the post-process module for spatial correlation will be described.

2.1 Theory of LMM
2.1.1 Definitions

Consider i = {1, . . . ,m} units measured at j = {1, . . . , ni} timepoints with observations yij .
Let us denote xij as the covariate vector of the i-th unit at the j-th measurement for population
effects βββ ∈ Rp, and uij as the covariate vector of the i-th unit at the j-th measurement for
subject effects γγγi ∈ Rq (i.e., the unit-specific effects). The general form of the linear mixed
effects model writes [13]:

yi = Xiβ + Uiγγγi + εεεi where γγγi ∼ Nq(0,Di), εεεi ∼ Nni
(0,ΣΣΣi), cov(γγγi, εεεi) = 0. (11)

Now, denote the column vector of obervations:

y :=

y1
...

ym

 ∈ Rn where n :=
m∑
i=1

ni; (12)

the population effects matrix and coefficients:

X :=

X1
...

Xm

 ∈ Rn×p and βββ ∈ Rp; (13)

the subject effects matrix and coefficients:

U :=


U1 0n1×q . . . 0n1×q

0n2×q U2
... . . .

0nm×q Um

 ∈ Rn×(mq) and γγγ :=

γγγ1...
γγγm

 ∈ Rmq; (14)

and errors:

εεε :=

εεε1...
εεεm

 ∈ Rn; (15)

and define G as the diagonal block matrix of m matrices Di ∈ Rq×q, and R as the diagonal
block matrix of m matrices ΣΣΣi ∈ Rni×ni .

8



2.1.2 Estimation

Consider the linear mixed effects model:

y = Xβββ + Uγγγ + εεε,

(
γγγ
εεε

)
∼ Nmq+n

((
0
0

)
,

(
G(θθθ) 0mq×n
0n×mq R(θθθ)

))
(16)

with covariance vector θθθ. Using V(θθθ) = UG(θθθ)UT + R(θθθ), the population effects βββ and the
subject effects γγγ are estimated by:

β̂̂β̂β =
(
XT V(θ̂̂θ̂θ)−1X

)−1

XT V(θ̂̂θ̂θ)−1y and γ̂̂γ̂γ = GÛTV(θ̂̂θ̂θ)−1
(
y −Xβ̂̂β̂β

)
. (17)

The covariance vector θθθ is typically estimated using Restricted Maximum Likelihood (REML)
by:

θ̂̂θ̂θ = arg max

(
lp(θθθ)−

1

2
ln |XT V(θθθ)−1X|

)
. (18)

Now, we spell out details of the iterative estimation process. For the special case ΣΣΣi =
σ2Ini

, the covariance vector θθθ is comprised of θθθ = {σ2,D} [14]. Note that this vector has
s = q(q + 1)/2 + 1 unique elements.

We start from OLS estimates for β̂̂β̂β and compute residuals r̂, leading to OLS estimates for γ̂̂γ̂γ:

β̂̂β̂β0 =

(
m∑
i=1

XT
i Xi

)−1 m∑
i=1

XT
i yi and r̂0,i = yi −Xiβ̂̂β̂β0, (19a)

γ̂̂γ̂γ0,i =
(
UT
i Ui

)−1
UT
i (yi −Xiβ̂̂β̂β0) = U+

i r̂0,i. (19b)

Next, we compute starting values for σ̂2 and D̂:

σ̂2
0 =

∑m
i=1 y

T
i yi − β̂̂β̂βT0

∑m
i=1X

T
i yi −

∑m
i=1 γ̂̂γ̂γ

T
0,iU

T
i r̂0,i

n− (m− 1)q − p
(20a)

D̂0 =
1

m

m∑
i=1

γ̂̂γ̂γ0,iγ̂̂γ̂γ
T
0,i −

σ̂0
2

m

m∑
i=1

(
UT
i Ui

)−1
. (20b)

Now, we can iterate the EM algorithm. First, the e-step consists of estimating the covariance
matrix V̂t, then β̂̂β̂βt and γ̂̂γ̂γt,i, where the subscript t denotes the iteration:

V̂t,i = UiD̂tU
T
i + σ̂2

t Ini
, (21a)

β̂̂β̂βt = Â−1
t

m∑
i=1

XT
i V̂

−1
t,i yi using Ât =

m∑
i=1

XT
i V̂

−1
t,i Xi (21b)

γ̂̂γ̂γt,i = D̂tU
T
i V̂

−1
t,i r̂t,i, (21c)
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Next, the m-step consists of estimating σ̂2 and D̂:

P̂t,i = V̂−1
t,i

[
I−XiÂ

−1
t XT

i V̂
−1
t,i

]
, (22a)

σ̂2
t+1 =

1

n

m∑
i=1

[
(r̂t,i −Uiγ̂̂γ̂γt,i)

T (r̂t,i −Uiγ̂̂γ̂γt,i) + σ̂2
t tr(I− σ̂2

t P̂t,i)
]
, (22b)

D̂t+1 =
1

m

m∑
i=1

[
γ̂̂γ̂γt,iγ̂̂γ̂γ

T
t,i + D̂t(I−UT

i P̂t,iUiD̂t)
]
, (22c)

Convergence is checked by observing the log-likelihood:

LREML(θθθ) =
1

2

(
m∑
i=1

[
ln |V̂−1

i | − rTi V̂
−1
i ri

]
− ln |Â|

)
. (23)

2.1.3 Inference

Recall that:
β̂̂β̂β =

(
XT V(θ̂̂θ̂θ)−1X

)−1

XT V(θ̂̂θ̂θ)−1y so var(β̂̂β̂β) = Â−1. (24)

Thus:
β̂j ± z1−α/2

√
Â−1 (25)

gives an approximate 100(1− α)% confidence interval for βj . Likewise, for γγγ we have:

var(γ̂̂γ̂γi − γγγi) = D̂i

[
I−UT

i P̂iUiD̂i

]
. (26)

Suppose that inferences are to be made simultaneously about l linear combinations of the
elements of βββ: Lβββ, for a (l × p) population effects matrix L. We examine the hypothesis
H0 : Lβ̂̂β̂β = d vs. H1 : Lβ̂̂β̂β 6= d using a Wald-type test:

1

l

(
Lβ̂̂β̂β − d

)T [
LÂ−1LT

]−1 (
Lβ̂̂β̂β − d

)
∼ F(α,l,ν), (27)

where l = rank(L) denote the nominator and ν the denominator degrees-of-freedom, respec-
tively.

For a single regressor of interest r and d = 0, this F-test simplifies to a t-test:

βr√
Â−1
r,r

∼ t(α,ν). (28)

The degrees-of-freedom ν have to be estimated from the data. For m large, the t-distribution
does not depend much on ν, so we can set ν = m − 1 (inference option MLarge). A second
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option is to use a Satterthwaite approximation for ν̂ (inference option Sat):

ν̂r =

(
Â−1
r,r

)2
ĝ̂ĝgT Ĥ−1ĝ̂ĝg

, (29)

where ĝ̂ĝg corresponds to the vector of first partial derivates of Â−1 with respect to the s compo-
nents of the covariance vector θθθ, i.e., ĝ̂ĝg = {∂Â−1

∂θθθ1
, . . . , ∂Â

−1

∂θθθs
}T , and Ĥ corresponds to the matrix

of second partial derivatives of the likelihood function LREML with respect to the s components
of the covariance vector θθθ, i.e.,

Ĥ =


∂2LREML

∂θθθ1∂θθθ1

∂2LREML

∂θθθ2∂θθθ1
. . . ∂2LREML

∂θθθ2∂θθθs
∂2LREML

∂θθθ2∂θθθ1

∂2LREML

∂θθθ2∂θθθ2... . . .
∂2LREML

∂θθθs∂θθθ1

∂2LREML

∂θθθs∂θθθs

 (30)

Note that ĝ̂ĝg and Ĥ can be computed just once and re-used for each regressor. Currently, deriva-
tives are computed numerically using finite differences, although derivatives are available in
explicit form [15].

For l ≥ 1 and n small, Kenward and Roger [16] provided a modification (inference option
KR): (

Lβ̂̂β̂β − d
)T [

LÂ−1
KR LT

]−1 (
Lβ̂̂β̂β − d

)
= λF(α,l,m), (31)

where Â−1
KR denotes an adjusted covariance matrix:

Â−1
KR = Â−1 + 2 Â−1ẐÂ−1, (32)

For the computation of matrix Ẑ, refer to ([17], pp. 22ff). Form s symmetric incidence matrices
Ei, i = {1, . . . , s} of dimensions q× q with ones indicating the positions of unique elements in
D̂. The last matrix (corresponding to σ̂2) equals Iq. Form the auxillary matrices:

Gi,k = UkEiU
T
k , ni × ni, i = {1, . . . , s}, k = {1, . . . ,m}, (33a)

Ĥi,k = Gi,kV̂
−1
k Xk, ni × p, i = {1, . . . , s}, k = {1, . . . ,m}, (33b)

T̂i,k = −(V̂−1
k Xk)

T Ĥi,k, p× p, i = {1, . . . , s}, k = {1, . . . ,m}, (33c)

Q̂i,j,k = ĤT
i,kV̂

−1
k Ĥj,k, p× p, i, j = {1, . . . , s}, k = {1, . . . ,m}, (33d)

K̂i,j =
m∑
k=1

[
tr(V̂−1

k Gi,kV̂
−1
k Gj,k)− 2 tr(Â−1Q̂i,j,k) + tr(Â−1T̂i,kÂ

−1T̂j,k)
]
, (33e)

s× s, i, j = {1, . . . , s}, to finally yield: (33f)

Ẑ =
s∑
i=1

s∑
j=1

K̂−1
i,j

m∑
k=1

(
Q̂i,j,k − T̂i,kÂ

−1T̂j,k

)
p× p, i, j = {1, . . . , s}, (33g)
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The constant λ is computed as:

Θ̂̂Θ̂Θ = LT
(
LÂ−1LT

)−1

L, Φ̂̂Φ̂Φi,k = Θ̂̂Θ̂ΘÂ−1T̂i,kÂ
−1 (34a)

a1 =
s∑
i=1

s∑
j=1

Ŵi,j

m∑
k=1

tr(Φ̂̂Φ̂Φi,k)tr(Φ̂̂Φ̂Φj,k), (34b)

a2 =
s∑
i=1

s∑
j=1

Ŵi,j

m∑
k=1

tr(Φ̂̂Φ̂Φi,kΦ̂̂Φ̂Φj,k), (34c)

b =
1

2l
(a1 + 6a2), g =

(l + 1) a1 − (l + 4) a2
(l + 2) a2

, (34d)

c1 =
g

3l + 2(1− g)
, c2 =

l − g
3l + 2(1− g)

, c3 =
l + 2− g

3l + 2(1− g)
, (34e)

Ê =
1

1− a2/l
, V̂ =

2

l

[
1 + c1b

(1− c2b)2 (1− c3b)

]
, (34f)

ρ̂ =
V̂

2Ê2
, m̂ = 4 +

l + 2

l ρ̂− 1
, and λ =

m̂

Ê(m̂− 2)
. (34g)

2.1.4 Implementation

Interface definition:

• Input: unit-wise population and subject effect matrices Xi,Ui (vector of matrices), unit-
wise observations yi (vector of vectors), convergence limit l, and inference option o.

• Output: fixed effects coefficients and associated significance β̂̂β̂β, pβ̂̂β̂β (vectors).

Algorithm:

1. Compute n, determine m.

2. Initialize β̂̂β̂β0 and γ̂̂γ̂γi (Eq. 19), then σ̂2
0 and D̂0 (Eq. 20).

3. Iterate:

4. Perform the E-step by computing V(θ̂̂θ̂θ)t,i, β̂̂β̂βt, and γ̂̂γ̂γt,i (Eq. 21).

5. Perform the M-step by computing P̂t,i, σ̂
2
t , and D̂t (Eq. 22).

6. Compute log-likelihood LREML (Eq. 23).

7. If dL < l exit, else goto step 3.

8. Compute inference on β̂̂β̂β using inference option o (Eq. 27).
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2.2 Spatial correlation
In this study, we adopt p < 0.05 as our criteria to decide whether the regressors have signif-
icance or not. However, as the number of voxels increases, type-1 error also increases. For
example, when we discuss one million voxels, fifty thousand voxels would have type-1 error.
One of the methods we used to avoid type-1 error is the Bonferroni correction. Because this
method is relatively simple, it is widely used to correct type-1 error. However, the one disad-
vantage of the Bonferroni correction is that this correction is too conservative. In this research,
we have developed two sets of codes for multiple comparisons. One is the FW method (Friston-
Worsley method) [18], and the other is the BH procedure (Benjaminie-Hochberg procedure)
[19].

Biologically, tissues are continuous objects, so voxels touching each other should have sim-
ilar statistical results. If one voxel shows completely different statistical results from neigh-
boring voxels, this statistical result may be wrong. The FW method has introduced this idea
for the correction. On the other hand, the BH method is a powerful method for controlling the
family-wise error rate. However, this correction can be used for any other purpose besides a
brain image analysis. This spatial correlation module is optional in order to correct inferences
as post-process procedure.

2.3 Implementation
2.3.1 Software and Validation

In statistics, R, a free software, is widely used. R has many functions for almost all statistical
purposes including finance, agriculture, and medicine. Several implementations of LMM are
available in R, and were validated by the researchers all over the world. lme4, one of the func-
tions of R calculating LMM, is suitable for our purpose, but the only problem that R has for
our research is its computational speed. R is an interpreted language, and because we deal with
very large data sets, it is almost impossible for R to complete the iteration with a realistic time
period. Thus, we decided to develop our own implementation in C++. In this research, we used
results from R to validate our results.

As written in the previous section, the EM algorithm is repeated until the the difference in
the log-likelihood dL reaches the convergence limit l. The smaller the convergence limit, the
more accurate the result at the expense of a longer time to converge. In addition to the conver-
gence limit, the floating point representation also affects the computation speed. Using double
precision format gives us more accurate results, but the computation takes longer compared to
a float precision.

We randomly chose 10 x 10 voxels in the brain from all image data, and compared the com-
putational speed, and converge for several conditions. For this test, the dependent variable is
the FA value, and total number of the image datasets is 680 (n in the above section), and the
number of subjects are 172 (m in the above section). Each subject was scanned between two to
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six times (ni in the above section) over a period of up to three years.

In the first experiment, we set two regressors for the population effects (X) and subject ef-
fects (U ), which corresponds to typical settings for the time-series analysis (intercept and aging
rate).

Tab. 1 shows the result. In this experiment, all conditions could converge within a maxi-
mum of 1000 iterations. As for the computational time, if we choose a double precision and
dl = 1E − 10, the computational time took almost three times longer than the rest of three
conditions.

X U dl precision computational time [s] average iteration # notes
2 2 1E-6 float 24.43 108.3
2 2 1E-10 float 33.74 168.7
2 2 1E-6 double 27.48 119.7
2 2 1E-10 double 102.07 651.2

Table 1: Computational time and the average iteration number per voxel

In the second experiment, we assigned seven regressors for population effects (intercept,
rate, age at the first test, two clinical grouping (Mild Cognitive Impairment (MCI) and Alzheimer’s
Disease (AD)), and two regressors for subject effects (intercept and age). The FA value will be
described as follows.

FA = βIntercept + βdays ∗ days+ βAge ∗ Age
+ βMCI + βAD + βMCI ∗ days+ βAD ∗ days

+ γIntercept + γdays ∗ days

As shown in Tab. 2, when we used a float precision, the optimization could not converge
even if we chose 1E − 6 as a relatively low convergence criteria. When we chose a double
precision, the iteration could converge, but the computation time increased almost three times
between dl = 1E − 6 and dl = 1E − 10.

X U dl precision computational time [s] average iteration # notes
7 2 1E-6 float 311.69 > 1000 no convergence
7 2 1E-10 float 319.14 > 1000 no convergence
7 2 1E-6 double 98.05 123.3
7 2 1E-10 double 234.21 669.8

Table 2: Computational time and the average iteration number per voxel
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Finally, we wanted to learn how much the choice of the convergence limit influences the
precision of the results. In order to validate our algorithm, we estimated the regression coeffi-
cients by R and our code. Tab. 3 shows the regression coefficients β calculated by R and our
code with two different convergence criteria, dl = 1E − 6 and dl = 1E − 10. Results calcu-
lated by our code with the two different conditions are in good agreement with the regression
coefficients calculated by R.

R 1E-6, double 1E-10, double
Intercept 5.117E-01 5.117E-01 5.117E-01
Days -7.744E-05 -7.736E-05 -7.744E-05
Age -1.382E-03 -1.382E-03 -1.382E-03
GRP1 MCI -5.215E-02 -5.214E-02 -5.215E-02
GRP2 AD -5.528E-02 -5.507E-02 -5.528E-02
Days:GRP1 MCI 8.762E-05 8.780E-05 8.762E-05
Days:GRP2 AD 1.192E-04 1.177E-04 1.192E-04

Table 3: Regression coefficients calculated by R and our code with two different convergence
criteria. The regression coefficients at the left column were calculated by R to validate our code.

Tab. 4 shows p-values calculated by R and our code with different convergence criteria.
Because there is no difference in the comparison between dl = 1E − 6 and dl = 1E − 10, we
selected a double precision and dl = 1E − 6 as the criteria for our later research.

The p-values calculated by our code show larger values than the results from R, meaning
our results are more conservative. The main reason of this difference is that R and our code
adopt different optimization methods. R uses the Newton-Raphson method, and ours adopt an
iterative REML method as described in the previous section.

R 1E-6, double 1E-10, double
(Intercept) 2.000E-16 1.644E-12 1.692E-12
Days 4.009E-03 1.003E-02 8.989E-03
Age 6.419E-02 6.822E-02 6.846E-02
GRP1 MCI 7.760E-04 1.047E-03 1.002E-03
GRP2 AD 4.717E-03 5.907E-03 5.571E-03
Days:GRP1 MCI 5.566E-03 9.608E-03 8.754E-03
Days:GRP2 AD 1.270E-02 2.307E-02 2.060E-02

Table 4: p-values calculated by R and our code with two different convergence criteria. The
regressors at the right column were calculated by R to validate our code.

2.3.2 Computational Framework

As discussed above, the big challenge for this research is to shorten the computational time
for the statical analysis. Although we have decided to use C++, which is much faster than
interpreted software such as R and MATLAB, we still need to care about the total amount of
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time. A 3D image of the brain of a subject consists of 200 ∗ 256 ∗ 132 voxels, meaning there
are 132 slices of 2D image data with 200 ∗ 256 pixels for one brain slice. We have 730 MRI
volumes acquired in 177 subjects. If we analyze one slice, it takes almost one hour to complete
the iteration. Based on this result, it will take about 130 hours (almost a week) to complete to
analyze the whole data set.

In order to speed up computation, we parallelize computation on a cluster. Our lab has a
cluster of thirty processors. We use the Slurm (Simple Linux Utility for Resource Manage-
ment) cluster scheduler [20] to distribute processes on our cluster. Each process computes a
single image slice, so we use 132 processes per analysis. Each command line has the following
information.

- input file name: define a slice for the statistical analysis

- output file name: define a file for the estimated 2D map of regressors and z-scores

- inference method: select from the following options, MLarge, Satterthwaite, and KR

- regressor matrix for population effects

- regressor matrix for subject effects

- mask image: skip voxels that do not have DTI information

The scheduler assigns a job to an idle processor. Roughly speaking, we can expect to finish
the analysis for all slices around 4 hours (132 hours / 30 processors = 4 hours). Of course, the
computation time depends on the number of regressors, the precision format, and the amount
of brain voxels per slice. The larger number of regressors we use, the longer time it will take to
complete. Details of computation time will be discussed in Section 4.
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3 Experiments

3.1 Sample
3.1.1 General Description

The MRI acquisitions were taken at multiple sites. The total number of the subjects included
in this study is 176 (108 male, 68 female), and 730 MRI images had been taken so far along
with clinical diagnoses to determine the clinical grouping of three conditions (healthy controls,
MCI, or AD) The first image was taken on June-16th, 2010, and the last image was taken on
February-6th, 2014.

3.1.2 Demographic Information

As discussed in Section 2, the reason we use the LMM for this analysis is that the MRI acquisi-
tions are time-series data. Fig. 5 shows the histogram of the number of MRI acquisitions each
subject. All subjects had between two and six MRI acquisitions, with an average of four.

There were no fixed dates for subjects to take MRI acquisitions. Fig. 6 shows the days
from the first tests of each subject. The MRI acquisitions were done throughout almost three
years.The shortest interval was twenty two days from the former test, and the longest was 693
days.

Figure 5: Histogram of the number of MRI
acquisitions.

Figure 6: Days of each MRI acquisition from
the first MRI acquisitions.

Subjects included in this study had an age between 48 and 90 years at the time of their first
scan (average 73 years). Fig. 7 shows the histogram of the age when the subjects took the first
MRI acquisition.
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Figure 7: Histogram of Age.
Figure 8: Histogram of Age of each MRI acqui-
sition, color-coded according to clinical group-
ing.

The clinical grouping consists of three categories, including healthy controls (HC), Mild
Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). Grouping was assigned by physi-
cians after testing subject’s memory function. This sample includes 24% HC subjects, 56%
MCI subjects, and 20 % AD subjects. Fig. 8 shows a subject’s age at each MRI acquisition, and
is color-coded according to the clinical grouping.

Alzheimer’s Disease Assessment Scale (ADAS) is a clinical measure for the severity of AD.
According to the ADNI General Procedure Manual, ADAS is described as ”a brief cognitive
test battery that assesses learning and memory, language production, language comprehension,
constructional praxis, ideational praxis, and orientation” ([21]). Fig. 9 is a boxplot of the
clinical grouping and ADAS.

Subjects have different brain volumes, so we use the peeled brain volume (PLV) for correc-
tion. Fig. 10 shows PLV for each subject.
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Figure 9: Boxplot of the clinical grouping and
ADAS. Figure 10: PLV for each subject.
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3.1.3 MR Image Pre-Processing

People have different brain sizes. Even in one person, his/her brain size changes over time. One
of our goals is to statistically identify which areas of the brain deteriorate when people develop
AD. In order to analyze the brains of different sizes, we mapped all brain imaging data into a
common space. The method is as follows:

T1 weighted imaging data were analyzed using the following processing steps:

1. Scan data in DICOM format were converted into BRIAN format, aligned with the stereo-
tactical coordinate system [25] and interpolated to an isotropical voxel size of 1mm using
a fourth-order b-spline method.

2. All datasets were registered with the ICBM 2009c template [23] using a recent approach
for nonlinear registration [27]. All registered head images were averaged, correcting for
the mean intensity. The brain was extracted from the average to yield the brain template
1.

3. A mask of the intracranial volume was generated from each head dataset by a registration
approach and used to extract the brain [24].

4. Data were corrected for intensity inhomogeneities using a newly developed technique that
estimates the gain field by comparing the global intensity distribution with local ones. An
intensity-corrected T1-weighted image of the brain is obtained.

5. Data were segmented by a fuzzy approach using 3 classes [26], yielding a set of 3 prob-
ability images. Each voxel receives a probability for belonging to the intensity class 0:
cerebrospinal fluid, CSF; 1: grey matter, GM, or 2: white matter, WM. As result, gross
compartment volumes (in ml) for GM, WM, CSF, and peeled brain volume (PLV) were
obtained for all subjects.

6. All intensity-corrected brain images were registered with template 1, and averaged to
yield the brain template 2.

Diffusion-weighted imaging data were analyzed using the following processing steps:

1. Scan data in DICOM format were converted into BRIAN format, and image volumes cor-
responding to all gradient directions were registered with the gradient-free (T2)-weighted
image volume using affine registration and mutual information as an image similarity
metric.

2. Diffusion tensors were computed from the registered diffusion-weighted images using a
nonlinear procedure including anisotropic noise filtering [22]. Tensors were converted
into fractional anistropy (FA), mean diffusivity (MD), and radial diffusivity (RD) values.

3. The T2-weighted images were linearly registered with the (high-resolution) T1-weighted
obtained in step 4 above, and the resulting transformation was used to map FA, MD, and
RD data into stereotaxic space. Next, the deformation field obtained in step 6 above was
used to warp data into MNI space.
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4. Data were smoothed using a Gaussian filter (σ = 2, FWHM of 4.7 mm), and volumes
were re-grouped as stacks of slices of images.

3.2 Prototypical Example
3.2.1 Model

In order to demonstrate the usefulness of LMM, we now provide a typical use case, compare
with results of the LM, and discuss results.

We are interested in analyzing how the white mater deteriorates as people age, thus a sub-
ject’s age is one of the most important regressors. In addition, we are searching for the disease
related effects, so the clinical grouping is included. As explained above, PLV should also be
included because we use this for adjusting the brain volume of each subject. This matrix is
shown in Fig. 11. The columns of MCI and AD show the clinical grouping, and 1 means the
subject is AD (or MCI) at that MRI acquisition. If both of AD and MCI are 0, the subject was
a HC.

Figure 11: Part of Population effects matrix for a prototypical example. 1 in the column AD (or
MCI) shows the subject was AD (or MCI) at that point. If both columns of AD and MCI are 0,
the subject was a HC.

As we assume that people age differently, by including age in the subject effects matrix, we
can model individual differences of their aging process.

Eq. 35 is the equation we used to evaluate the images. As described above, the values of
MCI and AD are 0 or 1.

FA = βIntercept + βAge ∗ Age+ βMCI ∗MCI + +βAD ∗ AD + βPLV ∗ PLV
+γIntercept + γAge ∗ Age

(35)
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3.2.2 Result

We obtained volumes of all regression coefficients and z-scores for FA, MD, and RD. We are
interested in how aging affects the brain and which differences are found in MCI and AD pa-
tients with regard to healthy controls.

In this section, a hot iron colorbar is used to display the positive scale of the z-score, and
a deep sea colorbar is used for the negative scale. Fig. 12 shows the scale of these color bars.
Signs of z-scores match signs of β.

Figure 12: A hot iron colorbar for the positive scale (top) and a deep sea colorbar for the
negative scale (bottom).

Here, we explain how to interpret the regression coefficients in Eq. 35. As mentioned in
Section 1, when the direction that water molecules can move is limited by the axon, FA has a
larger value. On the other hand, when the axon deteriorates, FA shows a smaller value because
water molecules can freely move. At the same time, MD and RD have larger value because
there is much space for the cellular water there.

βAge corresponds to the change of FA (MD, RD) with age. Fig. 13 shows how to interpret
the relationship between DTI scalars. Case 1 can be seen in the areas with the axon fibers
which have the same direction (white matter). Case 2 can be seen in the areas with the axon
fibers which have different directions and different deterioration speeds (cerebral cortex).
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Figure 13: Interpretation of the relationship between DTI scalars.

βMCI and βAD correspond to the difference of FA (MD, RD) between the MCI (AD) group
and HC group. Positive means that the MCI (AD) group has larger FA (MD, RD) than HC
group at that voxel.

Images and Interpretations: FA
Fig. 14 shows the significance of the age-related regressor expressed as a z-score. From the
right panel, we can see that the corpus callosum (white arrow) significantly deteriorates as the
result of aging process. In outer layer of the brain (gray matter), FA increases as people age.
This effect can be explained as case 2 in Fig. 13.

Figure 14: The significance of the age-related regressor expressed as a z-score (FA).
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Fig. 15 shows the significance of the group-related regressor (MCI) expressed as a z-score.
The left panel shows that both frontal white matter compartments (white arrows) have signifi-
cantly smaller FA compared to healthy controls.

Figure 15: The significance of the group-related regressor (MCI) expressed as a z-score (FA).

Fig. 16 shows the the significance of the group-related regressor (AD) expressed as a z-
score. The left panel shows that both frontal white matter compartments have significantly
smaller FA compared to healthy controls (similar to Fig. 15). On the other hand, the striate
(primary visual) cortex shows larger FA (white solid arrows) . From the center panel, we can
see the internal capsule has significantly larger FA (white dash arrows). The right panels shows
that the the corpus callosum has smaller FA.

Figure 16: The significance of the group-related regressor (AD) expressed as a z-score (FA).

Images and Interpretations: MD

Fig. 17 shows the significance of the age-related regressor expressed as a z-score. Almost
all areas show that MD increases as people age. Small orbitofrontal (white solid arrow in the
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right panel) and occipital basal (white dash arrow) regions show a slight decrease of MD with
age.

Figure 17: The significance of the age-related regressor expressed as a z-score (MD).

Fig. 18 shows the significance of the group-related regressor (MCI) expressed as a z-score.
The center panel shows that the centrum semiovale (white solid arrows) has significantly larger
MD. The right panel shows positive z-scores in the vicinity of the splenium (white dash arrow).

Figure 18: The significance of the group-related regressor (MCI) expressed as a z-score (MD).

Fig. 19 shows the significance of the group-related regressor (AD) expressed as a z-score.
Almost all white matter areas have larger MD, and gray matter areas have smaller MD com-
pared to healthy controls. Especially, from the center panel, we can see the high z-scores around
the temporal lobe (white solid arrows), and also the right panel shows that the front lobe (white
dash arrow) has high z-scores. Some cortical regions show lower MD although they barely
reach statistical significance.
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Figure 19: The significance of the group-related regressor (AD) expressed as a z-score (MD).

Images and Interpretations: RD

Fig. 20 shows the significance of the age-related regressor expressed as a z-score. Almost
all areas show z-scores similar in magnitude and sign compared to the results for MD (Fig. 17).

Figure 20: The significance of the age-related regressor expressed as a z-score (RD).

Fig. 21 shows the significance of the group-related regressor (MCI) expressed as a z-score.
Almost all areas show z-scores similar in magnitude and sign compared to the results for MD
(Fig. 18).
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Figure 21: The significance of the group-related regressor (MCI) expressed as a z-score (RD).

Fig. 22 shows the significance of the group-related regressor (AD) expressed as a z-score.
White matter areas show positive z-scores, and the areas around the temporal lobe (white arrows
in the center panel) show high significance (z > +1.96).

Figure 22: The significance of the group-related regressor (AD) expressed as a z-score (RD).
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3.3 Subject-wise information
3.3.1 FA and Aging: A Closer Look

A main advantage of using LMM in this context is that subject-level results are obtained in the
form of regression coefficients γ. We now try to explore how this information can be used. We
consider FA as the quantity of interest, and focus on arbitrary selected single voxel at x=80,
y=87, z=100. A plot of FA vs. age shows a considerable variability (Fig. 23).

Figure 23: FA vs. age at (x,y,z)=(80,87,100) for all examinations

We computed the following LMM:

FA = βIntercept + βAge ∗ Age+ γIntercept + γAge ∗ Age, (36)

that has population and subject wise regressors for age-related effects.

Fig. 24 is the relationship between γAge and FA for each subject. Each point is color-
coded according to the clinical grouping. In order to investigate whether these γAge have dif-
ferences between the clinical groupings, we tested this result with the following linear model:
lm(γAge˜GRP ).
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Figure 24: Relationship between FA and γAge : red, green and blue show HC, MCI, and AD
subjects respectively. Note that this arbitrary selected location (80,87,100) is not expressed to
show disease-related differences.

Tab. 5 shows that AD subjects have significantly larger γAge than healthy controls, and the
average value of γAge for AD subjects is positive. This means that the average deterioration
speed of AD subjects is slower than those of healthy controls.

Testing for group-related differences of FA with the following linear model: (lm(FA˜GRP )),
we found that AD subjects have lower FA values, compared to both other groups (Tab. 6).

Averaged γAge p value
HC -2.120E-04 0.351

MCI -7.470E-05 0.614
AD 4.695E-04 0.046

Table 5: Averaged γAge for each clinical group.

Averaged FA p value
HC 0.331 < 2e− 16

MCI 0.309 0.118
AD 0.289 0.017

Table 6: Averaged FA for each clinical group.

We found the following two facts on this voxel: (1) the brain of AD subjects deteriorates
slower, and (2) FA value of AD subjects is smaller than healthy controls. Based on these
two facts, we hypothesized a prototypical aging curve as shown in Fig. 25: initially, brains
deteriorate at a certain rate. Later, this rate slows down.
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Figure 25: Prototypical aging curve.

3.3.2 Individual Aging Effects

In order to obtain clues for a prototypical aging curve, we now separate age related effects from
disease related effects, and focus on healthy controls. We assume that some of the variance in
Fig. 23 is due to an individually different onset in the aging process, called ∆Age. As shown
in Fig. 26, ∆FA is defined as the difference between FA for each subject and the blue line at
the average age. And then ∆FA for each subject is converted to ∆Age. The blue line shows the
population effects of this group.
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Figure 26: Each subject has an individual onset and speed of deterioration. ∆FA for each
subject is converted to ∆Age.

∆FAsubjecti =FAsubjecti − FAGeneral deterioration
=Xβ + Uγ −Xβ
=Uγ note: Age=average age of subjects

∆Agesubjecti =
∆FAsubjecti
βAge + γAgei

We tested the following two sets of population and subject effects matrices to calculate
∆Age, and computed it for the whole brain.

Model A: X=Intercept, Age, PLV and U=Intercept
Model B: X=Intercept, Age, PLV and U=Intercept, Age

Because we are interested in the voxels which show significance about their deterioration,
∆Age for each subject is calculated using only for voxels with z < −1.96. ∆Age is derived for
all voxels for each subject.

First, we are interested to test whether ∆Age is random or may carry neurobiological infor-
mation. If our hypothesis is true, ∆Age calculated for the whole brain of one subject should
ideally have an unimodal distribution. If there are two peaks, this means that two areas dete-
riorate at different rates, or have different onsets. If there is no peak, no subject related onset
can be derived from this model. Fig. 27 is the result of both model A and B for all healthy
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controls, which shows single peak for each subject. This result suggests that we can use ∆Age
as a subject related variable.

Figure 27: Density curve of ∆Age for each subject. Different colors show different subjects.
The total number of healthy controls is 43.

In order to decide which model better describes the data, we computed the standard devia-
tion of ∆Age for each subject for both models. Fig. 28 shows ∆Age and standard deviation for
each subject for both models. The paired T-test showed that model B has significantly smaller
standard deviation. Therefore, we adopted the model B for the next study.

Figure 28: ∆Age (left) and standard deviation (right) for each subject.

Disease Onset: Prototypical deterioration
As we defined ∆Age as the difference from the prototypical deterioration curve shown in Fig.
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25, we can use ∆Age to derive the prototypical deterioration curve by subtracting ∆Age from
the age of each measurement. Fig. 29 shows the result of the relationship between FA (MD,
RD) and the corrected age using ∆Age. The corrected relationship shows less variance.

Figure 29: The relationship between averaged FA (left), MD (center), and RD (right) vs. age.
Blue dots show original measurement, and red dots show corrected data with ∆Age. The red
line is the fitting result.

In order to numerically describe this result, we fitted FA (MD, RD) vs. age by the model
in Eq. 37. The result shows that the deterioration speed of FA becomes slower as people age,
which matches our model described in Fig. 25.

DTIscalar = a+ b ∗ exp(c ∗ Age) (37)

FA MD RD
a 0.167 5.896 3.088
b 1.593 -6.249 -3.670
c -0.033 -0.0036 -0.0074

Table 7: Fitting coefficients for the corrected DTI scalars.

∆Age is independently estimated for FA, MD, and RD. If ∆Age corresponds to an individ-
ual aging onset, ∆Age estimated from FA, MD, and RD should show similar results. Fig. 30
shows the relationship of ∆Age estimated by FA and MD (left panel), and FA and RD (right
panel). Tab. 8 shows the fitting results of lm(∆AgeMD (RD)˜∆AgeFA)). The correlation ma-
trix of ∆Age estimated by each DTI scalar is shown in Tab. 9. In summary, the high correlation
confirms the hypothesis that ∆Age has individual biological significance.
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Figure 30: Relationship of ∆Age between FA and MD (left), and FA and RD (right).

MD and FA RD and FA
β p-value β p-value

intercept -1.5464 2.55E-4 -1.3745 9.15e-05
slope 0.6711 4.53e-06 0.7477 9.45e-09

Table 8: Linear fitting coefficients for MD and FA (left), RD and FA (right)

FA MD RD
FA 1 0.636 0.746
MD 0.636 1 0.985
RD 0.746 0.985 1

Table 9: Correlation matrix for ∆Age.

Here, we examined how subject wise information can be used. We modeled a prototypi-
cal aging process, and found ∆Age carries individual biological information. In addition, we
derived a prototypical age-dependency of FA, MD and RD in healthy subjects using ∆Age.
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4 Discussion: Comparison of LM and LMM
Computation Speed
As described in Section 2, the estimation of the regression coefficients in the LMM is an iterative
process, while in the LM, a matrix-vector product is sufficient for defining the regression coef-
ficients. Thus, the computation time for LMM is always longer than LM. In order to compare
the computation speed, we calculated LMM and LM for different conditions. The calculation
was done for one slice using the sample group described in Section 3. Tab. 10 shows the re-
sult. Because data load and other operations take longer than the iteration process, computation
times for LM are almost independent of the size of the regression matrix. However, the itera-
tion speed of LMM strongly depends on the number of regressors in U (subject effects matrix).
When only one regressor is used in U, it takes two minutes regardless of the number of regres-
sors in X (population effects matrix), but if two regressors are used in U, the iteration time is 20
times longer than with one regressor in U.

LM LMM
X

Population Effects
U

Subject Effects Time(min)
X

Population Effects
U

Subject Effects Time(min)

Intercept
Age - <1

Intercept
Age Intercept 2

Intercept
Age

ADAS
- <1

Intercept
Age

ADAS
Intercept 2

Intercept
Age
Days

ADAS

- <1

Intercept
Age
Days

ADAS

Intercept 2

Intercept
Age - <1

Intercept
Age

Intercept
Age 50

Intercept
Age

ADAS
- <1

Intercept
Age

ADAS

Intercept
ADAS 56

Intercept
Age

ADAS
- <1

Intercept
Age

ADAS

Intercept
Age 86

Table 10: Computation speed for different conditions: This test was calculated for slice num-
ber=100, and DTI scalar=FA.
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Regression Coefficient

Both LM and LMM calculate regression coefficients and z-scores for population effects.
Here we will compare the results from both LM and LMM.

Figure 31: 2D maps of βAge for LM (left) and LMM (right).

Fig. 31 shows the 2D maps of βAge for one slice calculated by both models (LM is at the left
side, and LMM is at the right side). Intercept and age are used in both X and U. βAge estimated
by LMM has less spatial details. Although voxel-wise computations are independent, the LMM
map appears smoother than the LM map. Due to the additional flexibility of the LMM, some of
the variance in the data may be found in the subject-level coefficients now.

In order to compare both results numerically, we calculated the ratio as obtained from both
models. Fig. 32 shows the ratio of βAgeLMM

andβAgeLM
. More than 84% of the voxels match

each other within ± 20% accuracy.
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Figure 32: Histogram of βAgeLMM

βAgeLM

. The voxels with z < −1.96 are used for this histogram.

This result is very useful when we focus on population effects. As we showed in the pre-
vious section, using LM is always faster than LMM, so we can use LM for exploration phases.
For example we can test several models with LM, and then we can develop refined models using
LMM.

Inference
As discussed the previous section, statistically, LMM can handle with time-series measurement
correctly. Here, we compare inferences between both models.

Fig. 33 shows the results for maps of the z-score estimated by LM and LMM. As described
in Section 2, we implemented three options to estimate the z-score in our code of LMM, which
are based on different approaches to compute the degree of freedom. However, the Satterth-
waite method was unstable during the optimization, because the computation of a numerical
derivative is needed.

In LM, each MRI measurement is considered as an independent test, so the degree of free-
dom is the number of tests minus the number of regressors, while the maximum degree of
freedom for LMM is the number of subjects minus the number of regressors (option name is
MLarge). If we adopt Kenward-Roger approximation, we have to accept reduction of the de-
grees of freedom. Result shows that LM overestimates z-scores, but rough trends are similar
to the results estimated by LMM. Therefore, we can use LM for our exploratory tests as we
discussed in the previous section.
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Figure 33: z-score maps. From top to bottom, LM, LMM with MLarge, and LMM with KR
method are shown respectively. From right to left, FA, MD, and RD are shown.
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5 Summary and Future Work
We have developed a C++ code for the LMM in order to analyze a large amount of MRI data,
which cannot be handled well by using interpreted languages because of the slow computation
speed. Our code was successful in reducing a considerable amount of computation time, and
can analyze the whole dataset within one day. Through our experiment, we found that the pop-
ulation effects coefficients of the LMM are similar to the coefficients estimated by the LM, and
that the LMM has lower inferences due to the statistically better modeling of time-series data.
We have also implemented a spatial correlation module as an optional post-process procedure.

We analyzed 730 images taken from 176 subjects as prototypical examples. The statistical
analysis with a large number of MRI images was first shown in this study. We interpreted our
results and showed the interpretation of the relationship between DTI scalars.

The LMM made it possible for us to access subject wise information. We established that
∆Age can be used as the onset of deterioration for each subject. Based on this finding, we could
model the general deterioration process.

In Section 2, we assumed that each measurement in one subject is independent, meaning
ΣΣΣi = σ2Ini

. However, because measurements taken at short intervals are similar, we should
model the temporal correlation in ΣΣΣi as an autoregressive model. Here, off-diagonal elements
will have non-zero values which corresponds to the correlation between serial examinations.

Considering usage of this tool for medical findings, we will try to find who will convert
from MCI to AD. In Section 4, we focused on healthy controls to find the general deterioration
model. Our goal is to find subjects who will develop AD at an earlier stage. In our current
dataset, diagnostic labels are not revised. We can use the ADAS score instead. Of course, at the
current stage, the clinical grouping is very useful because it tells us the clear category that each
subject belongs to. We may be able to improve our understanding led by the clinical grouping
using ADAS.

This time, we demonstrate that ∆Age is one of the subject related variable for each subject,
but other subject-level effect might reveal other neurobiological characteristics.
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