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Abstract

Tourette Syndrome (TS) is a neurodevelopmental disorder with a complex genetic etiology.

Through an international collaboration, we genotyped 42 single nucleotide polymorphisms (SNPs)

(p<10−3) from the recent TS genome-wide association study (GWAS) in 609 independent cases

and 610 ancestry-matched controls. Only rs2060546 on chromosome 12q22 (p=3.3×10−4)

remained significant after Bonferroni correction. Meta-analysis with the original GWAS yielded

the strongest association to date (p=5.8×10−7). Although its functional significance is unclear,

rs2060546 lies closest to NTN4, an axon guidance molecule expressed in developing striatum.

Risk score analysis significantly predicted case/control status (p=0.042), suggesting that many of

these variants are true TS risk alleles.
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Introduction

Tourette Syndrome (TS) is a highly heritable, childhood-onset neurodevelopmental disorder

that is thought to arise from a complex genetic background interacting with additional

environmental factors, underlining the need for large-scale genetic studies and replication of

results in independent cohorts (Paschou, 2013). Here, following up on the first genome-wide

association study (GWAS) for TS (Scharf et al. 2013), we analyzed an independent

European-ancestry sample for 42 top variants of interest in the initial GWAS and provide

evidence for enhanced association for one of these single nucleotide polymorphisms (SNPs)

(rs2060546 on 12q22) with TS.

The GWAS performed by the Tourette Syndrome Association International Consortium for

Genetics (TSAICG) (Scharf et al. 2013) is the first large-scale TS effort in a field that has

been hampered by fragmented experiments from individual laboratories and small sample

sizes. In this study of 1,285 TS-affected individuals and 4,964 European-ancestry controls,

the top signals (p<1×10−3) were significantly enriched for functional variants associated

with gene expression and/or methylation levels in cerebellum or frontal cortex (eQTLs/

mQTLs, expression quantitative trait loci or methylation quantitative trait loci), although no

single marker attained genome-wide significance (p < 5×10−8) (Pe'er et al. 2008, Dudbridge

& Gusnanto 2008). Subsequent analyses of TS genetic architecture confirmed that the

majority of TS heritability is captured by GWAS SNPs with allele frequencies >5% (Davis

et al. 2013), although disproportionate heritability could be attributed to rarer variants. These

discoveries underline the genetic complexity of the disorder, and highlight the value of

follow-up studies in additional samples.

Patients and Methods

The Gilles de la Tourette Syndrome Genome-wide Association Study Replication Initiative

(GGRI) is a collaboration of European and North American TS investigators. We recruited

609 TS cases and 610 ancestry-matched controls from Hungary (73 cases/93 controls),

Germany (129 cases/185 controls), Austria (92 cases/103 controls), Italy (47 cases/44

controls), Greece (17 cases/49 controls), and Canada (French Canadian origin, 151

cases/136 controls). Participants aged 18 and older provided written, voluntary informed

consent for participation. Individuals under 18 provided assent; written parental consent was

also obtained. The study was approved by the Ethics Committees of all participating sites.

Forty-three SNPs, including the top 20 linkage disequilibrium (LD)-independent GWAS hits

(r2<0.2) and 23 additional SNPs with pGWAS<1×10−3 that were either eQTL/mQTLs of

interest (as described in Scharf et al., 2013) or located within 50kb of previously identified

candidate genes for TS or related neuropsychiatric disorders, were selected for targeted

genotyping (Table S1). Seventy-four additional ancestry-informative markers (AIMs) were

also genotyped to control for population substructure (Table S2). Genotyping was performed

using primer extension and mass spectrophotometry (Sequenom, San Diego, CA, USA) as

previously described (Crane et al. 2011).
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Principal components analysis (PCA) was performed using EIGENSTRAT (Price et al.

2006) to exclude outliers based on observed genetic ancestry and to produce population

structure covariates to correct for residual population stratification. One follow-up SNP

failed genotyping, leaving 42 for analysis (Table S1). Genetic association analysis was

conducted in PLINK (Purcell et al. 2007) using logistic regression under an additive model

with the first two principal components, representing the major axes of variation in genetic

ancestry of the sample (North-South and East-West European clines), included as covariates.

Meta-analysis with the European-ancestry samples of the original TS GWAS (1,285 TS

cases and 4,964 ancestry-matched controls) was performed in METAL (Willer et al. 2010).

A TS risk score was calculated based on the 42 SNPs in each GGRI case/control subject,

representing a sum of the number of risk alleles present weighted by the effect size of each

locus as estimated in the initial TS GWAS. The relationship between TS risk score and case-

control status was then examined by logistic regression (risk score analysis) with number of

genotypes included as a covariate to control for any potential bias related to SNP

missingness. The percentage of phenotypic variance explained by the aggregate risk score

(Nagelkerke's pseudo-R2) was also estimated.

Results

One SNP, rs2060546, was significantly associated with TS in the GGRI sample

(p=3.3×10−4, OR=2.41) after Bonferroni correction (corrected threshold for nominal

significance set at p=0.05/42 SNPs = 0.0012) (Table 1, Table S3). Combined analysis of the

original GWAS and GGRI samples for this SNP (1,894 cases and 5,574 controls) yielded an

association p-value=5.8×10−7 and a combined OR=1.77, strengthening the evidence for

association relative to the original GWAS (pGWAS<3.7×10−4, OR=1.60). The association

signal from the top SNP in the initial GWAS, rs7868992, located in an intronic region of

COL27A1 (collagen type XXVII, alpha 1 chain), was marginally weaker than the signal in

the original study (GGRI OR=1.11, p=0.26; GWAS OR=1.29, p=1.9×10−6;combined meta-

analysis p=6.4×10−6)(Table 1), with the same direction of effect. Although no other SNPs

were nominally significant after experiment-wide correction in the GGRI sample, 26 of the

42 SNPs yielded the same direction of effect as in the original GWAS (one-sided binomial

sign-test, p=0.08) (Table S3). Furthermore, the 42-SNP TS risk score significantly predicted

TS case-control status in the GGRI sample (p=0.042), accounting for 0.52% of TS

phenotypic variance.

Discussion

The top TS-associated SNP in our targeted genotyping study (rs2060546) lies in an

intergenic region on chromosome 12q22, ~32kb distal (telomeric) to NTN4, and proximal to

SNRPF (37kb) and CCDC38 (45kb). SNRPF (small nuclear ribonucleoprotein polypeptide

F) is a core component of the RNA spliceosome (Hermann et al. 1995), while the function

of CCDC38 is unclear. NTN4 belongs to a family of extracellular proteins that direct axon

outgrowth and guidance (Lai Wing Sun et al. 2011). In the developing nervous system,

netrins interact with other axon guidance molecules, such as SLIT and WNT family

members, to direct the trajectory of the growth cone at the tip of the migrating axon towards
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its final target (Killeen and Sybingco 2008). SLITRK1, whose protein bears great similarity

to the SLIT family, represents one of the most debated genes in the TS literature, as it has

been reported to be associated with TS in a number of studies (Abelson et al. 2005,

Karagiannidis et al. 2012), but not in a large family-based investigation of the original

association (Scharf et al., 2008). SLITRK1 was not implicated in the TS GWAS; however,

the intergenic region between SLITRK1 and SLITRK6 yielded one of the top signals

(rs7336083; p=9.5×10−6, OR 0.80) (Scharf et al. 2013). Thus, NTN4 is a strong candidate

for a TS susceptibility gene; in fact, rs2060546 was selected for the current experiment

based on having a p<10−3 in the initial TS GWAS and being in linkage disequilibrium

(D'=1) with the 5' end of NTN4.

However, it is not yet clear whether rs2060546 has any functional effect on either NTN4 or

other genes in this region. Although NTN4 is the closest gene to rs2060546, recent work

from the ENCODE and Roadmap Epigenomics consortia have demonstrated that ~40% of

genome-wide significant GWAS SNPs lie in putative enhancer regions whose chromatin

structure is most highly correlated with active promoters of genes >250kb from the

putatively causal SNP (Maurano et al., Science 2012). While rs2060546 was not identified

as a regulatory eQTL SNP in frontal lobe or cerebellum (Scharf et al., 2013), it appears to be

a modest cis-eQTL in non-neural tissues for genes near NTN4, including two histidine

catabolism genes, HAL (histidine ammonia-lyase, p=0.0012) and AMDHD1

(amidohydrolase containing domain 1, p=0.002) in lymphoblast cell lines and METAP2

(methionine aminopeptidase 2, p=0.0009) in adipose tissue (Stranger et al. 2012; Elbein et

al., 2012). Impaired conversion of histidine to histamine via mutations in a third histidine

catabolism gene HDC has been reported in one TS family, though whether this translates to

TS risk in general or might involve other histidine-related pathways is uncertain (Erdan-

Sencicek et al., 2010; Karagiannidis et al., 2013; Castellan-Baldan et al., 2013). Therefore,

should further analyses confirm rs2060546 as a TS susceptibility variant, functional studies

will be needed to determine the causative gene(s) at this locus and the biological mechanism

through which this non-coding variant might contribute to this neurodevelopmental disorder.

A few limitations should be considered. While we took specific steps to control for bias

from population stratification, including the use of ancestry-matched cases and controls and

a carefully selected AIMS panel to detect outliers, in the absence of genome-wide data, it is

possible that residual population stratification could have introduced bias. However, the

rs2060546 risk allele frequency is consistently increased in cases compared to controls from

each of the 6 GGRI countries, suggesting that the association is unlikely to be caused solely

by residual population stratification (data not shown). In addition, the current sample is still

underpowered to detect the majority of GWAS variants with effect sizes similar to those

found in other neuropsychiatric disorders (Sullivan et al., 2012). However, the finding that a

TS risk score combining all 42 SNPs in this study predicted TS case-control status suggests

that, although not reaching genome-wide significance in this sample, a significant number of

these variants are likely to be true TS susceptibility alleles. These results underline the need

for future collaborative efforts in larger TS samples to clarify the potential significance of all

variants in the current analysis and to identify definitive TS susceptibility genes.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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