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¶ National Energy Research Scientific Computing Center, USA

Abstract—Metagenome assembly is the process of transforming
a set of short, overlapping, and potentially erroneous DNA
segments from environmental samples into the accurate rep-
resentation of the underlying microbiomes’s genomes. State-of-
the-art tools require big shared memory machines and cannot
handle contemporary metagenome datasets that exceed Terabytes
in size. In this paper, we introduce the MetaHipMer pipeline, a
high-quality and high-performance metagenome assembler that
employs an iterative de Bruijn graph approach. MetaHipMer
leverages a specialized scaffolding algorithm that produces long
scaffolds and accommodates the idiosyncrasies of metagenomes.
MetaHipMer is end-to-end parallelized using the Unified Parallel
C language and therefore can run seamlessly on shared and
distributed-memory systems. Experimental results show that
MetaHipMer matches or outperforms the state-of-the-art tools
in terms of accuracy. Moreover, MetaHipMer scales efficiently
to large concurrencies and is able to assemble previously in-
tractable grand challenge metagenomes. We demonstrate the
unprecedented capability of MetaHipMer by computing the first
full assembly of the Twitchell Wetlands dataset, consisting of 7.5
billion reads – size 2.6 TBytes.

I. INTRODUCTION

Metagenomics is currently the leading technology in study-
ing uncultured microbial diversity and delineating the structure
and function of the microbiome, which is the collection of
microorganisms in a particular environment, e.g. the body.
Improvements in sequencing techonolgy (in terms of cost
reduction) have significantly outpaced Moore’s Law [1], en-
abling the collection of large numbers of human and environ-
mental samples that comprise hundreds or even thousands of
microbial genomes. Assembly of metagenome samples into
long contiguous sequences is critical for the identification of
long biosynthetic clusters and gene finding in general [2], and
is also key for enabling the discovery of novel lineages of life
and viruses [3]. However, for most microbial samples, there is
no existing reference genome, so a first step in analysis is de
novo assembly: transforming a set of short, overlapping, and
potentially erroneous DNA segments (called reads) from these
samples into the accurate representation of the underlying
microbiomes’s genomes.

The exact de novo assembly of a genome is an NP-hard
problem in general [4]. The metagenome assembly is further
complicated by identical sequences across different genomes,
polymorphisms within species and the variable abundance of
species within the sample. The bioinformatics community has
therefore developed special algorithms [5]–[12] to overcome
these challenges. Nevertheless, the vast majority of these tools

are not parallelized for distributed-memory systems. As a
result, they require specialized, large shared-memory machines
with hundreds of GB of memory in order to deal even with
modestly-sized metagenomic datasets. At the same time, the
concurrency of these tools is limited by the core count of
a single node (typically 10s of cores) and consequently the
execution times even for small datasets are in the order of
days. The only exception among the metagenome assemblers
is Ray Meta, which is a tool designed for distributed-memory
systems. However, Ray Meta is not scalable to massive con-
currencies [13] and its assembly quality has been shown to be
worse compared to other state-of-the-art tools [10]. Currently,
existing tools for high-quality metagenome assembly are in-
capable of processing large, realistic datasets due to the large
memory and computational requirements.

In this work we introduce MetaHipMer, the first mas-
sively scalable, high quality metagenome assembly pipeline.
MetaHipMer implements an iterative de Bruijn graph approach
similar to IDBA-UD [6] and Megahit [9], [12] to gener-
ate long, contiguous and accurate sequences called contigs.
MetaHipMer also performs specialized scaffolding to stitch
together multiple contigs and further increase contiguity. The
result of our work is the first distributed-memory metagenome
assembler that achieves comparable quality to the state-of-the-
art tools, but scales efficiently to tens of thousand of cores
and decreases the execution times by orders of magnitude
compared to single-node tools. While our primary novelty is
in enabling the high-quality assembly of larger datasets that
current tools struggle to deal with, MetaHipMer can also be
seamlessly executed on shared memory machines. Overall this
study makes several contributions including:
• An iterative contig generation algorithm that relies on ef-

ficient, distributed hash tables, and combines best prac-
tices from state-of-the-art tools with new ideas tailored for
metagenome datasets. The new algorithm obviates the need
for an expensive, explicit input error-correction step that
other tools rely on. This iterative approach allows MetaHip-
Mer to directly handle large metagenome samples without an
expensive error correction step, which could eliminate some
data that would be valuable in the assembly.
• A new parallel graph algorithm (also using distributed hash

tables) that operates on partially assembled data to resolve
ambiguities and errors and further extend the assembled
regions in a process called scaffolding. This new algorithm
also optimizes the accurate assembly of highly conserved
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Algorithm 1 Iterative contig generation
1: Input: A set of paired reads R
2: Output: A set of contigs C
3: C ← ∅
4: prev k -mer set ← ∅
5: for k = kmin to kmax with step s do
6: k-mer set← K-MERANALYSIS(k,R)
7: new k -mers ←MERGE(k -mer set , prev k -mer set)
8: Ck ← DEBRUIJNGRAPHTRAVERSAL(new k -mers)
9: C ′k ← BUBBLEMERGING(Ck)

10: C ′′k ← ITERATIVEGRAPHPRUNING(C ′k)
11: Alignmentsk ← ALIGNREADSTOCONTIGS(R,C ′′k )
12: C ← LOCALASSEMBLY(R,C ′′k ,Alignmentsk )
13: prev k -mer set ←EXTRACTKMERS(C, k + s)
14: RETURN C

ribosomal regions, which are the cornerstone for various
downstream metagenomic analyses.
• End-to-end parallelization of the entire MetaHipMer

pipeline. This result is enabled by efficient distributed hash
tables and high-performance data structures, with a combi-
nation of algorithmic techniques from parallel computing,
including work partitioning via connected components and
load balancing, as well as the use of a Partitioned Global
Address Space language called Unified Parallel C (UPC).
• Unprecedented scalability results on NERSC’s Cori super-

computer, a Cray XC40 system, using synthetic and real
world datasets. This work also presents the first whole
assembly of Twitchell Wetlands, a complex, massive-scale
metagenome dataset consisting of 7.5 billion reads with size
2.6TB. The Wetlands assembly highlights the new capabili-
ties that MetaHipMer enables for metagenome analyses.

II. ITERATIVE CONTIG GENERATION

Before diving into MetaHipMer’s algorithm, we introduce
some terminology that is used throughout the paper. Reads are
typically short fragments of DNA sequence that are produced
by DNA sequencers; current sequencing technology can only
read the genome in fragments. These reads contain errors and
may also come in pairs (e.g. see Figure 1, where pairs of reads
– light blue pieces – are connected with dashed lines). Reads
are strings of four possible nucleotides/bases: A, C, G and T.
A read library is a source of DNA template fragments that
the reads are generated from and is typically characterized by
an insert size, which is the distance between the two ends of
the paired reads. Every genomic region/sample is covered by
multiple, overlapping reads, which is necessary to identify and
exclude errors from the reads. K-mers are short overlapping
substrings of length k that are typically extracted from reads.
A de Bruijn graph is an efficient way to represent a sequence
in terms of its k-mer components. In this type of graph,
vertices are k-mers and two k-mers that overlap in k − 1
consecutive bases are connected with an edge. Contigs are
contiguous sequences of k-mers (i.e. k-mers that are error-
free with high confidence) and represent underlying genomic
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Fig. 1. Iterative contig generation workflow in MetaHipMer.

regions. Contigs are typically longer than the input reads.
Finally, scaffolds are long genomic sequences that consist of
oriented contigs which are stitched together.

The genomes comprising a metagenome dataset have gen-
erally variable read coverage, since some species may exist in
the environmental sample with much higher abundance than
others. Choosing an optimal value of k for the de Bruijn graph
is therefore challenging because there is a tradeoff in k-mer
size that affects high and low frequency species differently.
Typically, a small k is appropriate for low-coverage genomes
since it allows a sufficient number of overlapping k-mers to
be found and as a result the underlying sequences can be
assembled to contigs. On the other hand, a large k is better
suited for the high-coverage genomes since a sufficient number
of overlapping, long k-mers can be found and repetitive
regions are disambiguated by such long k-mers.

Iterative contig generation (Algorithm 1 and Figure 1) aims
to eliminate the quality trade-off that different k-mer sizes
induce in de Bruijn graph-based assemblers [6], [9], [10]. The
algorithm starts by constructing the de Bruijn graph with a
small k and extracts a set of contigs by traversing the graph.
After performing a series of transformations on the set of
contigs, k is increased by a step size s and MetaHipMer builds
the corresponding de Bruijn graph from the input reads with
(k + s)-mers while the graph is enhanced with (k + s)-mers
extracted from the previous contig set. This iterative process
is repeated until k reaches a user-specified maximum value.

The quality of the assembly is improved by additional
transformations that refine the de Bruijn graphs (as shown in
steps 3 to 6 in Figure 1). More specifically, “bubble structures”
are merged and “hair” tips (short, dead-end dangling contigs)
are removed since they are potentially created from erroneous



vertices. Then, the graph is iteratively pruned in order to
eliminate branches that do not agree with the coverage of the
neighboring vertices; such branches are likely to be created by
erroneous edges. Finally, a local assembly algorithm extends
the contigs remaining in the de Bruijn graph, using localized
reads aligned to each contig, enabling the retrieval of k-mers
which otherwise would be excluded from the de Bruijn graph
because of global conflicts.

Before describing the stages of the MetaHipMer pipeline,
we provide an overview of distributed hash tables in UPC; this
data structure is the backbone of all of our parallel algorithms.

A. High Performance Distributed Hash Tables in MetaHipMer
Our hash tables utilize a chaining rule to resolve collisions

in the buckets. The hash table entries are stored in the shared
address space of UPC and thus they can be accessed by any
processor with simple assignment statements. This feature of
UPC facilitates the design of highly irregular, distributed mem-
ory algorithms via a shared-memory programming paradigm.
Note that the hash tables involved in our algorithms can
be gigantic (hundreds of Gbytes up to tens of Tbytes) and
cannot fit in a typical shared-memory node. Therefore it
is crucial to distribute the hash table buckets over multiple
nodes and in this quest the global address space of UPC is
convenient. Here we identify a handful of use cases for the
distributed hash tables that allow specific optimizations in their
implementation. These use-cases will be used as points of
reference in the sections that detail our parallel algorithms.
• Use case 1 – Global Update-Only phase

The operations performed in the distributed hash table are
only global updates with commutative properties (e.g. inserts
only). The global hash table will have the same state (although
possibly different underlying representation due to chaining)
regardless of insert order. The global update-only phase can
be optimized by dynamically aggregating fine-grained updates
(e.g. inserts) into batch updates. In this way we can reduce the
number of messages and synchronization events. We can also
overlap computation/communication or pipeline communica-
tion events to further hide the communication overhead. An
example of this use-case is storing the k-mers in a distributed
hash table in preparation for the de Bruijn graph traversal.
• Use case 2 – Global Reads & Writes phase

The operations performed during this phase are global reads
and writes over the already inserted entries. Typically we can’t
batch reads and/or writes since there might be race conditions
that affect the control flow of the governing parallel algorithm.
However, we can use global atomics (e.g. compare-and-swap)
instead of fine-grained locking in order to ensure atomicity.
The global atomics may employ hardware support depending
on the platform and the corresponding UPC implementation.
We can also build synchronization protocols at a higher level
that do not involve the hash table directly but instead are
triggered by the results of the atomic operations. Finally,
we can implement the delete operation of entries with UPC
atomics and avoid locking schemes. An example of this use-
case is accessing the k-mers during de Bruijn graph traversal.

• Use case 3 – Global Read-Only phase
In such a use case, the entries of the distributed hash table
are read-only and a degree of data reuse is expected. The
optimization that can be readily employed is to design software
caching schemes to take advantage of data reuse and minimize
communication. These caching schemes can be viewed as “on
demand” copying of remote parts of the hash table. Note
that the read-only phase guarantees that we do not need to
provision for consistency across the software caches. Such
caching optimizations can be used in conjunction with locality-
aware partitioning to increase the effectiveness of the expected
data reuse. Initially even if the data is remote, it is likely to be
reused later locally. An example is the use of software caches
for seed lookup during alignment.
• Use case 4 – Local Reads & Writes phase

In this use case, the entries in the hash table will be fur-
ther read/written only by the processor owning them. The
optimization strategy we employ in such a setting is to use
a deterministic hashing from the sender side and local hash
tables on the receiver side. The local hash tables ensure that
we avoid runtime overheads and also high-performance, serial
hash table implementations can be seamlessly incorporated
into parallel algorithms. For example, consider items that are
initially scattered throughout the processors and we want to
send occurrences of the same item to a particular processor
for further processing (e.g. consider a “word-count” type of
task). Each processor can insert the received items into a local
hash table and further read/write the local entries from there.
An example of this use case is the distributed histogram that
gets constructed during k-mer analysis.

We emphasize that this is not an exhaustive list of use
cases for distributed hash tables. Nevertheless, it captures
the majority of the computational patterns we identified in
our parallel algorithms that will be detailed in the following
sections. In the following subsections we describe the various
stages of iterative contig generation.

B. K-mer Analysis using Distributed Histograms

The first step of the contig generation is parallel k-mer
analysis, which splits the input reads into k-mers that overlap
by k − 1 consecutive bases, keeping a count for each k-mer
occurring more than ε times (ε ≈ 2, 3) in order to implic-
itly exclude sequencing errors. K-mer analysis additionally
requires keeping track of all possible extensions of each k-
mer from either side (bases before/after a k-mer in a read). If
a nucleotide on an end appears more times than a threshold
thq , it is characterized as a high quality extension.

In MetaHipMer, we integrate the parallel implementation
of k-mer analysis described in HipMer [13], [14], which
uses distributed histograms (Global Update-Only phase and
Local Reads & Writes phase), all-to-all exchanges of k-mers,
and distributed Bloom filters (to avoid the memory footprint
explosion that is induced by erroneous k-mers). Of particular
importance to metagenome assemly, the HipMer implemen-
tation uses a specialized streaming algorithm to identify and



count “heavy hitters”, which are k-mers that occur millions
of times and can potentially cause load imbalance issues if
not treated with a specialized algorithm. Such “heavy hitters”
are likely common in metagenomic datasets where highly
abundant organisms yield multiple copies of the same k-mers.

C. De Bruijn Graph Traversal via a Distributed Hash Table

The de Bruijn graph of the k-mers stemming from the k-
mer analysis is traversed in order to form contigs, which are
paths in the de Bruijn graph formed by k-mers with unique
high quality extensions. These paths represent “confidently”
assembled sequences and can be seen in Figure 1(a) by
removing the branches (vertices with dashed incident edges)
and considering the connected components in the resulting
graph. Note that the vertices with dashed incident edges (i.e.
“fork” vertices) do not have unique high quality extensions
and can be used later to discover the connectivity among
the contigs. In MetaHipMer, the de Bruijn graph traversal
is implemented using a distributed hash table, similar to the
approach introduced in HipMer (Global Update-Only phase
and Global Reads & Writes phase). Due to the nature of
DNA, the de Bruijn graph is extremely sparse. For example,
the human genome’s adjacency matrix that represents the de
Bruijn graph is a 3 ·109×3 ·109 matrix with between two and
eight non-zeros per row for each of the possible extensions.
Using a direct index for the k-mers is not practical for realistic
values of k, since there are 4k different k-mers. A compact
representation can be leveraged via a hash table: A vertex
(k-mer) is a key in the hash table and the incident vertices
are stored implicitly as a two-letter code [ACGT][ACGT] that
indicates the unique bases that immediately precede and follow
the k-mer in the read dataset. By combining the key and
the two-letter code, the neighboring vertices in the graph
can be identified. Also, the underlying graph of k-mers is
characterized by high-diameter where parallel Breadth First
Search (BFS) approaches do not scale well and HipMer’s
specialized traversal overcomes this challenge [15]. However,
the HipMer algorithm was designed for single genomes and
assumes uniform depth coverage. This is usually not the case
with metagenomes, where the coverage of some genomes may
be thousands of times higher than others. Thus, the graph
traversal implemented in MetaHipMer differs in this aspect
compared to the HipMer implementation.

In HipMer, a k-mer with depth greater than ε is extended
in the graph traversal only if there are no more than thq
alternative extensions to the most common extension of that
k-mer. The value of thq is global, and is used for all k-mers.
This is potentially a problem in metagenomes because k-mers
from genomes with high coverage COVhigh (e.g. abundance
in the dataset of 1,000 or more) will typically have more
than COVhigh × e alternates if the sequencing error rate is
e. Therefore, setting a thq below COVhigh × e can in theory
start to fragment high coverage genomes that are prevalent in
the dataset, even though such genomes should be the easiest to
assemble. On the other hand, setting a thq above COVhigh×e
will fragment the genomic regions with low coverage.

The solution we introduce in MetaHipMer is to replace
the global threshold, thq , with one that depends on the depth
dk-mer of the k-mer that is being extended. In MetaHipMer,
a k-mer with count dk-mer is extended in the de Bruijn graph
traversal if there are no more than thq = max(tbase, e ×
dk-mer) extensions that contradict the most common exten-
sion. Here tbase is a hard limit in the thq value and e is a
single parameter model for the sequencing error.

D. Parallel Bubble Merging with Speculative Graph Traversal

A single-nucleotide polymorphism (SNP) represents a dif-
ference in a base between two genomic sequences. SNPs create
similar contigs (paths in the de Bruijn graph with the same
length) except in one position; these contigs also have the
same k-mers as extensions of their endpoints and as a result
form bubble structures in the de Bruin graph [16]–[18]. In this
step we identify these bubbles and merge them into a single
contig. Additionally, dead-end dangling contigs shorter than
2k nucleotides are considered hair and are likely to be false
positive structures in the graph, hence we remove them [16],
[18], [19]. See Figure 1(a) for examples of a bubble and a hair
contig in the first graph. MetaHipMer also supports optional
merging of long bubble-paths (longer than 2k), similar to the
Megahit [9] assembler. This option trades-off contiguity for
preserving species/strain variations.

The first step in bubble merging is to build a bubble-contig
graph, which MetaHipMer does in parallel by employing a
distributed hash table (Global Update-Only phase and Global
Reads & Writes phase). This graph is orders of magnitude
smaller than the original k-mer de Bruijn graph because the
connected components (contigs) of the original graph have
been contracted to super-vertices. Once the bubble-contig
graph is built, it is traversed to merge eligible contigs (e.g.
by picking one of the contigs from the bubble structures).
This parallel traversal uses a speculative algorithm. The pro-
cessors pick random seeds (contigs) from the bubble-contig
graph and initiate independent traversals. Once an independent
traversal is terminated, we store the resulting path. However,
if multiple processors work on the same path, they abort their
traversals and allow a single processor to complete them.
More specifically, each vertex (contig) has a “used” binary
flag that indicates if this vertex has been traversed and the
processors atomically set this flag for the vertices they are
visiting (Global Reads & Writes phase of hash table). If a
processor attempts to traverse a “used” vertex/contig, then it
infers that yet another processor works on the same path and
aborts the current traversal. Eventually, processor 0 picks up
the aborted traversals and completes them.

E. Iterative Graph Pruning

The remaining graph after bubble merging and hair removal
is iteratively pruned in order to eliminate branches that do
not agree with the coverage of the neighboring vertices. Such
branches are likely to be created by false-positive edges
in the contig graph due to sequencing errors. Algorithm 2



Algorithm 2 Iterative graph pruning
1: Input: A contig set C, length k and thresholds α, β, τ
2: Output: A pruned contig set Cpruned

3: τ ← 1
4: while τ < maximum contig depth of C do
5: for each contig c ∈ C do
6: if length(c) ≤ 2 · k and
7: depth(c) ≤ min(τ , β · neighbors-depth(c)) then
8: Remove c from C
9: τ ← τ · (1 + α)

10: Cpruned ← C

implements an iterative pruning strategy similar to the pruning
module in IDBA-UD [6].

The parallel version of Algorithm 2 starts by reading in
parallel the contig set C along with their depths and also
stores the k-mers from the k-mer analysis step in a distributed
hash table (Global Update-Only phase). In particular, we are
interested in the “fork” k-mers since they contain information
regarding the connectivity of the contigs; in graph (a) of
Figure 1 the vertices with dashed incident edges represent
“fork” k-mers. Each one of the P processors is then assigned
1/P contigs; the processor extracts the last k-mers in the two
endpoints of each contig c, looks them up in the distributed
hash table and gets the contig-neighborhood information for
c. The parallel execution then proceeds in the main loop (line
5) of Algorithm 2. Each processor visits the contigs assigned
to it, and if a contig is both short and has relatively small
depth compared to its neighborhood (lines 6 and 7), it is
removed from the contig graph. At the end of the iteration,
each processor updates the neighborhoods of its contigs since
some may have been removed. The depth-cutoff threshold τ
is then increased geometrically and the algorithm proceeds to
the next iteration.

The parallel algorithm terminates if no contigs are pruned
by any processor during an iteration. In order to detect if any
contigs have been pruned from the graph: (1) every processor
sets a local binary variable pruned_flag to 1 if any of its
contigs have been pruned, otherwise the binary variable is set
to 0, and (2) we perform an all-reduce operation on the
pruned_flag variables with the max function as argument.
If the max-reduction result is 0, no changes have been made
in the contig-graph and the parallel algorithm terminates (i.e.
it has reached a converged state).

F. Alignment of Reads to Contigs

In this step of the pipeline the goal is to map the original
reads onto the pruned contigs. This mapping provides infor-
mation about the read pairs that are aligned towards the ends
of the contigs (e.g. Figure 1(d)). We determine this mapping
using merAligner [20], a distributed memory, scalable, end-
to-end parallel sequence aligner that implements a seed-and-
extend algorithm.

G. Local Assembly with Dynamic Work Stealing

In this step we try to extend the remaining contigs using a
local assembly methodology that leverages the alignments of
reads to contigs. Because the assembly is localized, erroneous
k-mers stemming from high-coverage regions are isolated
from similar k-mers in low-depth areas, so we can retrieve k-
mers which otherwise would be excluded from the de Bruijn
graph. Figure 1(e) shows that after local assembly, the contigs
have been extended with the orange vertices via “mer-walks”.

For each contig, we first accumulate all reads that can be
used to extend that contig. Each thread reads a portion of
the reads file, and stores the reads into a global hash table.
Then each thread processes a local subset of contigs, and
extracts the reads relevant to each contig to local storage.
The reads selected are those that can be aligned onto a contig
and whose paired reads do not align onto the same contig.
In addition, for paired reads we can use the library insert
size to project unaligned reads to either side of a contig (e.g.
see Figure 1(e)). Second, the reads are used to extend the
contigs through mer-walking, which is a modified, localized
version of the contig generation extension algorithm described
earlier in Section II-C. The first modification is that extension
bases are accepted or rejected based on the number and quality
category of the extending bases, which allows for uncontested
extensions of lower quality than used in the original k-mer
analysis. The second modification is that the mer-size used
is dynamically adjusted in an iterative loop, being upshifted
(increased by L) when a fork is encountered, or downshifted
(decreased by L) when no extensions are encountered (a
deadend). The walk terminates when it encounters a fork after
downshifting, or a deadend after upshifting.

Once the involved reads are localized, the actual mer-
walking of the gaps does not require communication and is
embarrassingly parallel (Local Reads & Writes phase). How-
ever, if the contigs are statically assigned to processors, severe
load imbalance can occur because the computational cost of
walking the contigs exhibits a high degree of unpredictable
variability. To ameliorate this problem, we implement a simple
dynamic work-stealing strategy. Each processor performs a
block of independent walks, and upon completion, uses a
global atomic variable to select another block without overlap
with other processors. Although we use a single global atomic,
in practice, we achieve good load balance with large block
sizes, resulting in few steals and little contention.

H. Merging k-mer Sets via a Distributed Hash Table

The MetaHipMer pipeline utilizes the final contigs C of
iteration i to enrich the k-mer set that will be generated by k-
mer analysis in the following iteration i+1. Since contigs in C
were assembled with a smaller k value than the one that will be
used in the i+1 iteration, k-mers stemming from low coverage
organisms are likely represented in C, while such organisms
may not be represented via confident, “error-free” (k + s)-
mers in the result of the following k-mer analysis. Therefore
we extract from contigs in C all the (k+ s)-mers (henceforth



called prev k-mer set) and treat them as “error-free” (k+s)-
mers with unique high quality extensions in the i+1 iteration
(see arrow 7 in Figure 1 where the orange (k + s)-mers are
extracted from the final contigs of the previous iteration).

The prev k-mer set has to be merged with the (k+s)-mers
stemming from the original reads and are generated by the k-
mer analysis of the i+1 iteration. First, all processors store in
parallel the new k-mers resulting from the k-mer analysis step
in a distributed hash table (Global Update-Only phase). Then,
they extract in parallel (k + s)-mers from contigs in C and
store them in the same distributed hash table. The resulting
distributed hash table represents the merged k-mer set, where
duplicated k-mers (existing in both prev k-mer set and the
new k-mer set from k-mer analysis) are collapsed in a single
occurrence. All the k-mer stores in the distributed hash table
are done via aggregated, asynchronous one-sided messages.

I. Minimizing Communication via Read Localization

It has been shown [13], [20], [21] that the reads to contigs
alignment step is dominated by fine-grained, irregular lookups
of seeds (substrings of reads) in a distributed seed index (hash
table that indexes the contigs). The authors of merAligner have
therefore implemented a software cache to exploit potential
seed index reuse and avoid off-node communication in a
distributed memory environment. However they also point out
that the input read files do not exhibit any inherent locality,
hence at large scale the expected data reuse (and consequently
the software cache benefit) is provably limited.

However, MetaHipMer uses iterative contig generation,
which presents an opportunity to infer read locality in the
first iteration to improve performance in subsequent iterations.
Reads that align onto the same contig region should be
similar, and hence most of the substrings of every read (the
seeds) should be identical to substrings of other reads aligned
to the same contig region. If these reads are assigned for
alignment to the same processor, merAligner’s software cache
will be able to serve most of the pertaining seed lookups,
reducing significantly the off-node communication and the
total execution time (Global Read-Only phase).

Being motivated by the aforementioned observations, we
implement a parallel read localization algorithm to speedup
the alignment steps in the following iterations. Given the first
set of reads to contigs alignments, each processor assesses in
parallel an equal chunk of the alignments. Assuming a read R
is aligned to contig cR, the processor sends R to the processor
with id (cR mod P ), where P is the number of available pro-
cessors. We leverage the one-sided communication capabilities
of UPC and all the reads are distributed via aggregated, asyn-
chronous messages. As a result of these read redistributions,
all the reads that are mapped to a contig cR (which, according
to the previous reasoning, are similar) will be sent to the
same processor. In the subsequent iterations of the pipeline,
this shuffled set of reads is used for enhanced locality and to
minimize communication incurred in the alignment steps.

An additional side-effect of read localization also benefits
the k-mer analysis phase. In the k-mer analysis phase, when a

Algorithm 3 Scaffolding
1: Input: A set of paired reads R and a set of contigs C
2: Output: A set of scaffolds S
3: Alignments← ALIGNREADSTOCONTIGS(R,C)
4: Links← GENERATELINKS(C,Alignments)
5: Gapped scaffs ← CONTIGGRAPHTRAVERSAL(C,Links)
6: S ← GAPCLOSING(Gapped scaffs, R, C,Alignments)
7: RETURN S
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Fig. 2. Scaffolding workflow in MetaHipMer.

processor receives a bunch of k-mers from remote processors,
it updates a locally owned hash table that keeps the individual
counts of the received k-mers. In principle, this local hash
table update is characterized by low locality, since the received
k-mers are uniformly spread out based on a hash function;
hence the memory accesses pertaining to the hash table update
exhibit little to no cache reuse. However, after read localization
we expect (with high probability) almost all the occurrences of
the same k-mer to be sent by a remote processor in the same
aggregated message. As such, when the receiving processor
tries to insert the k-mers in the local counting hash table,
most of the updates will result in cache hits and will improve
the attained performance.

III. SCAFFOLDING

The main goal of the scaffolding Algorithm 3 in MetaHip-
Mer is to connect together contigs and form scaffolds which
are long chains of contigs. The first step of scaffolding com-
prises of aligning the input reads onto the contigs generated
by the iterative algorithm. Then, by leveraging the reads to
contigs alignments and the information from paired reads we
introduce additional links/edges in the graph of contigs which
we call henceforth contig graph. Note that paired reads with
large insert sizes can be used to generate long-range links
among contigs that could not be found from the k-mer de
Bruijn graph. Afterwards, we traverse the updated contig graph
and form chains of contigs that constitute the final scaffolds.
In the following subsections we give more details regarding
the scaffolding submodules.

A. Alignment of Reads onto Contigs

In this step of the pipeline the goal is to map the original
reads onto the final contigs generated from the iterative contig



generation. This mapping provides information about the rel-
ative ordering and orientation of the contigs. Again here we
employ merAligner.

B. Contig Link Generation with Distributed Hash Tables

The next step is to process the alignments and identify
splints, which are single reads that bridge the gap between
two neighboring contigs by virtue of aligning to both of them.
Essentially, if a particular segment of a read aligns to the
ends of two different contigs we conclude that these contigs
form a splint (see Figure 2(b) for a splint example between
contigs 6 and 7). Additionally, by processing paired reads’s
alignments we identify spans, which are read pairs associated
with particular pairs of contigs. For example, consider that
the first read of a pair aligns with contig i while the second
read of that pair aligns with contig j. It can thus be concluded
that the read pair forms a span (see Figure 2(b) for a span
example between contigs 9 and 10). Also, we know the insert
size of the read library and therefore we can estimate the
gap size between contigs i and j. Once splints and spans are
created, they can be aggregated to generate links among pairs
of contigs. More specifically, if a sufficient number of splints
supports a particular distance and mutual orientation between
contig k and contig m, we generate a SPLINT link for that
pair of contigs. Analogously, if a sufficient number of paired
reads’s alignments supports a particular span between contig i
and contig j we generate a SPAN link for that pair of contigs.

Regarding the parallelization of the SPLINT-link generation,
first each of the P processors independently processes 1/P of
the total read alignments and stores the splints’s information
locally. Then, a distributed hash table is required, where the
keys are pairs of contigs and values are the splint/overlap
information. Each processor is accessing the local splints and
stores them in the distributed hash table. Here, we again
apply aggregated, one-sided asynchronous messages to min-
imize the number of messages and the synchronization cost
(Global Update-Only phase). When all splints are stored in
the distributed hash table, each processor iterates over its local
buckets to further assess/count the splint entries (Local Reads
& Writes phase). The parallel algorithm for the SPAN-link
generation is identical to the one for SPLINT-links.

C. Contig Traversal with Connected Components Partitioning

The splint and span links from the previous step provide
essentially the edges in the contig graph (see Figure 2(b) for a
contig graph where the vertices are the contigs — green pieces
– and the edges are the splint/span links — red pieces). By
traversing this contig graph we form sequences of contigs we
call scaffolds. The traversal is done by selecting traversal seeds
(traversal seeds are contigs) in order of decreasing length; this
heuristic tries to “lock” together first long, confident contigs
(the classification into long and short contigs relies on a user-
defined threshold).

There are numerous heuristics involved in the traversal of
the contig graph. We call a contig’s end extendable if it does
not have any competing links (links to multiple contigs’s

ends projected in similar distance from that end). First, edges
between long contigs and extendable ends are prioritized in
the traversal. If no such edge exists, then we traverse the edge
pointing to the closest extendable contig’s end; we estimate
the distance between contigs’s ends based on the links’s gap
size information.

The contig graph traversal also attempts to resolve repeats.
Repeat contigs are typically linked to multiple contigs on
both of the endpoints as shown in Figure 2(b), where contig
3 is a repeat contig and is connected to four contigs 1, 2,
4 and 5. Repeat contigs create competing links and hinder
further traversal of the graph. However, if there are span links
that unambiguously “jump over” a repeat contig and connect
distant pairs of contigs, then the repeat contig is suspended
from the graph, effectively removing competing links and
allowing further extensions. For instance, contigs 1 and 2 have
a span link that jumps over the repeat contig 3 and as such the
latter can be suspended and the repeat can be resolved. The
contigs that are classified as suspendable should have length at
most equal to the insert-size of the library under consideration.
Finally, the suspended contigs will be reconstructed during the
gap closing module described in the next subsection.

Another metagenome specific rule we introduce in
MetaHipMer’s contig graph traversal involves contigs that
belong in conserved ribosomal genomic regions. Accurate
and effective reconstruction of such ribosomal regions is
important for downstream metagenome analysis, e.g. for re-
constructing phylogenies [22]. Therefore, MetaHipMer tries
to recognize such ribosomal contigs by using profile Hidden
Markov Models (HMM) and in particular we integrate the
HMMER pipeline [23]. HMMER builds HMM models of
these ribosomal regions and efficiently identifies if a given
contig fits the HMM models; in this case we call such a contig
an HMM hit. If a contig of sufficient length is recognized as
HMM hit, then we designate both of its ends as extendable
even in presence of competing links. With an HMM hit contig
as source, we initiate aggressive depth first search traversal
and we aim to build paths that contain other contigs with
similar average k-mer depths, which are also HMM hits. This
approach allows us to reconstruct long pieces of conserved
ribosomal regions without sacrificing accuracy.

The parallelization of the contig graph traversal is non-
trivial due to multiple reasons. First, the traversal is done by
selecting traversal seeds in order of decreasing length and this
rule is fundamentally sequential. Second, the metagenomic-
specific rule described in the previous paragraph relies on
depth-first search, which is known to be difficult to par-
allelize. We overcome these parallelization roadblocks by
exploiting the nature of the metagenome’s contig graph. In
particular, we observe that contigs should form connected
components/clusters in the contig graph. These clusters can
be processed in parallel and we can thus apply our contig
graph traversal algorithm independently on each cluster.

For instance, in Figure 2(b) we see that there are three
independent clusters of contigs. The first step in order to
extract parallelism is to identify the connected components



in the contig graph. We implemented a simple variant of
the Shiloach-Vishkin [24] algorithm which is trivially paral-
lelized. We further increase the efficiency of our approach
by excluding from the contig graph links with multiplicity
less than a user specified threshold. We know that such
links will be rejected during the graph traversal algorithm
as they are considered unreliable. By excluding such links,
we decrease the connectivity of the contig graph and we
extract more connected components, or equivalently expose
more parallelism for the contig graph traversal. After discov-
ering the connected components, we randomly assign them
to processors in order to minimize load imbalance. Finally
each processor concurrently traverses the assigned connected
components to form scaffolds.

D. Gap Closing with Load Balancing

After the scaffold creation it is possible that there are gaps
between pairs of contigs. Figure 2(c) shows an example where
three out of four generated scaffolds contain unclosed gaps.
Therefore, we further process the reads to contigs alignments
and locate the reads that are placed into these gaps. In
MetaHipMer we adopt the parallel gap closing algorithm of
HipMer [13] which has been shown to scale efficiently. The
alignments are processed in parallel and projected into the
gaps (Global Update-Only phase of hash tables). These gaps
are then divided into subsets and each set is processed by a
separate processor, in a completely parallel phase.

Several methods are available for constructing gap clo-
sures [13] and they differ substantially in computational in-
tensity. Given that it is not predicable a priori which method
will successfully close a gap, the computational time can vary
by orders of magnitude from one closure to the next. To
prevent load imbalance in the gap closing phase, the gaps are
distributed in a Round Robin fashion across all the available
processors. This suffices to prevent most imbalance because it
breaks up the gaps from a single scaffold, which tend to require
similar costs to close. The outcome of this step constitutes the
result of the MetaHipMer assembly pipeline, which are gap
closed scaffolds (see Figure 2(e)).

IV. RESULTS

This section presents experimental results that demonstrate
MetaHipMer’s efficient scalability to thousands of cores on
a distributed memory supercomputer, while producing results
comparable in quality to state-of-the-art metagenome assem-
blers.

A. Experimental Datasets

MG64: This is a synthetic dataset comprising a mixture
of 64 diverse bacteria and arterial microorganisms [25]. It
totals 108.7 million paired-end Illumina HiSeq 100-pb reads,
for a total size of 24GB.

Wetlands: This is massive-scale metagenomics dataset,
containing wetlands soil samples that are a time-series across
several physical sites from the Twitchell Wetlands in the San
Francisco Bay-Delta [26], [27]. It totals 7.5 billion paired-end

Assembler Length mbp ↑ MSA ↓ rRNA ↑ Gen. ↑ Runtime ↓
>5k >25k >50k count frac. (minutes)

MetaHipMer 167 130 108 682 79 94 42
MetaSPAdes 180 140 115 914 50 94 73

Megahit 177 132 103 761 68 95 21
Ray Meta 146 106 79 793 75 88 107
HipMer 134 74 39 242 28 85 15

TABLE I
COMPARATIVE ASSEMBLY QUALITY RESULTS FOR MG64. “MSA” STANDS
FOR MISASSEMBLIES AND “GEN. FRAC.” IS GENOME FRACTION. HIGHER

QUALITY VALUES ARE BETTER FOR ALL METRICS EXCEPT MSA.

Illumina HiSeq reads in 21 lanes, for a total size of 2.6 TBytes.
To the best of our knowledge this is the largest metagenomic
soil sample ever collected.

MGSim: To conduct a weak scaling performance anal-
ysis of MetaHipMer, we developed a tool for generating
arbitrarily large and complex metagenome assembly inputs,
called MGSim. MGSim samples multiple genomes and utilizes
the short-read simulator WGSim [28] to generate reads. The
genomes are sampled with weights calculated from a phylo-
genetic tree, and each sampled genome is assigned a relative
abundance drawn form a log-normal distribution.

The BB tools (https://sourceforge.net/projects/bbmap/) with
default parameters were used for adapter trimming and remov-
ing typical contaminants from all the datasets. For the evalu-
ation we used metaQUAST 4.3 [29] with default parameters.

B. Quality Assessment

Quality of assemblies are usually assessed on datasets with
known reference genomes, such as the MG64 dataset. We
therefore conduct quality experiments using MG64 and com-
pare MetaHipMer to several other metagenome assemblers, in-
cluding MetaSPAdes, Megahit and Ray Meta. We also include
a non-metagenome assembler, HipMer [13] (targeted at single
genomes) to demonstrate how an assembler without algorithms
specifically tailored for metagenomes can underperform on
the same dataset. These runs were all carried out on an 80-
core Intel® Xeon® E7-8870 2.1GHz server, with 500GB of
memory. This platform is used because most other assemblers
cannot use distributed memory systems and require a large
shared-memory node.

When determining quality, there is a trade-off between
contiguity (the length of the assembly), coverage (how much
of the reference was assembled), and correctness. We use
several metrics, determined by running the metaQUAST 4.3
[29] with the default parameters. The results are shown in
Table I. Contiguity is captured by the length metric, which
shows how many base pairs of the assembly are contained
in contigs of lengths ≥ 5000, ≥ 25000 and ≥ 50000 base
pairs. As can be seen from the table, MetaHipMer has the
second best contiguity, very close to MetaSPAdes. Coverage
is captured by the genome fraction, where all the metagenome
assemblers score approximately 94 to 95%, except for Ray
Meta. Broken down into the 64 individual genomes, the
genome fraction is over 80% for all but one, which is around
4% (for all assemblers). This latter genome is very poorly
represented in the sample, and so coverage is poor. Finally,
correctness is indicated by the misassemblies metric, which



Fig. 3. Impact of read localization on k-mer analysis and alignment.

shows the number of misassembled scaffolds in the final
assembly. As can be seen from the table, MetaHipMer has the
lowest misassemblies count of all the metagenome assemblers
(excluding HipMer). Appendix VIII provides more detailed
contiguity/misassembly comparison between MetaHipMer and
MetaSPAdes on MG64.

In Table I we also show a metric called rRNA count and
it is the number of ribosomal RNA structures found in the
assembled genomes. This metric is of particular importance
to biologists interested in classifying and identifying the or-
ganisms that are being assembled. MetaHipMer finds the most
rRNAs, followed closely by Ray Meta. The quality results
for HipMer, the single genome assembler, clearly illustrate
why we need assemblers built specifically for metagenomes.
Although HipMer shows low error rates, it does so at the cost
of contiguity (the length over 50k is less than half of MetaHip-
Mer), coverage (85% compared to 94% with MetaHipMer) and
rRNA (almost 3 times fewer found).

C. Performance Results

To measure MetaHipMer’s parallel scalability, we utilize the
NERSC’s Cori Cray XC40 supercomputer, consisting of 2388
compute nodes, each containing two 16-core Intel® Xeon®

E5-2698 2.3GHz processors, for a total of 32 cores per node,
with 128GB per node. The nodes are connected with a Cray
Aries network with Dragonfly topology with 5.625 TB/s total
bandwidth. We built the software using Berkeley UPC v 2.26.0
with Intel® 17.0.2.174 backend compilers.

Impact of read localization optimization: Figure 3
presents the impact of our read localization optimization on
two of the pipeline stages: k-mer analysis and alignment, when
assembling the MG64 dataset on Cori. The improvement is
especially noticeable at lower concurrencies for alignment,
with a 2.2× speedup at 16 nodes. In general this optimization
improves alignment more than k-mer analysis; in regard to the
alignment phase, this optimization reduces the off-node com-
munication, while regarding k-mer analysis this optimization
improves cache reuse on a single node.

Strong-scaling: To demonstrate the strong-scaling effi-
ciency, we ran MetaHipMer on a subset of the Wetlands
dataset, consisting of three lanes of reads (about 14% of
the total). To assemble the full dataset requires at least 512
nodes, and so it is not suitable for strong-scaling studies.
Figure 4 shows strong scaling efficiency of 61% from 32
(the minimum required due to memory constraints) to 1024
nodes. The scaling is near perfect until 512 nodes. Most

Fig. 4. Strong scaling of MetaHipMer on Cori with 3 lanes of Wetlands.

Fig. 5. Strong scaling with 3 lanes of Wetlands, runtime fraction of stages.

of the computational time is taken by the iterative contig
generation phase. The breakdown of MetaHipMer’s stages is
shown in Figure 5. At smaller concurrencies, most of the
time is taken up by the alignment phase (about 50%), but at
higher scale, increasing load imbalance in the local assembly
stage results in larger overhead and reduces scalability. As
previously discussed, we implement dynamic work-stealing
for local assembly; this improves load balance from about
0.33 to 0.55 at 1024 cores, but that is still low enough to
cause a gradual drop in overall scaling. In future work we
will address this imbalance by exploiting characteristics of
the local contigs, such as the number of reads that map to a
contig.

The only other metagenome assembler (that we are aware
of) that scales on distributed memory systems is Ray Meta [5].
Ray Meta was too slow to run using the 3-lane Wetlands
dataset, so for comparison we use the smaller MG64 dataset.
Results show that Ray Meta scales poorly from 16 to 64
nodes, running at 3,407 secs and 2,931 secs at 16 and 64
nodes respectively (29% efficiency). By contrast, MetaHipMer
takes 512 secs at 16 nodes and 180 secs at 64 nodes (71%
efficiency). At 64 nodes, MetaHipMer is 16× faster than Ray
Meta.

Weak-scaling: We examine MetaHipMer’s weak scaling
efficiency by using four datasets generated with MGSim, of
increasing size and complexity. The datasets consist of 5, 10,
20 and 40 genomic taxas that generate 125, 250, 500 million
and 1 billion reads, and are run on 128, 256, 512 and 1024
nodes, respectively. Table II presents the assembly rate, which
is defined as kilobases assembled per second, per node. Results
show a slight initial performance drop fom 128 to 256 nodes,
and after that point, the rate remains relatively unchanged,
resulting in 75% weak scaling efficiency from 128 to 1024



XC40 Nodes Reads (Million) Genomic Taxas KBases/Sec/Node
128 125 5 0.16
256 250 10 0.12
512 500 20 0.13

1024 1000 40 0.12
TABLE II

METAHIPMER WEAK SCALING IN KBASES/SEC/NODE ON MGSIM.

nodes.
Grand challenge: While our strong-scaling results exam-

ined performance on a three-lane subset of the Wetlands data,
MetaHipMer enables, for the first time, a full assembly of the
2.6 TByte, 21-lane sample. This took 3 hours and 25 minutes
on 512 nodes (16,384 cores) of Cori. Assembling datasets of
this size has been previously proved intractable; we anticipate
that this capability will open up a new era in metagenomic
analysis. The benefits of assembling the full dataset over a
subset become apparent when comparing the assembly to that
from the three-lane dataset. The full Wetlands assembly is
41.5gbp (giga base pairs) in length, which is 18× larger
than the 2.3gbp assembly length for the three-lane subset.
Furthermore, the coverage is much improved, with 42% of the
full set of reads mapping back to the full assembly, compared
to only 7.6% mapping back to the subset assembly.

V. RELATED WORK

As the comparison of the assembly results between
metagenome focused assemblers is beyond the scope of this
paper, and has been covered in recent work [30]–[32], we
restricted our performance comparison to the Ray Meta [5]
metagenome assembler that scales on distributed memory sys-
tems. Ray Meta is a parallel de novo metagenome assembler
based on de Bruijn graphs that utilizes MPI and exhibits strong
scaling. One drawback of Ray Meta is the lack of parallel
I/O support. Ray Meta performs best on those organisms that
are highly covered within a sample and generally has lower
contiguity than MetaHipMer. The results in Section IV showed
limited Ray Meta parallel efficiency for our test problem.

MetaSPAdes [10], is a single-node metagenome assembler
that is de Bruijn graph-based, which has excellent quality
metrics and performs well on small to medium size datasets.
By default MetaSPAdes includes a read correction stage which
we disabled to better match the full workflow of comparable
assemblers, including MetaHipMer, when comparing perfor-
mance, since in most workflows read correction can be treated
as pre-processing step before assembly. MetaSPAdes is limited
to problems that fit in the memory of a single node, and thus
cannot assemble grand-challenge datasets.

Megahit [12], is a single-node metagenome assembler based
on de Bruijn graphs that is fast and does an excellent job
in assembling low abundance genomes within a metagenome.
Megahit can assemble low and medium sized datasets and is
optimized for GPU processing and low memory consumption.

A couple of distributed memory algorithms have been
recently developed and tackle only parts of the metagenome
assembly pipeline. Kmerind [33] is a parallel library for k-
mer indexing and has been shown to scale efficiently on
distributed memory systems. Also, Flick et. al. [34] introduced
a parallel connectivity algorithm for de Bruijn graphs in

metagenomic applications and the results illustrate very good
strong scaling on large concurrencies. However, none of the
two aforementioned algorithms constitutes a complete end-to-
end pipeline tailored for de novo metagenome assembly.

VI. CONCLUSIONS AND FUTURE WORK

Metagenomic analysis promises to revolutionize numerous
fields of study including biomedicine and environmental sci-
ences. The de novo assembly of these microbial communities
is one of the most challenging problems in bioinformatics
due to the computational complexity and irregularity of these
huge data sets. Unlike state-of-the-art metagenome assemblers
that are mostly limited to single-node memory footprints and
processing capability, we present MetaHipMer, the first end-
to-end, massively scalable, high-quality metagenome assembly
pipeline. MetaHipMer reduces computing runtimes by orders
of magnitude and enables a new era of metagenome assemblies
that were previously considered intractable.

MetaHipMer’s efficient scaling required numerous algorith-
mic innovations to develop its iterative high-quality approach,
coupled with novel parallel computing optimizations. The
parallel scalability of MetaHipMer is built on our distributed-
memory implementation of irregular data structures, including
histograms, hash tables and graphs, which leverage one-
sided communication and remote atomics using UPC’s global
address space capabilities. Additionally, we employed a variety
of techniques to maximize performance including locality-
aware hashing, software caching, read localization, partitioning
via connected components, and dynamic load balancing. To
evaluate the efficacy of MetaHipMer, we first examined as-
sembly quality metrics across leading metagenome assemblers
and demonstrated comparable results on the frequently studied
MG64 synthetic data set. We then explored scaling behavior on
the Cori Haswell system and showed efficient strong-scaling
behavior on up to 1024 nodes (32,768 cores) using a subset (3
lanes) of the Twitchell Wetlands dataset. Next we successfully
validated our metagenome assembler’s parallel efficiency in a
weak scaling regime, by developing MGSim and generating
appropriate simulated data sets. Finally, to highlight the new
capability of MetaHipMer we conducted a full assembly of
the 2.6 TByte Twitchell Wetlands environmental sample — to
the best of our knowledge, the largest, high-quality de novo
metagenome assembly completed to date.

Currently, metagenomic studies are conducted overwhelm-
ingly using high-throughput Illumina short read data. As
the cost of third-generation sequencing technologies, such as
those offered by companies Pacific Biosciences and Oxford
Nanopore, continue to come down, metagenomic studies might
also benefit from longer reads. However, third-generation
longer reads have significantly higher error rates and require
more computational power in order to get assembled, which
will increase the importance of parallelism in metagenome
assemblers. The distributed data structures and techniques
presented in this paper are predicted to be instrumental in the
large-scale parallel assembly of future datasets, regardless of
the prevailing sequencing technology.
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[15] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de bruijn graph construction and traversal for de
novo genome assembly,” in SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2014, pp. 437–448.

[16] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, vol. 18, no. 5, pp.
821–829, 2008.

[17] D. Hernandez, P. François, L. Farinelli, M. Østerås, and J. Schrenzel,
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VII. ARTIFACT DESCRIPTION APPENDIX: EXTREME
SCALE DE NOVO METAGENOME ASSEMBLY

A. Abstract

This artifact description sketches how to compile MetaHip-
Mer on NERSC’s Cori system and how the reported perfor-
mance numbers can be re-measured. The public MetaHip-
Mer release (https://sourceforge.net/projects/hipmer/) includes
more information on how to build MetaHipMer on various
platforms.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Distributed memory metagenome assembly
• Program: Available via SourceForge.net:
https://sourceforge.net/projects/hipmer

• Compilation: cmake
• Data sets: Datasets are publicly available.
• Run-time environments: Linux, GasNet, Unified Parallel C,

MPI Environment
• Hardware/System: NERSC’s Cori Cray XC40, consisting of

2388 compute nodes, each comprising two 16-core Intel Xeon
E5-2698 2.3GHz processors, for a total of 32 cores per node,
with 128GB per node. The nodes are connected with a Cray
Aries network with Dragonfly topology with 5.625TB/s total
bandwidth.

• Execution: Via shell scripts/job scheduler
• Output: Detailed timing for each pipeline module is available

in log files that are generated automatically
• Experiment workflow: see below
• Experiment customization: Different assembly experiments

can be set up via config files, various hardware platforms are
supported by the build process.

• Publicly available?: Yes
2) How software can be obtained (if available): Via

SourceForge.net
3) Hardware dependencies: x86 platforms.
4) Software dependencies:
• Working Message Passing Interface - MPI Environment

(Open MPI, MPICH2)
• Unified Parallel C - UPC environment (Berkeley UPC ≥

2.20.0)
• Working C/C++ compiler (Intel ≥ 15.0.1.133, GCC ≥

4.8, CLang ≥ 700.1.81 )
5) Datasets: All performance runs presented in this

work were carried out with real datasets that are
publicly available through the Sequence Read Archive
https://www.ncbi.nlm.nih.gov/sra. The simu-
lated datasets for the weak scaling experiments were
generated by a modification of the wgsim simulator:
https://github.com/ajtritt/wgsim

MG64 has Sequence Read Archive (SRA) accession
#:SRX200676.

Wetlands has SRA accession #:SRR1182407,
SRR1184661, SRR403474, SRR404111, SRR404117,
SRR404119, SRR404151, SRR404204, SRR407529,
SRR407548, SRR407549, SRR410821, SRR437909,
SRR5198900, SRR5198901, SRR5198902, SRR5198903,
SRR5246785, SRR5246787, SRR5246790, SRR5246791,
SRR6203186.

C. Installation
On NERSC’s Cori Cray XC40 system:

HIPMER_ENV_SCRIPT=.cori_deploy/env.sh ./bootstrap_hipmer_env.sh install

The MetaHipMer distribution has several scripts to support
building on multiple platforms including Linux and Mac OS
X

D. Experiment workflow

All datasets and config files are already set up on Cori’s
scratch filesystem (please contact the authors for the paths
on Cori). The distribution provides detailed examples on how
to set up the required data sets and config files. Exemplary
execution script of MetaHipMer on 32 nodes of Cori:
#!/bin/bash
set -e
export NODES=32
export CORES_PER_NODE=32
export THREADS=$((CORES_PER_NODE*NODES))
export CACHED_IO=1
export UPC_SHARED_HEAP_SIZE=2000
export HIPMER_INSTALL=$SCRATCH/hipmer-install-cori/
export PATH=$PATH:$HIPMER_INSTALL

export HIPMER_DATA_DIR=$SCRATCH/hipmer_metagenome_data
export HIPMER_TEST=wetlands_parcc_bbqc

sbatch -N $NODES \
--ntasks-per-node=$CORES_PER_NODE \
-q regular \
-C haswell \
-L SCRATCH \
-t 04:00:00 \
-o ${CONFIG}-${NODES}-%j-cori-haswell.out \
-J ${CONFIG}-${NODES}.out \
$HIPMER_INSTALL/bin/test_hipmer.sh

All other assemblers evaluated in this paper were run with
their default/suggested parameters.

E. Evaluation and expected result

Performance can be simply assessed by log output
files that are automatically generated and runtime is
reported in seconds. The accuracy of the resulting
assemblies are evaluated with metaQUAST 4.3
(http://quast.sourceforge.net/metaquast)
– used default parameters.

F. Experiment customization

The MetaHipMer distribution supports various exemplary
experimental setups with customizable config files, run scripts
for various platforms and sample read data sets.

VIII. METAHIPMER AND METASPADES NGA50
COMPARISON ON MG64

The results presented in Table I show the metrics for the
whole MG64 assembly. This obscures the variation across the
64 genomes that comprise the dataset. To get a better idea
of this variation, Figure 6 presents the NGA50 metric [29]
for each individual genome. The NGA50 metric is designed
to capture contiguity in the presence of errors, and so can
be thought of as a compact measure of both length and
misassemblies. We can see from the figure that MetaHipMer
and MetaSPAdes have very similar NGA50 for almost all



Fig. 6. All genomes of NGA50 for MG64, comparing MetaHipMer vs
MetaSPAdes.

genomes, except for two outliers. In these cases, there are
so few contigs in the genomes that a single misassembly can
change the NGA50 dramatically.
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