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The Funneled Energy Landscape Theory is currently the most widely accepted 

theory of protein folding.  In this dissertation, the basic concepts of the Energy 

Landscape Theory are introduced, highlighting some of its major successes in the studies 

of protein folding and binding kinetics. In particular, the focus is on an idealized native-

topology based (Go-type) model that corresponds to a perfectly funneled energy 

landscape.  This simple model has proven to accurately predict the folding mechanism of 

many proteins, even when simplifying approximations are made.  

While there exists much evidence that models based on perfectly funneled energy 

landscapes are sufficient in many cases, there are indications that in other cases the 

idealized view needs some added complexity to faithfully represent folding and binding 

mechanisms.  By exploring experimentally studied systems where the simplest Go-type 

models are insufficient, new paradigms and concepts add to our current understanding of 

protein folding, binding, and aggregation. 
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1. Theory of Protein Folding 

The question of how proteins fold into a well-defined native state by 

discriminating against countless alternatives is widely recognized to be one of the most 

important unsolved mysteries in science.  How do proteins find its folded state in a 

relatively short time?  This seemingly simple question is particularly perplexing when one 

considers the inherent complexity of protein molecules.  Assuming that the search for the 

folded state is random, one can naively estimate that even the simplest proteins should 

reach the folded state from the unfolded state on a timescale of an astronomical number of 

years when in fact real proteins fold far more quickly.  Of course, Nature has already 

solved the “protein folding problem”, and She continues to do so in an incredible fraction 

of that time, on the order of milliseconds to days.  The real problem lies in our own 

difficulties in understanding how She repeatedly accomplishes this incredible feat so 

elegantly and simply. 

Currently, the leading theory of protein folding is that natural proteins have 

evolved to have sequences that result in energy landscapes that are globally directed or 

“funneled” towards a uniquely structured folded state, while generally discriminating 

against misfolded states (1). The folding process is not a sequential list of requisite steps, 

but rather, there are many different ways that an unfolded protein can reach the native 

state through many competing pathways (Figure 1-1).  The Energy Landscape Theory is 

the result of both rigorous theoretical analysis and careful experimental observations, and 

there is now much evidence to support these basic ideas.  Recent work strongly suggests
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that even binding mechanisms are encoded into the sequence of proteins (2-4). 

 

 

Figure 1-1: A schematic representation of the ordering of proteins in a funneled energy landscape. 
The structures of c-src SH3 with varying Q are colored according to the degree of local structural 
order, Qi, in residue i, ranging from low Qi (orange) to high Qi (blue). The Pfold of each structure is 
denoted above each protein structure. The regions of the energy landscape corresponding to the 
unfolded, the folded, and the transition states based on Q are colored as yellow, blue, and gray 
regions, respectively. The free energy with respect to Q (F(Q)) is also shown 
 

1.1 The Dark Ages of Protein Folding 

When the term “protein” was first coined in 1838, the importance of these 

substances was immediately recognized, largely because of their close connections with 



3 

 

life processes (5).  In fact, the word “protein” comes from the Greek word “protos”, 

which means “primary” (5).  Even today, it is difficult to refrain from being in awe of 

how proteins dictate almost every aspect of life processes.  Proteins are the building 

blocks of the cytoskeleton that gives cells their shapes, they dramatically increase the rate 

of biochemical reactions, and they control genetic transcription, just to name a few roles.  

Indeed, proteins are critical components of almost all cellular structure and processes.  

The failure of a given protein to properly fulfill its function(s) can lead to a host of 

diseases and even death.  Further, proteins can sometimes fold into an incorrect structure, 

leading to Alzheimer’s, Parkinson’s, and variant Creutzfeldt-Jacob disease (6).  The 

importance of understanding the fundamental framework of protein folding cannot be 

overstated. 

We have long known that most proteins must fold into a specific and unique 

three-dimensional native conformation to perform their functions.  In 1961, Christian 

Anfinsen demonstrated that when ribonuclease became unfolded via denaturation, it folds 

back into its native conformation and preserves its enzymatic activity without the 

assistance of any helpers (7).  That is, the determinants of protein folding are encoded in 

the protein sequence itself.  Therefore, the process of protein folding can be naively 

described as a thermodynamic search for a given protein’s most stable structure.  It was 

later discovered by others that some proteins are unable to independently find their native 

states, so they require the assistance of chaperones that prevent misfolding (8).  There are 

still others that seem to have multiple relatively stable states, where one of the states 
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leads to aggregation and disease (9).  However, it is generally accepted that most proteins 

falls into the first category. 

Although proteins are able to assume their native states in a short time, this 

process was feared to be hopelessly complex to understood from a simple theoretical 

framework.  This notion is reflected in what is now known as “Levinthal’s Paradox”.  To 

point out the impossibility of a random search in protein folding, in 1969 Cyrus Levinthal 

posited an argument similar to the following (10).  Let us take a relatively small protein of 

about 100 amino acids, with about 10 accessible states per amino acid.  That would mean 

that the total number of accessible states of the protein is 10100.  Even if each state takes 1 

ps to access, it will take about 1081 years (much, much longer than the age of the 

universe!) for the protein to randomly search its conformational space and find its lowest 

energy state.  Obviously, proteins do not take anywhere near that long to fold or life itself 

would never have existed.  Therefore, the solution to Levinthal’s Paradox is that protein 

folding is not a random search, but a directed and biased one.  But how? 

 

1.2 Funneled Energy Landscape Theory of Protein Folding 

In the late 1980’s, Wolynes and co-workers introduced a well-defined possible 

solution to Levinthal’s paradox (11, 12).  Through careful mathematical analyses and 

incorporation of general experimental observations of protein folding, Bryngelson and 

Wolynes introduced the “principle of minimal frustration”, which states that natural 
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proteins are the product of evolutionary selection such that the amino acid residues 

interact in such a way as to be globally attracted toward the native state (11).  Any 

interaction that does not contribute towards the native state (i.e. non-native interactions) 

is mostly repulsive, providing primarily a frictional influence.  The non-native 

interactions that compete with the native interactions are said to be frustrated.  By 

minimizing frustration and thereby pruning frustrated interactions, evolution has generally 

selected against trap states that do not correspond to the native state.  A minimally 

frustrated protein sequence has an energy landscape that resembles a partially rugged 

funnel with a single lowest energy basin that corresponds to the native state (Figure 1-2a), 

resulting in relatively fast folding kinetics as expected in natural proteins.  In such an 

energy landscape, if any misfolded trap state exists, the energy for the misfolded state is 

high and the barrier to leave the trap state is very small.  On the other hand, a frustrated 

amino acid sequence (i.e. a random sequence of amino acids without the benefit of 

evolutionary selection) has an energy landscape with multiple minima with energies close 

to one another (Figure 1-2b).  Due to the competition between each of the low energy 

minima with high barriers between them, the protein with the frustrated sequence will 

exhibit slow or “glassy” folding kinetics.  When the energetic frustration is effectively 

removed, the only remaining determinant of protein folding kinetics is the topology of the 

protein. 
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a) b)

 

Figure 1-2: Schematic representations of protein energy landscapes.  For natural proteins, the 
protein is globally attracted, or funneled, to a unique native state, leaving a single minimum whose 
energy is far less than all others (a).  This is in contrast to a random sequence of amino acids where 
multiple minima have about equal energies, leading to misfolding and slow kinetics (b).  By 
evolving sequences that lead to proteins with funneled energy landscapes, proteins very quickly 
reach the native state. 

 

A model that quantitatively captures these Energy Landscape Theory ideas is a 

Go-type model (13), which takes the minimal frustration principle further by ideally 

assuming that proteins have no frustration.  The hypothesis being tested is to determine 

whether the level of frustration present in proteins is negligible.  In the model, every 

amino acid residue pair interacts favorably if the interaction is found in the native state, 

and they are repulsive (or not represented at all) otherwise, resulting in a perfectly 

funneled energy landscape with no trap states. The concept of a Go-type model is akin to 

the ideal gas law in physical chemistry in that it is a simplifying approximate 

representation of real systems.  It is not clear whether it is even possible for any protein 

to have a sequence such that there are no frustrated interactions at all, but this 

approximation seems to be a good starting point in that it captures many of the 

qualitative, and even quantitative, properties of real proteins (13-15).  In the original 

lattice Go model and the simplest off-lattice Go-type models, the energies of the 
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interacting residues were treated equally regardless of the sequence identity of the 

interacting residues, making this a purely a topological model in that only the structure of 

the native state is used as input to construct a Go-type model (13, 16).  Structural 

homologues with nearly identical structures do not always exhibit similar mechanisms, so 

the validity of this approximation must have some significant limits, as we will explore in 

detail later (see Chapter 5).  Further, the presence of misfolded intermediates in the 

folding mechanism is not represented at all.  Despite the incredible simplicity, Go-type 

models have proven for numerous proteins to reliably predict whether the folding 

mechanism involves an intermediate (13), the folding rate (15), and oftentimes the 

transition state structure at a residue-level resolution (3, 14, 17), although not always 

(14). 

Another representation of proteins, based on empirical force fields (18), is 

sometimes cited in the literature as being a more “realistic” representation of proteins 

because they include non-native interactions that Go-models inherently lack (19).  

Developed and optimized to study the dynamics of proteins in the native basin, empirical 

force fields are typically constructed by generating many parameters for use in a 

relatively simple energy function that is general for any sequence of amino acids.  These 

parameters are predominantly derived from quantum mechanical calculations, but 

experimental quantities from IR or microwave spectra are used whenever possible (18).  

The approach is very sensible, and the resulting force fields are often unquestionably 

accepted as being an accurate representation of proteins that can generally be applied to 
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study the entire folding process.  However, it is likely that these force fields have 

significantly more non-native interactions than are present in natural proteins, resulting in 

a rugged energy landscape with trap states that do not actually exist, even for simple 

peptides (20).  It is further unknown whether all of the significant non-native interactions 

are captured by these force fields.  At present, it is very difficult to ascertain how well 

these empirical force fields perform because simulations of protein folding are 

extraordinarily computationally intensive so computational protein folding studies using 

these force fields have been limited to small peptides or very small proteins.  Further, 

these simulations rarely, if ever, are performed long enough to observe more than one 

transition, so calculating thermodynamic quantities is extraordinarily difficult (21).  Also, 

it is not immediately clear how one would “fix” an error in a force field because many, if 

not all, of the parameters are dependent on each other, although it is not impossible.  

Recently, MacKerell, Feig, and Brooks systematically changed the phi and psi dihedral 

angles to reduce the transformations of α-helices to π-helices, which are extraordinarily 

rarely observed in nature but observed in simulations far more often than expected (22).  

Their work shows that a general improvement to the force field is possible, although it is 

certainly not trivial. 

Still, there is some evidence that these force fields have some promise in predicting 

the folding mechanism of proteins.  Pande and coworkers carried out the simulations of 

the folding of many “mini-proteins” (i.e., peptides comprised of less than 50 amino acids) 

using the Folding@Home distributed computing approach, which takes advantage of idle 
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computer time of many hundreds of thousands of volunteers (23).  While folding 

simulations of small peptides (about 30-60 residues) have been carried out using this 

brute-force strategy with remarkable success in the prediction of folding rates (24), it is 

not clear whether the same can be done for larger proteins.  Further, it is not yet clear how 

well these simulations reproduce the finer details of protein folding mechanisms.  More 

studies are necessary to quantify how funneled empirical force fields are, and 

improvements must be made to remove unrealistic trap states.  The empirical force field 

and energy landscape approaches are summarized in Figure 1-3.  Clearly, no protein 

representation is flawless, and the limits of the various models must be appreciated.  By 

making reasonable approximations that capture many of the qualitative and quantitative 

properties of protein folding processes, however, we can learn much, and a Go-type 

model is such an approach. 
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Figure 1-3: Two independent approaches to computationally study protein folding kinetics.  In 
the “bottom-up” approach, one starts from detailed quantum calculations of each residue of a 
protein to develop parameters for use in a coarse-grained and simple energy function (left).  
Simulations from this approach yields an energy landscape that is emergent from first principles.  
Alternatively, if one can make a reasonable assumption about the energy landscape a priori, based 
on broad experimental observations and analytical arguments, a model that captures the basic 
principles of the energy landscape theory can be constructed.   In the “top-down” approach, 
chemical details are progressively added to the simplest model until it captures the underlying 
physics to address the question at hand (right). 

 

1.3 Perfectly Funneled Energy Landscapes: Go-type Models 

Here, we describe a typical off-lattice Cα Go-type model, as was described by 

Clementi and coworkers (13).  In the simplest variant, a single bead centered on the Cα 
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position represents a residue.  Bond and angle potentials string together the beads to their 

neighbors along the protein chain.  The dihedral potential encodes the secondary 

structure. The defining characteristic of a Go-type model is that the protein’s native 

topology determines the network of favorable long-range tertiary interactions while all 

other non-bonded interactions are repulsive.  The Go-type model Hamiltonian for a 

protein with configuration Γ is as follows (see also Figure 1-4): 
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The Kr, Kθ, and Kϕ are the force constants of the bonds, angles and dihedral angles, 

respectively.  The r, θ, and ϕ are the bond lengths, the angles, and the dihedral angles, 

with a subscript zero representing the corresponding values taken from the native 

configuration, Γ0.  The non-bonded contact interactions, Hnonbonded, contain Lennard-Jones 

10-12 terms for the non-local native interactions and a short-range steric repulsive term 

for the non-native pairs, corresponding to a perfectly funneled energy landscape.   We 

chose as parameters of the energy function Kr=100ε, Kθ=20ε, Kφ
(1)=1.0ε, Kφ

 (3)=0.5ε.  In 

the homogeneous representation of inter-residue interactions, every native interaction 

energy has the same value and thus ε1=ε2=ε.  The interaction energies can alternatively be 

made sequence dependent by having the value of ε1be dependent on the identity of the 

interacting residues, i and j, and thereby introduce native energetic heterogeneity.  

! 

" i, j

nat
 is 
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the distance between the Cα atoms of the residues (i,j) in the native configuration and 

0.4
non

=! Å for all non-native residue pairs.  The network of native contact pairs was 

determined using the CSU (Contacts of Structural Units) software (25).  Thermodynamic 

quantities are readily obtained by collecting multiple constant temperature simulations 

and analyzing them via the weighted histogram analysis method (WHAM).  Despite the 

simplicity of this model, it has proven to accurately reproduce many qualitative and 

quantitative details of the folding mechanism.  So, if one knows the final native state, we 

can quantitatively describe the many different paths that the protein can take to get there. 

 

Figure 1-4: A schematic reflecting the different terms that define a Go-model.  The short-range 
interaction terms include the bond, angle, and dihedral terms (a-c), which are defined by harmonic 
wells whose respective minimum correspond to their values in the native state.  The long-range 
interactions between two residues that are in native contact (d) are described by a Lennard-Jones 
type 10-12 potential. 

 

1.4 Folding on Perfectly Funneled Landscapes 

Since the introduction of off-lattice Go-type models, simulations of many 

proteins have been carried out, and much has been learned about folding mechanisms.  In 

particular, many of the general features of the protein folding process are captured from 

Go-type models.  The unfolded and the folded states are separated by at least one free 

energy barrier that corresponds to a transition state (Figure 1-5).  When using appropriate 
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reaction coordinates, the structure of the transition state can be characterized for 

comparison to experimental observables.  Further, Go-type models for many proteins 

largely capture the rates of folding and the nature of any productive intermediate that may 

exist in the folding process.  A complete survey of the successes (and limitations) of Go-

type models would be very lengthy but we will highlight some of the major studies using 

Go-type models. 

 

Figure 1-5: A typical trajectory from a Go-type model used in our studies (left) with the 
corresponding free energy profile generated using WHAM (right). 

 

The success of any model representing the protein folding process must be 

measured not only by the qualitative observables but also quantitative ones as well.  That 

the pattern of folding rates of many proteins can be well-predicted by Go-type models 

was demonstrated by a survey of many globular proteins undertaken by Takada and 

coworkers (14).  Clementi and coworkers showed that the models not only discriminated 
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between two- and three-state folding proteins, but that the predicted structure of the 

transition state and intermediates were similar to those that were observed experimentally 

(13).  When the structures of the transition state were characterized quantitatively by 

calculating Φ-values, which is at a residue-level resolution, it was clear that a substantial 

improvement in the agreement between simulations and experiments could still be made 

(14).  Clearly, the purely additive model is limited in reproducing the transition state, and 

Plotkin and coworkers showed that the structure of the transition state as characterized 

by Φ-values agrees better with experiments when many-body interactions that implicitly 

include the effects of sidechains and waters are included (17). 

It is important to note that Go-type models are not limited to proteins with 

compact geometry.  While most Go-type simulations have been performed for globular 

proteins, Ferreiro and coworkers showed that Go-type models of linear ankyrin repeat-

containing proteins also show remarkable success in reproducing and even predicting 

experimental observations (26), demonstrating that the simple topology-based model 

accurately captures the folding mechanism of these proteins just as well as that of 

globular proteins.  While the models faithfully reproduced many experimental 

observations of the ankyrin repeat proteins’ folding mechanism, perhaps their greatest 

success in the study was the prediction of an intermediate in the case of Notch ankyrin 

repeat domain that was later verified by experiment (27).   

Despite the many successes, the simplest Go-type model cannot be expected to 

be without limitations.  As such, one can improve upon the simplest variant by 
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introducing complexity into the model so that the underlying physics is better 

represented.  We note two general directions that are not mutually exclusive.  Karanicolas 

and Brooks introduced a heterogeneous Go model with energies of the long-range residue-

residue interactions depending on the identity of the individual residues (28).  Another 

direction was to increase the chemical detail of the protein representation by involving 

additional atoms (29, 30) or explicitly including water molecule interactions (31).
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2. Identifying and Characterizing the Transition State Ensemble 

Transition state theory (TST) is the simplest theory of predicting reaction rates 

for chemical reactions dating to Wigner.  In this well-known theory, two stable states (i.e., 

reactant and product) are separated by an ambiguous, unstable region of phase space 

called the “transition state”.  TST postulates that when a reactant crosses the transition 

state once, the molecule continues to the product state without recrossing.  The 

assumption that later recrossing events often can be considered negligible seems quite 

reasonable, as reflected by the robustness of the TST for predicting rates in gas phase 

kinetics.  In such situations, the transition state ensemble (TSE) corresponds to the free 

energy barrier peak for an appropriately chosen reaction coordinate. TST as a general 

concept is applicable to protein folding when it is a strongly cooperative process.  

 

2.1 Transition State of Protein Folding 

For natural proteins, the unfolded and folded states are usually separated by at 

least one bottleneck or transition state.  In protein folding processes, however, the 

recrossing events are nontrivial because frictional effects, arising from the solvent 

collisions, from dihedral angle barriers, and from forming adventitious non-native contacts, 

can exert forces on the reaction coordinates that alter the direction of motion.  A protein 

may cross the transition state multiple times before reaching the folded state, as was 

analytically predicted by Bryngelson and Wolynes and later observed in simulations. 
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TST, therefore, overestimates the rate coefficient, which only counts the number of 

forward trajectories, neglecting any recrossing events (Figure 2-1a).  Frictional effects 

grow as the glass transition from landscape ruggedness is approached.  When friction is 

large, the transition state generally does not correspond to the peak of the free energy 

barrier (Figure 2-1b).  There is much evidence, however, that real proteins are far from 

this glassy limit.  In the simplest case, folding kinetics can be interpreted using a single 

transition state that separates the unfolded and folded states.  Protein engineering allows 

the structures in the TSE for these systems to be probed.  In a strictly two-state 

situation, the TSE would be reasonably defined by a single stochastic separatrix and 

corresponds to that set of structures that have an equal probability of first completing the 

folding process before unfolding to a completely denatured state. 

 

Figure 2-1: Schematics depicting two possible trajectories of protein folding: (a) a single crossing 
of the transition state as predicted by TST on smooth landscapes and (b) multiple crossings of the 
transition state in the limiting case of high friction due to ruggedness in a frustrated landscape. 
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2.2 Pfold as the definition of the TSE for Proteins 

Motivated by this observation, the quantity Pfold has been defined.  It is the 

probability that a given structure will reach a decidedly folded state before reaching the 

unfolded state (32).  For a protein that undergoes a two-state folding mechanism, the Pfold 

of the TSE members should be 0.50.  To compute Pfold for a given structure, one starts 

several independent trajectories at the folding temperature (Tf) from that structure until 

the protein reaches either the unfolded or the folded state, and then one calculates the 

appropriate average (Figure 2-2).   

 

Figure 2-2: To ascertain whether a given structure is a member of the transition state ensemble, 
one computes its Pfold by running many independent simulations, each starting from the same 
conformation.  Its progress is monitored to see whether it reaches the folded state before reaching 
the unfolded state.  That probability is defined as Pfold, which is equal to 0.50 (within statistical 
error) if it is a member of the transition state ensemble. 
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While the concept of Pfold is rather simple, unfortunately, it is computationally 

intensive to evaluate.  To be statistically meaningful, tens to hundreds of simulations 

starting from each conformation are needed.  Further, the simulation time required for a 

single trajectory, starting from a candidate transition state conformation, to commit to 

unfolding or folding can be longer than 100ns when using all-atom simulations with an 

empirical force field (33).  The parallelizable nature of the problem has motivated the use 

of distributed computing approaches to carry out such computations (21).  Even in the 

most rigorous studies carried out so far, however, the computation of Pfold is limited to a 

rather small set of conformations.  Computing Pfold also requires the precise knowledge of 

Tf since Pfold is highly sensitive to temperature (Figure 2-3).  Determining the value of Tf 

from simulations, however, is not always possible.  In all-atom simulations of  

proteins it has been seldom possible, if ever, to observe transitions between the folded 

and unfolded states, even for the simplest proteins.  Thus Tf is uncertain for these models.  

While approximating the folding temperature in a simulation with the laboratory value 

from experiments for a well-studied protein (33-35) may be acceptable, an arbitrary 

choice of temperature (36) is clearly inadvisable because the slightest deviation from Tf 

can significantly misplace the TSE.   
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Figure 2-3: The temperature sensitivity of Pfold.  The specific heat for the folding of c-src SH3 
protein as a function of temperature in units of Tf is shown with the average Pfold of the same set of 
structures with the same set of initial velocities at different temperatures. 
 

A more troubling aspect of Pfold, beyond the practical burdens of computing it, is 

that Pfold does not have any direct relationship to the observables measured in 

experiments or used to perturb folding thermodynamically.  Presently, one can only 

fantasize about the improvements in single molecule technologies needed to 

experimentally measure Pfold for a given conformation because rigorously such a protocol 

would entail the exact replication of the protein conformation for multiple trials (37).  

Thus, although Pfold identifies members of the TSE in a strict sense, the severe practical 

drawbacks of using Pfold demand finding reliable alternatives without these handicaps.  

Also, the appropriateness of Pfold for proteins with complex mechanisms (i.e., with 

intermediates) has not been quantified until now, and as we shall see presently in this 

situation using Pfold has its own difficulties. 
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Fortunately, for natural proteins it is possible to replace the kinetically defined 

Pfold with one or more reasonably accurate structurally defined reaction coordinates that 

accurately predict and characterize the TSE.  A key idea of energy landscape theory is 

that this should be possible whenever the energy landscape is not very frustrated.  One 

study illustrating this was already carried out by Onuchic et al., which showed that 

thermodynamic reaction coordinates predict the measurable structural features of a TSE 

well when the landscape is strongly funneled by comparing directly computed Φ-values 

with those inferred from the TSE (38).  In keeping with Bryngelson and Wolynes’s 

theory, they also showed that that when the landscape is glassy or frustrated, 

thermodynamic coordinates by themselves fail to describe the structural ensemble as 

measured by Φ-values (38).  Thus general arguments and these specific results have 

encouraged the use of calculating Φ-values based on unfrustrated models (39, 40).  

Simulations based on unfrustrated landscapes using native-structure based reaction 

coordinates also predict many qualitative experimental observations of protein folding and 

binding (2, 3, 13).  The predicted folding rates of many small proteins agree well with 

experimental observations (14, 15), and the Φ-values usually agree with experimental 

values (3, 17).  Despite these successes and ignoring the capability of rate theory to use a 

variety of reaction coordinates so long as the results are properly corrected by Kramers-

like transmission factors (12), some researchers have argued that structural reaction 

coordinates like Q, the fraction of native contacts, are inappropriate for describing the 

TSE even on unfrustrated landscapes (32, 41).  They have argued a priori that structural 
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coordinates like Q will fail to identify the transition state, even for funneled landscapes 

(29, 42).  Some further maintain that Pfold is the only reliable reaction coordinate for real 

proteins (43).  Such extreme views conflict with numerous other studies showing that Q 

gives acceptable results as a reaction coordinate for model proteins (37, 38, 44).  Studies 

on all-atom models show a clear correlation between Pfold and Q (35).  We should 

recognize, however, that Q is not the only possible structural coordinate that can be used 

for kinetics.  Shoemaker et al. showed that reaction coordinates measuring only a handful 

of contact areas function equally well, if they are chosen appropriately post hoc (45).  

Alternative structural quantities have also been used as reaction coordinates.  <L>, the 

mean shortest path length has been reported to characterize the TSE better than other 

order parameters (46).  In general, the fact that the structures in TSEs as defined by Pfold 

are found to have high structural similarity to each other in at least one case (47), indicates 

again that some a priori geometric measures should be sufficient for structurally 

describing the TSE.   

To address the issues highlighted above, we examine two experimentally well-

studied proteins that, in the laboratory, fold with a two-state folding mechanism (c-src 

SH3 and CI-2) (13, 48, 49).  We will quantify rigorously the accuracy of native structure 

based reaction coordinates in describing the TSE as probed by Φ-value analysis (50).  The 

TSE structures obtained using several different reaction coordinates are compared to the 

one based on Pfold.  All these ensembles are found to be essentially the same in structure.  

We then extend our study to a more complex system, where the concept of Pfold itself is 
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suspect.  In a system that is thermodynamically two-state but with a broad, asymmetrical 

free energy barrier (3ANK), the folding mechanism was found to actually involve two 

sets of competing folding routes. One of the transition states was indeed not detected 

using Pfold.  Finally, we study a protein having a clear three-state folding mechanism (CV-

N).  In this case, Pfold fails to detect either of the appropriate transition states. 

 

2.3 Structural Reaction Coordinates Identify and Describe the TSE as 

well as Pfold 

For two-state proteins, if friction effects are small, the peak of the free energy 

barrier, as described by the structural reaction coordinate, must reasonably correspond to 

the TSE found using Pfold.  Structures in the TSE as predicted by the structural reaction 

coordinate should have approximately equal probabilities to fold or unfold.  To evaluate 

whether the reaction coordinate Q in this sense reliably predicts the TSE, we simulated 

the two-state folders c-src SH3 and CI-2.  For these proteins, we also calculated the Pfold 

of structures over a range of Q between the unfolded and folded states to determine which 

values of Q correspond to the putative TSE, i.e., 0.100.50P
fold

±= .  Those structures 

whose Q is 1 kBT from the barrier top of the free energy profile are considered to form 

the “predicted TSE”.  A free energy profile with respect to Q and its corresponding Pfold 

(Figure 2-5a,b) shows that for both proteins, the peak of the barrier, as defined by Q, 

corresponds to Pfold = 0.50.  That is, the TSE according to Q agrees reasonably well with 
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the TSE according to Pfold (Figure 2-5a,b).  While Q, on average, is able to identify the 

TSE, there do exist some structures in the Q ensembles whose Pfold lies outside of the 

range 0.100.50P
fold

±=  even though Q predicts them to be members of the TSE.  To 

assess whether these and similar outliers significantly taint the predicted TSE, we 

compared the two TSEs using the Kolmogorov-Smirnov test (51), a well-established 

statistical test that determines whether two overlaps distributions can be taken as subsets 

chosen from the same underlying distribution.  According to this test, the TSEs according 

to Pfold and Q are equivalent.  We see then that in this exhaustive survey one cannot 

distinguish these ensembles in terms of pair structural patterns. 
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Figure 2-4: Structural order parameters selected for evaluation as reaction coordinates.  The 
radius of gyration, (Rg) and fraction of native contacts (Q) are commonly used in the study of 
protein folding kinetics.  The average shortest path length (<L>) has recently been cited in the 
literature as being better than Q.  The measure of the structural overlap of the native distances (QS) 
is more precise than Q because it considers not only whether a native contact is made, it also 
imposes a Gaussian penalty as the interactions becomes far from its native distance. 

 

We now compute the experimentally accessible quantities, Φ-values, according to 

the four chosen reaction coordinates, Q, QS, <L>, and Rg, and compare them to the Φ-

values of the TSE as defined by Pfold (Figure 2-4).  To make a quantitative comparison 

between the Φ-values determined by Pfold and those predicted by the structural 

coordinates, we used the linear correlation coefficient, r, and the slope of the best-fit line, 

m (Fig. 10c,d).  For both proteins, the Φ-values as determined by the reaction coordinates 

Q, QS, and <L> agree strikingly well to those of the TSE described by Pfold with 

correlation coefficients around 0.90 and 0.95 for c-src SH3 and CI-2, respectively.  The 
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slopes of the correlations are about 0.70 and 0.80, for c-src SH3 and CI-2, respectively, 

indicating that the Φ-values are slightly underestimated using these structural reaction 

coordinates as compared with Pfold.  Evidently, there exist only minor differences between 

the TSE as determined by Pfold or using any of the reaction coordinates studied that are 

based on the protein native topology (i.e., Q, QS, and <L>).  Rg, on the other hand, 

generally grossly underestimates the Φ-values.  <L> turns out to be at best comparable to 

Q and QS when describing the TSE via Φ-value analysis, contrary to a previous 

suggestion (46).  The difference between Q and QS is modest, as is reflected in their 

equivalent characterizations of the TSE.   

We compare the Φ-values observed from experiments to the Φ-values as 

determined by Pfold and the structural coordinates.  For c-src SH3, the correlation 

coefficient between the experimental Φ-values and the calculated ones with Q has been 

previously reported to be around 0.60 (17).  We found a correlation coefficient of 0.65.  

In our analysis, the highest correlation coefficient is observed when the Φ-values are based 

on Pfold with r=0.70, but other reaction coordinates performed similarly well (Figure 

2-5e).  We note that the difference between the correlation coefficients computed using 

Pfold and Q is 0.05.  There is thus only a miniscule improvement of predictability when 

using Pfold.  The correlation between experimentally determined Φ-values and those 

obtained by simulating c-src SH3 using an all-atom model with an empirical force field, 

where non-native interactions are considered, is only 0.74.  That correlation would be 

improved to 0.93 if the Φ-values of the hydrophilic residues were excluded from 
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comparison (33).  Plotkin and coworkers have shown that the correlation between 

simulated Φ-values for CI-2 with experimental values is improved by including non-

additive energetic terms, which arise from solvent and sidechain effects (17).  Of course, 

such a non-additive model still corresponds to a perfectly funneled landscape.  Our 

simulation model is purely additive, so this is likely the best achievable correlation.  The 

agreement between the simulated Φ-values using reaction coordinates with experiment is 

not precise.  This lack of precision is found to be equally true for the Φ-values coming 

from the Pfold TSE as well as the others (Figure 2-5f).  Clearly, the source of disagreement 

between the experimental and simulated Φ-values is not the inadequacy of the reaction 

coordinate, but rather the lack of non-additive energetic terms in the model.  We note that 

while supplementing the pairwise model with non-additive interactions increases the 

correlation between experimental and simulated Φ-values for many proteins, SH3 proves 

an exception showing almost no effect on Φ-values from increased non-additivity (17).  

For both proteins, describing the TSE using Pfold rather than any of the native-topology 

based reaction coordinates results in no appreciable improvement of agreement with 

experiment.   
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Figure 2-5: Comparing the TSE obtained from Pfold and the structural reaction coordinates of 
two-state folding proteins. (a and b) For both c-src SH3 (a) and CI-2 (b), the free-energy profile 
using Q as a reaction coordinate is overlaid with the average Pfold of structures (with error bars 
indicating 1 SD) over the range Q = 0.30–0.80. The putative TSE corresponds to Pfold =0.50 ± 0.10, 
whereas the TSE predicted by Q is 1kBT from the peak of the free energy profile. (c and d) The Φ-
values of the TSE as predicted by Q, QS, <L >, and Rg are compared with the putative TSE for c-
src SH3 (c) and CI-2 (d). (e and f) The simulated Φ-values as calculated using the aforementioned 
measures are compared with the experimentally observed Φ-values for c-src SH3 (e) and CI-2 (f). 
The correlation coefficient, r, and the slope of the best-fit line, m, are used for quantitative 
comparisons. 

 

2.4 Broad Free Energy Barrier Masks a Competition between Two- 

and Three-State Transitions 

We next used the same protocol for 3ANK folding.  3ANK is a designed ankyrin 

repeat protein with three repeating subunits, each with an identical consensus sequence 

(52).  3ANK is predicted by Q to fold by a two-state transition with a broad, 

asymmetrical free energy barrier (Figure 2-6a).  Again, we found that Pfold=0.50 
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corresponds to the Q at the peak of the free energy profile (Figure 2-6a).  This is 

remarkable considering that the free energy barrier ranges from Q=0.30 to 0.70 and the 

peak lies far closer in Q to the unfolded state than the folded state.  The Φ-values 

determined by the reaction coordinates Q, QS, and <L> agree with those of the TSE based 

on Pfold (Figure 2-6b).  Why is the free energy barrier broad?  To answer this, we divided 

the 3ANK in half and projected the free energy profile onto two coordinates, QN-Term and 

QC-Term, the fraction of native contacts of the N- and C-terminal halves.  This approach 

was motivated by the earlier predictions of Ferreiro et al. that the folding nucleus of 

ankyrin repeat proteins corresponds to approximately 1 ½ repeats (26).  The resulting 

free energy profile exhibits a competition between a N-terminal nucleating two-state 

transition and a C-terminal nucleating three-state transition (Figure 2-6c).  In a recent 

experimental study, a 3-ankyrin repeat protein with a similar sequence to 3ANK 

exhibited equilibrium intermediates (3-state folding mechanism) at high temperatures but 

not at low temperatures (2-state folding mechanism) (53).  The discrepancy in the 

observed folding behaviors can be rationalized by a competition of folding mechanisms 

similar to that found in the simulations. 
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Figure 2-6: Comparing the TSE obtained from Pfold and structural reaction coordinates for 
3ANK, a protein with a broad, asymmetrical free-energy barrier. (a) The free energy profile of 
3ANK using Q as a reaction coordinate is overlaid with the average Pfold of structures (with error 
bars indicating 1 SD) over the range Q = 0.30–0.80. (b) The Φ-values of the TSE as predicted by 
Q, QS, <L>, and Rg are compared with the putative TSE. (c) The free energy surface projected 
onto the N-terminal (QN-Term) and C-terminal (QC-Term) halves of 3ANK with the unfolded, 
transition, intermediate, and folded states indicated for the two competing nucleating routes. (d) 
The two clusters of structures in the putative TSE (i.e., Pfold ~ 0.50) are overlaid on the free energy 
profile projected onto QN-Term and QC-Term. 

 

How do we reconcile the complex mechanism that we can ferret out with multiple 

structural coordinates, and also supported by experimental evidence, with an analysis 
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using Pfold?  We clustered the structures with Pfold=0.50 according to the similarity 

measure, q.  This yields predominantly two sets of clusters.  These clusters correspond 

to either N- or C-terminus nucleation (TSN and TSC, respectively), again implying that 

there are two parallel routes of nucleation in the folding of 3ANK (Figure 2-6d).  

Unfortunately, these structural clusters correspond to the N-terminal transition state as 

they should, but they only contain the first C-terminal transition state.  There is no 

indication from the TSE predicted by Pfold of the second transition state along the C-

terminal nucleation route, although it clearly exists. 

 

2.4 Pfold Fails When There are Intermediates 

To test fairly whether Pfold can identify folding through multiple transition states, 

we simulated a protein that does not have competing pathways but has an intermediate 

according to free energy profiles based on Q.  We selected CV-N, a single-chain protein 

composed of two domains with high sequence and structure similarity to each other.  

Laboratory experiments have classified wild-type CV-N as a two-state folder yet a 

mutation can stabilize an intermediate (54).  Go model simulations of CV-N showed 

previously a three-state folding transition with a high-energy intermediate (4).  A two-

state folding transition occurs when the Go-model is constrained by disulfide bonds 

present in the protein (4).  For our test, we modeled CV-N without considering disulfide 

bonds.  The choice of a protein system with a high-energy intermediate allows a rigorous 
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analysis of such an intermediate case with minimal computations.  The high energy 

intermediate is easily seen by projecting the free energy along Q, along with the Q of the 

N- and C-termini and their interface (Figure 2-7a-d).  The two domains depend upon one 

another to fold.   

 

Figure 2-7: Comparing the TSE obtained from Pfold and structural reaction coordinates for CV-
N, a protein that is simulated to fold with a three-state folding mechanism. (a) The free energy 
profile of CV-N using Q as a reaction coordinate is overlaid with the average Pfold of structures 
(with error bars indicating 1 SD) over the range Q = 0.30–0.80. (b) The free energy profile is 
projected onto the N-terminal (QN-Term) and C-terminal (QC-Term) halves of CV-N, corresponding to 
the two domains in the protein. (c) The free energy profile is projected onto QN-Term and the 
interface between the two domains (QInter). (d) The free energy profile is projected onto QC-Term and 
QInter. 
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When we analyzed the region between the folded and unfolded states, Pfold=0.50 

clearly corresponds to the intermediate and not to either of the transition states!  The two 

actual transition states are barely represented at all in the ensemble of structures with 

Pfold=0.50 (Figure 2-7a).  It is easy to see that using Pfold to identify and distinguish 

multiple transition states is generally impossible.  When an intermediate occurs in the 

folding, there are three possible situations with regard to Pfold (Figure 2-8).  The first 

possibility is that Pfold will miss all of the transition states.  The Pfold=0.50 ensemble will 

correspond to another part of the free energy surface, usually an intermediate, as is the 

case of CV-N.  The Pfold of the individual transition states never equal 0.50 but will have 

higher or lower values.  Sometimes the Pfold=0.50 ensemble will corresponds to several 

different transition states of the free energy surface.  In this case, as illustrated by 3ANK, 

one must use clustering algorithms to differentiate the chemically distinct TSEs.  The very 

meaning of the TSE must again involve other measures that capture this clustering.  

Finally, in favorable situations the Pfold=0.50 ensemble will correspond to only a single 

dominant transition state but will ignore others that may be important upon mutation.  In 

every case where the folding mechanism involves more than one transition state, we have 

found that using Pfold alone cannot describe even the basic features of the folding process, 

at least for a minimally frustrated system.  We find it is much better to use direct 

structure based reaction coordinates.   
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Figure 2-8: A schematic depicting the three possible relationships between Pfold and free energy 
profiles for protein systems with two folding transition states. 

 

2.5 “Minding your p’s and q’s” in Protein Folding Kinetics 

Protein folding has long been viewed as being rich in complexities.  With the 

development of the energy landscape theory, our view of protein folding has, however, 
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greatly simplified from the hopelessly complex one first presented by Levinthal’s 

paradox.  Because of their funneled energy landscapes, global structural measures of 

similarity to the native state are quite adequate for describing the folding progression for 

most natural proteins.  Pfold may be used unambiguously to characterize a TSE for a 

simple two-state folding processes, but it is unnecessary to carry out this expensive 

procedure for the minimally frustrated case.  The high computational demands of 

determining Pfold can be avoided by the use of native structure-based reaction coordinates.  

These predict the TSE for minimally frustrated systems just as well as Pfold.  Our study 

shows that global reaction coordinates based on the native topology of a protein, such as 

Q, QS, and <L>, fully satisfy the criteria needed to accurately identify and describe of the 

TSE.  The Φ-values of the TSE as determined by Pfold and the thermodynamic reaction 

coordinates are nearly identical.  They are, therefore, equally accurate descriptors of the 

TSE as probed by current experiments.   

Understanding the folding of larger, more complex proteins, even if unfrustrated, 

generally requires the use of several reliable reaction coordinates that can distinguish the 

multiple transition states and/or parallel routes that are present in the folding process.  

For such cases, no single global measure of protein folding progression will ever be 

adequate.  Thus even Pfold, often invoked as the standard by which all reaction coordinates 

should be judged, is itself still insufficient for describing even the qualitative features of 

folding mechanisms when they are complex enough to have fine intermediates.  Using 

multiple, and possibly local, reaction coordinates and a reasonably intuitive understanding 
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of the principles of protein folding science, however, a complete picture of protein folding 

can  be obtained.   

As we take a step back from our calculations, it is impossible not to marvel at 

how simple protein folding actually is, at least in comparison to our fears.  One must 

keep in mind that the simplest protein folding processes are enormously complicated 

chemical reactions involving very many degrees of freedom. Yet, evolution has led to the 

global organization of the landscape of proteins into a funnel.  The funnel concept allows 

us to obtain much information about the folding process using only a few coordinates for 

folding progression.  Even the most complex folding processes found in natural proteins 

seem to require only a handful of reaction coordinates.   

 

Reprinted from: 

Cho SS, Levy Y, Wolynes PG. P versus Q: Structural reaction coordinates capture 

protein folding on smooth landscapes. Proc. Natl. Acad. Sci., USA. 2006, 103: 586-591.
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3. Funneled Energy Landscapes for Binding Mechanisms 

Funneled energy landscapes are now well accepted as the foundation for 

unimolecular folding, but most proteins interact with partners in the cell. The dynamic 

principles of protein association mechanisms are fundamental to protein networking, 

protein function, and pathogenic aggregation.  Once the basic principles have been 

established, we may be able to design more stable complexes as pharmacological 

inhibitors.  The remarkable efficiency of organizing many partners to yield biological 

functions strongly suggests a directed search in protein recognition processes that may be 

analogous to folding of single proteins.  Can the organization of proteins into complexes 

be understood within the framework of the Funneled Energy Landscape Theory?   

Recent work strongly suggests that we can indeed generalize the concept of 

funneled energy landscapes to protein-protein association mechanisms as well.  In fact, 

there are already far too many examples of its application to protein-protein association 

mechanisms to adequately describe here.  Instead, we will briefly highlight a few notable 

examples of studies using native topology-based (Go-type) models just to get a flavor of 

how binding mechanisms can be accurately predicted from these simple models.  As we 

begin to explore more complicated systems, however, we cannot expect all binding 

processes to be neatly described by simple, idealized funneled energy landscapes.  As 

such, it may be necessary to develop new paradigms beyond basic funneled energy 

landscapes to understand association mechanisms.  Even experimentally observed 

behaviors that seem to contradict the Funneled Energy Landscape Theory must be 
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addressed if we are to fully understand protein folding and binding mechanisms.  

3.1 Funneled Energy Landscapes of Protein-Protein Assembly 

Mechanisms 

Protein recognition and binding, whether they result in either transient or long-

lived complexes, play a fundamental role in biology.  To test the applicability of the 

Funneled Energy Landscape Theory to oligomerization mechanisms, Levy and coworkers 

surveyed the association mechanisms of many protein-protein complexes (2, 3).  Just as 

for single protein chains, a Go-type model that is globally directed towards the native 

state was used, thus corresponding to a perfectly funneled energy landscape.  The main 

difference in the methodology is that the native state corresponds to the complex 

structure, not the individual, isolated components.  Simulations of oligomers can be 

readily compared with experimentally observed mechanisms, such as whether a fine 

intermediate is populated or, whenever possible, the structure of the transition state 

ensemble as measured using protein engineering experiments. 
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Figure 3-1: The structures and free energy surfaces of folding and binding of obligate, two-state 
arc repressor dimer (a-c) and nonobligate, three-state LFBI transcription factor dimer (d-f).  The 
ribbon diagrams for the dimers consists of one monomer colored blue and the other colored grey.  
Red lines indicate native contact interactions that define the interface.  The free energy surfaces are 
plotted as a function of the intramolecular native contacts (QA and QB) and that of the interface 
(QInter). 

 

The mechanism of protein assembly can be experimentally characterized as 

association that starts from unfolded subunits (two-state dimers) or folded subunits 

(three-state dimers) (55, 56). Those proteins that were experimentally observed to reach 

the native state cooperatively by a two-state mechanism were predicted by the Go-type 

model to have a coupled folding and binding mechanism.  In contrast, when the routes to 

the native state involved an intermediate, the Go-type model predicted that the folding of 

the individual subunits occurred first, which corresponds to the experimentally observed 

intermediate, before then proceeding to the bound conformation, again in remarkable 

agreement with experimental observations (2, 3).  In general, Go-type model simulations 
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predict reasonably well many of the finer features of the binding mechanism, as reflected 

by the prediction of Φ-values that compare with experimentally observed values (3). 

 

Figure 3-2: The structure and oligomerization mechanism of p53 tetramer. The ribbon diagrams 
for the tetramer (a) consists of a dimer colored two different shades of green and the other colored 
two different shades of blue.  Yellow lines indicate native contact interactions between the 
monomers A and C or B and D, while red lines indicate native contact interactions between dimers 
AC and BD.  The four-dimensional free energy surface (b) is plotted as a function of the formation 
of the dimers AC and BD and the tetramer interface (AC-BD).  D and T refer to the folded dimer 
and the folded tetramer, respectively.   The Φ-values for the transition state ensembles (TSEs) of 
dimerization and tetramerization as compared with experimentally observed values. 

 

The tetramerization of p53 is an ideal system to study via simulation because its 

association mechanism has been extensively characterized via experiments (57).  The 

homotetramer is formed by two sequential steps: first dimerization of two unfolded 

chains, which in turn further associate to form the tetramer.  That is, the formation of the 

dimers is coupled to monomer folding, while the association of already folded dimers 

forms the tetramer.  Consistent with experiments, formation of two dimers is obligatory 

before formation of the tetramer and no trimeric state is observed (Figure 3-2b).  A 

quantitative comparison between the Φ-values obtained via simulations and experiments 

can be made at the dimerization transition state and the tetramerization transition state.  
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Consistent with experiments, we find that the dimerization transition state has 

significantly lower Φ-values than that of the tetramerization transition state.  Beyond a 

qualitative agreement, however, the exact Φ-values agreement is somewhat poor.  The fact 

that many negative Φ-values are found experimentally suggests that the system is 

energetically frustrated.   Interestingly, Pande and coworkers studied the dimerization 

reaction of the tetramerization domain of p53 using all-atom MD simulations that 

includes non-native interactions (36), and the Φ-values for the dimerization transition 

state is qualitatively similar to those obtained by the Go-type model simulations.  This 

discrepancy thus remains puzzling, but may be related to energetic heterogeneity, as we 

discuss later (See Chapter 5). 

A particularly notable example that we highlight is the prediction by Levy and 

coworkers that the binding process of HIV-protease dimer involves a thermodynamic 

intermediate that corresponds to a monomer (58).  That is, the monomer conformation 

may be thermodynamically populated, strongly indicating that a new target for drug 

design could be developed which by disfavoring the binding mechanism could prevent the 

function of this key enzyme in the HIV life cycle. 

 

3.2. Challenge to the Funneled Energy Landscape Theory?: Rop Dimer 

Up to this point, we have highlighted the large amount of  evidence that even the 

simplest variant of the Funneled Energy Landscape Theory can suffice to quantitatively 



42 

 

predict the folding and binding mechanisms of many proteins. As such, one expects that 

the evolutionarily designed funneled energy landscapes of proteins robustly tolerate 

changes in the sequence (i.e. mutations) to yield kinetically competent folders as long as 

stability is maintained (1).  Evidenced by structural studies of mutant proteins with single 

substitutions, the general experience is that the effect of mutations is typically minor and 

localized in structure.  Some proteins even retain their global tertiary structure despite 

extensive redesign of their hydrophobic cores (59).  The large sequence space yielding a 

single protein topology is well illustrated by the large families of structurally related 

proteins, sometimes found with very little sequence similarity (59-61).  Structurally 

homologous proteins also sometimes have a conserved folding mechanism (35, 59), as 

would be expected from funneled nature of their evolved energy landscapes.  It might 

seem that the folding and binding behavior of proteins is largely solved with little left to 

explore.  Yet there are some minor instructive anomalies.  
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Figure 3-3: The structure of the wildtype Rop homodimer and the hydrophobic core redesign 
strategy undertaken by Regan and coworkers.  Ribbon diagrams of the Rop dimer are shown with 
helices of the monomers colored blue and grey, and the turn region is colored orange (left).  The 
Rop dimer mutations were introduced by progressively replacing the wildtype residues in the 
hydrophobic core with alanine and leucine residues from the middle layers towards the ends.   

 

Among the longstanding experimental puzzles was the folding and binding 

behavior of the Rop (repressor of protein) homodimer.  Its function is to bind two RNA 

hairpins in a key step regulating the replication of ColE1 plasmid in Escherichia coli.  

Although it is unstructured in the free form, the monomers associate to adopt a helix-turn 

helix structure finally resulting in an antiparallel coiled-coil four-helix bundle (62, 63) 

(Figure 3-3).  Regan and coworkers systematically redesigned the hydrophobic core by 

mutating the “a” and “d” positions of the heptad repeats in its eight stacked layers (64-
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66).  The mutants were designed to differ in the number of mutated layers and the 

positions of the mutations (Figure 3-3).  Most of the mutants are designed to have two 

residues with small side chains (as "a" residues) and two residues with larger side chains 

(as "d" residues).  A set of mutants was designed in which two, four, six, or eight of the 

layers of the hydrophobic core were replaced by layers containing alanine at the "a" 

positions and leucine at the "d" positions.  In other cases isoleucine, valine, and 

methionine were used to introduce a large side chain into the hydrophobic core instead of 

leucine. The antiparallel packing of the Rop monomers dictates symmetrical pattern of 

redesign of the core. Accordingly, redesigning layer 1 has to be accompanied with the 

redesign of layer 8, and the same rule applies between layers 2 and 7 and layers 3 and 6. 

Each of the mutants is named according to the identity of the residues at the "a" and "d" 

positions of the repacked layers: for example, Ala2Leu2-6 has the six central layers 

repacked with alanine in the "a" positions and leucine in the "d" positions. The "rev" 

suffix refers to cases in which layers 2 and 7 have reversed pattern of packing (i.e., the 

small and large residues are at the "d" and "a" positions, respectively) to mimic their 

packing in the WT dimer. The main goal of the Regan group’s studies was to investigate 

the effect of core packing perturbations on the stability of the protein and its kinetics, and 

their results are summarized in Figure 3-4. 
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Figure 3-4: Summary of the kinetic studies of the Rop dimer and mutants with redesigned 
hydrophobic cores.  The Rop variants can be classified into five classes based on their folding 
thermodynamics, binding activity, the dimer topology, and their folding kinetics. Based on the in 
vitro activity, it was concluded previously that all the mutants in class I have the anti topology. The 
folding rates of the Rop variants were measured at the same final fraction folded or unfolded. Class 
II contains the A31P mutant of Rop dimer that adopts the bisecting U topology. Class III is 
comprised of mutants that are highly α-helical; however, they completely lost their ability to bind 
RNA. The structure of Ala2Ile2-6 is the syn topology. The mutants in classes IV and V are less stable 
than the WT, and they do not bind RNA. Class IV is comprised of proteins which are underpacked 
(only Ala2Met2-8 forms dimer), and Leu4-8 of class V is an overpacked protein that was suggested as 
forming a tetramer. Y, Rop protein that binds RNA; P, partial active proteins; N, no activity; —, no 
experimental data are reported. 

 

This system is exceptional in that some of the mutants with the redesigned 

hydrophobic core (class I) both fold and unfold faster than the wildtype protein (Figure 

3-4); the kinetics of the mutants in classes II-IV was not studied. This behavior is in 

conflict with the basic Funneled Energy Landscape Theory, where a single topology 
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determines the kinetics.  The increases in the forward and backward rates depend on the 

number and position of the repacked layers in the core.  For the mutant with all eight 

layers repacked (Ala2Leu2-8), the folding and unfolding rates are accelerated by more than 

two and four orders of magnitude, respectively.  All of the mutants have similar CD 

spectra to those of the wildtype Rop, and they all exhibit cooperative thermal 

denaturation.  Furthermore, the in vitro binding affinities of the mutants are comparable to 

that of the wildtype. 
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Figure 3-5: The crystal structures observed for the wildtype Rop (left) and two of its mutants 
(center and right). Ribbon diagrams of the Rop dimers are shown with helices of the monomers 
colored blue and grey, and the turn region is colored orange. 

 

To further complicate the issue, there actually exist two alternative crystal 

structures sometimes found for the mutants.  In one case, Ala-31, which is located in the 

turn between the helices of each monomer, was replaced by a proline residue (A31P; 
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Figure 3-5, right).  The result is a dramatic conformational change that would not be 

expected from a single amino acid substitution, resulting in a “bisecting U” topology.  

This structure has been suggested to actually be a molten globule based on its 

thermodynamic properties that include low stability and reduced ellipticity, as well as its 

fluctuations in molecular dynamic simulations (67).  A more dramatic change is found for 

a redesigned mutant that consists of two alanine and two isoleucine residues in each of the 

six central layers of the dimer interface (Ala2Ile2-6).  It folds to a stable and highly α-

helical structure, but has no ability to bind the RNA target of Rop.  This is surprising 

because Ala2Leu2-6, which only differs by having a leucine in the “d” positions instead of 

isoleucine, does in fact show activity.  The crystal structure of Ala2Ile2-6 shows that the 

mutant adopts the syn topology, a 180° flip of one monomer around an axis normal to the 

dimer interface (Figure 3-5, center).  The reorientation of the two monomers splits the 

face formed by helices 1 and 1’, which is essential for RNA binding. 

  

3.3 Double-Funneled Energy Landscape Resolves the Rop Dimer 

Mystery 

To study the folding and binding mechanisms of the wildtype Rop and the 

Ala2Ile2-6 mutant, we performed Go-type model simulations of each of the dimers.  The 

structures of the other mutants have not yet been determined to our knowledge.  The free 

energy profiles for the anti and syn topologies of Rop dimer were projected onto three 
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reaction coordinates: two corresponding to the folding of each monomer and the third 

corresponding to association (Figure 3-6a,b).  The projected free energy surfaces for both 

structures show coupling between monomer folding and association.  Although these 

plots show similar mechanisms for forming the anti or syn topologies, the binding free 

energies of the syn topology is lower than that for the anti topology by about 1.6 kcal/mol 

(Figure 3-6c).  That difference becomes more pronounced when we include three-body 

interactions into our analysis (Figure 3-6d).   
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Figure 3-6: The barrier for the folding of the anti and syn forms of Rop dimer. The folding 
free-energy landscapes for the anti (A) and syn (B) topologies of Rop dimer are shown. The reaction 
coordinates are the folding of the two monomers and the formation of the interface (i.e., 
association). U, an unfolded monomer; D, a folded dimer. The dashed arrow illustrates the 
coupling between folding and association. (C). Two-dimensional free-energy profiles for the 
folding and association of the two forms of the Rop dimer based on the additive native topology-
based simulations. The rates for folding and unfolding for each topological structure were 
obtained from >1,000 events (using the additive model) that were fitted to a single exponential 
decay. (D) The folding barrier height, ΔF‡, as a function of α  (the three-body contribution to the 
contact energy). 

 

Of the 17 mutants of Rop protein that have been studied in the laboratory, the 

structures of only two mutants have been determined (Ala2Ile2-6 and A31P).  Structural 

heterogeneity among the mutants would provide a framework for explaining the 

pronounced speeding up observed for both folding and unfolding rates of some mutants.  
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To check the assignment of a structure to each of the mutants, we threaded the sequence 

of each Rop mutants onto the three already observed Rop structures: anti, syn, and 

bisecting U topologies.  Each resulting structure was minimized and simulated using 

explicit water all-atom molecular dynamics simulations.  The average rmsd values of the 

backbone-heavy atoms of each mutant from its redesigned structure are shown in Figure 

3-7.  As expected, the sequence of the wildtype Rop displays a smaller rmsd for the anti 

topology than the syn topology.  For the sequence of Ala2Ile2-6, a clear preference for the 

syn topology is found. The rmsd values show lower values for some of the mutants of 

class I when modeled as the anti topology, but for the remaining mutants, the rmsd values 

are lower for the syn topology. The rmsd values of the designed mutants indicate the 

possibility of a conformational switching for the Rop sequences. The mutants in classes 

II–V consistently display lower rmsd values for the syn topology. A preference for the 

syn topology for these mutants can explain the lack of their binding activity.  We find 

that the mutants Ala2Leu2-6 and Ala2Leu2-8, which belong to class I, also have lower 

rmsd values when simulated starting from the syn form than they do from the anti form. 

These mutants show binding ability to RNA in vitro but not in vivo. They also have the 

highest folding and unfolding rates among the other mutants in class I. The preference for 

Ala2Leu2-6 and Ala2Leu2-8 to adopt the syn rather than the anti topology would explain 

their different thermodynamics and kinetics. The fast kinetics follows from the smaller 

barrier found in this study for the syn topology. We note that the rmsd values of all of the 

simulations starting from the bisecting U, regardless of sequence, were always found to be 
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much larger than those obtained for the anti and syn forms. 

 

 

Figure 3-7: The average rmsd of each designed Rop mutant as anti and syn topologies in respect 
to the x-ray structures of the WT and Ala2Ile2-6 mutants. Each designed structure was simulated 
with all-atom representation of the protein with explicit solvent model for 5 ns. To account for 
different packing of the two monomers, the rmsd was calculated after superimposing a single 
monomer. The arrows indicate the mutant classes as in Figure 3-4. 

 

We thus have proposed that the mystery could be explained by a double-funneled 

energy landscape where two native basins that correspond to two distinct but related 

structures corresponding to the wildtype Rop and the Ala2Ile2-6 mutant (Figure 3-8).  



52 

 

Arising from the near symmetry of the complexes, mutations can cause a conformational 

switch to a nearly degenerate but distinct topology or a mixture of both topologies.  The 

topology predicted to have a lower free energy barrier height was further supported by 

all-atom simulations to give a better structural fit for those mutants that exhibited extreme 

folding and unfolding rates.  Thus, the non-Hammond effects can be understood from 

Energy Landscape Theory if there are two different and distinct structures of the Rop 

dimer.  In short, these topology-based models also were successfully used to not only 

solve the Rop dimer mystery in protein folding but also add a new paradigm to folding 

and binding mechanisms with a remarkable layer of complexity to the single funnel.  
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Figure 3-8: A schematic of a double-welled funneled energy landscape for Rop dimer and ribbon 
diagrams of the wildtype Rop dimer and the Ala2Ile2-6 mutant. In these structures, one monomer is 
colored gray, and the other monomer is colored blue. The loop between the two helices in each 
monomer is colored orange. Residues Lys-3, Asn-10, Gln-18, and Lys-25 in helices 1 and 1', which 
constitute the binding site to the RNA, are shown by stick representation.  
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4. Domain-Swapping and Protein Misfolding and Aggregation 

Domain-swapping is an unconventional mechanism of oligomerization such that 

the structural element, or a “domain”, of one chain is interchanged with a corresponding 

element of its partner, resulting in an intertwined homooligomer.  The intramolecular 

interactions that would normally stabilize the monomer are thus “recruited” in swapping 

processes.  These now become intermolecular interactions and define the interface of the 

complex (68, 69).  Since the notion of domain-swapping was formally introduced by 

Eisenberg (68), about 70 proteins with domain-swapped oligomers have been 

characterized by X-ray crystallography and/or solution NMR.  A domain-swapping 

event is characterized by slow kinetics with a high activation energy barrier arising from 

the many strong native interactions that must be rearranged.  Early studies of domain-

swapped proteins suggested that prolines in the hinge region connecting the swapped 

region with the main body of a domain-swapped oligomer could be important factors in 

determining whether proteins can domain-swap (70, 71).  Further analysis shows, 

however, that this hypothesis cannot be generalized to all proteins that bind via domain-

swapping.  Domain-swapped proteins are typically observed and isolated under high 

concentration and low pH conditions (72), but in a growing number of cases swapping 

has been observed under physiological conditions (73, 74).  This has fueled speculations 

about the role of domain-swapping in vivo.  In particular, great interest has been generated 

by the proposal that domain-swapping is a crucial part of the mechanism for amyloid 

aggregation (75-77).  Two amyloidogenic proteins, the human prion (78) and the human 
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cystatin C (79), have been observed as domain-swapped dimers, suggesting that these 

dimers may be the building blocks for fibers, at least in their nascent state (72, 75).  The 

underlying mechanism and the main determinant(s) of domain-swapping can be 

understood in the context of the energy landscape theory.  These insights may yield 

valuable clues about the role of domain-swapping in oligomerization and aggregation in 

vivo.   

At first glance, the domain-swapping phenomenon seems to present a 

contradiction to the idea of a funneled energy landscape.  Since domain-swapping involves 

homooligomers, a direct outcome of there being a funneled energy landscape for the 

monomer is that the very interactions that stabilize the monomeric conformation must 

compete with symmetrically similar ones that provide corresponding intermolecular 

interactions in the dimer.  In other words, for any given residue i that is in native 

monomeric contact with residue j, there is, at first sight, nothing to prevent the same 

residue i from favorably interacting intermolecularly with residue j’ in its partner, since 

the physico-chemical nature of the intramolecular interaction is the same as that of 

intermolecular interaction.  In principle, there is, thus, no reason why one region of the 

protein should be more favored to swap than any other region.  With many different and 

potentially conflicting possibilities for intermolecular interactions, a frustrated energy 

landscape generally results for the dimer.  There would then be no preference for a single 

domain-swapped configuration.  Even if a single domain-swapped configuration is 

somehow preferred at equilibrium, there would appear to be no guarantee that the most 
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stable structure should correspond to the one observed in nature, which might be the 

result of kinetic control.  Therefore, a funneled energy landscape for monomeric folding 

generally would seem to preclude the possibility of a perfectly funneled energy landscape 

for oligomerization by domain-swapping.  If this is the case, how do domain-swapping 

proteins, with the potential for a frustrated energy landscape for oligomerization, 

discriminate against alternatives to find their way to a unique swapped conformation?   

 

4.1 Early Views of Domain-Swapping 

It was observed, early on, from a survey of domain-swapping proteins conducted 

by Liu et al. that there does not appear to be sequence homology between the swapping 

domains that is common to all domain swapped proteins (72).  Further, the secondary 

structure cannot be a determining factor because the swapping region can range from a 

single α-helix or β-sheet to an entire tertiary domain (72).  One of the earliest and certainly 

most prominent hypotheses concerning the determinants of domain-swapping was that 

prolines play a pivotal role.  This hypothesis was suggested largely because prolines 

seemed to be prevalent in the hinge regions of some of the first observed cases of domain-

swapping proteins (70).  The apparent line of thought was the following:  The cis-trans 

isomerization of prolines, which has a significantly lower energetic barrier than for other 

natural amino acids, is the rate-determining step in the folding rate of some proteins.  

Owing to this, prolines often play a critical role in the observed folding kinetics, giving 
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rise to many long-lived intermediates (80).  So, it was natural to suppose that prolines at 

or proximal to the hinge of domain-swapping proteins could act as local signals that 

would direct the global conformational change required to domain-swap with its identical 

partner.  Experimental support for this hypothesis came in the form of a mutational 

study by Itzhaki et al., where it was found that two conserved prolines in the hinge region 

of p13suc1, a domain-swapping protein, controlled the monomer-dimer equilibrium in 

that system.  Prolines made the hinge act like a “loaded molecular spring” that shifts 

towards either the monomer or the domain-swapped conformation (71).  Itzhaki et al. and 

others suggested that prolines more generally would be levers by which naturally 

monomeric proteins could be re-designed artificially to stabilize the domain-swapped 

state.  This is no doubt true.  One might be tempted to go further, however, to posit that 

prolines in the hinge region are the main determinant of how proteins naturally 

oligomerize via domain-swapping.   

To test this stronger hypothesis on a broader basis in the naturally occurring 

proteins, we asked two questions: 1) Is the prevalence of prolines in the hinge region of 

presently known domain-swapped proteins indeed significantly high? 2) Is the presence 

of prolines in or near the hinge region obligatory to oligomerize via domain-swapping?  To 

analyze the amino acid residue prevalence in the hinge region of domain-swapping 

proteins, we constructed two libraries: one of domain-swapped protein structures and 

another of a nonredundant set of the PDB (i.e. no two proteins in the library have more 

than 25% sequence homology).  The purpose of the latter library is to provide a baseline 
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containing the amino acid residue prevalences found in nature.  Using PDBSelect (81), a 

set of 1834 nonredundant proteins (188,388 total residues) each with less than 200 amino 

acid residues was chosen, and the amino acid frequencies were calculated.  The same 

calculation was carried out for the hinge region of the library of domain-swapped 

proteins.  We used the same definition of the hinge region of domain-swapping proteins 

as was introduced by Eisenberg (72).  In that definition, the hinge loop is defined to 

include those residues with a RMSD change in backbone φ and ψ dihedral angles of more 

than 20° in the domain-swapped oligomer when compared to the corresponding angles 

found in the monomeric configuration plus any residues in the same loop that connect 

secondary structure elements. 

b)a)

 

Figure 4-1: Evidence that prolines are not necessary as local signals to direct proteins to domain-
swap.  (a) A comparison between the distributions of amino acid residue frequency in the hinge 
region of domain-swapping proteins and a nonredundant set of the PDB.  (b) The frequency of 
domain-swapping proteins with a certain residue in the hinge region. 

 

A comparison of the amino acid frequencies of the hinge regions of proteins with 

the frequencies in the library of the nonredundant proteins (Figure 4-1a) shows that 
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prolines are not any more prevalent in the hinges than are many other residues.  We found 

that the frequency of prolines in domain-swapping proteins (Figure 4-1b) is comparable 

to other kinds of residues.  In fact, only about 50% of domain-swapping proteins have 

any prolines in their hinge region at all.  In Figure 4-2, we show two examples of domain-

swapping proteins that do not contain prolines in their hinge regions (Figure 4-2a) and 

two examples that have prolines in the hinge region (Figure 4-2b).  In both of the 

examples in Figure 4-2a, the molecules do possess prolines that are absent from the hinge 

region, and indeed are distant from the hinge.  For many domain-swapping proteins with 

prolines in the hinge region (Figure 4-2b), as is the case of p13suc1, numerous prolines 

can also be found dispersed throughout the sequence, again even at positions very distant 

from the hinge region.  There is, of course, no reason to challenge the contention that 

prolines significantly control the monomer-dimer equilibrium in p13suc1.  It remains 

likely in our view that some proteins could be designed, by the addition of prolines, to 

favor domain-swapping.  However, the examples explicitly show that the presence of 

prolines in the sequence does not dictate whether a protein oligomerizes into a domain-

swapped conformation.   
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a)

Eps8

PrPC

KKYAKSKYDFVARNSSELSVMKDDVLEILD
DRRQWWKVRNASGDSGFVPNNILDIMRTP

LGGYMLGSAMSRPIIHFGSDYEDRYYRENM
HRYPNQVYYRPMDEYSNQNNFVHDCVNITI
KQHTVTTTTKGENFTETDVKMMERVVEQMC
ITQYERESQAYY

b)

LGKFSQTCYNSAIQGSVLTSTCERTNGGYN
TSSIDLNSVIENVDGSLKWQPSNFIETCRN
TQLAGSSELAAECKTRAQQFVSTKINLDDH
IANIDGTLKYE

VPRLLTASERERLEPFIDQIHYSPRYADDE
YEYRHVMLPKAMLKAIPTDYFNPETGTLRI
LQEEEWRGLGITQSLGWEMYEVHVPEPHIL
LFKREK

CV-N

p13suc1

 

Figure 4-2: Examples of domain-swapping proteins and the proximity of the prolines to the 
hinge region.  The structures of domain-swapping proteins without (a; Eps8 and PrP) and with (b; 
CV-N and p13suc1) prolines in the hinge region are shown in a ribbon representation, with each 
monomer colored orange, or blue, and the hinge region colored green.  The prolines found in the 
blue chain are shown in a red space-filled representation.  The sequences of the proteins are shown 
below each structure, in which the prolines are colored red, the hinge region residues are colored 
green, and the rest are colored blue. 

 

To date, the primary strategy to engineer a protein to domain-swap has been to 

modify the hinge regions via mutations, additions, or deletions.  Two specific examples, 

however, also highlight the need to look outside of the hinge region.  Mutagenic studies of 

BS-RNase demonstrated that Pro19, located in the hinge region, is not a significant factor 

in the domain-swapping mechanism.  Instead, Leu28, which is located outside of the 

hinge region, shifts the equilibrium towards the domain-swapped dimer by stabilizing the 
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interface (82).  The sequences of two closely homologous proteins, the monomeric γB-

Crystallin and the obligatory domain-swapped dimeric βB2-Crystallin, differ by the 

domain-swapped dimer having an acidic electrostatic repulsion between a residue in the 

hinge loop and a residue in the main body of the protein that prevents the formation of 

the monomer species (83).  Clearly, the network of interactions as a whole, not just those 

in the hinge region, must be considered in describing domain-swapping. 

To rigorously test the hypothesis that prolines are the main determinant of 

domain-swapping, we asked two questions: (I) Is the prevalence of prolines in the hinge 

region of presently known domain-swapped proteins indeed significantly high?  (II) Is the 

presence of prolines in or near the hinge region obligatory to oligomerize via domain-

swapping?  To answer these questions, we constructed two libraries: one of domain-

swapped protein structures and another set of non-redundant set of the PDB (i.e., no two 

proteins in the library have more than 25% sequence homology).  The purpose of the 

latter library is to provide a baseline containing the amino acid residue prevalences found 

in nature.  A comparison of the amino acid frequencies of the hinge regions of proteins 

with frequencies in the non-redundant proteins shows that prolines are not prevalent in 

the hinges when compared to many other residues. 

 

4.2 Symmetrized-Go Model for Domain-Swapping 

To address the domain-swapping mechanism, we developed a simple model, 

which we call the “Symmetrized-Go model”. As described before, the original Go model 
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takes into account only contacts that exist in the native structure, and thus corresponds to 

a perfectly funneled energy landscape. The Symmeterized-Go model allows each 

intramolecular interaction found in the monomer conformation to favorably interact 

intermolecularly, resulting in multiple funnels.  That is, there is a perfect competitive 

balance between intramolecular and intermolecular interactions.  An important point to 

note is that, in principle, this model allows any region of the protein to swap with its 

partner and accordingly may serve as a tool to predict the domain swapped oligomeric 

conformation of a given protein because we use only the monomeric conformation as 

input.  Each residue is described as a single bead, centered on the Cα position.  The beads 

in an intact protein chain are connected to adjacent beads by bond, angle, and dihedral 

potentials.  Simulation of the resulting simplified model of a protein allows the 

observation of slow conformational changes, and usually provides an accurate description 

of the intermediate and transition states of the folding mechanism observed 

experimentally.  The network of favorable tertiary interactions is defined by the protein’s 

native topology while all other non-bonded interactions are repulsive.  In the 

Symmetrized-Go potential for a two-chain system, each individual protein chain is 

represented likewise using a series of single beads, each centered on the Cα position, and 

the native monomeric configuration is still used to define the intramolecular interactions.  

However, the Symmetrized-Go potential for the two chain system also contains 

intermolecular interactions.  In the symmetrized potential, the observed intramolecular 

interactions of the monomer also introduce the favorable possible intermolecular 
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interactions.  No other interactions are introduced.  This model can be readily generalized 

to study aggregation.  Indeed, this model had been previously used by Ding et al. to study 

the aggregation of SH3 (84).  This protocol introduces intermolecular energetic frustration 

into the energy function, making it a predictor of not only the mechanism of domain-

swapping but also allows it to make predictions of the domain-swapped structure (if 

unique) using only the monomer structure as input.   

The energy function for the Symmetrized-Go potential for a two-chain system 

(designated chain A and chain B) with configuration Γ can be written explicitly: 
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The local backbone interactions are contained in Hbackbone, which applies to both chains.  

Kr, Kθ, and Kφ are the force constants of the bonds, angles, and dihedral angles, 

respectively.  The r, θ, and φ variables are the bond lengths, the angles, and the dihedral 

angles.  The same quantities with a subscript zero represent the corresponding values 
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taken only from the native monomer configuration, Γ0.  The non-bonded contact 

interactions, Hintrachain and Hinterchain, contain Lennard-Jones 10-12 terms for the non-local 

“native” intrachain and interchain interactions and a short-range repulsive term for the 

“non-native” pairs.  Strictly speaking, the “native” interchain interactions that result from 

symmetrizing the intrachain interactions include not only interactions that are present in 

the experimentally observed dimer (i.e. native), but also interchain interactions that are 

not present (i.e. non-native or frustrated), which is why this is nontrivial model when it 

comes to predicting the domain-swapped structure. 

We chose as parameters of the energy function Kr=100ε, Kθ=20ε, and ε1=ε2=ε.  

Forming disulfide bonds is effectively irreversible.  Such bonding interactions were 

incorporated into the energy function by setting ε1=10ε or ε2=10ε for intramolecular or 

intermolecular disulfide interactions, respectively.  The secondary structure biases are set 

as Kφ
(1)=ε and Kφ

(3)=0.5ε if the residue was either α-helical or β-sheet in character 

according to the DSSP definition (85) and Kφ
(1)=0.25ε and Kφ

(3)=0.12ε otherwise.  Using 

higher flexibility for all of the turns in the proteins allows for changes in the dihedral 

angles of hinge regions without biasing any specific region of the protein to swap.  σi,j is 

the distance between the pair of residues (i,j) in the native monomeric configuration and 

σ0=4.0Å for all non-native residue pairs. 

A total of N native contact pairs for the monomeric conformation was determined 

using the CSU (Contacts of Structural Units) software (25).  Only native contact pairs 

with sequence distance |i-j| > 3 were used because any three or four contiguous residues 

already interact through the angle and dihedral terms.  The 2N intramolecular interactions 
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(N native interactions for each monomer) also define the 2N intermolecular interactions as 

follows: for each i and j intramolecular interaction that is native in the monomeric 

conformation we also define equal intermolecular interactions between i and j’=j.  In total, 

4N interactions are thus represented in the model.  Therefore, there exists an energetic 

competition as to whether the pair of molecules should make any given contact intra- or 

inter-molecularly.  Interchain interactions between helical residues where the sequence 

distance |i-j| equals 4 were ignored because helical contacts are not expected to be 

involved in swapping. 

We performed constant temperature molecular dynamics simulations of the 

protein systems with the Symmetrized-Go potential.  We imposed an interchain center of 

mass constraint Econs=K(R-R0)2 that becomes effective only when R > R0. The minimum 

of the constraint, R0, was set to the radius of gyration of the monomer conformation. 

 

4.3 Domain-Swapping is Encoded in the Monomer Topology for Some 

Proteins 

The first clue to direct the search for a unifying view of the domain-swapping 

mechanism is the somewhat tautological observation that the conformation of the 

swapped subunits in a domain-swapped oligomer bears a striking resemblance to the 

unswapped monomeric conformation (Figure 4-3a,b).  Did evolution not only encode into 

the sequence information to fold a protein into its monomeric conformation but also 

instructions about whether it would oligomerize into a specific domain-swapped 
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conformation?  To ask whether the monomeric topology is sufficient for predicting how 

proteins oligomerize via the domain-swapping mechanism, we applied the Symmetrized-

Go potential, which we described in detail in the last section.  It is important to note that 

this model’s formulation contains no information a priori that biases a specific swapping 

region.  Also, the model contains no information concerning the secondary interface, i.e. 

there are no interactions corresponding to those new ones that would be formed upon 

domain-swapping that are not represented in the monomer conformation.  The latter 

could potentially play a role in swapping.  In principle, in the symmetrized model any 

region of the protein can exchange interactions with its partner and nothing would 

preclude even the possibility of there being multiple swapping regions.  Does this energy 

function discriminate the experimentally observed domain-swapped structure from the 

energetic traps?  If so, we can say that there already exists, encoded in the monomer 

topology, sufficient information to intrinsically choose the swapping region.   
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Figure 4-3: Application of the Symmetrized-Go potential to Eps8, a domain-swapping protein. 
The contact maps and the corresponding structures of the monomeric (a) and domain-swapped (b) 
Eps8 are shown.  The represented favorable Symmetrized-Go interactions (c) include both the 
intramolecular and intermolecular interactions that have been derived from the monomeric 
conformation alone.  The intermolecular interactions contained in the potential largely include the 
same interactions that are found in the experimentally observed dimer conformation (green), but 
there are also interactions that are not found in the experimentally observed dimer conformation 
(black).  The free energy plot with respect to the number of intramolecular (QIntra) and 
intermolecular (QInter) contacts (d) shows only a single stable domain-swapped conformation with 
an open-ended intermediate.  The contact distribution plot of the minimum of the domain-swapped 
conformation (e) is shown as well as a representative structure from that minimum. 

 

When we applied the Symmetrized-Go potential to Eps8 (epidermal growth 

factor receptor pathway substrate 8 SH3 domain), a domain-swapping protein, we found 

that despite the energetically frustrated intermolecular interactions, the model led to 

accurate prediction of the experimentally observed domain-swapped dimer as the most 

stable conformation.  From our simulations, we can plot a free-energy surface as a 
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function of the order parameters QIntra and QInter, the number of native intramolecular and 

intermolecular contacts, respectively (Figure 4-3d).  QIntra indicates the degree of folding 

of the two monomers and QInter indicates the degree of binding via swapping.  At low 

QInter, we found three basins, corresponding to two unfolded monomers, one unfolded 

monomer and one folded monomer, and two folded monomers.  The basin with the 

highest QInter corresponds to the fully swapped structure found via x-ray crystallography.  

At intermediate QInter, there is a basin corresponding to one swapped and one unswapped 

conformation (i.e. partially domain-swapped intermediate).  A contact probability plot of 

the basin of the domain-swapped conformation (Figure 4-3e) shows that only the 

interactions found in the experimentally observed domain-swapped dimer are statistically 

favored.  The other interactions, while favorable according to the symmetrized model, are 

either seldom represented or are not found at all.  Despite the energetic frustration that is 

present in the model, only the experimentally observed domain-swapped structure is 

found to be significantly populated. Since our initial study, Dokholyian and coworkers 

have used the Symmetrized-Go model to predict the structures of many experimentally 

observed domain-swapped structures (86).  The energy landscape of domain-swapping 

clearly consists of two funnels: one for folding and the other for oligomerization via 

domain-swapping (Figure 4-4). 
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Figure 4-4: A schematic representation of a double-welled energy landscape for domain-
swapping and ribbon diagrams of the monomer and domain-swapped conformations of Eps8.  
One monomer is colored blue and the other is colored red. 

 

4.4 Domain-Swapping is not Encoded in the Monomer Topology for 

Other Proteins 

We applied the Symmetrized-Go model to the 434 repressor, a well-studied 

dimeric protein for which no evidence of a unique domain-swapped form has been found 

to date.  Just as with Eps8, we constructed a Symmetrized-Go potential from the 

conformation of a single monomer (Figure 4-5a).  The free-energy surface for the 434 

repressor (Figure 4-5b) shows two domain-swapped basins, reflecting a frustrated 

competition between the two states.  This clearly contrasts with the free energy plot for 

Eps8, which has only one domain-swapped basin.  A contact probability plot of the two 

basins yields two distinct domain-swapped structures (Figure 4-5c,d).  One may note 
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that these two swapped structures of the 434 repressor have a very similar number of 

contacts but differ in the degree of folding of the monomer and the interface size.   

 

Figure 4-5: Application of the Symmetrized-Go potential to the 434 repressor, a dimeric protein 
showing no evidence of unique domain-swapping.  The represented favorable Symmetrized-Go 
Interactions (a) for the 434 repressor are shown with the corresponding structure of the monomer.  
The free-energy plot as a function of the number of intramolecular (QIntra) and intermolecular 
(QInter) contacts (b) that was derived from our simulations shows two domain-swapped minima.  
The corresponding contact distribution plots of the two minima from (b) are shown in (c) and (d) 
as well as a representative structure from its respective minimum. 

 

We further applied the Symmetrized-Go potential to CI2 (Figure 4-6a), a protein 

that is found naturally as a monomer.  While the wild-type protein is currently thought to 

be intrinsically monomeric, Perutz and colleagues have engineered a domain-swapped 
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dimer by the insertion of glutamate repeats in a loop within the protein (87).  Similar to 

our study of the 434 repressor, we observed multiple minima of swapped structures 

when QInter is high (Figure 4-6b).  Interestingly, the most stable of the minima had the 

highest number of intermolecular native contacts, and the ensemble of structures for this 

minimum (Figure 4-6c) is similar to that structure found for the engineered domain-

swapped protein (Figure 4-6d).  These observations indicate that further analysis of other 

naturally monomeric proteins using the Symmetrized-Go potential can predict which 

proteins might be most amenable to re-engineering into domain-swapping oligomers by 

appropriate hinge mutations.    We note that the observation of nonspecific domain-

swapping of monomeric proteins is not simply an artifact of our model.  Oliveberg 

observed “transient aggregates” at high concentrations that cause deviations from two-

state kinetics in protein folding (88), and we believe that they are the result of the 

unstable domain-swapping we see in the Symmetrized-Go model. With multiple 

possibilities for domain-swapping, the protein is observed only in the monomeric 

conformation because of its higher specific concentration. 
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Figure 4-6: Application of the Symmetrized-Go potential to CI2, a naturally monomeric protein 
that has been artificially engineered to domain-swap via insertion of glutamine repeats.  The 
represented favorable Symmetrized-Go interactions (a) for CI2 are shown with the corresponding 
structure of the monomer.  The free-energy plot with respect to the number of intramolecular (QIntra) 
and intermolecular (QInter) contacts (b) shows more than one domain-swapped minimum.  The 
corresponding contact distribution plot of the deepest minimum from (b) is shown in (c) as well as 
a representative structure from its minimum.  For comparison, the contact map depicting the 
swapping and main regions of the engineered domain-swapped of CI2 is shown in (d). 

 

4.5 Disulfide Bonds Can Overcome Topological Insufficiencies to 

Undergo Domain-Swapping  

We now turn our attention to two other proteins with known domain-swapped 

structures: CV-N (Figure 4-7a) and the human prion (PrP) (Figure 4-8a).  These have 
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intramolecular and intermolecular disulfide bonds, respectively.  CV-N has two 

intramolecular disulfide bonds: Cys 8 - Cys 22 and Cys 58 - 73.  The intramolecular 

disulfide bonds of CV-N are important for the stabilizing the monomeric structure of CV-

N.  They are also critical to the anti-HIV activity of CV-N (89, 90).  The domain-

swapped structure of CV-N has been resolved by both X-ray crystallography (89) and 

solution NMR (91).  The introduction of mutations to CV-N changed the energy 

landscape for folding to stabilize an intermediate (54).  Our Go-model simulations of 

wild-type CV-N as a monomer also revealed the existence of a high-energy intermediate.  

We had initially thought that this result indicated an actual intermediate that was, 

however, not able to be observed by current experimental techniques in the wild-type but 

was stabilized by incorporating mutations.  However, when we introduced disulfide 

bonds into the topology of the Go-model, the high-energy intermediate was no longer in 

the free-energy profile.  Retaining the disulfides changes the mechanism of folding.   

How does the inclusion of disulfide bonds affect the energy landscape for domain-

swapping?  In the domain-swapped dimer conformation of CV-N, the disulfide bonds 

remain oxidized, so the conformational conversion does not require a reduction of the 

disulfide bonds.  In Symmetrized-Go simulations of CV-N (Figure 4-7b) without 

modifying the energetics of disulfide bonds to reflect their greater stability, the energy 

landscape for domain-swapping is clearly frustrated (Figure 4-7c).  However, once we 

included the stronger intramolecular disulfide bonds into the topology of CV-N, we found 

that the energy landscape for domain-swapping becomes effectively unfrustrated (Figure 
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4-7d).  A contact probability plot of the basin of the domain-swapped conformation 

(Figure 4-7e) shows that only those interactions found in the experimentally observed 

domain-swapped dimer are now favored, just as we saw in the case of Eps8.  The 

disulfide bonds not only act to stabilize the monomer conformation, but they also limit 

the possible states that are accessible for domain-swapping.  With the permanent 

disulfide linkage, only one stable state becomes possible for the dimer. 

 

Figure 4-7: Application of the Symmetrized-Go potential to CV-N, a domain-swapping dimer 
with intramolecular disulfide bonds.  The structures of the monomeric and domain-swapped 
conformations are shown (a) in a ribbon representation.  The chains are colored green or purple, 
and the cysteine residues are shown colored yellow in a space-filled representation.  The favorable 
Symmetrized-Go interactions of the domain-swapped dimers are shown (b).  The free-energy plots 
as a function of the number of intramolecular (QIntra) and intermolecular (QInter) contacts are 
shown, both without (c) and with (d) the explicit inclusion of disulfide bond interactions, along 
with a contact distribution plot of the domain-swapped basin (e). 

 

4.6 Domain-Swapping an Early Step Towards Pathogenic Aggregation? 

Despite much progress and study, the detailed mechanism for the conversion of 

prions (PrP) from the normal cellular form (PrPC) to the infectious aggregate form (PrPSc) 

remains elusive.  The structures of PrPC for several mammal proteins have been 
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determined by solution NMR, and they all have the same basic monomeric structure, 

consisting of three long α-helices and two short β-sheet strands with a conserved disulfide 

bond between Cys 179 and Cys 214 that bridge helices 2 and 3.  A domain-swapped 

dimer conformation of  PrP was found experimentally in which there are intermolecular 

disulfide bonds between Cys 179 in one monomer and Cys 214 of its partner, bridging the 

helix 2 of one monomer with helix 3 in its partner (78).  In contrast to the case of CV-N, 

the conformational change of the PrP from the monomeric to the domain-swapped dimer 

forms must involve the reduction of the intramolecular disulfide bond and subsequent 

intermolecular reoxidation.  The Symmetrized-Go simulations of the PrP (Figure 4-8a) 

carried out without consideration of the disulfide bonds again revealed multiple 

possibilities for domain-swapping (Figure 4-8b).  It is only upon including effectively 

irreversible intermolecular disulfide bonds that the energy landscape for domain-swapping 

becomes topologically funneled (Figure 4-8c) towards the experimentally observed 

domain-swapped state (Figure 4-8d,e).   
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Figure 4-8: Application of the Symmetrized-Go potential to PrP, a domain-swapping dimer 
containing intermolecular disulfide bonds.  The structures of the monomeric and domain-swapped 
conformations are shown (a) in a ribbon representation.  The chains are colored green or purple, 
and the cysteine residues are shown colored yellow in a space-filled representation.  The favorable 
Symmetrized-Go interactions of the domain-swapped dimers are shown (b).  The free-energy plots 
as a function of the number of intramolecular (QIntra) and intermolecular (QInter) contacts are 
shown, both without (c) and with (d) the explicit inclusion of disulfide bond interactions. 

 

The pivotal role of intermolecular disulfide bonds in prion aggregation has been 

suggested both theoretically (92) and experimentally (93), but there is some disagreement 

as to whether intermolecular disulfide bonds actually do occur in the large prion aggregate 

(94, 95).  While further study is clearly needed for a definitive answer, our present study 

would provide a structural basis for obligate intermolecular disulfide interactions in prion 

aggregation.  If forming intermolecular disulfide bonds is critical for domain-swapping, 

these interactions may at least be transiently represented in the early stages of prion 

aggregation.  The increase in local concentration of prion proteins caused first by domain-

swapping may trigger the further conformational changes required to form PrPSc.  We note 
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that this hypothesis does not conflict with the current understanding of the structure of 

the PrPSc fiber (96) in which helices 2 and 3 of PrPSc and the disulfide bond between them 

remains intact.  It has not escaped notice that transient disulfide oxidation isomerization 

and reduction, perhaps in different physiological compartments or conditions, would 

greatly modify the kinetics of aggregate formation and fragmentation from the predictions 

of simpler kinetic assembly models, which currently seem unable to account fully for the 

quantitative details of in vivo pathogenesis (97-100). 

 

Reprinted from: 

Cho SS, Levy Y, Onuchic JN, Wolynes PG. Overcoming residual frustration in domain-

swapping: The roles of disulfide bonds in dimerization and aggregation. Phys. Biol. 2005, 

2: S44-S55. 
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5. Native Structural and Energetic Heterogeneity in Protein Folding 

It is now clear that many protein folding and binding mechanisms can be inferred 

from the topology of the native state(s).  Even crude topology-based measures, such as 

contact order, provide rough estimates of the folding rates of two-state folding proteins 

(101).  Since many contacts form in the transition state ensemble, it further becomes 

reasonable to simplify the model by replacing individual contact energies with an average 

value, neglecting sequence variability.  The resulting energy landscape is perfectly 

funneled, but now encodes only the native topology (13).  Such averaged contact energy 

models predict the folding rate of proteins in many cases (15), even when the simple 

contact order estimate is not very accurate (102).  Many studies have shown that a wide 

range of details of folding and binding mechanisms, such as whether specific intermediates 

form or not is also correctly predicted by such native topology-based models in many 

cases (2, 13).  In some circumstances where seemingly minor differences of topology are 

involved, even predicting mechanistic subtleties is possible (30).  More quantitative 

features about the structure of the transition state ensembles, such as the Φ-values, are 

also generally well-predicted by pure topology models (3, 14, 17), but at this level more 

discrepancies appear (3).  These discrepancies caution us that while the successes of pure 

native topology-based models are impressive, one must examine the homogeneity 

assumption that is made in topology-based modeling which averages the native contact 

energies.  In quantitative terms, can we determine when the homogeneity assumption will 
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suffice and when it will not? 

 

5.1 Native Energetic Heterogeneity Cannot Be Ignored In Some Cases 

Failures of the contact averaging approximation were first noted in studying 

structurally homologous proteins with disparate sequences but essentially the same 

topology.  According to the averaging ansatz, even if such proteins are distantly related in 

sequence, they should exhibit similar folding mechanisms because they share the same 

native contact pattern.  A striking example of the seeming validity of the averaging 

approximation occurs in the folding of the src- and spectrin-SH3 domains, which both 

have the same all-β topology.  Even though they have low sequence homology (27%), 

they are experimentally observed to exhibit very similar transition states, and this 

behavior is also seen in simulations (42, 103).  The structure of the transition state 

ensemble is also robust to changes in environmental conditions for these systems (103).  

Another example is provided by comparing the folding of acylphosphatase with the 

folding of human procarboxypeptidase A2 activation domain.  These proteins both have 

similar α/β topologies and folding mechanisms while sharing only 13% sequence identity 

(104), again indicating that the native topology suffices to determine the folding 

mechanism.  Other sets of proteins with nearly identical α/β topologies and low sequence 

similarity, however, do sometimes exhibit different folding mechanisms, but this often 

involves symmetry breaking between two essentially isomorphic folding routes (59, 105, 
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106).  The small differences of free energy between two possible routes can easily be 

determined by just a few contacts.  The most dramatic differences in the folding 

mechanism for topologically equivalent proteins are seen in sets of all-α structural 

homologues.  For Im7 and Im9, both nearly identical 4 helix bundles, the folding 

mechanism of Im7 involves a populated intermediate while Im9 folds by a two-state 

manner, even though there is 60% sequence identity between the two proteins (107).  

Interestingly, the main transition states still have similar Φ-values (108).  Recently, 

Clarke and coworkers showed that the folding rates of α-spectrin repeats of similar 

topology can vary over several orders of magnitude (109).  While the native topology 

clearly plays a critical role in the protein folding mechanism, these examples imply that 

energetic weights of the specific residue interactions can sometimes be important as well. 

The effects of energetic heterogeneity of the native interactions on the folding 

mechanism have already been addressed using analytical energy landscape theory.  Using 

the free energy functional approach first developed by Wolynes and coworkers (39, 110), 

Plotkin and coworkers found that introducing energetic heterogeneity to native 

interactions in a minimally frustrated system lowers the free energy barrier until it 

vanishes with a sufficiently large dispersion of native contact energies, and similar 

behaviors were seen in simulations on lattices (111-113).  The effects of contact 

heterogeneity is very much analogous to the well known phase transition in the random 

field ferromagnet (114).  Sometimes, with sufficiently large dispersion of the native 

contact energies, the Φ-values becomes bimodal, with extreme values close to 0 or 1 (112, 
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113).  Recently, in the context of the α/β CI2 and the all-β src-SH3 domain, Suzuki and 

Onuchic have shown that the structure of the transition state ensemble is robust and 

insensitive to energetic details (115).  We can directly compare the analytical results of 

free energy functional approaches with those of native topology-based model simulations. 

 

5.2 Homogeneous versus Heterogeneous Contact Energies in Funneled 

Landscapes 

We began our investigation of quantifying the role of native contact energetic 

heterogeneity by comparing simulations of the simple homogeneously weighted Cα 

models to corresponding simulations having energetic heterogeneity based on the 20-letter 

Miyazawa-Jernigan (MJ) contact potential (116).  While this degree of heterogeneity may 

be too large, it is similar to what is predicted by another more refined contact potential 

(117).  For linguistic simplicity, we will refer to these two variants, both describing 

perfectly funneled landscapes, as “vanilla” and “flavored” models, respectively. As a 

starting point, we surveyed several two-state folding proteins that have been studied 

previously by both simulations and in the laboratory.  We chose the all-α Lambda 

Repressor, the α/β CI2, and the all-β src-SH3 domain.  In all three proteins, the contact 

energies in the flavored models seem evenly distributed, with no immediately obvious 

clusters of either high or low energetic weights (Figure 5-1a-c).  To quantitatively 

characterize the folding mechanism, we performed the weighted histogram analysis 
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method (WHAM) to calculate theromodynamic quantities with respect to the order 

parameter, Q, the fraction of native contacts.  We recently showed the Q is one of several 

simple structural reaction coordinates that captures the folding mechanism on smooth 

landscapes, even for complicated folding mechanisms (118).  In the case of the Lambda 

Repressor and CI2, a decrease in the free energy barrier is observed (Figure 5-1b,c), as 

predicted analytically (111, 112).  We also note that the unfolded basin free energy 

minimum occurs at a higher Q (the fraction of native contacts) in the flavored model that 

in the vanilla model, while conversely the folded basin has lower Q.  For src-SH3, 

however, the free energy barrier does not change when the energetic heterogeneity is 

introduced (Figure 5-1f). The Φ-values of CI2 and src-SH3 derived from the simulations 

of vanilla and flavored models are very similar to each other with correlation coefficients 

greater than 0.70 (Figure 5-1h,i).  In contrast, the Φ-values for the Lambda Repressor 

predicted by the vanilla and fully flavored models are essentially uncorrelated with each 

other.   
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a) b) c)

d) e) f)

g) h) i)

 

Figure 5-1: The folding mechanisms of the all-α Lambda Repressor (PDB code: 1R69), the α/β  
CI2 (PDB code: 2CI2), and all-β  src-SH3 domain (PDB code: 1SRL). (a-c) The matrices of the 
interaction energies in the vanilla and flavored native topology-based models are plotted below and 
above the diagonal, respectively, with darker colors representing stronger interactions. The 
corresponding native structures are also shown. (d-f) From simulations of the vanilla and flavored 
models, the free energy profiles were generated with respect to the order parameter Q.  (g-i) The Φ-
values from the vanilla and flavored models are compared in a plot with a best-fit line. 

 

A closer analysis of the transition state ensemble for the vanilla model reveals that 

the folding nucleus consists of structured second and third helices with largely unformed 

long-range interactions (Figure 5-2).  In contrast, the transition state ensemble of the 

flavored model predominantly includes structured long-range interactions between the 
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second and fourth helices (Figure 5-2).  Oas and coworkers performed NMR 

spectroscopy of seven alanine to glycine mutants of the Lambda Repressor, and their 

limited observations indicate that the first and fourth helices are most populated in the 

transition state ensemble, while the second, third, and fifth helices are less populated 

(119).  It seems that the flavored model agrees with the experimental results more than the 

vanilla model, but a clear picture is not present in either simulations or experiments.   

vanilla

fla
vo
re
d

 

Figure 5-2: The probability of a contact in the transition state of the Lambda Repressor, an all-α 
protein, with the vanilla and flavored models. 

 

To determine whether the short-range interaction energies are the source of the 

discrepancy between the folding mechanisms observed in the vanilla and flavored models, 



85 

 

we also studied an inhomogeneous model where only the contact energies of the short-

range interaction energies of the flavored model were changed back to those of the vanilla 

model.  Now, the free energy barrier becomes about the same as that for the vanilla model 

(Figure 5-3a), but one still finds the poor correlation between the Φ-values in this 

partially flavored model and the homogeneous case (Figure 5-3b).   

a) b)

 

Figure 5-3: The flavored model simulation of the Lambda Repressor, an all-α protein, with the 
short-range interaction set at the vanilla interaction energies.  (a) From simulations, the free energy 
profiles were generated with respect to the order parameter Q.  (d) The Φ-values from the vanilla 
and flavored models with vanilla short-range interaction weights are compared in a plot with a 
best-fit line. 

 

We also simulated several other representative all-α protein domains that we 

selected from the CATH database (120) (CATH ID’s: 1v54E0, 1f6vA0, and 1cy5A0).  

We chose these proteins because they capture a diverse range in the degree of short-range 

vs. long-range interactions, as well as helical content (Figure 5-4a-c).  The contact map of 

1v54E0 contains mostly of relatively short-range interactions (Figure 5-4a) while 1cy5A0 
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has a large number of long-range interactions (Figure 5-4c).  1f6vA0 has an intermediate 

number of long-range interactions (Figure 5-4b).  Again, the energetic weights seem to be 

evenly distributed across all the native interactions (Figure 5-4a-c).  In all three cases, the 

flavored model has a lower free energy barrier than does the vanilla model and the folded 

basin has a lower Q for the folded model (Figure 5-4d-f).  For 1f6vA0, the peak of the 

free energy barrier occurs at a lower Q in the flavored model (Figure 5-4e).  In each case, 

the Φ-values predicted by the vanilla and flavored models for these all-α proteins exhibit 

no significant correlation. 
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d) e) f)
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g) h) i)

 

Figure 5-4: The folding mechanisms of three all-α proteins selected from the CATH database.  
(a-c) The matrices of the interaction energies in the vanilla and flavored models are plotted below 
and above the diagonal, respectively, with darker colors representing stronger interactions.  The 
corresponding native structures are also shown.  (d-f) From simulations of the vanilla and flavored 
models, the free energy profiles were generated with respect to the order parameter Q.  (g-i) The Φ-
values from the vanilla and flavored models are compared in a plot with a best-fit line. 

 

5.3 Energetic and Entropic Fluctuations in the Folding Mechanism 

The differences in the topologies of all-α and all-β proteins can be quantified by 

the ratio of the number of long-range interactions versus short-range interactions 
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(Nlong/Nshort).  Three different peaks appear in the distribution of Nlong/Nshort for the 

nonredundant set of the PDB, corresponding to the all-α, α/β, and all-β topologies (Figure 

5-5a).  These peaks are also observed when proteins that have been shown to be two-

state folders are only included (Figure 5-5b).  All-α proteins have proportionally the 

lowest number of long-range interactions, because the intra-helical interactions stabilize 

the secondary structure.  For all-β proteins, numerous long-range interactions must form 

between individual sheets. 

 

Figure 5-5: A comparison of the ratio between long- and short-range native interactions 
(Nlong/Nshort), in sequence, across the different secondary structural classes.  (a) A histogram of the 
long- and short-range interactions from a survey of the nonredundant set of the PDB.  (b)  A table 
of well-studied two-state folding proteins with different number of residues, secondary structure 
topology, and number of long- and short-range native interactions. 

 

To examine the interplay between energetic and entropic contributions to folding, 

we calculated the energy and entropy lost upon formation of native contacts for the 

Lambda Repressor, CI2, and src-SH3 domain (Fig. 26).  The energy, E(Q), can be readily 
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calculated as a summation of the inhomogeneous energetic weights, 

! 

"ij , of the native 

interactions (i,j) for the native contacts made (Qij): 

! 

E Q( ) = + "ijQij
ij

# .   

Similarly, the entropy, S(Q), can be represented approximately as a summation of the 

entropy (Sij) lost upon forming native contacts in the context of an already partially 

formed ensemble of structures:  

! 

S Q( ) = + SijQij
ij

" .   

A reasonable approximation to Sij can be found following Shoemaker, Wang, and Wolynes 

(39).  They suggested that initially the entropy lost in forming sequentially short-range 

interactions can be approximated by the Jacobson-Stockmayer formula (121), 

! 

Sij = +kB log "V / i # j
3
2$ 

% & 
' 
( ) 
.   

Assuming that the denatured protein can be modeled as a random flight chain, the 

quantity  

! 

"V = 3
2
#( )

3 / 2

"$
l
0

3 ,  

where Δτ is the volume of the interaction range and l0 is the persistence length.  But 

Shoemaker et al. also argued that if some structure is already formed, the entropy lost will 

continue to make sequentially distant interactions and saturates to that of a typical 

fluctuating segment of the chain, as introduced by Flory in the mean field theory of rubber 

vulcanization (122).  This yields:  
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where µ is the number of contacts made and N is the number of contacts in the native 

state.  Interpolating between the two extremes, Shoemaker et al. arrived at the following 

mean field approximation to the contact entropy loss in a partially structured folding 

ensemble:  
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The resulting free energy functional takes the form: 
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where 

! 

"Qij µ'( ) =Qij µ'( ) #Qij µ'#1( ) , and the final term accounts for the different ways  of 

forming a contact in a partially ordered protein.  The entropy lost as the chain goes from 

the unfolded to folded states is estimated as Nlog(ν), where ν is the number of 

conformations per residue.  This is essentially the free energy function of an 

inhomogeneous field Ising magnet.  The inhomogeneity contains both an entropic and 

energetic part. 
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a) b)

c) d)

 

Figure 5-6: The entropy and energy lost from the formation of native contacts for all-α (red), α/β 
(green), and all-β (blue) proteins.  Shown are the (a) entropy and (b) energy, as well as the variance 
of the (c) entropy and (d) energy, all plotted with respect to the order parameter, Q. 

 

When the mean-field expressions for the energy and entropy of ensembles from 

the simulations are stratified with respect to Q, both the entropy and energy, on average, 

are nearly linearly related to Q (Figure 5-6a,b) for both proteins.  On the other hand, the 

fluctuations, as quantified by the variance, of the entropy costs of forming contacts 

(<δS2>) at a Q value and energies of the formed contacts (<δε2>) show different trends 
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for each protein topology (Figure 5-6c,d).  By comparing the quantity <δS2>/<δε2> at 

the transition state for each of the proteins, we can quantify the which of the two 

contributions to the “random” fields will dominate the pattern of contacts formed.  The 

ratio determines whether the entropic or energetic fluctuations dominate the folding 

mechanism.  A high (low) value indicates that entropic (energetic) fluctuations determine 

the structure of the transition state ensemble. It is noteworthy that the ratio 

<δS2>/<δε2> is strongly correlated with the abovementioned Nlong/Nshort, with a 

correlation coefficient of 0.90 (Figure 5-7).  Therefore, for a protein with a high number of 

long-range contacts (e.g., all-β protein), the entropic fluctuations will tend to dominate the 

folding mechanism, while for proteins with a low number of long-range contacts (e.g., all-α 

protein), the folding mechanism should be susceptible to energetic fluctuations, if we 

follow the free energy functional of Shoemaker et al. 
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r = 0.90

 

Figure 5-7: The relationship between the ratio of the entropic and energetic fluctuations with the 
ratio between long- and short-range native interactions for well-studied two-state folding proteins. 

 

5.4 When Energetic Heterogeneity Plays a Significant Role 

The above observations suggest the sensitivity in the Φ-values to the energetic details 

between the vanilla and flavored models depends largely on the value of <δS2>/<δε2> for 

each protein system.  To confirm this, we studied a series of models where <δε2> is 

varied over a range, but <δS2>, of course, remains constant for each given protein 
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topology.  We expect that once <δε2> increases sufficiently (and thereby decreasing 

<δS2>/<δε2>), large deviations in the Φ-values from those of the homogeneous vanilla 

model will occur.  Using this reasoning a key simulation test of the theory becomes 

possible:  in the simulation world (if not in the laboratory!), we can design an all-β 

protein, such as the src-SH3 domain, to have a transition state ensemble that is sensitive 

to energetic fluctuations, like an all-α protein, by using an unrealistically large variation in 

the native contact energy. 

 To construct models with varying <δε2>, we studied variable sets of inter-

residue energetic weights, 

! 

"i, j
new , which can interpolate between the vanilla and the flavored 

models and that can furthermore extrapolate past the usual flavored model in energetic 

heterogeneity linearly: 

! 

"i, j
new = # "i, j

MJ $"
MJ

( ) + "
MJ

.  Here 

! 

"i, j
MJ  is the original MJ weight for a 

given residue pair (i,j), 

! 

"
MJ

is the mean value of the entire set of MJ weights, and χ is a 

parameter that can be varied.   The value of χ equal to 0 and 1 corresponds to the vanilla 

and flavored models, respectively.  Values of χ between 0 and 1, inclusive, have 

distributions of energetic weights with the variance (δε) ranging from 0 (i.e., vanilla 

model) to that of the fully flavored model.  The variance can be increased even further by 

choosing values of χ greater than 1. 
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Figure 5-8: Flavored model simulations of src-SH3 domain protein with a range of distributions 
of the Miyazawa-Jernigan contact energies.  The free energy profiles (a) and Φ-values (b) are shown 
for simulations using the varying parameter, χ, in a range where the folding mechanism does not 
change significantly. The free energy profiles (c) and Φ-values (d) are shown for simulations using 
the varying parameter, χ, in a range where the folding mechanism does change significantly. 

  

For the all-β protein, src-SH3 domain, we first calculated the free energy profile and the 

Φ-values over the range of χ between 0 and 1 (Figure 5-8a,b).  Very little difference is 

observed between the results of the vanilla and flavored models, as well as the 

intermediary models.  However, when χ is increased past 1, the free energy barrier begins 

rapidly to decrease while the unfolded state becomes more structured and the folded state 
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becomes less structured, as is seen for all-α proteins (Figure 5-8c).  The free energy barrier 

height decreases with increasing χ until the free energy profile contains only a single 

minimum, corresponding to a downhill folding scenario (123).  While this physically 

unrealistically regime cannot be achieved in the laboratory, these general trends agree with 

the arguments based on the free energy functional of a β protein with enhanced native 

contact heterogeneity (112).  Also, a marked difference in the Φ-values exists (Figure 

5-8d), as was seen earlier only for the all-α proteins.  Therefore, with a sufficiently large 

<δε2>, albeit in an unrealistic regime, the entropy costs intrinsic to forming the topology 

of the protein are no longer the sole significant factors in folding. Therefore, with a 

sufficiently large <δε2>, albeit in an unrealistic regime, the entropy cost intrinsic to 

forming the topology of the protein are no longer the sole significant factors in folding.  

The correlation between the Φ-values of the vanilla as compared to those of the various 

flavored models disappears at a lower value of χ in the Lamda Repressor than the src-

SH3 domain (Figure 5-9a).  In both proteins, the Φ-values of the flavored models remain 

close to that of the vanilla model if  <δS2>/<δε2> is greater than around 0.20 (Figure 

5-9b). 
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a) b)

 

Figure 5-9: The dependence of the correlation between the Φ-values of the vanilla model versus 
the flavored models, r,  with a range of χ (a) and <δS2>/<δε2> (b) for the all-α  (1R69; red) and all-
β  (1SRL; blue) topologies. 

 

Reprinted from: 
 
Cho SS, Levy Y, Wolynes PG. Quantitative Criteria for Native Energetic Heterogeneity 
Influences in the Prediction of Protein Folding Kinetics. Proc. Natl. Acad. Sci., USA. 
2007. (in press) 
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6. Looking to the Future 

It is exciting to be a biophysicist these days. The sequences of entire genomes 

have been mapped, new biomolecular structures are resolved at an incredible rate, and the 

basic framework of how proteins fold is now well established.  In our present work, we 

clearly demonstrated the simple elegance of protein folding within the framework of the 

Energy Landscape Theory.  Indeed, simple measures are often sufficient to describe the 

intricacies of protein folding mechanisms.  Even seemingly complicated oligomerization 

mechanisms, like domain-swapping, are well-described within the Energy Landscape 

Theory.  The protein folding problem seems largely solved, at least for the simplest and 

idealized cases. 

So where do we go from here?  While the big picture of protein folding is likely 

solved, there are still many important exceptional questions that have yet to be resolved.  

There are still important details that we must know about the mechanisms of large protein 

complexes, the assembly of aggregates, and the interactions of proteins with other 

biomolecules. Also, how do natively unfolded proteins fit into the Energy Landscape 

Theory, if at all?  Taking a step back, it is also important to note that much of the efforts 

of biophysicists until now have been focused on the individual components of the cell, 

but how they fit together in vivo is still far from being understood. It is clear that the next 

frontier is to address how they interact with one another in the cell to yield biological 

functions.  And I look forward to see how it will all unfold! 



 

99 

REFERENCES 
“The secret to creativity is knowing how to hide your sources.” – Albert Einstein 

 
1. Onuchic, J. N. & Wolynes, P. G. (2004) Curr Opin Struct Biol 14, 70-75. 
 
2. Levy, Y., Wolynes, P. G., & Onuchic, J. N. (2004) Proc Natl Acad Sci U S A 101, 

511-516. 
 
3. Levy, Y., Cho, S. S., Onuchic, J. N., & Wolynes, P. G. (2005) J Mol Biol 346, 

1121-1145. 
 
4. Cho, S. S., Levy, Y., Onuchic, J. N., & Wolynes, P. G. (2005) Phys Biol 2, S44-

55. 
 
5. Tanford, C. & Reynolds, J. (2001) Nature's robots : a history of proteins (Oxford 

University Press, New York). 
 
6. Prusiner, S. B. (1998) P Natl Acad Sci USA 95, 13363-13383. 
 
7. Anfinsen, C. B. (1973) Science 181, 223-230. 
 
8. Ellis, R. J. (2006) Trends in biochemical sciences 31, 395-401. 
 
9. Dobson, C. M. (2004) Methods (San Diego, Calif 34, 4-14. 
 
10. Levinthal, C. (1969) Mossbauer Spectroscopy in Biological Systems, 22-24. 
 
11. Bryngelson, J. D. & Wolynes, P. G. (1987) Proc Natl Acad Sci U S A 84, 7524-

7528. 
 
12. Bryngelson, J. D. & Wolynes, P. G. (1989) J Phys Chem 93, 6902-6915. 
 
13. Clementi, C., Nymeyer, H., & Onuchic, J. N. (2000) J Mol Biol 298, 937-953. 
 
14. Koga, N. & Takada, S. (2001) J Mol Biol 313, 171-180. 
 
15. Chavez, L. L., Onuchic, J. N., & Clementi, C. (2004) J Am Chem Soc 126, 8426-

8432. 
 
16. Go, N. (1983) Annu Rev Biophys Bio 12, 183-210.



100 

 

17. Ejtehadi, M. R., Avall, S. P., & Plotkin, S. S. (2004) Proc Natl Acad Sci U S A 
101, 15088-15093. 

 
18. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., 

Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., et al. (1998) J Phys Chem B 102, 
3586-3616. 

 
19. Shakhnovich, E. (2006) Chem Rev 106, 1559-1588. 
 
20. Snow, C. D., Nguyen, N., Pande, V. S., & Gruebele, M. (2002) Nature 420, 102-

106. 
 
21. Snow, C. D., Sorin, E. J., Rhee, Y. M., & Pande, V. S. (2005) Annu Rev Biophys 

Biomol Struct 34, 43-69. 
 
22. MacKerell, A. D., Jr., Feig, M., & Brooks, C. L., 3rd (2004) J Am Chem Soc 126, 

698-699. 
 
23. Shirts, M. & Pande, V. S. (2000) Science 290, 1903-1904. 
 
24. Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M., Rhee, 

Y. M., Shirts, M. R., Snow, C. D., Sorin, E. J., et al. (2003) Biopolymers 68, 91-
109. 

 
25. Sobolev, V., Sorokine, A., Prilusky, J., Abola, E. E., & Edelman, M. (1999) 

Bioinformatics 15, 327-332. 
 
26. Ferreiro, D. U., Cho, S. S., Komives, E. A., & Wolynes, P. G. (2005) Journal of 

Molecular Biology 354, 679-692. 
 
27. Mello, C. C., Bradley, C. M., Tripp, K. W., & Barrick, D. (2005) Journal of 

Molecular Biology 352, 266-281. 
 
28. Karanicolas, J. & Brooks, C. L., 3rd (2002) Protein Sci 11, 2351-2361. 
 
29. Li, L. & Shakhnovich, E. I. (2001) Proc Natl Acad Sci U S A 98, 13014-13018. 
 
30. Clementi, C., Garcia, A. E., & Onuchic, J. N. (2003) J Mol Biol 326, 933-954. 
 
31. Cheung, M. S., Garcia, A. E., & Onuchic, J. N. (2002) P Natl Acad Sci USA 99, 

685-690. 
 



101 

 

32. Du, R., Pande, V. S., Grosberg, A. Y., Tanaka, T., & Shakhnovich, E. S. (1998) J 
Chem Phys 108, 334-350. 

 
33. Gsponer, J. & Caflisch, A. (2002) Proc Natl Acad Sci U S A 99, 6719-6724. 
 
34. Settanni, G., Rao, F., & Caflisch, A. (2005) Proc Natl Acad Sci U S A 102, 628-

633. 
 
35. Ding, F., Guo, W. H., Dokholyan, N. V., Shakhnovich, E. I., & Shea, J. E. (2005) J 

Mol Biol 350, 1035-1050. 
 
36. Chong, L. T., Snow, C. D., Rhee, Y. M., & Pande, V. S. (2005) J Mol Biol 345, 

869-878. 
 
37. Best, R. B. & Hummer, G. (2005) Proc Natl Acad Sci U S A 102, 6732-6737. 
 
38. Nymeyer, H., Socci, N. D., & Onuchic, J. N. (2000) Proc Natl Acad Sci U S A 97, 

634-639. 
 
39. Shoemaker, B. A., Wang, J., & Wolynes, P. G. (1997) Proc Natl Acad Sci U S A 

94, 777-782. 
 
40. Portman, J. J., Takada, S., & Wolynes, P. G. (1998) Phys Rev Lett 81, 5237-5240. 
 
41. Ding, F., Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E., & Shakhnovich, E. I. 

(2002) Biophys J 83, 3525-3532. 
 
42. Hubner, I. A., Edmonds, K. A., & Shakhnovich, E. I. (2005) J Mol Biol 349, 424-

434. 
 
43. Mirny, L. & Shakhnovich, E. (2001) Annu Rev Biophys Biomol Struct 30, 361-

396. 
 
44. Onuchic, J. N., Socci, N. D., Luthey-Schulten, Z., & Wolynes, P. G. (1996) Fold 

Des 1, 441-450. 
 
45. Shoemaker, B. A., Wang, J., & Wolynes, P. G. (1999) J Mol Biol 287, 675-694. 
 
46. Dokholyan, N. V., Li, L., Ding, F., & Shakhnovich, E. I. (2002) Proc Natl Acad Sci 

U S A 99, 8637-8641. 
 
47. Rao, F., Settanni, G., Guarnera, E., & Caflisch, A. (2005) J Chem Phys 122, 



102 

 

184901. 
 
48. Riddle, D. S., Grantcharova, V. P., Santiago, J. V., Alm, E., Ruczinski, I., & Baker, 

D. (1999) Nat Struct Biol 6, 1016-1024. 
 
49. Itzhaki, L. S., Otzen, D. E., & Fersht, A. R. (1995) J Mol Biol 254, 260-288. 
 
50. Fersht, A. R., Matouschek, A., & Serrano, L. (1992) J Mol Biol 224, 771-782. 
 
51. Eastwood, M. P., Hardin, C., Luthey-Schulten, Z., & Wolynes, P. G. (2003) J 

Chem Phys 118, 8500-8512. 
 
52. Mosavi, L. K., Minor, D. L., Jr., & Peng, Z. Y. (2002) Proc Natl Acad Sci U S A 

99, 16029-16034. 
 
53. Devi, V. S., Binz, H. K., Stumpp, M. T., Pluckthun, A., Bosshard, H. R., & 

Jelesarov, I. (2004) Protein Sci 13, 2864-2870. 
 
54. Barrientos, L. G., Lasala, F., Delgado, R., Sanchez, A., & Gronenborn, A. M. 

(2004) Structure (Camb) 12, 1799-1807. 
 
55. Neet, K. E. & Timm, D. E. (1994) Protein Sci 3, 2167-2174. 
 
56. Xu, D., Tsai, C. J., & Nussinov, R. (1998) Protein Science 7, 533-544. 
 
57. Mateu, M. G. & Fersht, A. R. (1998) Embo J 17, 2748-2758. 
 
58. Levy, Y., Caflisch, A., Onuchic, J. N., & Wolynes, P. G. (2004) J Mol Biol 340, 

67-79. 
 
59. Gunasekaran, K., Eyles, S. J., Hagler, A. T., & Gierasch, L. M. (2001) Curr Opin 

Struc Biol 11, 83-93. 
 
60. Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995) Journal of 

Molecular Biology 247, 536-540. 
 
61. Orengo, C. A., Jones, D. T., & Thornton, J. M. (1994) Nature 372, 631-634. 
 
62. Banner, D. W., Kokkinidis, M., & Tsernoglou, D. (1987) Journal of Molecular 

Biology 196, 657-675. 
 
63. Eberle, W., Pastore, A., Sander, C., & Rosch, P. (1991) Biol Chem H-S 372, 648-



103 

 

648. 
 
64. Munson, M., Obrien, R., Sturtevant, J. M., & Regan, L. (1994) Protein Science 3, 

2015-2022. 
 
65. Munson, M., Balasubramanian, S., Fleming, K. G., Nagi, A. D., OBrien, R., 

Sturtevant, J. M., & Regan, L. (1996) Protein Science 5, 1584-1593. 
 
66. Munson, M., Anderson, K. S., & Regan, L. (1997) Folding & Design 2, 77-87. 
 
67. Glykos, N. M. & Kokkinidis, M. (2004) Proteins 56, 420-425. 
 
68. Bennett, M. J., Choe, S., & Eisenberg, D. (1994) Proc Natl Acad Sci U S A 91, 

3127-3131. 
 
69. Bennett, M. J., Schlunegger, M. P., & Eisenberg, D. (1995) Protein Sci 4, 2455-

2468. 
 
70. Bergdoll, M., Eltis, L. D., Cameron, A. D., Dumas, P., & Bolin, J. T. (1998) 

Protein Sci 7, 1661-1670. 
 
71. Rousseau, F., Schymkowitz, J. W., Wilkinson, H. R., & Itzhaki, L. S. (2001) Proc 

Natl Acad Sci U S A 98, 5596-5601. 
 
72. Liu, Y. & Eisenberg, D. (2002) Protein Sci 11, 1285-1299. 
 
73. Park, C. & Raines, R. T. (2000) Protein Sci 9, 2026-2033. 
 
74. Botos, I., Mori, T., Cartner, L. K., Boyd, M. R., & Wlodawer, A. (2002) Biochem 

Biophys Res Commun 294, 184-190. 
 
75. Liu, Y., Gotte, G., Libonati, M., & Eisenberg, D. (2001) Nat Struct Biol 8, 211-

214. 
 
76. Schlunegger, M. P., Bennett, M. J., & Eisenberg, D. (1997) Adv Protein Chem 50, 

61-122. 
 
77. Cohen, F. E. & Prusiner, S. B. (1998) Annu Rev Biochem 67, 793-819. 
 
78. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., & Yee, 

V. C. (2001) Nat Struct Biol 8, 770-774. 
 



104 

 

79. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, 
M., & Jaskolski, M. (2001) Nat Struct Biol 8, 316-320. 

 
80. Wedemeyer, W. J., Welker, E., & Scheraga, H. A. (2002) Biochemistry 41, 14637-

14644. 
 
81. Hobohm, U. & Sander, C. (1994) Protein Sci 3, 522-524. 
 
82. Picone, D., Di Fiore, A., Ercole, C., Franzese, M., Sica, F., Tomaselli, S., & 

Mazzarella, L. (2005) J Biol Chem. 
 
83. Lapatto, R., Nalini, V., Bax, B., Driessen, H., Lindley, P. F., Blundell, T. L., & 

Slingsby, C. (1991) J Mol Biol 222, 1067-1083. 
 
84. Ding, F., Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E., & Shakhnovich, E. I. 

(2002) J Mol Biol 324, 851-857. 
 
85. Kabsch, W. & Sander, C. (1983) Biopolymers 22, 2577-2637. 
 
86. Ding, F., Prutzman, K. C., Campbell, S. L., & Dokholyan, N. V. (2006) Structure 

14, 5-14. 
 
87. Chen, Y. W., Stott, K., & Perutz, M. F. (1999) Proc Natl Acad Sci U S A 96, 

1257-1261. 
 
88. Oliveberg, M. (1998) Accounts of Chemical Research 31, 765-772. 
 
89. Yang, F., Bewley, C. A., Louis, J. M., Gustafson, K. R., Boyd, M. R., 

Gronenborn, A. M., Clore, G. M., & Wlodawer, A. (1999) J Mol Biol 288, 403-
412. 

 
90. Mori, T., Shoemaker, R. H., Gulakowski, R. J., Krepps, B. L., McMahon, J. B., 

Gustafson, K. R., Pannell, L. K., & Boyd, M. R. (1997) Biochem Biophys Res 
Commun 238, 218-222. 

 
91. Barrientos, L. G., Louis, J. M., Botos, I., Mori, T., Han, Z., O'Keefe, B. R., 

Boyd, M. R., Wlodawer, A., & Gronenborn, A. M. (2002) Structure (Camb) 10, 
673-686. 

 
92. Welker, E., Wedemeyer, W. J., & Scheraga, H. A. (2001) Proc Natl Acad Sci U S A 

98, 4334-4336. 
 



105 

 

93. Lee, S. & Eisenberg, D. (2003) Nat Struct Biol 10, 725-730. 
 
94. Welker, E., Raymond, L. D., Scheraga, H. A., & Caughey, B. (2002) J Biol Chem 

277, 33477-33481. 
 
95. May, B. C., Govaerts, C., Prusiner, S. B., & Cohen, F. E. (2004) Trends Biochem 

Sci 29, 162-165. 
 
96. Govaerts, C., Wille, H., Prusiner, S. B., & Cohen, F. E. (2004) Proc Natl Acad Sci 

U S A 101, 8342-8347. 
 
97. Eigen, M. (1996) Biophys Chem 63, A1-18. 
 
98. Masel, J., Jansen, V. A., & Nowak, M. A. (1999) Biophys Chem 77, 139-152. 
 
99. Feughelman, M. & Willis, B. K. (2000) J Theor Biol 206, 313-315. 
 
100. Tompa, P., Tusnady, G. E., Friedrich, P., & Simon, I. (2002) Biophys J 82, 1711-

1718. 
 
101. Plaxco, K. W., Simons, K. T., & Baker, D. (1998) J Mol Biol 277, 985-994. 
 
102. Gosavi, S., Chavez, L. L., Jennings, P. A., & Onuchic, J. N. (2006) J Mol Biol 357, 

986-996. 
 
103. Martinez, J. C. & Serrano, L. (1999) Nat Struct Biol 6, 1010-1016. 
 
104. Chiti, F., Taddei, N., White, P. M., Bucciantini, M., Magherini, F., Stefani, M., & 

Dobson, C. M. (1999) Nat Struct Biol 6, 1005-1009. 
 
105. Zarrine-Afsar, A., Larson, S. M., & Davidson, A. R. (2005) Curr Opin Struct Biol 

15, 42-49. 
 
106. Karanicolas, J. & Brooks, C. L., 3rd (2003) J Mol Biol 334, 309-325. 
 
107. Ferguson, N., Capaldi, A. P., James, R., Kleanthous, C., & Radford, S. E. (1999) J 

Mol Biol 286, 1597-1608. 
 
108. Friel, C. T., Capaldi, A. P., & Radford, S. E. (2003) J Mol Biol 326, 293-305. 
 
109. Scott, K. A., Batey, S., Hooton, K. A., & Clarke, J. (2004) J Mol Biol 344, 195-

205. 



106 

 

 
110. Bohr, H. G. & Wolynes, P. G. (1992) Phys Rev A 46, 5242-5248. 
 
111. Plotkin, S. S., Wang, J., & Wolynes, P. G. (1997) J Chem Phys 106, 2932-2948. 
 
112. Plotkin, S. S. & Onuchic, J. N. (2000) Proc Natl Acad Sci U S A 97, 6509-6514. 
 
113. Plotkin, S. S. & Onuchic, J. N. (2002) Q Rev Biophys 35, 205-286. 
 
114. Villain, J. (1985) J Phys-Paris 46, 1843-1852. 
 
115. Suzuki, Y. & Onuchic, J. N. (2005) The journal of physical chemistry 109, 16503-

16510. 
 
116. Miyazawa, S. & Jernigan, R. L. (1996) J Mol Biol 256, 623-644. 
 
117. Papoian, G. A., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z., & Wolynes, 

P. G. (2004) Proc Natl Acad Sci U S A 101, 3352-3357. 
 
118. Cho, S. S., Levy, Y., & Wolynes, P. G. (2006) P Natl Acad Sci USA 103, 586-591. 
 
119. Burton, R. E., Huang, G. S., Daugherty, M. A., Calderone, T. L., & Oas, T. G. 

(1997) Nat Struct Biol 4, 305-310. 
 
120. Pearl, F. M. G., Bennett, C. F., Bray, J. E., Harrison, A. P., Martin, N., Shepherd, 

A., Sillitoe, I., Thornton, J., & Orengo, C. A. (2003) Nucleic Acids Res 31, 452-
455. 

 
121. Jacobson, H. & Stockmayer, W. H. (1950) J Chem Phys 18, 1600-1606. 
 
122. Flory, P. J. (1956) J Am Chem Soc 78, 5222-5234. 
 
123. Bryngelson, J. D., Onuchic, J. N., Socci, N. D., & Wolynes, P. G. (1995) Proteins 

21, 167-195. 
 
 




