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Sensory and Motor Systems

Dynamics of Temporal Integration in the Lateral
Geniculate Nucleus
Prescott C. Alexander,1,2 Henry J. Alitto,1,3 Tucker G. Fisher,1,4 Daniel L. Rathbun,1,5

Theodore G. Weyand,6 and W. Martin Usrey1,2,3

https://doi.org/10.1523/ENEURO.0088-22.2022

1Center for Neuroscience, University of California, Davis, Davis, CA 95616, 2Center for Vision Science, University of
California, Davis, Davis, CA, 3Department of Neurobiology, Physiology, and Behavior, University of California, Davis,
Davis, CA 95616, 4Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305,
5Department of Ophthalmology, Henry Ford Health System, Detroit, MI 48202, and 6Department of Cell Biology and
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Abstract

Before visual information from the retina reaches primary visual cortex (V1), it is dynamically filtered by the lat-
eral geniculate nucleus (LGN) of the thalamus, the first location within the visual hierarchy at which nonretinal
structures can significantly influence visual processing. To explore the form and dynamics of geniculate filter-
ing we used data from monosynpatically connected pairs of retinal ganglion cells (RGCs) and LGN relay cells
in the cat that, under anesthetized conditions, were stimulated with binary white noise and/or drifting sine-
wave gratings to train models of increasing complexity to predict which RGC spikes were relayed to cortex,
what we call “relay status.” In addition, we analyze and compare a smaller dataset recorded in the awake
state to assess how anesthesia might influence our results. Consistent with previous work, we find that the
preceding retinal interspike interval (ISI) is the primary determinate of relay status with only modest contribu-
tions from longer patterns of retinal spikes. Including the prior activity of the LGN cell further improved model
predictions, primarily by indicating epochs of geniculate burst activity in recordings made under anesthesia,
and by allowing the model to capture gain control-like behavior within the awake LGN. Using the same model-
ing framework, we further demonstrate that the form of geniculate filtering changes according to the level of
activity within the early visual circuit under certain stimulus conditions. This finding suggests a candidate
mechanism by which a stimulus specific form of gain control may operate within the LGN.

Key words: coding; generalized linear models; LGN; retina; synapse; vision

Significance Statement

The lateral geniculate nucleus (LGN) is a dynamic, tunable filter, transforming information as it flows from
the retina to primary visual cortex (V1). In this work we use a large dataset of monosynaptically connected
retinal ganglion cell (RGC) and LGN cell pairs to model the filtering function performed by individual LGN
neurons in the anesthetized or awake state. We demonstrate that, while much of the filtering that the LGN
performs can be accounted for by temporal summation, other factors, such as the bursting activity of relay
cells, also play a role. Additionally, we show that the time scale of summation is dynamic under certain stim-
ulus and network conditions and that the integration dynamics are largely similar between the anesthetized
and awake states.
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Introduction
There are two primary dimensions along which relay

cells of the lateral geniculate nucleus (LGN) might trans-
form the visual information that they receive from the ret-
ina, namely, space and time. In the spatial dimensions, a
substantial body of evidence suggests a limited transfor-
mation, most notably an increase in the strength of the
antagonistic surround of the center/surround receptive
field (RF; Usrey et al., 1998, 1999; Wang et al., 2010). On
the other hand, data demonstrating substantial temporal
transformations by LGN relay cells of their direct retinal in-
puts abound (Usrey et al., 1998; Carandini et al., 2007;
Sincich et al., 2007, 2009; Babadi et al., 2010; Wang et
al., 2010; Rathbun et al., 2016). Prior work has demon-
strated that the temporal transformation performed by the
LGN results in an increased encoding efficiency in the sig-
nals sent by the LGN to primary visual cortex (V1) com-
pared with the signals received from the retina (Sincich
et al., 2009; Uglesich et al., 2009; Wang et al., 2010) and
that this increased efficiency can be explained by tempo-
ral summation within relay cells (Carandini et al., 2007;
Sincich et al., 2007; Casti et al., 2008) and a selective fil-
tering out of less informative retinal spikes (Rathbun et al.,
2010). Furthermore, it has recently been shown that tem-
poral summation within the LGN changes with stimulus
contrast (Alitto et al., 2019a), suggesting that geniculate
filtering is dynamic and can adapt to the statistics of the
visual environment. The aim of this work is to investigate
this filtering process by modeling the input-output relation
of LGN cells using generalized linear models (GLMs),
and to further examine whether the input-output relation
changes under different stimulus or network conditions.
In order to investigate the input-output relation of LGN

relay cells, we first assembled a large database of simulta-
neous, extracellular recordings of monosynaptically con-
nected retinal ganglion cell (RGC)-LGN cell pairs from
previously published work in anesthetized cats (Usrey et al.,
1998; Rathbun et al., 2010; Fisher et al., 2017). Although
these data offer a near optimal level of spatial and temporal
resolution with which to examine input-output relations in
single neurons, they only capture a single RGC input to
each relay cell, which are thought to receive input from be-
tween two and five RGCs in the cat (Cleland et al., 1971;
Usrey et al., 1999). Thus, instead of focusing our analyses
on the full spike train produced by relay cells, which con-
tains contributions from all RGC inputs, we instead focus
specifically on trying to model the process that determines
which spikes from the recorded RGC are relayed, that is
elicit a spike in their geniculate partner, and which are not.

We begin by considering the simplest model of temporal
summation, the often used interspike interval (ISI) model
(Usrey et al., 1998; Sincich et al., 2007; Weyand, 2007;
Wang et al., 2010; Rathbun et al., 2016; Alitto et al., 2019a)
whereby the relay probability of each retinal spike is pre-
dicted based on the elapsed time since the last retinal spike.
We then show how the ISI model can be conceptually ex-
tended using GLMs, allowing the full pattern of retinal spikes,
within a given window of time, to be used in the predictions.
We then introduce a two component GLM that includes the
pattern of LGN spikes preceding each retinal spike to investi-
gate whether the LGN spike train contains additional infor-
mation about the relay probability of future retinal spikes.
Finally, we explore whether high levels of activity within the
retino-thalamo-cortical circuit influences how LGN relay cells
integrate their retinal inputs, and whether this change might
explain the dynamic temporal filtering within relay cells that
has been previously reported (Rathbun et al., 2016; Alitto et
al., 2019a).
While this approach allows the computations performed

by individual LGN relay cells to be examined with a level of
detail unmatched by any other existing method, it does re-
quire anesthesia to record the spiking activity of individual
RGCs within the eye. In order to complement this approach,
and to offer more general findings, we additionally analyze a
smaller dataset recorded from awake cats in which S-
potentials, the extracellular record of excitatory postsynap-
tic potentials driven by the dominant retinal input (Kaplan
and Shapley, 1984), were recorded simultaneously with the
LGN spikes that they frequently elicit (Weyand, 2007). Given
the small size of the awake dataset, we cannot make quanti-
tative comparisons between the anesthetized and awake
state. However, we can use the awake dataset to qualita-
tively confirm, or refute, whether our findings from the anes-
thetized state are generally applicable.

Materials and Methods
Data sources
The data analyzed in this study contributed to previous

reports on the retinogeniculate pathway in both anesthe-
tized (Usrey et al., 1998, 1999; Rathbun et al., 2010, 2016;
Fisher et al., 2017; Alitto et al., 2019b) and awake (Weyand,
2007) cats. All experimental procedures conformed to
National Institutes of Health and United States Department
of Agriculture guidelines and were approved by the
Institutional Animal Care and Use Committee at the
University of California, Davis or Louisiana State University
Health Sciences Center.

Code accessibility
All data and code used in this study are available at

https://github.com/scottiealexander/relayglm_paper. The
code is also available as Extended Data.

Computing and software resources
All analyses were performed on a Dell Precision T3610

desktop with an Intel Xenon processor (E5-1620) running
the Lubuntu 18.04.6 operating system.
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All analyses were performed using custom written
code in the Julia programming language version 1.6.1
(Bezanson et al., 2017). Visualizations were created using
the Julia interface to the Matplotlib graphics package
(Hunter, 2007).

Anesthetized recordings
Surgery and preparation
Twenty-three adult cats of either sex contributed to

this dataset. As previously described, anesthesia was
initiated with ketamine (10mg/kg, i.m.) or ketamine
and thiopental sodium (20mg/kg, i.v.) and maintained
with either sodium pentothal (2–3mg/kg/h, i.v.), or iso-
flurane (0.7–2%). Administration rate of the anesthetic
agent was increased when physiological monitoring
indicated low levels of anesthesia. A tracheotomy was
performed and animals were placed in a stereotaxic
apparatus and mechanically respired. Body tempera-
ture, ECG, EEG, and expired CO2 were monitored for
the duration of the experiment. All wound margins
were infused with lidocaine. The cortical surface over-
lying the LGN was exposed by a craniotomy and durot-
omy and then protected with a layer of agarose. To
minimize eye movements and facilitate retinal record-
ings, the sclera beneath the lateral margin of each eye
was glued to a rigid ring that was mounted to the ste-
reotaxic frame. The posterior chamber of each eye was
accessed via a trans-scleral guide tube inserted through
the ring. Upon completion of surgical procedures, animals
were paralyzed with either vecuronium bromide (0.2mg/
kg/h, i.v.) or gallium triethiodide (6–8mg/kg/h). The nicti-
tating membranes of the eye were retracted with 10%
phenylephrine and pupils were maintained in a dilated
state with 1% atropine sulfate and flurbiprofen sodium
(1.5mg/h). The eyes were then refracted, fitted with con-
tact lenses, and focused on a tangent screen in front of
the animal.

Electrophysiological recording and visual stimuli
Extracellular recordings of RGCs were made using

single, parylene-coated microelectrodes (AM Systems)
inserted through the trans-scleral guide tube into the
posterior chamber of the eye via a custom-made ma-
nipulator. Extracellular recordings of LGN cells in the A
laminae were made using a seven-channel multielec-
trode array (Thomas Recording). Neural signals were
amplified, filtered (AM Systems, Thomas Recording)
and recorded by either a computer running Brainwave
software (Datawave Systems) or a 1401 data acquisition
system connected to a computer running the Spike2 soft-
ware package (Cambridge Electronic Design). Single-neu-
ron isolation was based on waveform analysis and the
presence of a refractory period in the auto-correlogram.
Visual stimuli were generated by either a Pepper Graphics

System video card (Number Nine Computer Corporation)
and presented on a CRT monitor at 80 or 100 Hz (NEC
Multisync), or a VSG 2/5 visual stimulus generator
(Cambridge Research Systems) and presented on a
g-calibrated CRT monitor at 140 Hz (Sony). Drifting
sinewave gratings that varied in either contrast or

diameter were presented at a temporal frequency of
4 Hz and at the optimal spatial frequency for the RGC-
LGN pair under study. Binary white-noise stimuli were
comprised of a 16� 16 grid of squares where the
brightness of each square (black or white) on each
stimulus frame was governed by a 215–1 frame long
pseudorandom sequence (the “m-sequence”; Sutter,
1987; Reid et al., 1997). The stimulus frame was up-
dated either on every or every other monitor frame (7-
to 25-ms stimulus frame duration).

Awake recordings
Four adult cats of either sex contributed to this dataset.

Details of surgical procedures, training, and recording
have been described previously (Weyand and Gafka,
1998; Weyand, 2007). In brief, animals underwent an ini-
tial implant surgery to allow for head-fixed training and
eye tracking, followed by a training period in which ani-
mals learned to maintain fixation to within 1.5° of a small
spot (0.2°) for 1–3 s to receive a food reward. Following
the training period animals underwent a second surgery in
which a canula was introduced into the brain (;6 mm
deep) through a small craniotomy and fixed in place al-
lowing a microelectrode to access the LGN for awake, ex-
tracellular, recordings (the orientation of the canula could
be adjusted; for details, see Weyand, 2007). Signals from
microelectrodes (1–1.5 MV at 1 kHz) were amplified (100–
1000�), filtered (0.001–10 kHz), and digitized at 22.5 kHz
by a modified VCR (A. R. Vetter) and transferred to a
computer for storage using hardware and software from
National Instruments. S-potentials and action potentials
were identified and sorted offline using Mini-Analysis (for
details, see Weyand, 2007). As S-potentials are thought
to be the extracellular record of excitatory postsynaptic
potentials driven by the dominant retinal input (Cleland
et al., 1971; Kaplan and Shapley, 1984; Weyand, 2007),
the delay between a successful S-potential (reflecting a
relayed RGC spike) and the triggered LGN spike is sub-
stantially shorter than the analogous delay between an
RGC spike recorded within the eye and the LGN spike
that it triggers. Thus, for the analyses presented in this
paper the timing of the S-potentials for a given pair were
shifted “backwards” in time relative to the paired LGN
spikes by 2.4ms which ensured that the median delay
between S-potentials and triggered LGN spikes (which
was 0.4ms before shifting) matched the median delay
observed between RGC and triggered LGN spikes in the
anesthetized dataset (2.8 ms). This shift helps to minimize
any contribution from the different recording approaches
to any differences in timing that may be observed between
the awake and anesthetized datasets and allows S-poten-
tials to be identified as relayed or not using the same crite-
ria as those used for RGC spikes recorded within the eye
(see below, Identification of monosynaptically connected
pairs and relayed RGC spikes). For simplicity, throughout
this paper we refer to both RGC spikes recorded within the
eye as well as time-shifted S-potentials as “RGC spikes.”
Given the difficulty of recording S-potentials in an

awake animal, the duration over which individual pairs
could be recorded was often quite limited and thus most
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of the pairs analyzed in this study (seven of eight) were
not presented with a controlled stimulus but were instead
stimulated by whatever features of the well-lit room fell
within their RF (for details, see Weyand, 2007). The one
exception, pair 200001250, was stimulated with a sinew-
ave grating (see Extended Data Fig. 7-2).

Data analysis
Identification of monosynaptically connected pairs and re-
layed RGC spikes
Simultaneously recorded RGC and LGN cells that

showed a prominent, short-latency peak in their spike
time cross-correlograms were considered to be monosy-
naptically connected pairs (Mastronarde, 1987; Usrey et
al., 1999; Rathbun et al., 2010; Fisher et al., 2017). All S-
potential-LGN pairs from Weyand (2007) met this criterion
by definition. Cross-correlograms, LGN spiking relative to
each RGC spike, were constructed for all pairs (from both
the anesthetized and awake datasets) using 0.1-ms bins.
Peaks were considered prominent if at least one bin ex-
ceeded a threshold of mbaseline 1 3 sbaseline, where
mbaseline is the mean of the baseline period spanning 30–
50ms on either side of the peak bin, and sbaseline is the
standard deviation (SD) of the baseline period. All bins ad-
jacent to the peak bin that also exceeded the threshold
were considered part of the peak. Peaks were considered
short latency if they occurred within 2–6ms of t= 0, the
time of each retinal spike. All retinal spikes that were fol-
lowed by a LGN spike that fell within the peak bins of
cross-correlograms were considered “relayed,” all other
retinal spikes were considered “nonrelayed.” Retinal effi-
cacy (or simply efficacy) is the number of relayed spikes
divided by the total number of retinal spikes. Likewise, all
LGN spikes that were preceded by a retinal spike within
the monosynaptic window (defined as above) were con-
sidered “triggered.” Retinal contribution (or simply contri-
bution) is the number of triggered LGN spikes divided by
the total number of LGN spikes.

Modeling framework
All models discussed in the paper generally take the

form:

l ¼ s
�
fðtju Þ

�
; (1)

where t are retinal spike times, u are the model parame-
ters, and l are the predicted relay probabilities in (0, 1).
For the ISI model, f is a nonlinear map between the inter-
val ti � ti�1 and a conditional intensity. For GLMs, f is a lin-
ear function of t represented as a binary vector over an n
millisecond interval before each ti. For two component
GLMs, f also takes as input the LGN spike times tLGN, f (t;
tLGN|u ). For all models, s is the logistic function:

sðxÞ ¼ 1
11 expð�xÞ ; (2)

which maps a conditional intensity to a relay probability.

Assessing model performance
All models were assessed in a train-on-90%, test-on-

10% 10-fold cross-validation procedure. In each fold,
90% of the data were used to fit the model and the re-
maining 10% was used only to assess model perform-
ance. This procedure was performed ten times such that
all data appear in the test set exactly once. Data partition-
ing across folds was performed such that all test sets
contained approximately the same number of relayed
spikes. This balancing helped reduce the variability in
mean efficacy across folds for a given pair, which serves
to stabilize the performance metric that we used (see
below) especially for pairs with relatively low mean effi-
cacy. Model performance is the mean performance
across folds.
As all models presented in this paper produce a relay

probability (0,1) for each retinal spike, we use the cross-
validated single-event Bernoulli information (IBernoulli) to
assess model performance. IBernoulli is the Bernoulli ana-
log of the cross-validated single-spike information used
for Poisson GLMs (Williamson et al., 2015) and can be
calculated from the Bernoulli log-likelihood function L
(Truccolo et al., 2005; Williamson et al., 2015):

L
�
l ; yðtÞ

�
¼

X
yðtÞlogðl Þ1

�
1� yðtÞ

�
logð1� l Þ;

(3)

where l are the predicted relay probabilities (as above),
and yðtÞ indicates whether each retinal spike was relayed
as {0,1}, what we call “relay status.” Using L we can cal-
culate IBernoulli:

IBernoulli ¼ 1
ntestlogð2Þ

�
Lðl train; ytestÞ � LðytestÞ

�
; (4)

where l train = l (ttest|u train) are the predicted relay proba-
bilities for test-set retinal spikes (ttest) given the parame-
ters (u train) learned from the training-set. ytest = y(ttest) is
the observed relay status for ttest, and ntest = length(ttest) is
the number of retinal spikes in ttest. L(ytest) represents the
log-likelihood of a homogeneous Bernoulli model where
the mean efficacy of the test-set is predicted for every
spike:

LðytestÞ ¼ rtest logð�l testÞ1 ðntest � rtestÞ log ð1� �l testÞ;
(5)

where rtest =
P

ytest and �l test is the mean efficacy across

ttest, i.e.,
rtest
ntest

).

In this construction, IBernoulli has units of bits/spike and
for well fit models will take on values between;0 (no bet-
ter than a homogeneous model) and 1 (perfect perform-
ance). In practice, poorly fit models can result in negative
IBernoulli because of separate training and testing datasets
(i.e., cross-validation). Conceptually, IBernoulli quantifies
how informative model predictions are about the relay
status of the test-set relative to a homogeneous model
with the same mean efficacy as the test-set. While some-
what elaborate compared with metrics like accuracy, for a
binary process like relay status it is important to take into
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account the fact that as �l test approaches 0 or 1, correctly
predicting the outcome becomes trivial. Quantifying model
performance relative to a homogeneous model ensures
that as �l test approaches 0 or 1, IBernoulli approaches 0 for
a model with perfect predictions (and values,0 for lesser
performing models). While this behavior is necessary to
accurately quantify model performance on this kind of
classification task (i.e., where the number of relayed and
nonrelayed spike cannot be matched), it entails that the
maximum achievable IBernoulli depends in part on the
mean efficacy of the RGC-LGN pair being modeled. For
example, for a pair with an efficacy of 0.05 the maximum
IBernoulli for a perfect performing model is 0.286 bits/
spike.

ISI models
Usrey et al. (1998) described the effect of retinal ISI on

efficacy, using the term “paired spike enhancement.”
They observed that retinal spikes following short ISIs have
a higher efficacy than those following long ISIs. Following
(Wang et al., 2010), we recast that observation as a simple
model for predicting which retinal spikes were relayed
based on the elapsed time since the last retinal spike.
This model was constructed by creating a histogram of
the ISIs preceding all relayed retinal spikes and dividing
the count in each bin by the total number retinal ISIs that
fell within that bin. We used a bin width of 1ms and the
resulting histograms were smoothed with a unit-area
Gaussian (the SD of which was chosen separately for
each pair; see below, Hyperparameter optimization) to
produce a function relating ISI to efficacy (ISI-efficacy
function) which we denote as P (t|tISI) where t is the time
of a retinal spike and tISI = ti � ti�1 is the ISI preceding t
for ISIs up to a maximum (ISIMAX) that was chosen sepa-
rately for each pair (see below, Hyperparameter optimi-
zation). For any retinal spikes with ISIs greater than
ISIMAX, the model predicted the average efficacy across
all ISIs in the corresponding dataset. For example, if the
ISI of a retinal spike within a given test-set is greater than
ISIMAX, the model would predict the mean efficacy of that

test-set (i.e.,
rtest
ntest

).

After building P (t|tISI) (abbreviated as P below for clarity)
for a given pair, the fitting algorithm then found a linear
transform fðPÞ ¼ bP1a such that the Bernoulli log-likeli-
hood of the resulting predictions

l ISI ¼ sðfðPÞÞ (6)

was maximized. This allows a shifting and rescaling of the
predictions such that the mean of l ISI matches the mean
efficacy of the data being used for model fitting. Omitting
this step would penalize the ISI model quite significantly
in the calculation of IBernoulli because l ISI may be incor-
rectly scaled relative to the mean efficacy (because of the
ISI cutoff) and thus the likelihood of the homogeneous
model, L(l ) above, would be expected to be large relative
to L(l ISI), yielding potentially negative values for IBernoulli

that would incorrectly indicate poor performance.
As with all models discussed herein, for quantifying

performance all parameters and hyperparameters were

determined from an independent subset of the data from
that used to assess performance (see above, Assessing
model performance).

GLMs
General. In order to generalize the ISI based model to

consider all activity within a period of time preceding each
retinal spike, we used a GLM framework (Truccolo et al.,
2005; Paninski et al., 2007; Pillow et al., 2008; Babadi et
al., 2010). GLMs are a generalization of ordinary linear re-
gression in which the to-be-predicted, or “response,”
variable need not be normally distributed, and the predic-
tor variables and response variable need not be linearly
related (Nelder and Wedderburn, 1972). Similarly, GLMs
can be thought of as a particular class of linear-nonlinear
(LN) cascade models in which the nonlinearity, or activa-
tion function, is fixed and invertible (Chichilnisky, 2001;
Paninski, 2004). GLMs generally take the form:

y ¼ gðXu Þ; (7)

where y is the response variable, X is a matrix of predic-
tors, u is a vector of model parameters, and g is the acti-
vation function (formally, the inverse link function). Given
an assumed or known error distribution of y and an appro-
priate choice of g, the parameters u can be efficiently fit
by maximum likelihood methods (Paninski, 2004; Babadi
et al., 2010).
In the present context, the response (y) that we are try-

ing to predict is the (binary) relay status of each retinal
spike. Thus, a natural choice for the error distribution of y
is the Bernoulli distribution, and a natural choice of activa-
tion function is the logistic function (i.e., logistic regres-
sion). The Bernoulli-Logistic GLM is given by:

y ¼ l ðtju Þ ¼ sðXu Þ; (8)

where t are the retinal spike times, and the predictor
matrix X is derived from the retinal spike times alone
[retinal history (RH) model] or using both the retinal
and LGN spikes times [combined history (CH) model].
The relay status, y, of a set of retinal spikes, t, is then
modeled as:

yðtÞ;Bernoulli
�
l ðtju Þ

�
: (9)

The parameter vector u that minimized the negative
log-likelihood (i.e., � L) for each model instance was
found using Newton’s method (Nocedal and Wright,
2006) as implemented in (Mogensen and Riseth, 2018).

RH models. Within the GLM framework used here, X is
an m by n 1 1 matrix where m is the number of retinal
spikes being used to fit the model (typically 90% of the
retinal spikes recorded under a given stimulus condition,
see above, Assessing model performance) and n is the
number of temporal components. The additional column
is the additive offset or “y-intercept” term. In the “RH
only” version (RH) of the model, whose predictor matrix,
sans-offset, we will refer to as XR, the “temporal compo-
nents” are simply n 1-ms time bins representing the retinal
spike train, as a binary vector, during the n milliseconds
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preceding each retinal spike. In this form, summing over
the m rows of XR would yield the autocorrelogram
of the retinal spike train over an n millisecond window.
The hyperparameter n was optimized separately for
each pair (see below, Hyperparameter optimization).
The n parameters corresponding to the n time bins of a
fitted model can be thought of as a linear kernel or filter
that reflects the extent to which retinal spikes occur-
ring at a given time before the “target spike” influence
the likelihood that the target spike will be relayed.
Given previous work suggesting that LGN temporal fil-

ters are likely to be smooth functions in this context
(Usrey et al., 1998; Rathbun et al., 2010), and to help pre-
vent overfitting, we introduce a smoothing prior on u (ex-
cluding the y-intercept term), yielding a maximum a
posteriori (MAP) estimator for u :

LMAPðu Þ ¼ Lðu Þ � h
X

ðu i � u i�1Þ2; (10)

where the prior weighting term h is optimized separately
for each pair (see below, Hyperparameter optimization).

CH models. The CH model extends the RH model by
introducing another set of predictors derived from the ac-
tivity of the LGN cell. In the RH model, the LGN cell only
contributes by classifying each retinal spike as relayed or
nonrelayed, whereas in the CH model the recent activity
of the LGN cell can also contribute to the relay prediction
(via spikes not “caused” by the recorded RGC). For the
CH model, the predictor matrix XC can be thought of as
the column-wise concatenation of XR with an analogous
binary matrix, XL, of size m by p where each row of length
p is the LGN cell’s binary spike train (1-ms bin size) during
the p milliseconds preceding each retinal spike. Thus,
summing over the rows of XL would yield the cross-corre-
logram of the LGN activity relative to the RGC spike times
for negative time lags. Importantly, the time window in
which the LGN cell could respond to a given RGC spike
was not included; the model could only consider events
preceding a retinal spike in predicting whether or not it
was relayed.
To help prevent overfitting we introduce a Gaussian

prior on the coefficients of the CH model (u C) to penalize
large coefficient values (i.e., ridge regression), yielding a
MAP estimator for u C:

LMAPðu CÞ ¼ Lðu CÞ � h
X

u C
2 (11)

where, as above, h is optimized separately for each pair
(see below, Hyperparameter optimization).
As the CH model is an extension of the RH model, the

time window spanned by XR was fixed, for each pair,
at the value derived from RH model fitting (see above,
RH models). The time window spanned by XL was opti-
mized for each pair in an analogous manner (see below,
Hyperparameter optimization).
In order to help mitigate the cost of increasing the num-

ber of free parameters (which would otherwise increase
quite dramatically), for CH models XR and XL were repre-
sented in a basis of raised-cosine functions following
common practice (Pillow et al., 2005, 2008; Ghanbari et
al., 2017):

bkðtÞ ¼
cos

�
qkðtÞ

�
1 1

2
(12)

qkðtÞ ¼
�
logðt1WÞ � logðf k1WÞ

� p

2g
; (13)

such that qkðtÞ 2 ½�p ;p �, where f k is the center of the
“raised bump” of the k-th basis vector,W is a constant hy-
perparameter (see below, Hyperparameter optimization)
that controls the linearity of the spacing between bumps,
and g is a scaling factor that controls the width of the
bumps such that they tile the time axis (i.e., g is a function
of the number of basis vectors and the duration they need
to cover). This representation greatly reduces the number
of parameters while still allowing good temporal resolu-
tion around the time of the retinal spike (by settingW clos-
er to ;1) at the cost of forcing the kernels to be smooth.
However, this smoothness assumption is well supported
by Usrey et al. (1998) and Rathbun et al. (2010) and
loosely resembles, in its effects, the smoothing prior used
in fitting RH models.
In practice XC is a m by nR 1 nL 1 1 matrix where nR

and nL are the number of basis vectors used to represent
XR and XL, respectively. Here, nR was set to 16 and nL
was optimized separately for each pair (see below,
Hyperparameter optimization).
In a manner analogous to thinking of XC as [XR XL], we

can separate the retinal and LGN filters learned by the
model as u C = [u R, u L] (ignoring the additive offset term).
For clarity, throughout this paper, when we refer to u R (or
u L), we are referring to u R transformed back into the time-
domain:

u R ¼ BRu
�
R (14)

BR ¼ ½bR;1ðtÞbR;2ðtÞ:::bR;kðtÞ�; (15)

where bR;kðtÞ is the k-th basis for XR (as above) and u R are
the coefficients on XR learned by the model.
The analogous set of relations apply to u L, BL, etc.
Optimization error. For RH models, in which data used

for fitting were represented in the standard temporal
basis, the standard error (SE) of the estimate for each param-
eter was computed from the Hessian of the log-likelihood
function (52LðuMLÞ) at the maximum likelihood estimate
(uML) following standard practice (Paninski, 2004; Truccolo
et al., 2005; Paninski et al., 2007; Babadi et al., 2010):

stderrðu MLÞ ¼ diag
�
½r2Lðu MLÞ��1

�1
2
: (16)

The SE of parameter estimates for models fit to data
represented in the raised-cosine basis are omitted from
visualizations as the SE cannot be validly transformed
back into the time-domain as the parameter estimates
can.

Hyperparameter optimization
Hyperparameter values that could be chosen based on

the literature or reasonable assumptions (in cases where
a hyperparameter has little impact on the model overall)
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were fixed for all pairs at the values specified below.
For quantifying model performance, all other hyperpara-
meters were chosen for each pair from a predefined set
based on which value yielded the highest cross-validated
IBernoulli in a nested cross-validation procedure. On each
fold of the main cross-validation loop the training-set
(consisting of 90% of the total data from a pair) was fur-
ther partitioned into subtraining and subtesting sets
(again a 90–10 split); the combination of model parame-
ters and hyperparameters that yielded the highest cross-
validated IBernoulli on the subtesting set across subfolds
were then used to quantify the model’s performance on
the main testing-set.

ISI-efficacy model. The maximum ISI for which the ISI-
efficacy model would predict a value other than the mean
was chosen for each pair from a set of eight logarithmi-
cally spaced values (base 10) between 0.03 and 0.5 s. The
SD of the Gaussian kernel used to smooth ISI-efficacy
functions was chosen from a set of seven logarithmically
spaced values (base 10) between 0.002 and 0.03 s and
the value 0 (i.e., no smoothing).

RH model. The RH model contains two hyperpara-
meters: the temporal span, which is the length of the time
window preceding each target retinal spike that is used to
train the model, and the prior weighting term, h , that con-
trols the magnitude of the smoothness constraint (see
above, RH models). The temporal span was chosen from
a set of eight logarithmically spaced values (base 10) be-
tween 0.03 and 0.5 s (rounded to the nearest millisecond).
The prior weighting term was chosen from a set of five
logarithmically spaced values (base 2) between 4 and
4096.

CH model. As the CH model is an augmented version
of the RH model, the temporal span of the retinal compo-
nent of each pair’s CH model was fixed at the value de-
rived from RH model fitting. Thus, seven hyperparameters
remained: the temporal span of the LGN component, the
number of basis vectors (in the raised-cosine basis; see
above, CH models) used to represent each component
(one hyperparameter per component), the weight given to
the l2 penalty for each component, and the linearity of the
basis vector spacing, W (see above, CH models; again
one per component). The temporal span of the LGN com-
ponent was chosen from a set of eight logarithmically
spaced values (base 10) between 0.04 and 0.6 s (rounded
to the nearest millisecond). The number of basis vec-
tors for retinal components was fixed at 16 for all pairs.
For LGN components the number of basis vectors was
chosen from the set {8, 12, 18, 24, 32}. The weight of
the l2 penalty was chosen from a set of five logarithmi-
cally spaced values (base 2) between 0.125 and 8.0.
The linearity of basis vector spacing, W, was fixed at
10 and 8 for retinal and LGN components, respec-
tively. The six-dimensional grid defined by the speci-
fied sets of values for the six nonfixed hyperparmeters
was searched exhaustively.

Filter visualization
For visualizing and analyzing temporal profiles of the

filters learned by the models, data from all pairs were fit

with a fixed set of hyperparameters: temporal span for
both RH and CH components was fixed at 200ms, and
the number of basis vectors in RH (CH) components was
fixed at 16 (24). As they more directly affect the shape
of the learned filters, prior weighting terms were cho-
sen individually for each pair using 10-fold cross-
validation from the same range specified above, in
Hyperparameter optimization. When displaying aver-
aged filters for a population or condition filters for each
pair were scaled to have unit norm before averaging
and, unless specified otherwise, error shading reflects
the 95% confidence interval (CI) of the mean (see below,
Statistics).

Burst spike definition
Geniculate bursts were identified by the criteria estab-

lished by (Lu et al., 1992): a geniculate burst must be pre-
ceded by at least 100ms of quiescence and contain two
or more spikes each separated by no more than 4ms. The
relaxed definition reduced the quiescence duration to
50ms and increased the maximum ISI to 6ms (Fig. 4C,D).
Noncardinal burst spikes were defined as all spikes that
were part of an identified burst, except the first or “cardi-
nal” spike of each burst.

Classification of retinal spikes by activity level
In order to assess how the level of activity of the early

visual network might alter the integration dynamics of
LGN cells we partitioned all retinal spikes from a given
pair into four quartiles based on the LGN spike count in a
100-ms window preceding each retinal spike. RH models
were then fit separately to data from each quartile.
Differences between filters learned from data from distinct
quartiles were quantified by taking the integral of the ab-
solute difference between the two filters:

Ðju N � uMj:
Where u N and uM are the filters learned the Nth and Mth
quartiles, respectively. We refer to this metric as the “ab-
solute difference”metric.

Simulating GLMs
Given a retinal spike train and a set of learned filter coef-

ficients u , a GLM can be used to simulate the relay status
of the retinal spike train by constructing a predictor matrix
X from the retinal spike train as described above (see
above, RH model), multiplying X by the learned coeffi-
cients and passing the result through the logistic function
(Xu ) to attain the predicted relay probability for each reti-
nal spike. Relay status y can then be simulated by draw-
ing a random number for each retinal spike from a uniform
distribution on (0,1); if the random number is less than the
predicted probability for a given retinal spike the spike is
considered relayed (this is equivalent to flipping a coin
whose probability of heads, or in this case “relayed,” is
given by the predicted relay probability). A GLM can then
be fit to the retinal spike train and simulated relay status
just as is done for real data (see above, RH model).
Because of the stochastic nature of simulating relay sta-
tus, for all simulations presented here the final two steps
(simulate relay status and fit GLM) are repeated 50 times
for each pair and the resulting coefficients are then
averaged.
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Statistics
Unless otherwise noted in the text, data are reported

as the median (or paired median difference) and the me-
dian absolute deviation (MAD) defined as: median(jx �
median(x)j) (Table 1). CIs are derived from bootstrap esti-
mation with 5000 re-samples, and are bias corrected and
accelerated (Efron, 1987) using the Bootstrap.jl software
package (Gehring et al., 2021). For the awake dataset, the
small sample size prevents the valid use of bootstrap-
derived CIs; thus, we report the range of values ([min,
max]) instead. For model comparisons, p-values are
calculated from paired samples permutation tests with
5000 re-samples, where the permutation is performed
within pair. For example, if comparing model A to model
B, on each iteration the model performance values for
each pair are randomly reassigned (i.e., swapped or not
between A and B with probability 0.5) and the resulting
paired median difference is calculated. After 5000 itera-
tions the observed paired median difference is compared
with the permuted differences distribution to yield a
p-value. Computed p-values are then corrected so that
they cannot be exactly zero (which would otherwise be
possible given the discrete nature of the permuted differen-
ces distribution) using the method proposed in Phipson
and Smyth (2010).

Results
To investigate the factors that contribute to how the

LGN filters retinal spike trains, we analyzed data from 45
monosynaptically connected RGC-LGN cell pairs from
anesthetized cats and 8 pairs from awake cats. For the re-
cordings under anesthesia, neurons were stimulated with
binary white noise (n=40) and/or drifting sinewave gra-
tings (n=33) and connectivity was assessed by cross-
correlation of the spike times from the two simultaneously
recorded neurons. Figure 1 shows data from an example
pair. The top row (Fig. 1A,B) shows RF maps of the RGC
(left) and LGN neuron (right) derived from the spike-trig-
gered average of the binary white-noise frames. The one
SD contour of a circularly symmetric Gaussian fit to the
LGN (RGC) RF is overlayed in white (black) on the RGC
(LGN) RF, demonstrating the high degree of spatial over-
lap between the two RFs. The bottom row (Fig. 1C,D)
shows the cross-correlograms, LGN spike times relative
to each RGC spike, for the two stimulus conditions for
this pair. Using a monosynaptic latency derived from the
time lag at which the cross-correlogram peaks, we identi-
fied each retinal spike as being relayed (i.e., evoked a
spike in its LGN partner) or not, and each LGN spike as
being triggered (i.e., was evoked by a RGC spike) or not.
Retinal efficacy, the proportion of retinal spikes that were

Figure 1. Data from an example pair (pair 214). A, B, RF maps derived from reverse correlation between recorded spike trains and
binary white noise stimulus. Red (blue) denotes regions of the RF that were excited by brighter (darker) pixels. White (black) circle in
A (B) is the 1 SD contour of a circular Gaussian fit to RF of the LGN cell (RGC) overlayed on the RGC (LGN) RF to illustrate the high
degree of spatial overlap. C, D, Cross-correlation between RGC and LGN spike trains for binary white noise (C) and drifting sinew-
ave grating (D) stimuli. The inset text indicates the number of spikes recorded from each of the two neurons (C, 14,675 retinal
spikes, 5706 LGN spikes; D, 29,305 retinal spikes, 18 236 LGN spikes). The red line in D shows the correlation because of the stim-
ulus that is attained if the spike train of the RGC is shifted in time by one stimulus cycle.
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relayed (see Materials and Methods, Identification of
monosynaptically connected pairs and relayed RGC
spikes), for this example pair during binary white noise
(drifting grating stimuli) was 0.316 (0.473); retinal contri-
bution, the proportion of LGN spikes that were trig-
gered, was 0.812 (0.760). Across the population, for
binary white noise data median retinal efficacy was
0.097 (MAD 0.070, 95% CI [0.054, 0.173]) and median
retinal contribution was 0.247 (MAD 0.156, 95% CI
[0.136, 0.394]); for drifting grating data median retinal
efficacy was 0.161 (MAD 0.098, 95% CI [0.088, 0.229])
and median retinal contribution was 0.347 (MAD 0.197,
95% CI [0.205, 0.490]).
Additionally, we analyzed data from a smaller set of

eight RGC-LGN cell pairs from awake cats in which the
spike train of the connected RGC was inferred from the
presence of S-potentials that could be isolated, along
with the LGN cell’s spikes, from the extracellular voltage
trace recorded within the LGN (Weyand, 2007). Across
the population, median retinal efficacy was 0.519 (MAD
0.133, range [0.154, 0.724]) and median retinal contribu-
tion was 0.935 (MAD 0.037, range [0.604, 0.997]).
Importantly, these data confirm the well documented

finding that not every retinal spike is relayed by the LGN
(Cleland et al., 1971; Kaplan and Shapley, 1984; Kaplan et
al., 1987; Usrey et al., 1998; Sincich et al., 2007; Weyand,
2007, among others). Taken together with the generally
accepted notion that every nonburst relay cell spike is
triggered by the retina (Kaplan and Shapley, 1984; Sincich
et al., 2007; Weyand, 2007), this finding suggests that the
primary role of LGN relay cells is to edit the incoming reti-
nal spike train by selective deletion. Thus, we sought to in-
vestigate the factors that determine which retinal spikes
are relayed and which are not, what we term “relay sta-
tus.” Given this goal, we consider models of retinogenicu-
late transmission that focus specifically on predicting the
relay status of retinal spikes rather than trying to predict
the LGN spike train directly (i.e., we do not attempt to pre-
dict LGN spikes that were not triggered by the recorded
RGC).

ISI-efficacy model
Previous work has clearly demonstrated that one of the

primary factors that determines which retinal spikes are
relayed is the elapsed time since the last retinal spike (i.e.,
retinal ISI; Usrey et al., 1998; Carandini et al., 2007;
Sincich et al., 2007, 2009; Casti et al., 2008; Wang et al.,
2010). This is often visualized by plotting retinal efficacy
as a function of the preceding retinal ISI (Usrey et al.,
1998; see above, ISI models). Figure 2, left column,
shows the ISI-efficacy relation for an example pair of cells
from the anesthetized dataset (A, pair ID 208), the popula-
tion as a whole (C, anesthetized dataset), and the relations
for each pair in the awake dataset (E), where the data from
each pair in C and E were normalized to their mean before
averaging. The ISI-efficacy functions follow the typical
decay pattern (shorter ISIs in general show higher effica-
cies) that has been reported previously (Usrey et al., 1998;
Weyand, 2007; Rathbun et al., 2010). Interestingly, the
drifting grating data (Fig. 2C, red line) do show a slight

increase in efficacy for ISIs .150ms, potentially caused
by the release from a slow acting suppressive influence
such as synaptic depression. Implicitly, the ISI-efficacy
relation is a simple model for predicting which retinal
spikes were relayed based on the preceding retinal ISI
(Wang et al., 2010), thus we formalized the model to quan-
titatively access its decoding performance. We used a 10-
fold cross- validation procedure in which ISI-efficacy
functions were constructed using 90% of retinal spikes
(training set), and performance was assessed on the
remaining 10% (test set) by looking up the expected ef-
ficacy of each spike in the test set from the training-set-
derived ISI-efficacy function (see above, ISI models).
This procedure was repeated ten times such that each
retinal spike was included in the test set once and
model performance was evaluated by the cross-vali-
dated, single-spike Bernoulli information (IBernoulli) which
quantifies how informative model predictions are about the
relay status of test-set retinal spikes relative to a homogene-
ous model that always predicts the mean efficacy (see
Materials and Methods, Assessing model performance). For
binary, white-noise data, median IBernoulli was 0.019bits/
spike (MAD 0.018, 95% CI [0.004, 0.041]). For drifting gra-
ting data, median IBernoulli was 0.026bits/spike (MAD 0.017,
95% CI [0.010, 0.030]). For the awake dataset, median
IBernoulli was 0.177bits/spike (MAD 0.085, range [0.075,
0.439]). This demonstrates that the ISI-efficacy model was
able to predict the relay status of retinal spikes significantly
better than the homogeneous model regardless of the stim-
ulus condition or the state of the animal (anesthetized or
awake).

RHmodel
While retinal ISI is a strong predictor of relay status, its

influence is a natural consequence of the temporal inte-
gration that occurs within relay cells. This fact suggests
that the history dependence of relay probability is likely to
extend beyond the most recent spike and might be better
captured by considering all retinal spikes that occur within
a given window of time. Thus, we sought to extend the
ISI-efficacy model by using GLMs to predict the relay sta-
tus of retinal spikes based on the patterns of retinal activ-
ity preceding each spike, what we call the retinal history
(RH) model. Historically, GLMs have been used to predict
the activity of visual neurons based on the changing pat-
tern of a visual stimulus (Chichilnisky, 2001; Paninski,
2004; Truccolo et al., 2005; Pillow et al., 2008; Babadi et
al., 2010); here, we instead use the pattern of activity re-
corded simultaneously from a monosynaptic input (see
Generalized linear models). In brief, the GLM predicts the
relay status of a retinal spike by convolving the pattern
of recent activity with a learned temporal filter, the
output of which is then passed through a static nonli-
nearity to produce a relay probability. Specifically, we
use Bernoulli-Logistic GLMs (i.e., logistic regression) to
model retinogeniculate transmission as a binary parsing
(Wang et al., 2010) or coin-flip process where the probability
of a positive outcome (relayed retinal spike) varies continu-
ously over time as a function of the pattern of recent retinal
spikes (see Materials andMethods, Retinal history models).
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Figure 2, right column, shows the temporal filters
learned from drifting grating (red) and binary, white-
noise data (blue) for an example pair (Fig. 2B, pair ID
208), the population recorded under anesthesia (Fig.
2D), and the population recorded in the awake state
(Fig. 2F), where filters from each pair were scaled to
have unit norm before averaging in D and F. For visual-
ization purposes, the time span preceding each retinal
spike that the model could consider (temporal span)
was set to 0.2 s for all pairs (see [Visualizing filters] and
Materials and Methods, Hyperparameter optimization).
Much like the ISI-efficacy functions, the temporal fil-
ters show relatively large positive values in the time
window just before the target retinal spike (at t = 0), in-
dicating that retinal spikes falling within this time win-
dow increase the likelihood that the target retinal spike
will be relayed. Retinal spikes that occurred earlier

relative to the target spike (.0.02–0.04 s) were less in-
formative about relay status, as shown by the smaller
magnitude of the filter values, and in general tended to
slightly decrease the probability that the target retinal
spike would be relayed (i.e., filter values slightly,0) for
pairs recorded under anesthesia. Interestingly, the fil-
ters learned from drifting grating data tended to have
larger negative values during earlier prespike time win-
dows (.;0.08–0.18 s prespike) and show a slight os-
cillation at ;10 Hz, which is unlikely to be due solely to
the periodic nature of the drifting grating, which had a
temporal frequency of 4Hz (see Materials and Methods,
Electrophysiological recording and visual stimuli). As
with the ISI-efficacy model, the performance of the RH
model was assessed using a train-on-90% test-on-10%,
10-fold cross-validation procedure, in which overall per-
formance was computed as the average IBernoulli across

Figure 2. Comparison of ISI-efficacy (left column) and RH (right column) models. A, Relationship between retinal ISI and retinal effi-
cacy for binary white noise (blue) and drifting grating data (red) for pair 208. B, Retinal filters learned by the RH model fit to binary
white noise (blue) and drifting grating (red) data from pair 208. Shading indicates 61 SE of the optimization (see Materials and
Methods). The time base for GLM filters is always relative to the retinal spike about which a prediction (relayed or nonrelayed) is
being made (i.e., the “target spike”). C, Normalized ISI-efficacy relation averaged across the population. Efficacies for each pair
were normalized to the mean efficacy across all ISIs for that pair before averaging. Shading represents the 95% CI across pairs
from 5000 bootstrap resamples (see Materials and Methods, Statistics). D, Same as B but showing the average filters across pairs.
Filters fit to the data from each pair were scaled to have a unit norm before averaging. Shading represents the 95% CI across pairs.
E, Normalized ISI-efficacy relations for all eight pairs from the awake dataset (thin gray lines) and the population average (thick gold
line). Normalization was performed as in C. F, Retinal filters learned by RH models fit to data from each pair in the awake dataset
(thin gray lines) and the population average (thick gold line). Filters were scaled to have unit norm (as in D) to aid visualization.
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folds. For binary, white-noise data, median IBernoulli was
0.024 bits/spike (MAD 0.022, 95% CI [0.007, 0.042]). For
drifting grating data, median IBernoulli was 0.068 bits/
spike (MAD 0.047, 95% CI [0.036, 0.099]). For the awake
dataset, IBernoulli was 0.154 bits/spike (MAD 0.072,
range [0.061, 0.452]).

CHmodel
Although the recorded RGC could account for the ma-

jority of LGN spikes in many cell pairs (i.e., a retinal
contribution.0.5), a considerable number of LGN spikes
could not be directly attributed to (i.e., were not triggered
by) the recorded RGC. These nontriggered spikes likely
represent the activity of other RGC inputs to the recorded
relay cell (Usrey et al., 1999), and might provide a non-
redundant source of information that could aid predic-
tions about which RGC spikes were relayed and which
were not. Thus, we built an augmented version of the RH
model that included an additional filter that acted on the
spiking history of the recorded LGN relay cell, what we
call the combined history (CH) model. Two attributes of
this additional filter are worth noting: (1) the activity of the
LGN cell only contributes to the RH model by identifying
which retinal spikes were relayed. Thus, for any pair with a
retinal contribution less than one, the LGN activity may
contribute additional information that the model can take
advantage of, and (2) the LGN filter is aligned relative to
the time of the target retinal spike just as the retinal filter
is, so only LGN spikes that occurred before target retinal
spike are included (see Materials and Methods, Combined
history models). This construction is distinct from those
commonly used to represent spike history effects in GLM
models (Pillow et al., 2008; Babadi et al., 2010) and reflects
our focus on predicting the relay status of retinal spikes
and not the activity of the LGN cell per se. As a result,
the LGN filter can capture some features of LGN activity,
such as bursting in certain circumstances, but not others,
such as a refractory period, which is not relevant for pre-
dicting retinal relay status.
Figure 3 shows the retinal (Fig. 3A) and LGN (Fig. 3B) fil-

ters for an example pair (pair ID 208) and the population
as a whole (Fig. 3C,D, filters from each pair were scaled to
have unit norm before averaging). For visualization pur-
poses, the temporal span of both retinal and LGN filters
was set to 0.2 s for all pairs (see Materials and Methods,
Filter visualization). Two aspects of the filters learned by
the CHmodel are worth noting. First, the shape of the reti-
nal filters are nearly identical to the shape of the retinal fil-
ters learned by the RH model as expected (compare Figs.
2D and 3C), despite using far fewer parameters (see
Materials and Methods, Combined history models), sug-
gesting that the addition of the LGN filter has not funda-
mentally changed how the model is weighting retinal
spikes in making predictions. Second, much like the reti-
nal filters, the LGN filters show a strong positive compo-
nent immediately preceding the target spike that rapidly
declines (;�0.015 s) followed by a lower amplitude nega-
tive component that decays to near zero fairly quickly for
drifting grating data (;0.04 s; Fig. 3C, red) and more
slowly for binary white noise data (;0.1 s; Fig. 3C, blue).

The strong, positive weights assigned by the model to the
time window immediately preceding the target spike sug-
gests that retinal spikes that follow LGN spikes at very
short latencies are more likely to be relayed. This pattern
of LGN-RGC-LGN spiking is expected to be particularly
likely when a retinal spike arrives during a geniculate
burst (Llinás and Jahnsen, 1982; Huguenard andMcCormick,
1992; Alitto et al., 2019b). To test whether this filter com-
ponent was in fact due to LGN bursting, we repeated the
CH model fitting procedure after removing all noncardi-
nal burst spikes (i.e., removing all spikes that comprise a
burst except the first spike; see Materials and Methods,
Burst spike definition). Interestingly, while the resulting
filters do show a strongly attenuated early positive com-
ponent for the drifting grating data, removing all non-
cardinal burst spikes only minimally altered the LGN
filters learned from binary white noise data (Fig. 4B).
However, relaxing the definition of bursts somewhat to
includemore high-frequency events reduced the early pos-
itive component for binary white noise data (Fig. 4D), sug-
gesting that the early positive component of LGN filters
may reflect both burst as well as high-frequency, nonburst
events (Alitto et al., 2019b).
The retinal filters learned by the CH model from the

awake data (Fig. 3E) closely resembled those learned
from the anesthetized data, as expected from the RH
model results (Fig. 2D,F). However, the LGN filters learned
from the awake data show a very different pattern.
Instead of the short latency, positive component that
appears to be due in large part to LGN bursting (see
above), the LGN filters for seven of the eight pairs of
the awake dataset show a clear, negative component
over the same time span (;�0.03–0.0 s preceding the
target spike). Two aspects of this observation are
worth noting. First, LGN cells in the awake dataset pro-
duced very few bursts. Averaged across pairs only
0.235% (median 0%, range [0.0, 1.52]) of LGN spikes
were part of bursts, with five of the eight producing no
bursts at all by the accepted definition (Lu et al., 1992;
see Materials and Methods, Burst spike definition). In
comparison, across pairs from the anesthetized data-
sets the median percentage of spikes that were part of
bursts was much higher: 14.203% (MAD 9.698, 95%
CI [9.223, 17.496]) for the binary white noise dataset,
and 18.264% (MAD 14.805, 95% CI [9.792, 27.777])
for the drifting grating dataset. Thus, the lack of the
positive component seen in the anesthetized data are
expected. Second, the negative component of the
LGN filters suggests that some form of gain control or
normalization is occurring. This follows from the con-
struction of the model, negative LGN filter weights
over some time interval indicate that LGN spikes that
occur during that interval will push the model toward
predicting that the target spike will not be relayed, thus
lowering the activity of the LGN cell itself and produc-
ing a gain control or normalization-like effect (i.e., the
same retinal input produces a smaller magnitude re-
sponse when the LGN has just been active compared
with when it has just been quiescent; Shapley and
Enroth-Cugell, 1984).
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As with previously discussed models, the performance
of the CH model was assessed using 10-fold cross-vali-
dation procedure. For binary white noise data median
IBernoulli across pairs was 0.033bits/spike (MAD 0.030,
95% CI [0.015, 0.064]), and for drifting grating data me-
dian IBernoulli was 0.073bits/spike (MAD 0.051, 95% CI
[0.051, 0.134]). For the awake dataset, median IBernoulli

was 0.263 bits/spike (MAD 0.083, range [0.086, 0.489]).
Consistent with the idea that CH-LGN filters may be cap-
turing the effect of LGN bursts in the anesthetized data-
set, we observed that the gain in performance of CH
models compared with RH models across pairs was fairly
well correlated with the “burstiness” of the LGN cell of
each pair. The Spearman’s correlation between IBernoulli

difference (CH – RH) and percentage of LGN spikes that

were part of bursts (not including cardinal spikes, see
Materials and Methods, Burst spike definition) was 0.500
(95% CI [0.182, 0.726], p, 0.01) for binary white noise
data, and 0.286 (95% CI [�0.087, 0.569], p� 0.1) for drift-
ing grating data (Extended Data Fig. 7-1C).

Model comparison
In order to illustrate how well each model performed

relative to the others we first examined how well the
model-predicted efficacies correlated with the observed
efficacies. To do this we grouped the retinal spikes from
each pair according to their predicted efficacy (normal-
ized by the mean efficacy of that pair), calculated the
observed efficacy for each group (also normalized within-

Figure 3. Summary of filters learned by the two-component, CH model. The left column shows the retinal filters, and the right col-
umn shows the LGN filters for example pairs and the population for each dataset. A, Retinal filters learned by the CH model for bi-
nary white noise (blue) and drifting grating (red) data from pair 208. B, Same as A but showing the LGN filters learned by the CH
model. The time base for retinal and LGN filters is the same (0 is the time of the “target” retinal spike), but LGN filters operate on the
prior activity of the LGN cell. C, Same as A but for the population. Filters fit to the data from each pair were scaled to have a unit
norm before averaging. Shading represents 95% CI across pairs. D, Same as C but for LGN filters. E, Same as C but showing reti-
nal filters learned from the awake dataset (thin gray lines show filters from each pair, the thick gold line shows the mean across
pairs). F, Same as E but showing LGN filters.
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pair by that pair’s mean efficacy), and then plotted the
normalized, observed efficacy against the normalized,
predicted efficacy. Efficacies, both predicted and ob-
served, for each pair were normalized by the observed
mean efficacy of that pair (across all spikes) to account for
the large difference in efficacy across pairs as is typically
done (Alitto et al., 2019a,b). In such a framework, a well
performing model will produce a “unity” line with a slope
of one and y-intercept of zero (i.e., predicted efficacy and
observed efficacy match). Figure 5, left column, shows,
for each dataset, the median relationship between ob-
served and predicted efficacy for each model (error bars
represent the MAD across pairs). While all models appear
to perform quite well within this framework, there is a sys-
tematic trend for the ISI-efficacy model to perform worse
for the spikes that it predicts to have the highest efficacy
within the drifting grating and binary white noise datasets.
Given that the highest efficacy spikes should follow short
ISIs (Fig. 2), this suggests that the ISI-efficacy model may
be performing worse than the GLMs specifically for short
ISI spikes. Consistent with this suggestion, Figure 5, right
column, shows that the difference in IBernoulli between the
GLM and ISI-efficacy models is most pronounced for reti-
nal spikes with the shortest ISIs within the drifting grating
and binary white noise datasets. Interestingly, within this
comparison framework the ISI model appears to perform
as well as the GLMs on the awake dataset.

While Figure 5 provides a helpful overview of model
performance, given the present context the most rigorous
way to assess the performance of the models presented
here is using IBernoulli, the cross-validated single-spike
Bernoulli information, which quantifies the accuracy of
model predictions on a spike-by-spike basis. Figures 6
and 7 summarize the results of a direct model comparison
analysis for the binary white noise and drifting grating
data, respectively, in which all hyperparameters for all
models were optimized individually for each pair (see
Materials and Methods, Hyperparameter optimization).
The top row of each figure shows the cross-validated
IBernoulli for each pair and each model, where points
corresponding to the same pair are connected, and
the bottom row shows a bootstrap estimation of the
paired median difference in IBernoulli between models
(see Materials and Methods, Statistics). For the binary
white noise data (Fig. 6), the paired median difference
between ISI-efficacy and RH models was 0.002 bits/
spike (MAD 0.003 95% CI [0.000, 0.003], p� 0.0092)a,
between ISI-efficacy and CH models was 0.009 bits/
spike (MAD 0.008 95% CI [0.004, 0.015], p� 0.0002)b,
and between RH and CH models was 0.004 bits/spike
(MAD 0.004 95% CI [0.003, 0.009], p� 0.0002)c. For
the drifting grating data (Fig. 7), the paired median dif-
ference between ISI-efficacy and RH models was
0.030 bits/spike (MAD 0.020 95% CI [0.012, 0.047],

Figure 4. Retinal (A, C) and LGN (B, D) filters from the CH model fit to data where noncardinal burst spikes were first removed. The
first row (A, B) use the classic burst spike definition by Lu et al. (1992): a quiescent period�100ms followed by two or spikes with
ISIs�4ms. The second row (C, D) use a more relaxed criteria: a quiescent period�50ms followed by two or more spikes with
ISIs�6ms.
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p� 0.0002)d, between ISI-efficacy and CH models was
0.049bits/spike (MAD 0.033 95% CI [0.032, 0.080], p�
0.0002)e, between RH and CH models was 0.020bits/spike
(MAD 0.014 95%CI [0.006, 0.027], p� 0.0002)f.
While the small size of the awake dataset precludes a

statistical comparison of model performance, a qualitative
assessment shows largely the same pattern as seen in
the anesthetized data. Extended Data Figure 7-2A illus-
trates the pairwise difference in model performance
between the three models (ISI, RH and CH) which sug-
gests that although no difference between the perform-
ance of the ISI and RH models is evident, the inclusion of
the LGN filter in the CH model may substantially improve
performance (median pairwise difference in IBernoulli be-
tween RH and CH models was 0.058 bits/spike, range
[�0.004, 0.170]).
Overall, while RH models do show significantly better

performance than ISI-efficacy models, and CH models
significantly outperform RH models, the magnitude of the
performance gain is rather modest, suggesting that,

overall, retinal ISI is the dominant factor in determining
which retinal spikes are relayed. However, while both
stimulus conditions showed this trend, the magnitude of
the performance gain associated with RH and CH models
over the ISI-efficacy model was substantially larger when
pairs were stimulated with drifting gratings, suggesting
that some subtler aspects of LGN integration may differ
between the two stimulus conditions (Figs. 2D, 3C; Usrey
et al., 1998).

Integration dynamics depend on firing rate
One potential drawback of using GLMs in the present

context is that by fitting a single set of filters to all spikes
(or a random subset), we are asking the fitting algorithm
to find what amounts to the average integration behavior
of relay cells during the recording period. The analysis is,
by design, insensitive to any changes in relay cell integra-
tion that may occur within a stimulus condition. While this
implicit assumption of stationarity may be largely valid for

Figure 5. Qualitative comparison of model performance. A, Left, The predicted efficacies from each model were used to group reti-
nal spikes into bins, and the observed efficacy for each group (median across pairs) is plotted against the corresponding bin label
(error bars represent the MAD across pairs). Both predicted and observed efficacies from each pair were normalized by the mean
efficacy of that pair before calculating the median and MAD. A, Right, The performance (IBernoulli) of the GLMs relative to the ISI-effi-
cacy model is shown as a function if ISI. Lines show the median performance difference across pairs; shading represents the MAD.
B, C, Same as A but for the binary white noise (B) and awake (C) datasets.
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the binary white noise stimulus, it may not hold during
drifting grating stimulation because of the high degree of
spatial and temporal correlations present in drifting gra-
tings, which are of course absent from the binary white
noise. The strong correlations present in drifting gratings
may result in larger fluctuations in activity for both the
RGC-LGN cell pair being recorded as well as the wider
network (including, e.g., the thalamic reticular nucleus,
V1, etc.) and thus may alter LGN integration dynamics in a
more significant manner. Consistent with this idea, we ob-
served higher RGC firing rate variability during drifting
grating stimulation in the 200-ms period immediately pre-
ceding each retinal spike (the same time period that the
model could consider): median pairwise difference in fir-
ing rate SD (gratings minus binary white noise) was 3.549
spikes/s (MAD 4.581, 95% CI [0.152, 5.844]; median
16.768 and 11.587 spikes/s for gratings and binary white
noise, respectively). The models presented thus far are
not sensitive to these potential within-condition changes,
as each model is fit to all spikes (or a randomly selected
subset) from a single stimulus condition. Thus, we sought
to investigate specifically whether LGN integration dy-
namics might differ based on the level of activity by as-
signing each retinal spike to one of four “quartile” subsets
(Q1–Q4) of the data based on the quartile into which the
LGN spike count in a 100-ms window preceding each reti-
nal spike fell (see Materials and Methods, Classification of

retinal spikes by activity level). We then fit separate GLMs
to the data from each quartile for each stimulus type. For
this analysis we consider only RH models, as the quartile
partitioning results in too few LGN spikes in the lowest ac-
tivity quartile to reliably fit CH models. Additionally, the bi-
nary white noise data from one pair (pair ID 102) did not
contain enough spikes to reliably fit RH models for each
quartile and was excluded from activity level analyses.
Figure 8 shows the filters learned by the model for each
activity level and stimulus condition averaged across
pairs (filters from each pair were scaled to have unit norm
before averaging) where the shaded regions represent the
95% CI across pairs (see Materials and Methods, Filter
visualization). For binary white noise (Fig. 8A), there is an
apparent trend toward a small difference between ;40
and 120ms preceding the target spike (at time=0) such
that retinal spikes during that window may have a some-
what stronger negative influence on relay probability (i.e.,
push the model to predict “not relayed”) during epochs of
heightened activity (Q3 and Q4); however, the magnitude
and variability of this effect (as seen in the overlapping CI
shading) suggest little qualitative difference between ac-
tivity levels. On the other hand, filters learned from drifting
grating data show a much clearer difference between ac-
tivity levels, specifically within a time window ;5 to 20ms
before the target retinal spike (Fig. 8C, inset), such that
the filters learned from high activity data (Q3 and Q4)

Figure 6. Performance comparison of all models for binary white noise data. A, Upper, Comparison of ISI-efficacy and RH models.
Each dot indicates the meanIBernoulli for a given pair and model; lines connect data belonging to the same pair across models (thus
the slope of the lines depicts the change inIBernoulli). The height of the vertical, colored bars indicates the MAD ofIBernoulli across
pairs for a given model, with the filled circle indicating the median value. A, Lower, Estimated paired median differenceIBernoulli be-
tween ISI-efficacy and RH models. The black dot indicates the observed paired median difference and the vertical black line indi-
cates the 95% CI of the bootstrap distribution (5000 samples) shown in blue. B, Same as A but comparing ISI-efficacy and CH
model performance. C, Same as A but comparing RH and CH model performance.
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show a faster decay toward zero from the initial positive
peak immediately preceding the target retinal spike. This
difference suggests a narrowing of the effective integra-
tion window of LGN relay cells during epochs of elevated
activity. Importantly, this difference is unlikely to be due to
differences in the ability of the model to fit the different
datasets (Fig. 8D), as median paired difference in IBernoulli

between models fit to data from the highest (Q4) and low-
est (Q1) activity levels was �0.005 bits/spike (Q4–Q1,
MAD 0.041, 95% CI [�0.047, 0.003], p� 0.353)g. Model
performance was also not significantly different between
Q4 and Q1 subsets for the binary white noise dataset:
median paired difference in IBernoulli was 0.001 bits/spike
(MAD 0.008, 95% CI [�0.001, 0.004], p� 0.396)h.
One potential concern with the above analysis is that

the data used to train the model differed considerably be-
tween quartiles. Although the quartiles are defined based
on LGN firing rates, retinal firing rates will of course be
highly correlated. Thus, the observed difference in LGN
integration dynamics could be due entirely to differences
in the training data. To control for this possibility we use a
single, fixed filter learned from all the data from a given
pair (i.e., the filters shown in Fig. 2) to simulate the relay
status of each retinal spike (i.e., the pattern of retinal
spikes preceding each target spike is convolved with the
learned filter, the output of which is passed through the lo-
gistic function and relay status is determined by a coin
flip, see Simulating GLMs). We then performed the quar-
tile subsetting and model fitting exactly as for Figure 8.
The learned filters for each stimulus type and activity quar-
tile are shown in Extended Data Figure 8-1. Importantly, in

this case the training data have exactly the same quartile
related differences as for the original analysis, the only dif-
ference is that the integration dynamics of the LGN cell are
fixed via the simulation. Thus, the fact that the filters
learned from all the quartile subsets are highly overlapping
suggests that the differences observed in Figure 8C are
not because of differences in the training data alone. The
overlap in the learned filters is especially apparent through
the first ;30–50ms where the most striking difference in
Figure 8C can be seen.
The finding that LGN integration dynamics depend on

firing rate proved to be robust to the precise time window
used to classify activity levels (tested over a range span-
ning 50–200ms; see Extended Data Fig. 8-2C,D); how-
ever, using time windows close to the cycle duration of
the drifting grating (i.e., around 250ms) is likely to pro-
duce a severe underestimate of the real difference as it
would effectively average over the preferred and non-
preferred phases of the drifting grating (which is the
likely cause of the higher variability in firing rate ob-
served during drifting grating stimulation). Consistent
with this idea, repeating the analysis using a 250-ms
time window to partition the data into quartiles substan-
tially reduced the difference between filters learned
from the drifting grating data (filters learned from binary
white noise data continued to show no difference; see
Extended Data Fig. 8-2A,B).
The awake dataset did not contain a sufficient number

of spikes to perform the quartile subsetting procedure
that we used for the anesthetized dataset (median num-
ber of retinal spikes per-pair in the awake dataset was

Figure 7. Performance comparison of all models for drifting grating data. All conventions exactly follow those from Figure 6.
Correlates of model performance are shown in Extended Data Figure 7-1. Model performance for the awake dataset is shown in
Extended Data Figure 7-2.
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2017.0 (MAD 427.5), while anesthetized datasets had a
median of 12,303.5 (MAD 5624.0) and 38,425.0 (MAD
18, 150.0) for the binary white noise and drifting gra-
ting datasets, respectively). Thus, we used a median
split to assign each retinal spike from each pair to a
low or high activity subset. The filters learned from low
and high subsets showed little difference (Extended
Data Fig. 7-2B), similar to what was seen in the binary
white noise (anesthetized) data although lacking the
prolonged negative component (between approxi-
mately �90 to �120ms). Interestingly, the one pair
that does appear to show a more substantial differ-
ence between filters learned from low and high activity

data (pair 200001250) was stimulated with gratings
during recording (see Discussion).
To quantify the apparent differences in filters learned

from the highest (Q4) and the lowest (Q1) activity data
(Fig. 8C), we calculated the integral of the absolute differ-
ence between the Q1 and Q4 filters for each pair (see
Materials and Methods, Classification of retinal spikes by
activity level). The distribution of the paired absolute dif-
ferences, along with kernel density estimates, for each
stimulus condition are shown in Figure 9A with the corre-
sponding estimation of the median of each distribution
show in Figure 9B. For the binary white noise dataset
the median absolute difference between Q4 and Q1 was

Figure 8. Comparison of RH models fit separately to subsets (quartiles) of the data grouped by LGN activity level. A, Average retinal
filters from RH models fit to each quartile of the binary white noise dataset from low (Q1, green) to high (Q4, purple) based on the
activity level of the LGN neuron within a 100-ms period directly preceding the target retinal spike att = 0. Shading represents 95%
CI across N=38 pairs. B, Upper, Comparison of model performance (IBernoulli) across all activity subsets. Each dot represents the
model performance for a single pair (the spread along the x-axis is to aid visualization). B, Lower, Bootstrap estimation of median
model performance for each subset. Black dots indicate the median across pairs and black vertical lines indicate the 95% CI of the
bootstrap distribution (shown in color, 5000 samples). C, D, Same as A, B, but for the drifting gratings dataset (N=33). Results from
a control analysis wherein relay status was simulated via GLMs is shown in Extended Data Figure 8-1 (see main text for details).
Results of changing the spike quartile classification window are shown in Extended Data Figure 8-2.
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0.024 (MAD 0.010, 95% CI [0.018, 0.028]), and for drifting
grating it was 0.055 (MAD 0.026, 95% CI [0.033, 0.067]).
For the filters learned from simulated data (Extended Data
Fig. 8-1), the median absolute difference was 0.002 (MAD
0.001, 95% CI [0.002, 0.003]) and 0.005 (MAD 0.003, 95%
CI [0.003, 0.007]) for binary white noise and drifting gra-
ting data, respectively.
A paired permutation test including only pairs for which

both binary white noise and drifting grating data were
available (N= 27) confirmed the differences between
the two stimulus conditions: paired median difference
(drifting gratings minus binary white noise) in absolute
difference was 0.031 (MAD 0.016 95% CI [0.018, 0.039],
p� 0.0002)i. Repeating the analysis when only including
the 30-ms period preceding the target retinal spike yielded
similar results (paired median difference of 0.008, MAD
0.007 95%CI [0.002, 0.012], p� 0.0004)j.

Discussion
The aim of this study was to investigate how LGN relay

cells integrate their retinal inputs over time, and how the
integration process changes under different stimulus and
network conditions, by using computational models to
predict which retinal spikes were relayed on to V1 and
which were not. We model retinogeniculate transmission
as a coin flip (or Bernoulli) process where the primary
quantity of interest is the probability, p, that each incom-
ing retinal spike will be relayed. In the simplest possible
model p is a constant given by the mean efficacy across
all retinal spikes recorded from a given RGC-LGN cell
pair. This constant p model (or homogeneous Bernoulli

model) forms the basis of comparison for all other models
that we considered, as the constant p model captures
the fact that as mean efficacy approaches the extremes
(0 or 1) predicting relay status becomes trivial (simply
guessing the mean will approach perfect performance).
Thus, we chose to quantify model performance in terms
of the cross-validated single-spike Bernoulli informa-
tion ( IBernoulli) which quantifies how informative model
predictions are about the relay status of retinal spikes
(that were not “seen” during model fitting) relative to a
homogeneous model. In our construction, IBernoulli has
units of bits/spike and can take on values between ;0
and 1, where 0 represents performance no better than a
constant pmodel and 1 represents perfect performance
(for details, see Materials and Methods, Assessing model
performance).
The fact that IBernoulli quantifies model performance rel-

ative to a homogeneous model is critical given the present
context of trying to predict the relay status of retinal
spikes. This follows from the fact that the difficulty of pre-
dicting relay status varies with mean efficacy: relay status
is trivially easy to predict for pairs with a mean efficacy
close to zero or one, and is maximally difficult for pairs
with a mean efficacy of 0.5. Thus, an optimal performance
metric needs to take into account both the quality of the
predictions as well as the difficulty of the task for a given
pair. IBernoulli does exactly this. However, as a result the
maximum IBernoulli achievable for pairs with very low or
very high mean efficacy is substantially less than one.
This fact accounts in part for the low IBernoulli values
achieved by the models considered here, especially on

Figure 9. Quantification of differences between filters learned from highest (Q4) and lowest (Q1) activity datasets. A, Population dis-
tributions (filled bars) and kernel density estimates (thick lines) of absolute differences between Q4 and Q1 filters for binary white
noise (blue) and drifting grating (red) data. Filled triangles denote the median of each distribution. The gold triangle indicates the me-
dian difference for the awake dataset for reference (where “high” and “low” were defined by a median split because of fewer spikes
in that dataset). B, Estimation of population medians from A. Filled black dots indicate the median and black vertical lines indicate
the 95% CI of the bootstrap distributions of population medians shown in blue (red) for binary white noise (drifting grating) data.
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the anesthetized datasets where many pairs have low
mean efficacies (9% and 25% of pairs from the drifting
grating and binary white noise datasets, respectively,
have a mean efficacy,0.05). It should be noted that this
behavior is not a deficiency in the IBernoulli metric, rather it
reflects an inherent difficulty in predicting relay status.
We first considered a model where p varies in time ac-

cording to the elapsed interval since the last retinal spike
(ISI) based on extensive evidence that retinal spikes fol-
lowing shorter ISIs are more likely to be relayed because
of temporal summation (Usrey et al., 1998; Sincich et al.,
2007, 2009; Weyand, 2007; Casti et al., 2008; Wang et al.,
2010; Rathbun et al., 2016; Alitto et al., 2019a). Following
the framework of Wang et al. (2010), we formalize this ob-
servation as a simple model, p ¼ fðISIÞ), where the rela-
tion between ISI and relay probability (i.e., efficacy) is
learned from a subset of the data (training set) and the
performance of the model is tested on a separate subset
(testing set, see Materials and Methods, Assessing model
performance).
We further considered a model where p is a function of

the pattern of retinal spikes that an LGN cell receives with-
in a given window of time, what we call the RH model.
Conceptually, this can be seen as an extension of the ISI-
efficacy model that additionally takes into account the no-
tion that the influence of retinal activity on the current
state of a relay cell (i.e., its propensity to relay a retinal
input should one arrive) is unlikely to be limited to just the
most recent retinal spike. Thus, allowing a model to con-
sider the full pattern of recent spikes from the recorded
RGC should improve predictions of relay status and pro-
vide a less constrained view of the temporal integration
dynamics of retinogeniculate interactions. To that end we
used Bernoulli-Logistic GLMs to predict the relay status of
each retinal spike based on the convolution of a learned
temporal filter (retinal filter) with the pattern of recent retinal
activity, the output of which is then mapped to a predicted
relay probability (or equivalently, predicted efficacy).
In comparing the parameters learned by the ISI-efficacy

and RH models, one critical difference between the mod-
els is worth nothing. For the ISI-efficacy model, relay
probability is modeled as a univariate, nonlinear function
of ISI, while the RH model is a linear function of the multi-
variate pattern of retinal spikes over a given time window
(which is then passed through a logistic nonlinearity).
Thus, the similarity of the ISI-efficacy functions and RH
retinal filters presented in Figure 2 should be interpreted
carefully. However, the rapid decay of both functions
does tell a consistent story, namely, that the time win-
dows over which retinal spikes positively interact (i.e.,
promote a relay probability above the mean) is ;20–
30ms regardless of the stimulus (gratings or binary white
noise) or the state of the animal (anesthetized or awake).
This likely accounts for the observation that the RH model
only outperforms the ISI-model by the smallest of margins
in the anesthetized data (Figs. 6, 7), and not at all in the
awake data (though the small size of the awake dataset
should be noted).
The final model that we considered was a further aug-

mented version of the RH model that included a second,

learned temporal filter (LGN filter) that operated on the re-
cent activity history of the LGN cell, what we call the CH
model. As stated previously, for RH models the LGN ac-
tivity is only used to identify the relay status of each RGC
spike, and thus the LGN spike train (and, in particular the
LGN spikes not triggered by the recorded RGC) may pro-
vide additional information that can help predict the relay
status of retinal spikes. While the CH model did outper-
form the other two models for all datasets tested here,
further analysis of the correlates of performance and con-
sideration of the shape of the learned filters suggests that
the improvement may be based on different features with-
in the anesthetized and awake datasets. In particular we
found that, for the anesthetized dataset the improvement
in performance between RH and CH models was corre-
lated with the degree of “burstiness” (i.e., the percentage
of LGN spikes that were part of bursts) of the LGN cells of
the pairs (Extended Data Fig. 7-2). Furthermore, the
shape of the LGN filters, large positive values at very short
pretarget-spike latencies, suggests that the model is cap-
turing the increase in retinal efficacy that occurs during
geniculate bursts (Alitto et al., 2019b), and this compo-
nent of the LGN filters was specifically attenuated when
noncardinal burst spikes were removed from the data be-
fore CH model fitting (Extended Data Fig. 7-1). In contrast,
the LGN filters learned from the awake data cannot be ac-
counted for by bursts, as burst were extremely rare in the
awake dataset. Instead, the negative component seen be-
tween ;�40 and 0ms (Fig. 3) likely reflects the influence
of a gain control or normalization mechanism that could
result from intrathalamic negative feedback through the
thalamic reticular nucleus (TRN; or perhaps the longer
LGN! V1 ! TRN ! LGN loop). Across the analyses that
we performed, this was the only clear difference between
the awake and anesthetized datasets.
Lastly, we asked whether relay cell temporal integration

dynamics might differ depending on the level of activity
within the retinogeniculate circuit, and whether that differ-
ence is seen for both stimulus conditions in the anesthe-
tized data. To that end we assigned each retinal spike to
one of four data subsets based on the quartile of LGN ac-
tivity during the preceding 100ms (see Materials and
Methods, Classification of retinal spikes by activity level)
and fit RH models separately to each data subset. We
specifically chose to use LGN activity to partition retinal
spikes as, although retinal and geniculate activity levels
are highly correlated, LGN activity is likely to be more
indicative of the activity level of the wider retino-thalamo-
cortical circuit. For binary white noise data, learned tem-
poral filters showed little difference between subsets (Fig.
7A), while for drifting grating data a substantial difference
is observed between ;5 and 20ms (Fig. 7C) such that fil-
ters learned from the highest activity subsets (Q3 and Q4)
show a shorter effective temporal integration window (i.e.,
the duration of time preceding a target spike where the ar-
rival of another retinal spike will increase the likelihood
that the target spike is relayed). For the awake dataset,
most pairs showed little difference between epochs of
higher and lower activity when analyzed in a similar man-
ner (albeit using a simpler median split as there were not
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enough spikes to reliably fit model to quartile subsets).
Interestingly, the one apparent exception (pair 200001250;
Extended Data Fig. 7-2B) was also the only pair that was
stimulated with gratings during recordings. While this is a
single example and so should be considered only the slim-
mest of evidence, it is nonetheless consistent with the idea
that the effective integration window of LGN cells, in both
the awake and anesthetized states, is dynamically regu-
lated in a manner that is inversely proportional to the on-
going firing rate (i.e., shorter integration windows during
periods of higher activity).
While there are several cellular and circuit mechanisms

that could underlie the shortening of the temporal inte-
gration window, such as spike rate adaptation within
relay cells, short-term depression at the retinogeniculate
synapse, feedforward inhibition from geniculate inter-
neurons, feedback inhibition (direct or indirectly via cor-
tex) from the thalamic reticular nucleus, or a change in
oscillatory activity coming from the retina (Koepsell et
al., 2009), the functional consequence of this process is
a form a gain control wherein the specificity of geniculate
filtering scales with activity level. The idea being that,
under lower levels of activity the LGN behaves more per-
missively and relays patterns of retinal spikes that under
higher activity conditions, where the LGN is less permis-
sive, would not be relayed. This process might offer an
explanation for several observations about retinogeni-
culate transmission, such as the finding by Alitto et al.
(2019a) that retinal efficacy following ISIs in the ;5- to
;25-ms range is higher under low contrast (and thus
low activity) than high contrast (and thus high activity)
stimulus conditions. Likewise it could potentially ex-
plain the finding by Rathbun et al. (2016) that as the
contrast of a drifting grating stimulus increases, re-
sponses of LGN cells shift to progressively earlier
phases of the stimulus cycle and that the rate of this
“phase advance” is higher in relay cells compared with
their direct retinal inputs. Further work is needed to ad-
dress whether the magnitude of the integration widow
shortening that we observe here quantitatively matches the
observations listed above.

Relationship to previous work
A considerable amount of effort has been put into mod-

eling the computations performed by relay cells of the
LGN, due in large part to the fact that simultaneous re-
cordings of both a dominant input (from RGCs) and the
output (LGN spiking) is possible. Prior work on modeling
retinogeniculate interactions can be coarsely grouped
into two approaches: those that focus on LGN process-
ing of retinal spike trains in the absence (Casti et al.,
2008; Heiberg et al., 2013), or presence (Norheim et al.,
2012) of extraretinal input, and those that include an ad-
ditional channel for processing the visual stimulus di-
rectly (Babadi et al., 2010; Butts et al., 2016). The logic of
including the additional stimulus channel is that it ena-
bles models to capture stimulus driven effects that are
not mediated by the direct retinal input, so that “indirect”
effects (e.g., from cortical or TRN feedback) might be un-
covered. While this is a powerful approach to studying
geniculate computations generally, we instead chose to
focus our efforts more narrowly on modeling how LGN
cells process individual retinal inputs by trying to predict
which retinal spikes were relayed and which were not.
This approach is particularly well suited to our data,
which consists primarily of recordings of RGC-LGN cell
pairs in which the RGC spikes were recorded within the
eye. This entails that (1) we can be confident that few, if
any, RGC spikes went undetected, and (2) that most of
our recordings were made from nondominant RGC in-
puts. The second point follows from the observation that
most relay cells in the cat receive input from two to five
RGCs (Cleland et al., 1971; Hamos et al., 1987; Usrey et
al., 1999; Martinez et al., 2014), and thus landing an ex-
tracellular electrode in the vicinity of the dominant input
should be somewhat rare. Conversely, S-potential re-
cordings are likely to reflect just the dominant input
(Kaplan and Shapley, 1984; Weyand, 2007). Consistent
with this idea, we observed considerably higher mean ef-
ficacies in the awake dataset (on average ;0.52) com-
pared with either the drifting grating (;0.16) or binary
white noise (;0.1) datasets from the anesthetized ani-
mal. Given the above, we reasoned that the most fruitful
approach would be to focus on predicting the relay

Table 1: Statistical table of results

Dataset Metric Conditions
Paired median
difference MAD 95% CI p-value

Figure 6
a Binary noise (N=40) IBernoulli RH–ISI 0.002bits/spike 0.003 [0.000, 0.003] 0.0092
b Binary noise (N=40) IBernoulli CH–RH 0.009bits/spike 0.008 [0.004, 0.015] 0.0002
c Binary noise (N=40) IBernoulli CH–ISI 0.004bits/spike 0.004 [0.003, 0.009] 0.0002

Figure 7
d Gratings (N=33) IBernoulli RH–ISI 0.030bits/spike 0.020 [0.012, 0.047] 0.0002
e Gratings (N=33) IBernoulli CH–ISI 0.049bits/spike 0.033 [0.032, 0.080] 0.0002
f Gratings (N=33) IBernoulli CH–RH 0.020bits/spike 0.014 [0.006, 0.027] 0.0002

Figure 8
g Gratings (N=33) IBernoulli Q4–Q1 �0.005bits/spike 0.041 [�0.047, 0.003] 0.353
h Binary noise (N=39) IBernoulli Q4–Q1 0.001bits/spike 0.007 [�0.001, 0.004] 0.396

Figure 9
i Anesthetized (N=27) Absolute difference Gratings–noise 100ms 0.031 0.016 [0.018, 0.039] 0.0002
j Anesthetized (N=27) Absolute difference Gratings–noise 30ms 0.008 0.007 [0.002, 0.012] 0.0004

CIs are derived from 5000 bootstrap resamples and are bias corrected and accelerated; p-values are derived from paired-permutation tests with 5000 permuta-
tions. For details, see Materials and Methods.
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status of the retinal spikes that we did record and avoid
making predictions about LGN spikes that were not trig-
gered by the RGC under study.
Overall, this approach emphasizes the computations

being performed by relay cells on individual retinal inputs.
Previous work has proposed that the core of these com-
putations is well approximated by linear filtering with an
exponential kernel (Casti et al., 2008; Heiberg et al., 2013)
as suggested by the strong relationship between retinal
efficiency and retinal ISI (Usrey et al., 1998; Carandini et
al., 2007; Sincich et al., 2007, 2009; Casti et al., 2008;
Uglesich et al., 2009; Rathbun et al., 2010; Wang et al.,
2010). The strength of taking a statistical approach, as we
do here, is that the form of the linear filter is directly
learned by the model. Our results confirm that an expo-
nential filter is indeed a good model of relay cell temporal
integration and, given the relatively short apparent time
constants (on the order of 10–20ms, consistent with Casti
et al., 2008), suggest that the retinal ISI is likely to be the
strongest single influence on whether a given retinal spike
is relayed or not.
In conclusion, overall, our results suggest that the dom-

inant factor that determines whether or not a given RGC
spike is relayed to cortex by the LGN is the retinal ISI,
confirming previous findings (Usrey et al., 1998; Carandini
et al., 2007; Sincich et al., 2007, 2009; Casti et al., 2008;
Uglesich et al., 2009; Rathbun et al., 2010; Wang et al.,
2010). However, quantitatively smaller, yet still likely im-
portant, contributions were observed for retinal activity
further into the past, as well as LGN activity patterns in-
dicative of periods of burst firing. Furthermore, we have
demonstrated that the time scale over which the LGN
integrates its retinal inputs changes as a function of
the level of activity within the retino-thalamo-cortical cir-
cuit. This finding raises the possibility that gain control
(Shapley and Enroth-Cugell, 1984), a core visual function
of the LGN (Alitto et al., 2019a), could be achieved in part
by modulating the temporal integration window of LGN
relay cells. The source of this modulation remains an open
question for future work to explore.
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