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§ Abstract

In this report we present a 1-D model for the behavior of U-Nb shape memory alloys
that accounts for plasticity. In particular, we account for the erasure of memory effect that
occurs with increasing plastic strains. An algorithmic approximation to the model is also
discussed in some detail and a comparison to some experimental results is shown.
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§1. Introduction

Uranium-Niobium alloys with roughly 13 pct. Nb to 18 pct. Nb display a shape
memory effect. At high temperatures these alloys are in the v phase which has a bcc type
structure — austenitic phase. As the temperature is lowered the material passes through
the +° phase with a tetragonal structure, the o' phase with a monoclinic structure, and
finally to a o/ phase with an orthorhombic structure. Typical phase diagrams show a”
and 7° as the stable low temperature phases (martensitic phases) though this is a strong
function of composition; see eg. VANDERMEER ET.AL. [1981].

The basic kinetics of the material phase transformations appears to follow along the
lines of classical shape memory alloys at moderate stress levels; see eg. FUNAKUBO [1984]
for further details. An important consideration, however, in using such materials is that
they are often plastically deformed and thus the effects of plasticity must be accounted
for in any model that purports to mimic their complex behavior. As a stepping stone to
building a model capable of this, we propose here a simple 1-D model that has the flexibility
to incorporate the effects of plasticity and be computationally robust and efficient. The
model in many respects can be considered an extension and simplification of the model of
BRINSON AND LAMMERING [1993] and TANAKA [1986].

§2. Constitutive Equation

A constitutive model for a U-Nb Alloy needs to model shape memory effects and
plasticity and their interaction. In the model presented below, we restrict ourselves to the
shape memory phase transformations of multi-variant de-twinning of martensite, austen-
ite production from martensite, and multi-variant martensite production from austenite.
For simplicity we ignore the production of single-variant martensite from austenite. The
inclusion of this added transformation formally presents no difficulties; it was merely not
needed for the experimental data examined.

The plasticity model accounts for behavior at high stresses and is assumed to govern
the behavior when no other transformations are occurring. Thus it is most well suited to
plasticity at temperatures below the martensite start temperature. The plasticity model
is not designed for use with plasticity occurring at high temperatures where phase trans-
formations are possibly occurring. Note that adequate experimental data does not exist
in this regime of behavior making realistic modeling all but impossible. Nor is it suited
to materials where the critical finish stress for the de-twinning process is above the yield
stress — a situation that likely does not occur in nature.

The coupling between the plasticity and shape memory effects of the model centers
around the influence of plastic strain on the kinetics of the martensite to austenite phase
transformation. It is this phase transformation that is central to the shape memory ef-
fect (SME). In the SME one is interested in the recovery of large strains that have been
mechanically induced. The strains are related to the generation of single-variant marten-
site from multi-variant martensite. The SME comes about from the reverse process that
can only occur by first creating austenite and then converting the austenite into multi-
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variant martensite. When plasticity occurs the motion and generation of dislocations
interferes with this process (VANDERMEER ET.AL. [1981], JING-CHEN ET.AL. [1990], and
DUTKIEWICZ [1994]) and we encounter an apparent erasure of memory in the material.
The amount of memory lost is a function of the plastic strain in the material. The basic
mechanistic picture is that when a material is deformed at high stress the motion and gen-
eration of dislocations in the material sets up an internal stress field that locks in the high
stress single-variant martensite phase and does not allow it to fully transform to austenite
upon the “usual” heating cycle. Without the conversion of the single-variant martensite
into austenite, the reversion to a twinned multi-variant phase is impossible. Thus the
material effectively loses its memory. The simple model presented below is devoted to
incorporating these effects in as simple a fashion as possible and yet remain faithful to the
basics of the available experimental data on U-Nb alloys.

2.1. Stress-Strain.
Our fundamental hypothesis is that the 1-D stress-strain relation may be written as

UzE[s—sp-eL (¢t —¢7) —aAT} , (2.1)

where o is the stress, E is the elastic modulus, ¢ is the total strain, €? is the plastic strain,
€7, is the maximum residual strain obtained by de-twinning multiple variant martensite
(Bain or transformation strain), £* and £~ are the volume fractions of the positive and
negative variants of the martensite twins (ACHENBACH ET.AL. [1986]), a is the coefficient
of thermal expansion and AT is the change in the temperature field from a reference
temperature. Note that for simplicity we assume only a two varient martensite. For a
more complete model one should account for all possible variants; see e.g BOYD AND
LAGouDAS [1996A B].

Remark 2.1. ,

In some models a linear mixture rule for the elastic material modulus E = E, +£(E,, —
E,) is used, where E, and E,, are the elastic moduli for pure austenite and martensite,
respectively. If so desired one can modify this rule of mixtures to also include a change
in modulus for de-twinned martensite from multi-variant martensite. For the present
demonstration, however, we will assume the modulus to be a constant. [Note that the
total martensite fraction is simply the sum of the variants; £ = £t +£-.] [

The key to completing the specification of the model is the construction of a set of
evolution rules for the internal variables: plastic strain, equivalent plastic strain, and the
martensite fractions. This point is addressed in the next section.

§3. Evolution Equations

3.1. Plasticity.
For the plasticity we assume a simple linear isotropic hardening model. The basic
internal variables are the plastic strain and the equivalent plastic strain. The governing
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flow rules are:

éP = Xsign [o] (3.1)
= (32)
with the yield function
8(0,2%) = lo| - (0 + H") (3.3)
and Kuhn-Tucker conditions
$<0; A>0; Ap=0; Ap=0. (3.4)

Plasticity Algorithm

Algorithmically, we treat these equations using a closest-point projection method
(StMO AND HUGHES [1997]) — which amounts to a radial return algorithm in the present
situation. A synopsis of this well known algorithmic procedure is given in Table 1 for the
advancement of a known state at time t,, to a new state at time ¢,4; when the total strain
increment is known.

TABLE 1

1. Define trial state ¢'" = 0, + E[Ac — aAT), eP(7) = ¢p | zP(r) = gP
2. If ¢p(otm,&P(t7)) < 0, then elastic step

Ops1 =0 (3.5)

P=el (3.6)

§Z+1 =&, (3.7)

Goto step 4.
3. If ¢(ot",&P(t")) > 0, then return map

A= ¢ /(E+ H) (3.8)

Ont1 = 0" — AXEsign[o""] (3.9)

b, =¢€b = Adsign[o] (3.10)

g1 =8 + A (3.11)

4. Compute consistent tangent: If elastic E, else EH/(E + H).

Remark 3.1.

Note that the internal variables for the martensite are considered constants by assump-
tion when plasticity is active; ie. £ 41 =& and €, = &, . Further, we assume here
and throughout that the temperature time history is known as far as the mechanical
problem is concerned. [J



1-D Shape Memory Alloy with Plasticity 5

3.2. Production of Single Variant Martensite.

o
Note (A—-S) not
implemented

dmissible Transformation
d Region

.

Tt Tons T

Figure 3.2.1 Production of single vari-
ant martensite from a low temperature state.

The evolution of the positive variant of the martensite fraction may be expressed in
its integrated form as a linear interpolation within the phase transition region shown in
Figure 3.2.1: ( )

+_ +y (0= Vs
EF=1+(1-¢&) Vs — Vo) (3.12)
The parameters V,,,; and V,, s denote critical values of stress between which the martensitic
transformation occurs, where the subscripts ms and mf designate the martensite start and
finish values, respectively. The actual starting value of the transformation is taken to be a
function of the initial fractions present when the transformation process begins, (¢35, &5 ),
while the finish value is taken to be constant:

Vims = 04 + (f; - 55) (Ucfr - 027‘)

me - O'étr.

(3.13)

The evolution of the negative variant may be readily obtained as a consequence of the
positive variant production

=g
€ =t (3.14)
“(1-¢)
while the total fraction martensite fraction remains constant at

during this process.

Remark 3.2.
If the total martensite fraction is not unity during this phase transformation special
forms of Egs. (3.12) and (3.14) need to be used:

Er =6+ (1—63)(%%% (3.16)

N s
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In what follows we will not treat this case. [

Single variant production Algorithm

Algorithmically, this transformation is treated via a trial state approach. One first
computes 0" = o, + E[Ae — aAT]. If,

o' > Vs (3.18)

T < Tms (3.19)
& <1, and (3.20)
ot > oy, (3.21)

then one is presumed to be transforming multiple variant martensite into single variant
martensite. Once a transformation has been detected, the martensite fractions and the
stress are determined by simultaneously solving the linear equations (3.12), (3.14) and
(2.1) for the martensite fractions and the stress. Note that the initial fractions fé') are
history variables that are set at the martensite fractions at the first time a transformation
region becomes active. These values persist as f(()') until the material becomes elastic again
at which time they are reset. This procedure is effective for the handling of internal loops
within transformation regions.

Remark 3.3.
When using such models in an engineering analysis program such as a finite element
code one typically also needs to know the algorithmic tangent of the stress-strain
model. During this transformation process it is given by

E

Ealgo —
1-r+67 )
1+ FEep (me"'vms )

(3.22)

O

3.3. Production of Multiple Variant Martensite.
G A

Note (A--S) not
implemented

Tt Tins T

Figure 3.3.1 Production of multiple
variant martensite.
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The evolution of the total martensite fraction may be expressed in its integrated form
as a linear interpolation within the phase transition region shown in Figure 3.3.1:

(T = Omy)

g (3.23)

=1+ (1-¢%)

The parameters 6,,s; and 6,,¢ denote critical values of temperature between which the
martensitic transformation occurs, where again the subscripts ms and mf designate the
martensite start and finish values, respectively. The starting value of the transformation
is taken to be a function of the initial fractions present, while the finish value is taken to
be constant

ams = Tms + 60 (Tmf - Tms)

3.24
P (3:24)

The evolution of the positive and negative variants are obtained by assuming random
(equal) production of the plus and minus martensite variants:

£ =g +5(E-8)
) (3.25)
=6 +5(€E-%)-

Single variant production Algorithm

Algorithmically, this transformation is also treated via a trial state approach. One
first computes o'" = ¢, + E[Ae — aAT]. If,

o' < Vs s (3.26)
T < Ts (3.27)

&, <1, and (3.28)
Tpy1 < T, (3.29)

then one is presumed to be transforming austenite into multiple variant martensite. Once
a transformation has been detected, the martensite fractions are updated according to Egs.
(3.23) and (3.25) and the stress is updated using Eq. (2.1).

Remark 3.4.
The algorithmic tangent during this transformation process is given by

Eolse = F (3.30)
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3.4. Production of Austenite.

CA
Note (A--S) not
implemented

Admissible Transformation
Region

3

s

Ger

Figure 3.4.1 Production of austenite.

In the production of austenite from martensite one needs to consider the effects of plas-
tic deformations. When materials in the de-twinned (single variant) phase are deformed
plastically, the single variant martensitic structure becomes “locked-in” by the dislocation
arrays. This effect prevents this material from subsequently being transformed into austen-
ite or multiple variant martensite. To model this effect, we consider a modification of the
usual evolution laws during this transformation to account for equivalent plastic strains.
The evolution of the total martensite fraction may be expressed in its integrated form as
a linear interpolation within the phase transition region shown in Figure 3.4.1:

(0 — Vas)

Var = Vi) (3.31)

=6+ 01-f(E)-%)

In Eq. (3.31), f(&P) can be interpreted the maximum amount of austenite that can be
produced for a given amount of equivalent plastic strain.

Remark 3.5.
In the example shown later, we will assume the following two parameter functional
form:
f(EP) = (1 — §) exp[—keP] + 6 ; (3.32)

thus when there is no plastic strain the material is free to produce 100% austenite
during this phase transformation. For finite values of P, the maximum amount of
producible austenite is limited to a value between unity and the asymptotic value of
6, taken as a material constant. The rate at which this asymptotic value is approached
depends on the material parameter k. []

The parameters V,; and Vs denote critical values of stress between which the trans-
formation occurs, where the subscripts as and af designate stress values on modified (by
initial fraction) austenite start and finish lines, respectively. The starting value of the
transformation is taken to be a function of the initial fractions present, while the finish
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value is taken to be constant; thus

Vas = Ogs + (1 - 50) (Uaf - Uas)

3.33
Vaf = 0Oaf, ( )

where 0,5 and o, are defined from the virgin transformation lines in stress-temperature

space as
Oas = Co (T —Tos) and  ou5=Co(T —Tay),

where C, is the slope of transformation lines. The evolution of the positive and negative
variants are assumed to occur in proportion to their existence at the beginning of the phase
transformation; i.e.

:—f—gtf and §"=§i~

. s (3.34)

€+

Multilinear production of austenite

The evolution model of the phase fractions described above is linear. In order to
more accurately capture experimental data a non-linear evolution is more appropriate.
From the standpoint of numerical computations many of the proposed non-linear evolution
equations pose difficult root finding problems where multiple admissible roots are available.
As a simple, robust, and effective way of approximately incorporating arbitrary evolution
paths we can assume a general piecewise linear form for the production of austenite. The
description given below is also applicable to the de-twinning transformation and multiple
variant production transformation through minor changes in terminology. For the data
available, however, it is currently only justifiable for the production of austenite. We begin
by redefining Eq. (3.31) as

-V
§=8&+ (§iy1— &) (_‘%-—1_——%5 : (3.35)

where both &; and V; are derived from user defined constitutive parameters. These param-
eters are depicted in Figure 3.4.2 which shows the austenite ({4 = 1 — ) production curve
as a function of temperature at constant stress.

Ea
T4

y=14
F A /

x4

e

Yo=0

Y e s ':r-es(go)

6 - 85(80)
Figure 3.4.2 Production of austenite
curve definition at constant stress.
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The user defined parameters are the breakpoints in the multi-linear approximation
to the curve. Thus the ~;’s determine the percentage of the total transformation that
has occurred at the values of the 3;’s, which correspond to percent “distance” into the
transformation temperature range. Explicitly, this yields the following relation for &;:

=& —vllo—(1-f)] ~rel01]
Yo<M < <Yn-1 <7 where =0 and 7,=1,

and the following relation for V;:

‘/i = Vas - /81' [Vas - Vaf] /81 € [071]
Bo<P1 < < P11 <Bn where =0 and G, =1.

Austenite production Algorithm

Like the other transformations, this transformation is treated via a trial state ap-
proach. One first computes o'" = 0, + E[Ae — aAT]. If,

T > T, (3.36)

o' < Vs, (3.37)
En>1—f(&7), (3.38)

o' — 0, < Co(Tny1 —Tn), and (3.39)
Tpi1 > T, (3.40)

then one is presumed to be transforming martensite into austenite. Once a transformation
has been detected, the martensite fractions and stress are determined by simultaneously
solving the linear Eqgs. (3.31) or (3.35), (3.34), and (2.1). When using the multilinear
transformation curve, one must algorithmically determine the “branch” or “branches” of
the multilinear curve that are active. This can be efficiently done by simply, starting with
the branch k for which &,11 < &, < & and using Eq. (3.35) with ¢ = k£ when solving for
the martensite fraction. If the computed value of the martensite fraction is less than {x41,
then re-solve for the martensite fractions using Eq. (3.35) with ¢ = k+1, etc. This process
stops when the computed value of £ lies within the active branch or it is computed to be
less than &, = 1 — f in which case it is set to 1 — f.

Remark 3.6.
The consistent algorithmic tangent during this transformation process is given by

E

1+ Ee §Q+‘§Q- Eig1—=E&; )
L™ Vie1—-Vi

Eol9° = (3.41)
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§4. Example

In this section we consider the experimental data given in VANDERMEER ET.AL. [1981]
and examine the behavior of a U-Nb alloy with 14.0 at. % Nb. To demonstrate the features
of the model we look at the load-temperature histories given in Fig. 7 of their paper.
The data shown in this figure corresponds to a sample pulled in uniaxial tension from a
multiple variant martensitic state to a single variant state and into the plastic range and
then unloaded. The unloaded sample is subsequently subjected to a thermal cycle from
room temperature to over 1000 K and back to room temperature. To utilize our model
the material parameters shown in Table 2 have been found or estimated from the paper.

TABLE 2

Young's Moduli E,, = E, = 37.5 GPa

Critical stresses for de-twinning ¢%, = 150 MPa and o/, = 325 MPa
Multiple variant martensite temperatures T,,, = 503 K and Tr,,y = 318 K
Austenite production temperatures T, = 325 K and T,y = 625 K
Austenite production slope C, = 0.5 MPa/K

Maximum transformation strain €7 = 0.05

Initial martensite fractions &f = £, = 0.5

Thermal expansion coefficient a = 20 ustrain/K

Yield stress o, = 715 MPa

Hardening modulus H = 100 MPa

. Reference temperature 7 = 293 K

© 0 No s W

— =
v o= O

. Asymptotic austenite fraction 6 = 0.4

[oy
w

. Rate of approach to asymptotic behavior k = 70
. Multilinear break point pairs (71, 81) = (0.1,0.2) and (72, B2) = (0.8,0.3); ie. tri-linear

[
e~

Remark 4.1.

The choice of material parameters in no way represents optimal values but are merely
basic estimates from the reported data. Note that some of the data is take from a
13.9 at. % Nb and some from a 14.0 at. % Nb. []

4.1. Discussion.

Shown below in Fig. 4.1.1 is a simulation of Fig. 7 from VANDERMEER ET.AL. [1981]
(compare Fig. 4.1.2) using load and temperature control.
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12m I 1 L L A l l
0 om 0o 006 008 01 0f 0M 016

Figure 4.1.1 Simulation of data; stress
in MPa versus strain (upper) and temperature
in Kelvin versus strain (lower).

018
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Fig. 7—Strain memory cycle for the uranium + 14.0 at. pet niobium
alloy iniuially in the a” state. Upper curve represeats the deformalion
phase, i.e., stress vr strain while lower curve depicts the thermal
response, i.e., suain v lemperanire, Total imparted strains were 7 and

17 pet.

I

TEMPERATURE (K)

Figure 4.1.2 Scanned data from VAN-
DERMEER ET.AL. [1981].

Stress-Strain Strain-Temperature Behavior

A cursory glance at Figs. 4.1.1 and 4.1.2 shows that the proper physics appears
to have been incorporated both qualitatively and quantitatively into the model. The
material is seen in both the model and the experiment to initially load elastically then
begin a martensite de-twinning transformation during an initial plateau followed by an
elastic phase and subsequently by plastic deformation. In both cases, when the material is
unloaded and subjected to a thermal cycle, we observe a transformation induced recovery
of the strain. The recovery strain is seen in both cases to be a function of the total plastic
strain to which the material has been subjected.

Martensite Fraction Behavior

Shown in Fig. 4.1.3 is the time history of the plus and minus variants of the martensite
fraction for the low strain case and in Fig. 4.1.4 is the larger strain case.
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Figure 4.1.3 Predicted variation of Marten-
site fractions with 0.01% plastic strain.
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Figure 4.1.4 Predicted variation of Marten-
site fractions with roughly 10% plastic strain.

In both figures we see that there is a production of the positive martensite variant beginning
around a time of 3 at the expense of the negative variant. Then around a time of about
21 the de-twinned material begins to transform into austenite. At a time of about 57 the
austenite starts to transform back into multiple variant martensite. The effect of the tri-
linear transformation curve is easily seen in the production of the austenite. By comparing
the two figures we can also see the effect of the plastic strain on the transformation kinetics.
Note how at the larger plastic strain, the plus variant of the martensite becomes trapped
in the material and is not allowed to transform into austenite as it was able to at the lower
plastic strain. The final phase composition of the two experiments are seen to be vastly
different in variant fractions.
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§5. Closure

Even though the model provides a qualitatively and quantitatively accurate model,

some simple improvements are easy to incorporate that will make the agreement with
experimental data even better.

1.

The data clearly shows that the modulus of the martensitic variants is not the same.
Thus one simple improvement would be to set the material modulus to E = (T E +
¢~ E; +(1-¢)E,. Making this change causes the solution for the martensite fractions
during phase transformations to become quadratic and slightly alters the expressions
for the algorithmic tangents.

Since the data contained recovery curves at only two levels of strain, one can not
have confidence in the functional form chosen for f(£F). Data on recovery curves at
intermediate strains will be required to adequately choose an appropriate functional
form. Changing this function, however, does not change the theory or algorithm used.

The recovery data shows a slight dependence of the shape of the recovery curve on
the amount of plastic strain; ie. the data shows that the v;’s and 8;’s are not merely
material constants, but rather are functions of 7. Depending on the accuracy needed
in the computations this may be a needed improvement. Changing these parameters
to be functions of plastic strain, however, does not change the theory or algorithm
used.

The model presented above does not account for phase transformations that occur in
compression. To do so merely requires one to multiply certain terms in the expressions
above by the sign of o. This change requires some additional programming but does
not require substantial theoretical alterations to the presented theory.

The model presented is useful for modeling truss type behavior and can easily be
incorporated into a beam element with integration through the depth for wire and rod
simulation. To be able to model plate-like behavior a 2-D plane stress generalization
is required. This modeling aspect work is an on-going project that is looking at
adapting the models of Boyd and Lagoudas [1996A,B], ACHENBACH ET.AL. [1986],
and LUBLINER AND AURICCHIO [1996] for this purpose.
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