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I N  T H E  A B F S T  M U L T I P E R I P H E R A L  M O D E L *  

Dennis SILVERMAN** and Peter D.TING 
Department o f  Physics, University of  California, 

San Diego, La Jolla, California 92307 

Received 24 June 1971 

Abstract: The forward and non-forward Amati-Bertocchi-Fubini-Stanghellini-Tonin (ABFST) 
multiperipheral integral equations with pion exchange and resonance production are 
solved in a factorizable approximation to the kernel. The solution, which determines the 
Regge trajectories, is continuous at t = 0 and is analytically continued and studied for 
all t. In this pion exchange model, the slope of the pomeron trajectory at t = 0 is calcu- 
lated and is found to have a crucial dependence on the pion mass. The ~rTr cross section is 
also calculated in this approximation. The behavior of the trajectories near threshold is 
shown to be the same as in potential theory. The t ~ + oo limits of the solution are also 
analyzed. 

1. INTRODUCTION 

The original multiperipheral  model  of  ABFST [ 1,2]  although it does not  incor- 
porate Regge exchange, is still o f  great interest today.  It provides insight into the 
dynamics o f  multiparticle contributions to unitari ty.  It also is used in the Schizo- 
phrenic pomeron model  [3] to generate the input  P'-like trajectory which is then 
coupled with pomeron Regge exchanges to boots t rap pomerons. 

The ABFST integral equation has not been solved analytically,  and approximate 
analytic studies of  its solutions have usually been carried out  with the ls t -Fredholm 
or trace approximation [4, 5] .  In this paper we solve the forward and non-forward 
ABFST integral equations in the factorizable kernel approximation and investigate 
the properties o f  this solution. We choose a factorizable kernel which still contains 
much of  the singularity structure in angular momentum 1, and is continuous at t = 0, 
so that we can simultaneously solve both  the forward and non-forward ABFST equa- 
tions. 

The solution gives a simple implicit  equation for the Regge trajectories. With 
analytic methods we can readily find the dependence o f  the trajectories on the 

* This work was supported in part by the U.S. Atomic Energy Commission. 
* * Present address: University of California, Irvine, California 92664. 
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coupling constant and the pion mass. We can also qualitatively outline their motion 
in the complex I plane as a function of t. The factorizable kernel solution may also 
prove useful in numerical calculations to compare with the results of  the trace ap- 
proximation. 

In the original ABFST model, the pomeron is generated by a unitarity sum over 
multiperipheral pion exchange amplitudes. We calculate the slope of the pomeron 
trajectory in this model for ap(0) = 1 and show that it has a crucial logarithmic 
dependence on the pion mass. We also argue that even in the more completely uni- 
tarized pomeron bootstrap models which include pomeron exchange amplitudes, the 
slope will also depend on the pion mass. The rrrr cross section has been calculated in 
the ABFST model with the trace approximation and shown to be independent of 
the pion mass for small pion mass [4, 1 ]. We include a calculation of the 7rTr cross 
section in the factorizable kernel approximation and obtain a similar result. 

Although the trajectory equation for the ABFST model is derived for t ~< O, we 
can analytically continue it to investigate the trajectories for any t. In particular, we 
investigate the motion of  the poles asymptotically as t ~ -+ oo and also near thres- 
hold t = 4/a 2. Near threshold we find that the non-leading or complex poles converge 
to the point l = -~ -a t  t = 4/12 and their motion is the same as that found in poten- 
tial models [6].  When t approaches positive infinity, one Regge pole approaches 
each negative integer, with the leading trajectory outgoing to - 1. The approach is 
from the positive imaginary direction. This behavior of  the trajectories in the ABFST 
model is qualitatively the same as in potential theory. 

In sect. 2 we begin by presenting the factorizable kernel approximation to the 
forward ABFST equation. We then solve it and present the implicit equation for the 
trajectories. Also, we calculate the ~rrr cross section assuming that the pomeron has 
intercept one. In sect. 3, we formulate the factorizable kernel approximation for 
the non-forward ABFST equation. The approximate equation, which is diagonalized 
in l, approaches smoothly the forward equation as t --> 0. We solve the non-forward 
equation and present the equation for the Regge trajectories. In sect. 4 we calculate 
the slope of  the pomeron at t = 0 and show its dependence on the pion mass. We 
also prove that in a pomeron bootstrap model, the slope of  the pomeron will also 
depend on the pion mass. By analytic continuation of  the equation for the trajec- 
tories we investigate the behavior o f  the trajectories near threshold in sect. 5. The 
behavior of  the trajectories as t ~ + oo is analyzed in sect. 6. In sect. 7 we summa- 
rize our results. 

2. FACTORIZABLE KERNEL FOR FORWARD ABFST EQUATION 

We will begin by studying the forward ABFST equation in order to introduce 
the factorizable kernel method in the simplest case. It will also be used later to 
show its continuity with the non-forward approximation. 

The absorptive part A(s, u, o) of  the forward mr elastic scattering amplitude in 
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Fig. 1. The forward ABFST integral equation. 

the ABFST model satisfies the integral equation [1,2,  7] (see fig. 1) 

A(s, u, o) = I(s, u, o) + 

L ± 2  
O(s -- 4/z 2) (s~- ~)2 (s~ -sg) 

16n3A~(s, u, v) 4 4~t2 
ds' 

u'~ I(s~ u, u')A(s' ,  u', o) 
x f d. '  (2.1) 

u' (t~ 2 - u') 2 ' 

where the inhomogeneous term I corresponds to the two pion unitarity contribu= 
tion, and/~ is the pion mass. The limits on th¢  u' integration are 

t 1 1 
(s + u - o)(s  + S o -  s ) z~(s, u, v) A~(s, So, s') 

I 

U+=So +U-- +_ 
2s 2s 

A(a, b, c) = a 2 + b 2 + c 2 - 2(ab + bc + ca) 

In this paper we hold u and u negative to obtain this simple integration region, u 
will be considered as very small. The isospin of  the pion is ignored here, but  the re- 
sults can be directly generalized to include it. It has been shown that this equation 
can be exactly diagonalized in l and we def'me the partial wave amplitude Al(u , u) 
by [8, 9, 10] 

4~u2 

• f d s s - l - l A ( s , u , ° )  • 
s~u,u 4~2 

(2.2) 
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The absorptive part is constructed from the inversion 

c+ i~ 
a(s' u' u)= 27ril f 

C- i °°  

r S - U - - V  + A-~(S, U, 0)7 /+1 
dl L 2 J 

c+ i *° 
, 1_~ f dlslAl(U, v). s~u,o 27ri 

c-io~ 

Al(u, o) 
a~(s, u, u) 

(2.3) 

The result of the partial wave projection of  eq. (2.1) is [8, 9, 10] 

o 
1 d u ' ( -  u')l + 1 

[ Ii(u, u')AI(U', v) (2.4) At(u, v) = It(u, v) + 16rr3( / + 1) _do. (/d 2 -- U ' )  2 

where II(U, o) is defined as the partial wave of  I(s, u, o) by eq. (2.2). In general, 
I(s o, u, u') contains many mr resonances as well as a background contribution from 
pomeron exchange. For reasons of  simplicity we will study here only the case where 
I is represented by one resonance with M 2 = 0 (1 GeV2): 

I(s o, u, u')  = n g  2 5 (s o - M2).  (2.5) 

Our methods and results can be directly generalized to the case o f  any number  of  
resonances. With eq. (2.5) as the kernel, the forward ABFST equation is: [8, 9, 10, 
11] 

~M 2 u_o+A~(M2, u,o).l-l-1 g 2 /  
At(u, v) = rrg 2 - 2 + 16rr2(l + 1) _ o o  

du'  

IM ' 2 )1 Al(U, u) 2 _ U _ U '  + AY(M tzl tU t - l - 1  ' 

X - 2u'  (0 2 -  u')2 (2.6) 

Up to this point the equation is exact, but to solve it analytically we must make 
some approximation. The common one has been the trace approximation. In this 
paper we will apply the familiar factorizable kernel method in which the kernel is 
expanded in terms which are factorized in u and u'. The approximation we use is to 
keep only the first factorized term. In order to approximate wel! the/-plane prop- 
erties we must retain the source of  the singularity structure. That means we must 
retain the correct behavior of the kernel at the physical boundary, i.e. at the limits 
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of integration. The ABFST kernel has the following behavior at the boundaries: 

M2 u _ u '  + A{(M2, u ,u  ') - l - 1  
1 ,  

- 2u' u;--,-" 

~ [ --U' ~/+1 

u'-~0 ~ M - 5 ~ _ ~ !  ' 

--U' ' l+1 

u'-*O 

We have the following two ways to approximate the kernel and preserve much of  
the singularity structure of the full kernel: 

( I )  We take for the factorizable kernel the kernel for u near zero, 

1 - u '  - l - 1  1 

since this has the correct behavior as u'  ~ oo and the correct divergence as u'  ~ 0. If  
we also consider 1ol ' ¢ M  2, then eq. (2.6) will be reduced to 

AI(U, o) = 7rg2(M2) - l -  1 + 
g2 a_o(~_'u,)~+lAt(u"v) 

( du' 
16rr2(l + 1) ~. (/.t 2 - U')2 

(2.7) 

Since the factorized kernel is independent of  u, At(u, v) must be independent of  u 
and the solution to eq. (2.7) is obtained algebraically: 

Al(U, o) = rrg2(M2) -1-  l/D(/) , (2.8) 

where 

D(I) = 1 
g2 0 " - u'  l+ 1 1 

16rr2( /+l )  f '  dU'(M2---~u,) . (2.9) _ oo ( u  2 - u ' ) 2  

(2) We may alternatively take the convergent kernel for u'  near zero, 

_ 1  ( - u ' ]  - t - 1  1 
K° l + l k M 2 _ u ]  ~ 2 _ u , ) 2  
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By taking [ul "~M 2, eq. (2.6) will be reduced to 

(M21_ u)1+1 g2 0 
Al(u, o) = 7rg 2 + i6~'2(l + 1) _0o f du' 

- u '  1+1 al(u',v ) 
X (M--~-u_u) (/22 U')2" 

(2.10) 

By defining Al(U, u) = (M 2 - u) l+ 1Al(U, v) we find the equation for/~(u,  v) to be 
the same as eq. (2.7). The solution is then 

AI(U, o) = "trg2(M 2 -- U)- 1- liD(l), (2.11) 

with the same D(I) given by eq. (2.9). Both factorizable kernel approximations give 
the same denominator function D(I) and will have the same Regge singularities. 
They are approximately equal for small u, o and directly continuable to the mass 
shell u = o =/22 ,~ M 2. 

We may evaluate D(I) eq., (2.9) as a hypergeometric function 

D(I) = 1 F(2, 1; - l + 1 ;#2/M 2) 
167r2M 2 

--~/22") -1-2  } . (l sin ul ~M-2] " (2.12) 

For - 1 < l ~< + 1 and/22 ,~ M 2 this is approximately 

D(/) ~ 1 ( 167r2M 2 /(-0-~i- ~ 1 + ' 1 - l  M 2 \M2]/  ~ .(2.13) 

There are no poles in D(/') at l = 0 or at positive integers as is apparent from its defi- 
nition eq. (2.9). 

The Regge poles in At(u, o) are given by D(/) = O. For Re l < O, the term propor- 
tional to ~2/M2)I is dominant and gives rise to complex poles [5, 11 ]. For Re I > 0 
the leading pole is given by 

g2 1 
D(l) = 0 "~ 1 (2.14) 

167r2M 2 l(l + 1) " 

The ABFST equation may be used for estimating the total n~r cross section [1,4] .  
One requires that the coupling be arbitrarily adjusted to give a pomeron of inter- 
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cept, O~p = 1, which from (2.14) requires 

g2 - 2 .  ( 2 . 1 5 )  
16n2M 2 

For the residue of the absorptive part at l = 1 we need 

dD(l) _ g2 21 + 1 

dl 167r2M 2 12(l + 1)2 

This gives 

1 7rg2(m2) - 2  - 1 16zr 3 4 
Al(U, v) - -  

l ~ l  l - 1  d I - 1  M 2 3" 
~D( / ) [ /= I  

(2.16) 

Using the inverse transform eq. (2.3) we find for the elastic forward absorptive part 
at large s 

647r 3 
A(s, u, o) = - ~  s . (2.17) 

If  we assume, following Abarbanel et al., that the pomeron is an SU(3) singlet in 
the t-channel, then the projection to the s-channel rrTr cross section at high energy 
will be 

1 A ( s , u , o ) _ 8  7r 3 - 
o ~ = ~  s 3 M 2 3 3 m b  (2.18) 

f o r m  2 = (1 GeV) 2. This is similar to the results of  ref. [1] and ref. [4] and shows 
the independence of  the cross section on the pion mass. In the ABFST model, one 
expects the pion propagators ~u 2 -  u ' ) - 2  in the kernel to enhance the region be- 
tween u'  = 0 and u'  ~ 0 (- /a2) ,  which indeed occurs for Re l < 0 and for complex 
poles. But for Re l > 0, and u '  small, the kernel becomes 

- u '  1+1 1 

whose integral is large only for u'  ~ 0 ( -  M2), and the cross section is largely in- 
dependent of/a 2. 

We can see from this calculation that our factorizable kernel approximation is in 
fairly good agreement with the trace approximation which gives [4] %rrr = 
36n3/(11M2). 
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3. F A C T O R I Z A B L E  K E R N E L  A P P R O X I M A T I O N  TO N O N - F O R W A R D  ABFST 
EQUATION 

We proceed to formulate and solve a factorizable kernel approximation to the 
non-forward ABFST equation. Much progress has been made recently in the exact 
partial wave decomposition and diagonalization of  this equation [9, 10, 12]. We 
will use the results of their partial wave projection and refer the reader to these 
papers for the details. 

The ABFST equation and its kinematics are given in fig. 2. Withoffmass  shell 
t momenta u± = (P + ~0)  2, u± = (P' -+ 21 0 )  2, v± = (k + 21 Q)2, we define the useful com- 

b inations 

u = e 2 = ½(u+ + u_)  -14 t ,  

tt' =p ' 2  = ½(u'+ + u l ) - ~ t ,  

v = k 2 = ~(v. + v _ ) -  ¼t, 

p . Q _ U _ - U +  
sin ~ - - -  , 

(tu)} 2(tu)} 

sin if, = p ' .  Q = u'_-u'÷ 
(tu')i  2(tu')~ ' 

sin ¢ = k_LQ _ v_ - v÷ 
(to)} 2(to)} " 

We hold the off  mass shell momenta negative and treat Iv÷l, Iv_l ~ M  2. The non- 
forward ABFST equation can then be written as [9, 10] (see fig. 2); 

A(s, t;u, ~k;v, ¢) = I(s, t;u, ~b;v, ¢)+  0 ( s -  4u2) f(s½-u)2 dso f(Sl-S~°)2 ds' du' ffj'÷ 
327r 4 

4#2 4#2 u' 

f~ d sin ff'(ut)½ q-(- D) 
- -rr ( -  D ) I  

I(So, t;u, ~;u'~')A(s' ,  t;u', ~b';v, ¢) 

[(#2 _ ~;t - u') 2 - u ' t  sin 2 ~b '1 
(3.1) 

The physical region is obtained from 

D = 

t ( tu ' ) l  sin ~b' (tu)} sin ff (tv)½ sin ¢ 

(tu')} sin ~b' u' t (s  o -  u - u ' )  ½(s' - u' - v)  , 

(tu)~ sin ¢ ½(s o - u - u ' )  u } ( s  - u - v)  

( tu) l  sin ¢ ½(s' - u'  - v)  K s  - u - v)  u 
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Fig. 2. The non-forward ABFST integral equation.  

and 

F 
u_+ = S o + U  

( s  + u - o )  ( s  + s o -  s ' )  

2s 2s 

I ! 
A~(s, u, v) A~(s, So, s') 

+_. 

Let us define the partial wave amplitude A 1 by [9, 10] 

1 0y ds At(t;u, ~;o, ~b)-B(l + 1,½) ((uo)½ cos~b cos¢)/+1 

Ql|S-U/ -v-2(uo)~ sin~_ s ine]  A(s, t;u, ~;v, ¢) X 
\ 2(uo)~ cos ff cos ~b l 

X , J dss-l-lA(s,t;u,~b;v,(~). 
s~  lul,lol 0 

The inverse gives the absorptive part 

1 B(I+ 1,½) 
A(s, t; u, ~, v, ¢) = 2~ri 2 

c + i*~ 

f 
c-- i - -  

dl(21 + 1)((uv)½ cos~b cos~) / 

X pl(S-U-O-2(uv)~ sin~ cos¢) Al(t;u, ~k;o, ¢), 
2(uv)½ cos ~k cos ¢ 

c+ i** 
1 A(s, t;u, ~k;o, •) , / dlslAt(t;u, ~" v, ¢). 

s~" lul,lol 21ri 
c - i -  

(3.2) 

(3.3) 
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As in the forward equation we choose a single resonance model  I = 7rg 2 800-/142).  
The partial wave amplitude will then satisfy the following integral equation [9, 10] 

Al(t; u, ~ ; o, 4) = ~rg2 
B(I + 1,½) ((uo)~ cos ~b cos ~b)/+ 1 

) 22 - u - o - 2(uo)~ sin ff cos ¢ + 

X Ql 2(uv)½ cos ~b cos ~ 167r 3 

0 1 ~Tr Sdu  
m o o  m _ ~  

[(~_) ~ cos ff'] 1+1 (M2-u-u'-2(uu')~sin~sin~ ' ) 
X c-co~s~] QI 2(uu')½ cos ~//cos ~b' 

Al(t; u', ~'; o, cp) 

X (#2_  ~t - u ' )  2 - u't sin 2 ~ '  ' (3.4) 

To make a factorizable kernel approximation we again examine the behavior at 
the limits of  integration u'  -~ 0, u '  ~ _oo, and cos ~ '  ~ 0. As if '  ~ +- ½1r, the argu- 
ment  of  the Ql function becomes infinite. Since the singularity structure o f A  l will 
be governed by the behavior at the limits Of integration, our first approximation is 
to use/the asymptotic form of  QI. This is also a good approximation for small u and 
o since the minimum value of  the argument of  Q! in the integral is ~ (M2/-  u)~. 
Then eq. (3.4) will become 

g2 0 
~rg2 + B(I + 1 ½) f 

Al(t;u,  ~;o, ¢ ) = ( M 2 _ u _ u _ 2 ( u u ) ~  sin~b s in~)  t+l 16rt 3 ' _00 
du'  

_-~ M 2 u - u - 2(uu )r sm ff sin ff ' 

Al(t; u', ~b'; o, ¢) 
X 

1 t I . p (~2 _ :~t - u )2_  u t sm 2 Lp 
(3.5) 

Though these approximations may seem crude, we note that  the only dependence 
of the kernel on t and on the pion mass is contained in the pion "propagators",  and 
we treat these exactly. Also, the asymptotic form of  QI still contains the poles in l 
at the negative integers. 
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Near the boundaries of  u '  we have 

- u  

M 2 -  u - u' - 2(uu')~ sin ff sin ~k' 
' 1 ,  

/ d  t__} __  o o  

_ u  ~ 

u'--*0 M 2 - t / '  

P 
--U 

, (3.6) 
u --,0 M 2 - u '  

In order to  obtain a factorizable kernel we must  drop the dependence o f  this factor  
on sin ~ sin ~ ' .  This is an allowable approximat ion since it does not  affect  the 
above boundary  limits. In the inhomogeneous  term we again treat lul < M  2. We 
then have, as in sect. 2, the two following factorizable kernel equations depending 
on whether  we take the u ~ 0 or u '  ~ 0 forms for the above factor:  

(1) u near zero kernel 

g2 0 - U' l+ 1 ~-n 

- - ~  - -  7 [  

X d ~ '  (c°s2 ~')/+1 At(t;u ' ,  f f ' ;o ,  ¢ ) ,  
(//2 _ t/4 - u ' )  2 - u't sin 2 ~k' 

with the solution independent  of  u, ~, o, ~: 

(3.7) 

Irg2(M2)- l -  1 
A I -  D(l, t) (3.8) 

(2) u '  near zero kernel 

Al(t;u,~b;u, tp)=( M2 u) l+l + B ( l + l  ½) f du' 
- 1 6 r r 3  ' - - 0  - n 

X d~0' (cos 2 ~/)l+ 1 
(//2 _ 14 t - u ' )  2 - u ' t  sin 2 ~ '  Al(t; u',  ~0'; o, $ ) ,  (3.9) 

with the solution 

n.g 2 

A! = ( M2 _ u) I+ 1 D(I, t) ' 
(3.11) 
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and the D function is given by 

g2 0 lTr 

D(I, t) = 1 -  16rr 3 B(I + 1, ~) _fo. du' _f~_, d~' 

X -- (c°s2 ~')l+ 1 

(/a 2 - ¼t - u ' )  2 - U't sin 2 ¢ '  ' 
(3.11) 

We may perform the ~ '  integration, and letting y -- - u '  we have for Re I > - 2 

dy Y 1 
D(l, t) = 1 16rr2(l+ 1) 0 (#2 ¼ t + y ) 2  

). 
(u 2 - ¼ t + y )2  

This is the principal result of the factorizable kernel approximation and we will an- 
alyze it in the rest of  the paper. We just note that our non-forward results, eqs. (3.8), 
(3.10), and (3.12), when continued to t = 0 give the same results as the forward ap- 
proximation eqs. (2.8), (2.11), and (2.9). 

We will use the result for the D function to study the Regge trajectories cfft) in 
the rest of  the paper. The Regge poles are determined by the implicit equation 

D(a(t), t) = 0 .  (3.13) 

Although D(/, t) has been derived from the ABFST model for t ~< 0, it may be ana- 
lytically continued to t > 0 since it is continuous at t = 0. We can also analytically 
continue it to any l and thereby find the Regge trajectories for all values o f  t from 
eq. (3.13). 

Eq. (3.12) is a suitable representation as long as the argument of  the hypergeo- 
metric function has an absolute value less than or equal to one for all positive 
values o f y .  This is the case for t in the range - ~ < t ~< 2/~ 2. To continue to posi- 
tive ranges of  t we will use the transformation formula F(a, 3; 3'; z) = (1 - z ) -#  
X F(fl, 3 ' -  ct; 3'; z / (z-  1)). The representation for positive t and Re 1 > - 2  is then 

D(l, t) = 1 dy la2-~t+Y 16~r2 l + 1  0 

X 1 F(~ , l+l ; l+2;  ty ) ,  (3.14) 
[(p2 - ¼ t  +y)2  + ty]~ ~ 2  _ ¼t +y)2  + ty 

where the hypergeometric series now converges for - 4/a 2 < t < oo. 
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4. SLOPE OF THE POMERON TRAJECTORY AT t = 0 

We compute the slope of the pomeron at t = 0 by using the equation D(a(t), t) = 0 
and differentiating with respect to t. 

~ t  aD 0 = D(~(t), t)lt=O = - ~  (a(O), O)cd(O) +--~- (a(O), 0) ,  

= -  

\ a l /  at ] t = 0  

(4.1) 

To compute this we expand D(l, t) about t = 0 by expanding the integral represen- 
tation eq. (3.12) 

dy(  y .~ l+l I 1 + t 
g2 f ~M---~+yJ (/~2 +y)2 2(g2 +y)3 D(l, t) = 1 16~r2(/+ I) 0 

D(I, t) = 1 

ty .1 + O(t2), 
2(I + 2) ~2  + y) 4/ 

,, ( 
16rr2M2(/+ 1) ~ - ~ ]  B ( I + 2 , 1 ) F  1 + 1 ; l + 2 ; l + 3 ; 1 -  + 

X B ( l + 2 , 2 ) F  I + 1 , 1 + 2 ; l + 4 ; 1  . . . .  l + 2  

( .2)11 X F  1 + 1 , 1 + 3 ; 1 + 5 ; 1 - - ~  

For l > 0 we may approximate this for small #2/)142 

g2 / 1 ÷ t 
D(l, t) = 1 167r2M 2 . ~  2M 2 

X 1(1-1)( l+2)  3sinTr(l-1) 

(4.2) 
t 

2/12 

,11)  43, 
The intercept at t = 0 is the solution to D(ao, 0) = 0 and is given by the first term 

Oto(Ot o + 1) = g2 
16rr2M 2 " 

(4.4) 
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The slope may be computed from (4.3) by using (4.1) 

s ,=  1 t~2(So+l)2 I 7r M(_~_) l - a °  1 '1 (4.5) 
2M 2 2s o + 1 ~-a° sin zrs o - So(1 - 0to) (2 + s o " 

We see that the slope of the leading trajectory is very dependent on the pion mass. 
If the leading trajectory is taken to be the pomeron with intercept s o = 1, and 
g2/(16n2M 2) = 2 we find its slope by expanding in (1 -So);  

s ' = 1  2 P  M2 ~ El. n (#~2 2) - 7  1 . (4.6, 

The slope of the pomeron depends logarithmically on the pion mass. If we take 
t M 2 = 1 GeV 2 then Sp = 0.35 GeV -2. 

In more complete multiperipheral models which contain pomeron exchange as 
well as AFS ladders the D function will still contain an AFS kernel and the slope of 
the pomeron will still be dependent on the pion mass. 

We can check the accuracy of our approximation by comparing it to the slope of 
the pomeron calculated from the BFT approximation [2] to the ABFST equation. 
The BFT D function is 

xt i dz g2 

j (ix I - ~  O /a2 x t DBFT(I, t) = 1 161r2M2 0 + - -  (1 - z  2) 
(4.7) 

M 2 ( l - x )  2 4M 2 

For small 1~2/M 2 and l > 0 this gives a D function near t = 0 very similar to (4.3); 

g2 { 1 [ 2  1 + t - ~ l  
DBFT(I' t)=I 16u2M 2 /(-~-]-) - ~  l + l  I (1 - -1 ) ( l+2)  

× sin Ir(l - 1) 
(4.8) 

For a pomeron of intercept one, this gives a slope 

s ' - - -~-2  I l n ( ~ 2 ) - 7 1  
V - 9M 2 

(4.9) 

This is in good agreement with the factorized kernel result (4.6) and gives a slope 
t Sp = 0.24 GeV -2. 
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5. BEHAVIOR OF TRAJECTORIES AT THRESHOLD 

We can analytically continue the trajectory equation to t > 0 and investigate the 
behavior of  the trajectories about the t channel threshold t = 4/z 2. In potential mo- 
dels it is known [6] that an infinite number of  complex Regge poles accumulate at 
l = - ½  as t approaches 4~ 2. We will show in this section that this property is also 
obeyed by the trajectories in the ABFST model with the factorizable kernel approx- 
imation. 

We begin with the representation (3.14) valid for - 4/a 2 < t < ~.  We approach 
from below threshold by defining 

e=/a  2 - ¼ t > O  

and letting e -~ 0. 

D(I, t)= 1 
g2 f dy( y ~l+11 1 

167r2(l+ 1) 0 \M---~+y] e+y [(e_y)2+41s2y]~ 

XF(½, I+I;I+2; ( 4 / x 2 - 4 e ) y )  
(~ _ y ) 2  + 4/~2y " 

(5.1) 

We also restrict our investigation near l = - ½ and attempt to isolate the nature of 
the behavior near threshold rather than its exact numerical values. The hypergeo- 
metric function at l = - ~ takes values between 1 and ½7r and we replace it by a 
mean value C 1 ~ ½1r. We then have 

g2C1 ; dy (__._y___ ) /+ 1 1 1 

D(l, t) = 1 167r2(/+ 1) 0 ME+y e+y [(e_y)2+4tz2y]~" 
(5.2) 

To simplify the integral we first approximate the square root by (.v 2 + 4/~2y)½. This 
is good except in the region y < e2/4/J 2, but we have evaluated the difference in this 
region and found it to be of  order e 2/+2 "- e. Since the crucial behavior at l = -½ 
comes from y ~ 4/.t 2, we rewrite the integral as 

g2 C 1 I ~  yl+l 1 
D(l, t) = 1 161r 2 1+ I [ g  dy (ME)/+ 1 (e + y )  (y2 + 4/j2y)½ 

+ dy _ y 1 
0 L\M2+y ] (e+Y)(y2+41~2Y) ~ " 

(5.3) 
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The first integral becomes a hypergeometric function which for small e and l near 
- ½ becomes 

l+½ 2gM L\M 21 ~M 21 ] " 

In the second integral we encounter no difficulty in taking e --> 0 and setting l = x - 2 .  
To leading order in 4#2/M 2 it is - 2/M 2. The final result is then 

g2 { 1 1  [{4p211+~ (#)1+~] ~22 } (5.5) D(l, t) - 1 . . . .  2C1 l S~-½2/IM - - " 
e--,0 16~r 2 \ M  2 ] 
l--,-~ 

The equation for the trajectories near threshold and l --- - ½ becomes 

+ \4p2]  J 4 ,  (l 4 r r 2 M 2 ) [ 1  ( - ~ e  ~t+½] 

g2C1 = i + ~ 
(5.6) 

A similar equation has been derived for potential models by Desai and Newton [6]. 
The solutions they found with l = I r + il i give an accumulation of  an infinite number 
of  trajectories at 1 = - ~ as t --> 4/a2: 

(A) t -- 4/.l 2 ~ 0 - ,  

2n27r2A 2 2nrr 
I r " - ~  [ ( In  4"2 ~l  3 ;  l i ~  ( 4 # 2 1 n  ~ ; 

4/12 - t ]3 \ 4p 2 - t] 

(5.7) 

(B) t -  4gt2--> 0 + , 

2nn 2 2nrr 

/ r = - ~  + Iln ( 4#2 ~ ]  2 ;  / i~ -  ( 4 # 2 1  ; l n  
\ t - 4# 2 ] \ t  - 4/a 2] 

(5.8) 

where n = + 1, -+ 2, + 3 ..... and 

4/.t ( 4rr2M2 ~ 
A = ~  - 1+ 

g2C 1 ] 
(5.9) 
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6. BEHAVIOR AT t -~ -+ 

In potential models, the leading trajectory approaches l = - 1 as t ~ -+ oo. We will 
show that this is also true in the factorizable kernel approximation to the ABFST 
equation. In addition, we will investigate the asymptotic behavior of  the non- 
leading trajectories. 

(A) t-~ _oo 
We investigate the behavior for t ~ - oo from the representation (3.12) which 

shows that D(l, t) has a pole at l = - 1. To get the residue of  the pole we set l = - 1 
and use F(m, {, 1 ;x)  = (1 - x ) - ~ :  

g2 1 ? 1 
D(l, t) ,1 j dy (6.1) 

l ~ - I  16zr2 I + 1  0 (02-¼t+Y)[(O2-¼t+y)2+ty]  ~'  

g2 1 2 (  _ ~ ) - ½  ( (1  --402/t){ + 1) 
D(l, t) , 1 - In (1 4 0 2 / t ) { -  1 l -*-I  l&r 2 l + 1  ( - t )  1 

(6.2) 

As t ~ - ~  this gives a trajectory approaching - 1 from above; 

g2 
l ~ - 1 + In ( -  t/02). (6.3) 

8~2(_ t) 

For the non-leading trajectories we must use a representation of  D(/, t) obtained 
from (3.12) which is valid for Re l < - 1 ; 

"' ¢ {[' ' 
D(I, t) = 1 - - -  dy ~ (02 - ¼ t  +y)2  

l&r2 0 

)] X F 1, ~r, - l + ½; 1 + (/a 2 - 4 t  +y)2 F(~-) 

X 1 F_[Oa2-¼t+y)2+ty]l+½ 1 ]1 
(6.4) 

(M 2 + y)l+ 1 I_ (_ t)l+ 1 (02 - ~ t + y )  A) 

The contribution o f  the integral o f  the first bracket is found to be = t -  1 as t ~ - oo 
and will be neglected. In the second bracket, there is a great enhancement of  the 
factor [0 '  + I t  +02)  2 -  tO2]/+~ for R e / <  - 1 neary  = - ¼ t  - 0 2 .  In fact, for 
y "~ - ~t o r y  >> - ~t the integral o f  the second bracket is found to be cc lit  and will 
be neglected. Thus to get the leading asymptotic behavior we concentrate on the in- 
tegral o f  the second bracket in a region about y = - ¼t as t ~ - oo: _ ¼t - 8 ( -  t) < 
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y < - ~t + ~ ( -  t). By taking 6 "~ ¼ and t -+ - ~  we can approximate the integral of 
the second bracket to be 

I= f dy l 1 ~ ¼t-~t-u2 
0 (_~t ) l+ l  (_ t ) l+ l  2(-~rt)  --t+St-u 2 

dy[(y + ¼t +/a2) 2 -  t/a2]l+~ . 

Changing the variable to z = (y + ¼t +/.t2)/( - t/a2)~ gives 

2 a tz2 + lltq. 
0 

By holding ~ fixed and letting t ~ - ~ this becomes 

r(½) r ( -  t - 1) I= I--L-(--t/4U2) -1-2 p~_]_~) 
2/a2 

which is independent of  5. Finally we have 

D(l, t) , 1 ~ - ~ 2 ]  (6.5) 
t--,-~ 32rr2~2 l + 1 sinlrl 

This is almost the same equation as derived by Gatto and Menotti [13] for the 
t -+ - ~ limit of the Wick-Cutkosky model of  the Bethe-Salpeter equation. They 
showed that this implied an accumulation of Regge poles at l = - 2 as t -* - ~,  and 
no poles in any bounded region of Re l < - 2 for ( -  t) sufficiently large. This is also 
true of  our result (6.5). To analyze the accumulation of poles at l = - 2 let 

g2 
l = - 2 + e ,  X -  r = -t/41a 2 - ~ .  

32rr2/a2 ' 

and take [Trel < 1. Eq. (6.5) gives for the trajectories 

0 , 6 6 )  

Letting e = pe i° with p positive, eq. (6.6) has real and imaginary parts 

l n r  = l l n ( X ~  COS0 I1 + ( I t - 0 )  tan0 l ,  
P \ P l  l n ( ~ )  

(6.7) 
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tanO 1 

l r -O  In ( ~ )  
(6.8) 

From (6.7) we see that r ~ + oo can be obtained by O -~ 0. Then as In Q,/p) ~ 0% eq. 
(6.8) has an infinity of solutions for 0 near an integer multiple of  rr; 0 m = mTr + 6 

and for 161 < 1 

r r ( m -  1) 
O m = m r c - - ~ ) l n  re=O,  1 , - + 2 , - + 3 , + 4 , . . . .  

However, eq. (6.7) then becomes 

l n r  = f i n  ( ~ ) c o s O m [ 1  ÷621 
P 

(6.9) 

and this has solutions only for cos0 > O, or m even; 

O n = 2nrr ~ 7r(2n - 1) 

l n ( ~ )  
(6.10) 

This gives an accumulation of  trajectories at l = - 2 which approach from the side 
R e a n >  - 2 ;  

ot n = - 2 + pe  i°n , (6.1 !)  

and O is given by 

In - t  = ln32zr2/a20. (6.12) 

(B)t~+*o 
For this limit we start from the representation (3.14) for t + ie and scale y to  

x = 4 y / t .  For t ~ ~ we drop terms of order 4 M 2 / t  and 41a2/t to obtain 
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( g2 ~ F ½, l + 1 ; l + 2 ;  
D(I, t + ie) ,1 dx (x + 1) 2 

t--,+** 47r2(l + 1) t 0 ( x - - l - - i e ) ( x + l )  ' 

- 1 41r2( lg2+l)t i T r F ( { , l + l ; l + 2 ; 1 ) + P  0 ( x - 1 ) ( x + l )  

XF(½, l+l;l+2; 4x )] 
(x+ 1) 2 (6.13) 

The principal value integral may be shown to vanish by the following steps. The 
hypergeometric function may be considered as a function of 

(1 + x)  2 

4x _ 1 - x  2 

For the integral from 0 to 1 - e we substitute z = (1 - x ) / ( 1  + x), and for the inte- 
gral from 1 + e to ~ we substitute z '  = (x - 1)/(1 + x). These integrals then will be 
seen to cancel as e ~ 0. 

Then we have to leading order in l / t;  

P(½) P(l + 1) 
D(l, t + ie) ~2-_,  r(t + ~) (6.14) 

The equation D(l, t) = 0 can only be solved for t ~ + ~" for a point near a pole of  
D(l, t). These occur at l = - n, n = 1,2,  3 .... and give the trajectories the asymptotic 
behavior. 

an(t ) , - n  ~ ig2 r (~) r (n-{)  (6.15) 
t-*+** 87r2t F(n) 

The trajectories approach to the negative integers from the positive imaginary direc- 
tion as in potential models. 

7. CONCLUSIONS 

In this paper we have analytically solved the forward and non-forward ABFST 
equations in the simple factorizable kernel approximation. This approximation is 
reasonable as it retains the sources of/-plane singularities, leaves the//2 and t de- 
pendence of the pion propagators intact, and is continuous at t = 0. The approxima- 
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tion gives an explicit denominator function D(l, t) from which the Regge trajec- 
tories of  real and complex poles have been studied. We have calculated a reasonable 
slope for the pomeron trajectory at t = 0 and shown it to depend logarithmically on 
the pion mass tt 2, in contrast to the total cross section which is independent of/a 2 
for small/a 2. 

Although the ABFST equation is derived and solved in the s-channel physical 
region with t < 0, the explicit equation for the trajectories, D(a(t),  t) = 0, can be 
analytically continued to t > 0. We have examined the region near threshold and 
found an accumulation of  poles at ! = - ~ which have the same behavior as in poten- 
tial theory. Another similarity with potential theory is that the Regge poles ap- 
proach to negative integers as t ~ + ~.  

It is encouraging that so many reasonable properties follow from such a simple 
approximation to the ABFST equation. This approximation may be o f  use as an in- 
put in more thoroughly unitarized bootstrap models where the exchange of  the 
pomeron is included in the kernel. In addition, similar factorizable approximations 
may be useful in more complex kernels which have higher t-channel thresholds and 
could lead to trajectories which rise to higher l values for t positive. 

We wish to thank Professor D.Y.Wong andDr.  S.S.Shei for discussions. 
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