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A Novel Family of Toxoplasma IMC Proteins Displays a
Hierarchical Organization and Functions in Coordinating
Parasite Division
Josh R. Beck1, Imilce A. Rodriguez-Fernandez1, Jessica Cruz de Leon2, My-Hang Huynh3, Vern B.

Carruthers3, Naomi S. Morrissette2, Peter J. Bradley1*

1 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America, 2 Department

of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States of America, 3 Department of Microbiology and Immunology,

University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America

Abstract

Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC) for critical processes such
as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-
compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved
throughout the Apicomplexa, but do not appear to be present outside the phylum. ISP1 localizes to the apical cap portion
of the IMC, while ISP2 localizes to a central IMC region and ISP3 localizes to a central plus basal region of the complex.
Targeting of all three ISPs is dependent upon N-terminal residues predicted for coordinated myristoylation and
palmitoylation. Surprisingly, we show that disruption of ISP1 results in a dramatic relocalization of ISP2 and ISP3 to the
apical cap. Although the N-terminal region of ISP1 is necessary and sufficient for apical cap targeting, exclusion of other
family members requires the remaining C-terminal region of the protein. This gate-keeping function of ISP1 reveals an
unprecedented mechanism of interactive and hierarchical targeting of proteins to establish these unique sub-
compartments in the Toxoplasma IMC. Finally, we show that loss of ISP2 results in severe defects in daughter cell
formation during endodyogeny, indicating a role for the ISP proteins in coordinating this unique process of Toxoplasma
replication.
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Introduction

The phylum Apicomplexa contains numerous obligate intracel-

lular pathogens that are the cause of serious disease in humans and

animals, greatly influencing global health and causing significant

economic loss worldwide. The phylum includes Plasmodium

falciparum, the causative agent of malaria which claims 1–2 million

human lives annually, and Toxoplasma gondii, a pathogen that

infects more than thirty percent of the world’s population and

causes severe neurological disorders and death in immunocom-

promised individuals [1]. Most of the drugs used to treat

apicomplexans target metabolic pathways or the chloroplast-

derived apicoplast [2,3,4], but these parasites also possess

elaborate and unique structures that are required for replication

and invasion and thus represent attractive new targets for

therapeutic intervention.

Apicomplexans are grouped with dinoflagellates and ciliates in

the alveolata infrakingdom [5]. The unifying morphological

characteristic of this group is the presence of alveoli: membrane

sacs located beneath the plasma membrane. Molecular phyloge-

netic data supports this grouping, as does the identification of a

conserved family of articulin-like membrane skeleton proteins, the

alveolins, which associate with alveoli in all three phyla [6,7].

While the presence of alveoli is conserved, each of these groups has

adapted this peripheral membrane structure for different cellular

functions to fit their distinct niches. In dinoflagellates, the alveoli

sometimes contain cellulose-based plates that function as protec-

tive armor [8]. In contrast, ciliate alveoli are calcium storage

devices thought to play roles in regulation of cilia, exocytosis from

cortical organelles known as extrusomes, and control of cytoskel-

etal elements [9,10,11].

In apicomplexans, the alveoli in conjunction with an underlying

filamentous network are termed the inner membrane complex

(IMC) [12,13]. Flattened alveoli underlie the entirety of the plasma

membrane except for a small gap at the apex and base of the cell

[14]. These cisternae are organized into a patchwork of

rectangular plates capped by a single cone-shaped plate at the

apex of the cell. Freeze-fracture studies of the IMC plates expose a

lattice of intramembranous particles (IMPs), an arrangement that

suggests an association with proteins of the underlying filamentous

network and subtending cortical microtubules [15,16,17]. To-

gether, these features of the IMC are the foundation for a unique
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form of gliding motility used for host cell invasion and also serve as

the scaffold for daughter cell formation during division [18,19].

Toxoplasma tachyzoites replicate by endodyogeny, a process of

internal cell budding that produces two daughters within an intact

mother parasite. Following centriole duplication, daughter cell

formation begins with the concurrent assembly of an apical and

basal complex [20]. Although these two structures consist of

cytoskeletal components that will eventually cap opposite ends of

the mature parasite, they are initiated in close spatial and temporal

proximity. IMC construction then proceeds by the extension of the

basal complex away from the daughter apical complex, generating

a bud into which replicated organelles are packaged. Parasite

division is completed by a number of maturation steps terminating

with the adoption of the maternal plasma membrane [21].

The apical, cone-shaped cisterna is unique in form and

presumably the earliest membrane component deposited into the

nascent IMC [19]. A number of cytoskeletal IMC markers localize

to a region at the parasite apex thought to correspond to this

apical-most IMC plate. A GFP fusion of the dynein light chain,

TgDLC, can be detected in an apical cap region but predomi-

nantly localizes to the conoid and is also found in the basal

complex, spindle poles and centrioles. TgCentrin2, the most

divergent of the three Toxoplasma centrin homologues, labels the

preconoidal rings and a peripheral ring of ,6 annuli located at the

lower boundary of the TgDLC cap. It has been suggested that

these annuli lie at the juncture between the apical cap plate and

the flanking set of IMC plates [20]. Additionally, PhIL1, a

cytoskeletal IMC protein of unknown function, is detected

throughout the IMC but strongly enriched in the apical cap and

basal complex [22]. Only a few proteins are known to directly

associate with the IMC membranes. These include a number of

proteins associated with gliding motility [23,24,25], as well as the

heat shock protein Hsp20 [26] and one isoform of the purine

salvage enzyme hypoxanthine-xanthine-guanine phosphoribosyl-

transferase [27]. Thus, despite the central role of this conserved

membrane system in apicomplexan biology, little is known of its

composition, organization, and construction.

We present here a family of proteins unique to the Apicomplexa

that localize to three distinct sub-compartments of the Toxoplasma

IMC. ISP1 localizes to a region corresponding to the apical cap,

ISP2 occupies a central IMC region, and ISP3 resides in both the

central IMC region and a basal IMC compartment. ISP1 and 3

are early markers for bud formation and label previously

unobserved daughter IMC structures in the absence of parasite

cortical microtubules, indicating that microtubules are not

required for initial assembly of IMC membranes. We show that

the ISPs are initially targeted to the IMC by conserved residues

predicted for coordinated myristoylation and palmitoylation in the

extreme N-terminus of each of these proteins. Interestingly,

deletion of ISP1 results in the relocalization of ISP2 and 3 to the

apical cap, demonstrating an interactive, hierarchical targeting

among this family of proteins to these distinct sub-compartments

of the IMC. Finally, disruption of ISP2 results in a severe loss of

parasite fitness and dramatic defects in daughter cell formation.

Although the ISP2 knockout parasites ultimately compensate for

these defects, this data shows an important role for these proteins

in the coordination of daughter cell assembly.

Results

Monoclonal antibody 7E8 labels the apical cap of
Toxoplasma

We previously generated a panel of monoclonal antibodies

against a mixed fraction of T. gondii organelles [28]. One of the

antibodies, 7E8, stains a cone-shaped structure at the periphery of

the apical end of the parasite (Figure 1A). This staining pattern

extends from a gap at the extreme apex (Figure 1A, arrow)

,1.5 mm along the length of the parasite, a localization suggestive

of the apical IMC plate observed by electron microscopy [14].

Colocalization with TgCentrin2 shows that 7E8 staining is

delimited at its apex and base by this apical cap marker, indicating

that 7E8 does indeed detect a protein associated with the anterior-

most IMC plate (Figure 1D).

During early endodyogeny, 7E8 staining is visible in daughter

parasites as a pair of small rings within each mother parasite

(Figure 1B, arrows). As daughter formation proceeds, this structure

enlarges and extends to form the apical cap seen in mature

tachyzoites (Figure 1C). The association with forming daughter

scaffolds together with the extreme apical gap further suggests that

7E8 labels the apical sub-compartment of the IMC. We also

frequently observe 7E8 staining a single dot near the basal border

of the cone (Figure 1C, arrow) which is distinct from TgCentrin2

annuli (Figure 1D, inset).

Identification of ISP1, the Toxoplasma protein recognized
by mAb 7E8

Western blot analysis of Toxoplasma lysates with mAb 7E8

revealed a single band at ,18 kDa (Figure 1E). We used the 7E8

antibody to isolate its target protein by immunoaffinity chroma-

tography. The isolated protein was separated by SDS-PAGE

(Figure 1F), digested with trypsin, and seven peptides were

identified by mass spectrometry corresponding to the hypothetical

T. gondii protein TGGT1_009340 (Figure 1G). EST and cDNA

sequencing confirmed that the gene model is correct. Due to its

unique localization, we named this protein IMC Sub-compart-

ment Protein 1 (ISP1).

Examination of the 176 amino acid sequence of ISP1 reveals

that it contains a high number of charged residues (,30%).

While there are a relatively large number of ESTs encoding ISP1,

the protein lacks conserved domains that could suggest its

function. The protein contains a glycine at position two, which is

Author Summary

Apicomplexans are the cause of important diseases in
humans and animals including malaria (Plasmodium
falciparum), which claims over a million human lives each
year, and toxoplasmosis (Toxoplasma gondii), which causes
birth defects and neurological disorders. These parasites
possess a unique cortical system of membrane sacs
arranged on a cytoskeletal meshwork, together referred
to as the inner membrane complex (IMC). The IMC is the
anchor point for the gliding motility machinery necessary
for host invasion and also a scaffold around which new
parasites are constructed during replication. Here we have
uncovered new insights into the organization and function
of this structure by identifying and characterizing ISP1-3, a
family of proteins that define novel sub-compartments
within the Toxoplasma IMC. Residues predicted for
myristoylation and palmitoylation are critical in the
membrane targeting of these proteins, suggesting that
multiple palmitoyl acyltransferase activities reside within
the IMC and dictate its organization. Surprisingly, ISP1 is
required for proper sub-compartment sorting of ISP2 and
3, revealing a novel hierarchical targeting mechanism for
the organization of this membrane system. Disruption of
ISP2 results in defects during endodyogeny and a dramatic
loss in parasite fitness, revealing that the ISP proteins play
an important role in coordinating parasite replication.

Organization and Function of Novel IMC Proteins
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Figure 1. mAb 7E8 stains an apical cap structure in mature Toxoplasma tachyzoites and forming daughter parasites. A–C. IFA labeling
with 7E8 and anti-tubulin displaying parasites before the onset of endodyogeny (A), early in endodyogeny (B), and late in endodyogeny (C). (A) 7E8
labels a peripheral cone-shaped structure at the parasite apex ,1.5 mm in length. A gap in staining exists at the apex of the cone (arrow). (B) During

Organization and Function of Novel IMC Proteins
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predicted to be myristoylated [29] as well as a pair of cysteines at

positions seven and eight strongly predicted to be palmitoylated

[30]. Since ISP1 lacks a predicted signal peptide or transmem-

brane domain, these residues suggested a mechanism for IMC

membrane association. BLAST analysis of the ISP1 sequence

revealed orthologues across the apicomplexan phylum, including

Neospora, Theileria, Cryptosporidia, Babesia, and Plasmodium (Figure

S1). Orthologues were also found in Eimeria by BLAST against

EST libraries (data not shown). ISP1 also showed significant

homology in its C-terminal region to CP15/60, a poorly

characterized putative surface glycoprotein in Cryptosporidia

[31,32]. No ISP1 orthologues were identified outside of the

phylum indicating that this protein is restricted to the

Apicomplexa.

Identification and localization of ISP2 and ISP3
BLAST analysis of the T. gondii genome using the ISP1 sequence

identified two additional hypothetical proteins with considerable

sequence similarity to ISP1, which we named ISP2

(TGGT1_058450) and ISP3 (TGGT1_094350) (Figure 2A). The

greatest degree of sequence similarity between these three proteins

exists within the C-terminal two-thirds of their sequences. The N-

terminal regions of the proteins are more divergent, but each

contain a conserved glycine at position two as well as a pair of

conserved cysteines predicted to be myristoylated and palmitoy-

lated, respectively (Figure 2A, boxed residues). ISP2 additionally

contains a third cysteine at position five predicted to be

palmitoylated. Similar to ISP1, these proteins are highly charged

and have a relatively large number of corresponding ESTs.

OrthoMCL analysis of the ISPs indicates two ortholog groups

within Apicomplexa. ISP1 and ISP2 segregate with one group

while ISP3 segregates with another (Figure S1). The Toxoplasma

genome may encode a fourth ISP family member

(TGGT1_063420), although it does not segregate with any

OrthoMCL group. This predicted protein lacks the conserved

glycine and cysteine residues present in the N-termini of other ISP

proteins. Only a single EST is present for TGGT1_063420,

indicating that it is poorly expressed relative to the other ISPs, and

thus it was not investigated further.

To localize ISP2 and ISP3 in T. gondii, we expressed each

gene under the control of its endogenous promoter with a C-

terminal HA epitope tag. Intriguingly, ISP2 localizes to a

previously unrecognized central sub-compartment of the IMC,

which begins at the base of the ISP1 apical cap and extends

approximately two-thirds the length of the cell. The apical

boundary of this compartment is delineated by the TgCentrin2

annuli (Figure 2B). The posterior boundary has a jagged edge

suggesting it corresponds to discrete IMC plates (Figure 2D,

arrows). While the ISP2 signal terminates near the end of the

subpellicular microtubules, the termini for these two structures

are not identical (Figure S3, WT). Antisera raised against

recombinant ISP2 confirmed this central IMC sub-compart-

ment localization, ensuring that exclusion of ISP2 from the

apical cap and basal IMC is not an artifact of epitope tagging

(Figure S2A).

Similar to ISP2, ISP3 stains the central section of the IMC.

However, ISP3 staining extends to the posterior end of the

complex, identifying a third sub-compartment of the IMC

(Figure 2C). A small gap in ISP3 staining is observed in the

posterior region similar to that seen for other IMC proteins [23].

Antisera raised against recombinant ISP3 gave a poor signal by

IFA, but was sufficient to confirm localization to both the IMC

central and basal sub-compartments (Figure S2B). As with ISP1,

ISP2 and ISP3 are visible in forming daughter parasites. Whereas

the maternal signals of ISP1 and ISP2 appear to remain stable

throughout endodyogeny, the maternal ISP3 signal rapidly

attenuates with the onset of endodyogeny while it concentrates

in daughters (Figure 2E). Attenuation of ISP3 in mothers and

enrichment in daughters was also observed with our polyclonal

antibody, indicating this is not the result of a C-terminal

processing event that removes the HA epitope tag (Figure S2C).

Thus, ISP3 provides an excellent marker for bud initiation,

growth, and maturation during endodyogeny (Figure 2E and

Video S1).

The ISPs are associated with the IMC at the cell periphery
but are not embedded in the IMC protein meshwork

The observations that the ISPs are visible at the periphery of

forming daughters prior to adoption of the maternal plasma

membrane and that gaps are present at the extreme apex and

base suggests an association with the IMC. To confirm IMC

association, we treated extracellular parasites with Clostridium

septicum alpha-toxin. This vacuolating toxin causes a dramatic

separation of the plasma membrane and the underlying IMC,

enabling differential localization of these closely apposed

membrane systems [33]. In toxin-treated parasites, the ISP

proteins segregate with the IMC and not with the plasma

membrane, confirming that the ISPs are indeed IMC proteins

(Figure 3A–B).

To ascertain if the ISPs are embedded in the IMC protein

meshwork that includes the articulin-like protein IMC1, we

performed detergent extractions of extracellular parasites in 0.5%

NP-40. In these conditions, each ISP was solubilized similar to the

control protein ROP1, while IMC1 remained in the insoluble

pellet fraction (Figure 3C). This extraction profile demonstrates

that the ISPs are not embedded in the detergent resistant protein

meshwork that underlies the IMC membranes.

ISP1 and ISP3 localize to nascent daughter buds in the
absence of microtubules

We disrupted microtubules in intracellular parasites to assess

whether the underlying microtubules influence ISP localization.

early endodyogeny, 7E8 labels small rings with a central hole at the apex of forming daughter parasites (arrows). (C) As endodyogeny proceeds, the
7E8 rings enlarge and elongate into the apical cap structures seen in mature tachyzoites. 7E8 also labels a single spot in many parasites, which resides
near the base of the apical cap but is clearly distinct (arrow). This spot is present through the cell cycle as seen in (A) and (B). We denote it here in late
endodyogeny to demonstrate that it is a distinct structure and not merely an early daughter bud. Red: mAb 7E8 detected by Alexa594-anti-mouse
IgG. Green: anti-tubulin antibody detected by Alexa488-anti-rabbit IgG. Scale bar = 5 mm. D. 7E8 staining is delimited at both its apex and base by
TgCentrin2, which labels the preconoidal rings as well as a series of annuli further down the cell periphery in the apical end of the parasite. The 7E8
apical spot does not colocalize with TgCentrin2 annuli (inset arrows). TgCentrin2 also localizes to the centriole and the basal complex. Red: 7E8
antibody detected by Alexa488-anti-mouse IgG (pseudo-colored red for consistency in the color scheme). Green: mRFP-TgCentrin2 (pseudo-colored
green). E. Western blot analysis of Toxoplasma lysates by 7E8 detects a single band at ,18 kD. F. The 7E8 immunoaffinity purified 18 kD protein
visualized by Coomassie-staining in an SDS-PAGE gel. The band was excised from the gel, digested by trypsin and the resulting peptide fragments
identified by mass spectrometry. G. The 176 amino acid sequence of ISP1, the protein recognized by 7E8. Boxed regions indicated 7 tryptic peptides
identified by MS/MS. Arrowheads denote exon boundaries.
doi:10.1371/journal.ppat.1001094.g001

Organization and Function of Novel IMC Proteins
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Figure 2. ISP2 and ISP3 define two additional novel sub-compartments of the IMC. A. BLAST analysis within the T. gondii genome
identified two paralogs of ISP1 we denoted ISP2 and ISP3. The greatest sequence homology is present within the C-terminal portion of this family of
proteins beginning at residue 71 of ISP1 while the N-terminal portion of each protein is more divergent. ISP1 and ISP2 show a higher sequence
similarity with each other compared to ISP3. All family members have a conserved glycine at position two predicted to be myristoylated and a pair of
conserved cysteines predicted to be palmitoylated within the first 10 residues (boxed). ISP2 contains an additional cysteine at position 5 that is
predicted to be palmitoylated (boxed). The gene models for ISP1-3 were confirmed by cDNA sequencing. Nucleotide sequences are available in
GenBank under the accession numbers HQ012577-HQ012579. B–C. ISP2 and ISP3 were expressed with a C-terminal HA epitope-tag under the control

Organization and Function of Novel IMC Proteins
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Apicomplexan microtubules are selectively susceptible to disrup-

tion by dinitroanilines, such as oryzalin [34]. After 40 hours of

2.5 mM oryzalin treatment, all tubulin is unpolymerized and

dispersed. Without spindle microtubules (mitosis) and subpellicular

microtubules (budding), productive daughter formation repeatedly

fails resulting in an undivided, amorphous mother cell with a

polyploid DNA content [35] (Figure 4A). Intriguingly, we observe

ISP1 labeling numerous small rings that are centrally located

within oryzalin-treated parasites (Figure 4A, inset) of approxi-

mately the same dimensions as ISP1 early daughter buds in

untreated, replicating parasites (compare with Figure 1B, arrows).

Since polymerization of subpellicular microtubules is essential to

drive bud extension, these rings likely represent failed attempts to

build new daughter buds [36]. A larger peripheral patch of ISP1

with a central hole is also observed, likely representing the original

parent apical cap (Figure 4A, arrows). While ISP2 was not

observable in these early bud rings (Figure 4B), we did detect ISP3

in these structures within oryzalin-treated parasites (Figure 4C,

inset arrows), suggesting that both the apical cap and remaining

IMC sub-domains are formed independently of microtubules at a

very early stage of bud development. While membrane skeleton

proteins are likely candidates for providing the foundation for

these structures, we were unable to detect the articulin-like protein

IMC1 in these early bud rings, even at lower oryzalin

concentrations (0.5 mM) that only disrupt cortical microtubules

(Figure 4D and Video S2).

Figure 3. ISPs associate with the IMC but are not imbedded in the underlying protein meshwork. A–B. Extracellular parasites expressing
ISP2-HA (A) or ISP3-HA (B) were incubated 4 hrs with or without 20 nM Clostridum septicum alpha-toxin. In untreated cells, the plasma membrane
marker SAG1 cannot be resolved from the IMC membranes. Following alpha-toxin treatment, a dramatic swelling of the plasma membrane occurs,
separating it from the underlying IMC and enabling resolution of these two membrane systems. Each ISP family member clearly segregates with the
cell body and not the distended plasma membrane, indicating an association with the IMC. Red: 7E8 antibody detected by Alexa594-anti-mouse IgG.
Green: anti-HA antibody detected by Alexa488-anti-rat IgG. Blue: anti-SAG1 antibody detected by Alexa350-anti-rabbit IgG. C. Parasites were
extracted with 0.5% NP-40 and separated into total (T), soluble (S) and pellet (P) fractions. Extracts were subjected to SDS-PAGE, blotted and probed
with antibodies as indicated. As expected, the detergent resistant IMC protein meshwork containing IMC1 remains in the pellet under these
conditions. In contrast, ISP1-3 are resolved into the soluble fraction, similar to the soluble control protein ROP1, demonstrating that these proteins are
not embedded in the protein meshwork of the IMC.
doi:10.1371/journal.ppat.1001094.g003

of their endogenous promoter in parasites expressing mRFP-TgCentrin2. (B) ISP2 localizes to a novel, peripheral sub-compartment beginning at the
basal border of the ISP1 apical cap and extending approximately two-thirds the length of the parasite. ISP2 is not found in the basal third of the
parasite periphery. (C) ISP3 staining overlaps with ISP2 but extends further to the base of the parasite where there is a small gap in staining, indicating
an association with the IMC. The boundary between the ISP1 apical cap and the sub-compartments labeled by ISP2 and ISP3 is occupied by a ring of
TgCentrin2 annuli. Blue: anti-HA antibody detected by Alexa350-anti-rabbit IgG. Red: 7E8 antibody detected by Alexa488-anti-mouse IgG (pseudo-
colored red). Green: mRFP-TgCentrin2 (pseudo-colored green). D. The base of the ISP2 compartment terminates in a jagged edge (arrows). A trace of
the ISP2 compartment boundary (solid line) was performed to illustrate this feature within the whole parasite (dashed line). Red: anti-HA antibody
detected by Alexa594-anti-mouse IgG. E. Different stages of daughter budding were observed in parasites stably expressing ISP3-HA. With the
beginning of endodyogeny, the maternal ISP3 signal decreases as the signal increases in daughter parasites. By mid-endodyogeny, ISP3 has
disappeared completely from the maternal cell periphery. The parasites used in these images are Disp1, thus ISP3 targets throughout the IMC,
including the apical cap (see Figure 7). Red: anti-HA antibody detected by Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected by
Alexa488-anti-rabbit IgG. All scale bars = 5 mm.
doi:10.1371/journal.ppat.1001094.g002

Organization and Function of Novel IMC Proteins
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Figure 4. ISP1 and ISP3 are targeted to early daughter buds in the absence of parasite microtubules. A. Parasites were treated with
2.5 mM oryzalin for 40 hrs. In the absence of microtubules, ISP1 labels numerous ring structures (inset) within the center of the cell reminiscent of
early daughter buds. Unpolymerized parasite tubulin is dispersed throughout the cytoplasm. Red: mAb 7E8 detected by Alexa594-anti-mouse IgG.
Green: YFP-aTubulin. B. Parasites expressing ISP2-HA were treated with 2.5 mM oryzalin for 40 hrs. ISP2 is localized in patches at the cell periphery
and does not appear to associate with the ISP1 labeled rings (inset). Red: mAb 7E8 detected by Alexa594-anti-mouse IgG. Green: anti-HA antibody
detected by Alexa488-anti-rabbit IgG. C. Parasites expressing ISP3-HA were treated with 2.5 mM oryzalin for 40 hrs. ISP3 is also localized to the ring
structures labeled by ISP1 (inset arrows), although ISP1 and 3 rings do not always perfectly colocalize. Red: mAb 7E8 detected by Alexa594-anti-
mouse IgG. Green: anti-HA antibody detected by Alexa488-anti-rabbit IgG. D. Parasites expressing ISP1-HA were treated with 0.5 mM oryzalin for
30 hrs. IMC1 labels partially formed parasites and sheets of IMC1 at the cell periphery and ISP1 apical cap staining can be observed at the apex of
some of these structures. However, the majority of ISP1 signal is still localized to rings within the center of the cell under these less stringent
conditions. These rings do not associate with IMC1 stained structures (insets). A 3D projection of this image is presented in Video S2. Red: anti-
HA antibody detected by Alexa594-anti-rabbit IgG. Green: anti-IMC1 antibody detected by Alexa488-anti-mouse IgG. Scale bars = 5 mm. Inset scale
bars = 1 mm.
doi:10.1371/journal.ppat.1001094.g004

Organization and Function of Novel IMC Proteins
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An N-terminal region is sufficient for sub-compartment
targeting of ISP1 and ISP3 but not ISP2

The greatest sequence similarity within the ISP family is present

in the C-terminal two-thirds of the proteins while the N-terminal

region is more divergent (Figure 2A), thus we reasoned that the

unique targeting of each ISP family member might be controlled

by its N-terminal region. To test if the N-terminal region of ISP1 is

necessary for targeting, we eliminated the first 63 residues to create

a truncated protein fused to YFP. ISP164–176-YFP does not target

to the IMC but is instead distributed throughout the cytoplasm

and nucleus, showing that this N-terminal region is necessary for

apical cap targeting (Figure 5A). To determine if the ISP1 N-

terminal region is sufficient for targeting, we fused the first 65

residues of ISP1 (containing the putative acylation sequence and

divergent N-terminal region) to YFP and expressed this construct

in Toxoplasma. The ISP11–65-YFP fusion traffics to the apical cap in

an identical fashion to endogenous ISP1 (Figure 5B). To further

narrow the N-terminal region required for apical cap targeting, we

generated an additional fusion of the first 29 residues of ISP1

(containing the putative acylation sequence) to YFP. This fusion

also traffics in a manner identical to full length ISP1 (Figure 5C),

demonstrating that this N-terminal domain is both necessary and

sufficient for apical cap targeting.

To assess targeting of ISP2 and ISP3, we also created fusions of

their N-terminal regions (residues 1–41 and 1–36 respectively) to

YFP. The ISP31–36-YFP fusion targets to the central and basal

sub-compartments of the IMC but is restricted from the apical cap

(Figure 5D), showing that this region is sufficient for proper sub-

compartment targeting. In contrast, ISP21–41-YFP localized to the

entire IMC, overlapping with endogenous ISP1 in the apical cap

and extending into the basal IMC sub-compartment (data not

shown). To ensure this change in targeting for ISP21–41 was not an

artifact of the YFP fusion, we replaced YFP with an HA tag

(shown to have no effect on the targeting of full length ISP2,

Figure 5E). The ISP21–41-HA protein also localized throughout

the IMC (Figure 5F), demonstrating that the N-terminal domain of

ISP2 is sufficient for targeting to the IMC, but not for correct sub-

compartment localization.

Conserved N-terminal residues predicted for acylation
are critical for ISP targeting

Protein myristoylation occurs co-translationally through the

action of an N-myristoyl transferase [37]. This modification is

sufficient to promote transient association with membranes for

otherwise cytosolic proteins. This weak membrane affinity can then

be stabilized by addition of one or more palmitoylations through the

action of a palmitoyl acyltransferase (PAT), effectively locking a

protein into a target membrane system in a mechanism known as

‘‘kinetic trapping’’. The ISPs each contain a second position glycine

followed by cysteines within the first 10 residues that are predicted

to be myristoylated and palmitoylated, respectively (Figure 2, boxed

residues). We mutated the glycine and cysteine residues in HA

epitope tagged ISP constructs to examine their effect on targeting.

As predicted by the kinetic trapping model, mutation of the second

position glycine to an alanine abolished IMC targeting in each

family member (Figure 6 and Figures S3 and S4, G2A), resulting in

proteins distributed throughout the cytoplasm. Mutation of the

cysteine residues to serine was performed individually and together.

While only minor defects in targeting were observed with individual

cysteine mutations, mutation of both cysteines abolished ISP1 and

ISP3 targeting (Figure 6 and Figure S4). In the case of ISP2,

targeting was only abolished when all three cysteines were

coordinately mutated (Figure S3). While coordinated cysteine

mutants of the ISPs are distributed in the cytoplasm similar to

G2A mutants, we also often observed perinuclear staining that is

especially concentrated just apical of the nucleus (arrows, Figure 6

and Figure S3 and S4). Presumably, myristoylation of these proteins

still occurs, but without palmitoylation, these mutants are left to

transiently sample the different membrane systems within the cell

and therefore may appear concentrated as they associate with the

ER and Golgi membranes present in this region. These results

demonstrate that these residues are essential to ISP sorting and

indicate that coordinated acylation of the ISPs is responsible for

IMC membrane targeting.

Disruption of ISP1 results in relocalization of ISP2 and
ISP3 to the apical cap

To assess the function of ISP1, we disrupted the ISP1 gene by

homologous recombination (Figure 7A). We identified clones

which lacked ISP1 expression by IFA and Western blot (Figure 7B–

C), indicating successful disruption of the ISP1 locus and

demonstrating that ISP1 is not necessary for in vitro propagation

of T. gondii. Disruption of ISP1 did not result in any gross defect in

parasite growth. However, we were surprised to find that both

ISP2 and ISP3 were relocalized in the Disp1 strain. In the parental

strain, ISP2 staining terminates sharply at the ring of TgCentrin2

annuli bordering the base of the apical cap (Figure 7D,

arrowheads). However, in Disp1 parasites, ISP2 staining extends

past this border, relocalizing to the apical cap sub-compartment of

the IMC (Figure 7D). Apical cap relocalization is also observed for

ISP3 in the Disp1 strain (Figure 7E). To ensure the ISP2 and ISP3

relocalization to the apical cap is truly a result of the absence of

ISP1, we reintroduced the ISP1 gene with a C-terminal YFP fusion

into the Disp1 strain. This fusion protein targets correctly to the

apical cap and, importantly, reestablishes the wild-type localiza-

tion of ISP2 (Figure 8A, insets) and ISP3 (data not shown),

excluding them from the apical cap. Thus, ISP1 exhibits a gate-

keeping effect on ISP2 and 3, preventing access to the apical cap

and establishing a hierarchy of protein targeting among these IMC

sub-compartments. To determine if ISP1 performs a broader

scaffolding function within the apical cap, we evaluated the

localization of TgDLC1 using a GFP fusion; however, we

observed no change in the localization of this protein in the

absence of ISP1 (data not shown).

An ISP1 C-terminal domain is necessary for exclusion of
ISP2 and ISP3 from the apical cap

Given the ability of ISP1 to exclude other family members from

the apical cap, we exploited our ISP11–65-YFP construct to

determine whether or not the N-terminal region that is sufficient

for apical cap targeting also plays a role in exclusion from this

compartment. Expression of this construct in Disp1 parasites does

not result in exclusion of ISP2 (Figure 8B) or ISP3 (data not

shown) from the apical cap, demonstrating that distal sequences

present in the more conserved regions of ISP1 (residues 66–176)

are necessary for exclusion. To further assess whether the C-

terminal region from another ISP family member could substitute

for the ISP1 C-terminal domain and function in exclusion, we

constructed a hybrid protein containing the N-terminal 65 amino

acids of ISP1 and the C-terminal region of ISP2 (residues 43–160)

fused to YFP. Similar to the ISP11–65-YFP construct, the ISP1N/

2C-YFP chimera targets to the apical cap but does not exclude

ISP2 (Figure 8C) or ISP3 (data not shown). These results

demonstrate that the exclusion activity of the C-terminal region

of ISP1 is specific to this family member and cannot be replaced

by the complementary region from ISP2.

Organization and Function of Novel IMC Proteins

PLoS Pathogens | www.plospathogens.org 8 September 2010 | Volume 6 | Issue 9 | e1001094



Figure 5. An N-terminal domain is sufficient for IMC sub-compartment targeting of ISP1 and 3 but not ISP2. A. The C-terminal portion
of ISP1 (residues 64–176), which bears the greatest sequence homology with other ISP family members, was expressed with a C-terminal YFP tag. The
ISP164–176-YFP protein is dispersed throughout the cytosol and nucleus, demonstrating that the first 63 residues of ISP1 are necessary for IMC apical
cap targeting. Green: ISP164–176-YFP. Red: anti-IMC1 antibody detected by Alexa594-anti-mouse IgG. B–C. Residues 1–65 (containing the putative
acylation sequence and divergent N-terminal region) or 1–29 (containing the putative acylation sequence) of ISP1 were expressed with a C-terminal
YFP fusion. Both proteins target in an identical manner to endogenous ISP1, demonstrating that the first 29 residues are sufficient for IMC apical cap
targeting (cap shown in inset). Green: ISP11–65-YFP or ISP11–29-YFP. D. Residues 1–36 of ISP3 were expressed with a C-terminal YFP fusion. The ISP31–

36-YFP protein targets in an identical manner to endogenous ISP3, including exclusion from the apical cap demonstrated by non-overlapping signal
with ISP1 (inset), showing that these residues are sufficient for proper ISP3 sub-compartment targeting within the IMC. Green: ISP31–36-YFP. Red: mAb
7E8 detected by Alexa594-anti-mouse IgG. E. Targeting of full length ISP2-HA is restricted to the central IMC sub-compartment identical to
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We created an additional chimera consisting of the N-terminal

region of ISP2 (residues 1–41) fused to the C-terminal region of

ISP1 (residues 67–176). While the N-terminal region of ISP2 alone

targets YFP or HA throughout the IMC (Figure 5F), inclusion of the

C-terminal region of ISP1 restricts the localization to the apical cap

and central regions of the IMC (Figure 8D, see discussion). In

endogenous ISP2 as shown by non-overlapping signal with ISP1 in the apical cap (inset) and lack of signal in the basal IMC sub-compartment
(bracket). F. Residues 1–41 of ISP2 were expressed with a C-terminal HA tag. The ISP21–41-HA protein targets to all three sub-compartments of the
IMC, as shown by overlap with endogenous ISP1 in the apical cap (inset) and signal within the basal IMC sub-compartment (bracket). A small gap is
visible at the extreme apex and base of the ISP21–41-HA staining, indicating this protein is still targeting to the IMC. Identical results were seen using
YFP in place of HA (data not shown). Green: anti-HA antibody detected by Alexa488-anti-rabbit IgG. Red: mAb 7E8 detected by Alexa594-anti-mouse
IgG.
doi:10.1371/journal.ppat.1001094.g005

Figure 6. Mutation of ISP1 residues predicted for acylation results in ISP1 mistargeting. Mutations of residues predicted for
myristoylation or palmitoylation were generated in an HA epitope-tagged copy of ISP1 and expressed in parasites under the endogenous promoter.
Wild-type (WT) ISP1-HA targets in an identical fashion to endogenous ISP1. A severe targeting defect occurs in ISP1(G2A) with the mutant protein
dispersed throughout the cell in a punctate fashion. Mutation of individual cysteines predicted for palmitoylation (C7S and C8S) produces no
significant defect in targeting, but coordinated mutation of these cysteines results in gross mistargeting of ISP1(C7,8S) throughout the cell in a
punctate fashion with a signal accumulation just apical of the nucleus (arrows). Red: anti-HA antibody detected by Alexa594-anti-mouse IgG. Green:
anti-tubulin antibody detected by Alexa488-anti-rabbit IgG. Blue: Hoechst stain.
doi:10.1371/journal.ppat.1001094.g006
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Figure 7. ISP2 and ISP3 are relocalized to the apical cap in the absence of ISP1. A. Schematic showing the ISP1 knockout strategy. Double
homologous recombination results in the replacement of ISP1 with the selectable marker HPT and the loss of the downstream marker GFP. An
additional round of homologous recombination removes HPT to exclude any polar or selectable marker effects. B. Loss of ISP1 is demonstrated by
the absence of 7E8 staining by IFA in Disp1 parasites. Red: mAb 7E8 detected by Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected by
Alexa488-anti-rabbit IgG. C. Western blot analysis detects ISP1 in parental strain but not in Disp1 parasites. ROP1 serves as a loading control. D. ISP2
localization in wild-type parasites is non-overlapping with ISP1 and ends sharply at the basal boundary of the apical cap normally occupied by ISP1. A
ring of TgCentrin2 annuli resides at this boundary (arrowheads). In Disp1 parasites, ISP2 relocalizes above the TgCentrin2 boundary, filling the apical
cap. E. ISP3 is also relocalized to the apical cap in Disp1 parasites as assessed by the co-marker TgCentrin2. Red: mRFP-TgCentrin2. Green: anti-HA
antibody detected by Alexa488-anti-rabbit IgG.
doi:10.1371/journal.ppat.1001094.g007
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Figure 8. Exclusion of ISP2 and ISP3 is mediated by the C-terminal domain of ISP1. A. Full length ISP1 with a C-terminal YFP fusion was
expressed in Disp1 parasites together with ISP2-HA. ISP1-YFP targets correctly to the apical cap and reestablishes normal localization of ISP2,
excluding it from this region of the IMC (insets). Green: ISP1-YFP. Red: anti-HA antibody detected by Alexa594-anti-mouse IgG. B. ISP11–65-YFP was
expressed in Disp1 parasites together with ISP2-HA. While ISP11–65-YFP targets correctly, ISP2 continues to relocalize to the apical cap in the presence
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parasites expressing this chimera, ISP2 and 3 are mostly relocalized

into the base portion of the IMC (Figure 8E–F, brackets). The fact

that the ISP1 C-terminal region is able to exhibit exclusion activity

against the other ISPs when artificially targeted to other domains of

the IMC strengthens the conclusion that the ISP1 C-terminal region

constitutes an ISP exclusion domain.

Disruption of ISP2 results in a severe loss of parasite
fitness and division defects in daughter cell formation

To further investigate the function of the ISP proteins, we

disrupted the genes encoding ISP2 and ISP3 by homologous

recombination. To accomplish this, we employed a recently

developed Dku80 parasite strain that is highly efficient at

homologous recombination [38]. We first removed HPT from

the Ku80 locus by homologous recombination and negative

selection using 6-thioxanthine, creating Dku80Dhpt strain parasites.

We then used this strain to disrupt ISP2 or ISP3 and confirmed

these deletions by IFA (not shown) and Western blot (Figure 9A

and Figure S5).

In contrast to our findings for Disp1 parasites, localization of

other ISP family members was unchanged in both Disp2 and Disp3

strains (data not shown). While no gross phenotype was seen in

Disp3 parasites, the Disp2 strain parasites were obviously defective

in growth as the knockout was rapidly lost from transfected

populations and its isolation required cloning early following

transfection. To assess this loss in fitness, we performed

competition growth assays between parent and Disp2 parasites

by mixing these strains in culture and monitoring the culture

composition at each passage. The parental strain rapidly out

competed the Disp2 parasites, confirming a severe fitness loss in

these parasites (Figure 9B). Further analysis by IFA revealed that

Disp2 parasites display a number of defects in parasite division.

Most frequently, we observed the construction of .2 daughters

per mother cell in each round of endodyogeny with some parasites

assembling as many as 8 daughters (Figure 9C). To quantify this

defect, we stained for ISP1, an early marker for bud formation

during endodyogeny, and counted vacuoles containing parasites

undergoing endodyogeny and assembling .2 buds. As expected,

we saw a dramatic increase in the number of parasites producing

more than two daughters in the Disp2 strain (Figure 9D). Neither

Disp1 or Disp3 parasites showed any aberration in daughter cell

assembly compared to wild-type parasites (data not shown).

Assembly of .2 daughters in Disp2 parasites sometimes

occurred around a single polyploid nucleus with karyokinesis

accompanying budding (bottom left parasite, Figure 9C) while

other parasites assembled the spindle apparatus and underwent

karyokinesis without budding, resulting in a mother parasite with

two nuclei (Figure 9E). We also observe parasites containing two

discrete nuclei in the process of budding .2 daughters (outlined

parasites, Figure 9F).

Less frequently, we observed a catastrophic failure of Disp2

parasites to appropriately segregate nuclei, resulting in anucleate

zoids and nuclei extruded in the vacuole (Figure 9G). These

vacuoles also show major defects in apicoplast segregation with a

few cells receiving both a nucleus and an apicoplast while some

received only an apicoplast and others received neither. Finally,

some vacuoles with nuclear segregation defects contained many

immature buds within the vacuole (Figure 9H). These buds appear

to be outside of any intact parasite and it is unclear if they were

initiated within a mother cell and then somehow liberated into the

vacuolar space or if they were the result of a budding event that

was initiated within the vacuolar space itself. In these vacuoles,

several elongated apicoplasts are strung throughout the vacuolar

space, associated with the extracellular buds and nuclei.

Surprisingly, the Disp2 parasites recovered from both the fitness

and replication defects after approximately two months of culture

(data not shown), preventing complementation by genetic rescue.

To ensure these phenotypes are specific to the disruption of ISP2

and not the consequence of any off target effects, we generated a

second independent Disp2 line. This line displayed the same loss of

fitness and cell division defects, indicating these phenotypes are

specifically linked to disruption of the ISP2 locus (data not shown).

Discussion

The IMC in apicomplexan parasites
Alveoli are the unifying morphological feature among ciliates,

dinoflagellates and apicomplexans where these unique membrane

stacks have been adapted to suit these divergent organisms in

vastly different niches. In apicomplexans, the membrane stacks

(the IMC) have been exploited to provide unique and critical roles

in parasite replication, motility and invasion. Freeze-fracture

studies reveal a highly sophisticated arrangement of IMC plates

with dissimilar organization of IMPs in the apical versus lower

plates indicating compositional differences between these regions

[14]. Identification of the ISPs clearly demonstrates that the

protein constitution of the membrane cisternae is not uniform.

The ISP compartments have sharp boundaries (Figure 2B–D),

suggesting that they correspond to discrete cisterna or groups

thereof (Figure 10A).

ISP1 localizes to the apical cap compartment that is delimited

by TgCentrin2 and thus represents the first membrane associated

protein of this apical-most IMC plate. Previously, the cytoskeleton-

associated proteins PhIL1 and TgDLC1 were shown to localize in

part to the apical cap region [20,22]. The C-terminal half of

PhIL1 is sufficient for apical cap localization and also for retaining

cytoskeletal association. This portion of the protein lacks predicted

transmembrane domains or acylation signals, indicating that it

links directly to a sub-domain of the cytoskeleton independent of

the membrane stacks. Electron micrographs of detergent-extracted

parasites show substantial differences in the cytoskeletal filaments

of this truncated ISP1 protein (insets), demonstrating that the ISP1 C-terminal region (residues 66–176) is necessary for exclusion of ISP2 from the
apical cap. Green: ISP11–65-YFP fusion. Red: anti-HA antibody detected by Alexa594-anti-mouse IgG. C. A chimeric protein consisting of the ISP1 N-
terminus (residues 1–65) and the ISP2 C-terminus (residues 43–160) fused to YFP was expressed in Disp1 parasites together with ISP2-HA. This
chimeric protein targets to the apical cap but does not prevent relocalization of ISP2-HA into the cap, as seen by the overlap of the two signals
(insets). Green: ISP1N/2C-YFP. Red: anti-HA antibody detected by Alexa594-anti-mouse IgG. D. A chimeric protein consisting of the ISP2 N-terminus
and the ISP1 C-terminus fused to YFP (ISP2N/1C-YFP) was expressed in wild-type parasites. This chimeric protein targets to the apical cap and central
IMC compartments. Green: ISP2N/1C-YFP. Red: anti-tubulin antibody detected by Alexa594-anti-rabbit IgG. E–F. The exclusion activity of the ISP1 C-
terminal domain against ISP2/3 can function in other IMC sub-compartments. (E) ISP2N/1C-YFP was transiently expressed in Disp1 parasites stably
expressing ISP2-HA. ISP2 is relocalized to the base sub-compartment of the IMC in parasites expressing this chimera. ISP2 is not present in the base
IMC sub-compartment in parasites that are not expressing the chimeric protein (brackets). (F) ISP2N/1C-YFP was transiently expressed in Disp1
parasites stably expressing ISP3-HA. In the presence of the chimeric protein, ISP3 is concentrated in the base sub-compartment of the IMC (brackets).
ISP3 is evenly distributed throughout the IMC of parasites that are not expressing the chimeric protein. Green: ISP2N/1C-YFP. Red: anti-HA antibody
detected by Alexa594-anti-mouse IgG. All scale bars = 5 mm.
doi:10.1371/journal.ppat.1001094.g008
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Figure 9. Disruption of ISP2 results in a severe loss of parasite fitness and defects in daughter cell formation. A. Western blot analysis
using polyclonal anti-ISP2 confirms the loss of ISP2 in Disp2 parasites. ROP1 serves as a loading control. B. A competition growth assay reveals a
severe fitness loss in Disp2 parasites. Parent and Disp2 parasites were mixed in culture and passaged. At each passage, the composition of the mixed
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in this region (e.g. thicker filaments and a parallel instead of

interwoven arrangement), indicating that distinct sub-domains

exist in both the IMC membranes and underlying network [13].

Localization of ISP2 and 3 revealed two additional sub-

compartments of the IMC that have not been previously observed:

a central compartment labeled by ISP2 and a basal compartment

labeled by ISP3. The abutment of ISP2 and ISP3 staining against

the posterior end of the apical cap likely corresponds to the

junction between the apical cap and the rectangular plates

constituting the remainder of the IMC. The presence of

TgCentrin2 annuli at this border is striking as centrins are

calcium-binding contractile proteins known to play a role in the

duplication of microtubule organizing centers [39]. While the

ISP3 sub-compartment clearly terminates at the posterior end of

the IMC, it is unclear what accounts for the basal boundary of the

ISP2 sub-compartment which lies approximately two-thirds down

the length of the parasite. One possibility is an association with the

cortical microtubules that also terminate in this region [40].

However, the microtubules and ISP2 signal do not consistently

terminate at the same point. Alternatively, the signal termination

may correspond to another junction of IMC plates and the

exclusion of ISP2 from the basal region of the IMC may reflect

another point of hierarchical targeting, as we discovered for ISP1

in the apical cap.

While ISP1 and 2 are both retained in mother parasites during

endodyogeny, ISP3 maternal staining dissipates as daughter

parasites form. The strong ISP3 signal in early buds along with

the rapid attenuation of ISP3 signal in the mother during

endodyogeny provides an unhampered view of the membranes

of the daughter buds (Figure 2E and Video S1). Expression of

IMC proteins is tightly regulated during the cell cycle including

the ISPs, which show an expression profile similar to that of IMC1

(Michael White, personal communication). Thus, the bright ISP3

staining in daughters and concomitant loss of signal in mother cells

could be due to synthesis in daughters and degradation in mothers.

Alternatively, since palmitoylation is a reversible lipid modifica-

tion, recycling by de-palmitoylation at the parent IMC and re-

palmitoylation at daughter IMCs could account for the ISP3

dynamics observed.

ISP proteins and daughter bud initiation
ISP1 and 3 are localized to numerous ring structures in

oryzalin-treated parasites, indicating that initiation of bud IMC

assembly repetitively occurs under these conditions and is not

dependent on microtubules. Microtubule polymerization is

essential for cell division and cortical microtubule extension is

thought to drive bud growth, explaining why buds in parasites

lacking microtubules never elongate [36]. ISP1 and 3 are localized

to distinct compartments in forming daughter cells, demonstrating

that IMC sub-compartmentalization is established early during

endodyogeny (Video S1). The ISP1 and 3 signals are not always

perfectly overlapping in oryzalin-treated cells, suggesting that IMC

membrane specialization may be established even in these early

bud rings, although the rings are too small to clearly visualize

distinct sub-domains. The absence of ISP2 from these rings may

indicate later recruitment to daughter buds or simply be a

consequence of drastic perturbation of the cell under these

conditions.

Some nucleating scaffold element must provide a foundation for

these early IMC membrane bud rings. The earliest signs of

daughter bud formation observed by electron microscopy are a

dome-shaped vesicle and associated microtubules [41]. The basal

complex protein TgMORN1 is the earliest protein marker of bud

generation, forming a pair of rings around the centrioles after their

duplication at approximately the same time daughter conoids are

assembled [42]. In oryzalin-treated parasites observed during the

first few hours following drug addition, initial TgMORN1 ring

formation still occurs and can be followed until cells attempt to

bud, at which point the inability to polymerize new microtubules

results in drastic loss of parasite morphology. After 24 hours of

oryzalin treatment, TgMORN1 localizes in patches sparsely

associated with peripheral sheets of IMC membrane skeleton

marker IMC1 but does not label anything resembling the bud

rings observed for ISP1 and 3 [20,43]. In our study, IMC1 did not

localize to ISP1-labeled bud rings in oryzalin-treated parasites,

demonstrating that it is not required for bud initiation.

Furthermore, TgMORN1 has been disrupted and shown to be

non-essential for parasite growth [44]. Future studies with ISP1

and 3 will enable the discovery of the critical nucleating factors

that mediate bud initiation.

Acylation of conserved N-terminal residues confers ISP
targeting

Protein acylation is a widely employed eukaryotic mechanism to

mediate membrane association of proteins that lack a transmem-

culture was evaluated by IFA. Although Disp2 parasites initially comprised .80% of the culture, they were rapidly out competed by the parental
strain and essentially lost from the culture within four passages. Values represent means 6 3 standard deviations. C. Parasites lacking ISP2 assemble
.2 daughters per round of endodyogeny. ISP1 was used as a marker for daughter buds. The top left parasite in this vacuole is assembling four
daughters while the other three parasites are assembling five daughters each. While the top left parasite has divided its nucleus and is now budding
two daughters around each of two separate nuclei, the other three parasites appear to each be budding five daughters around a single polyploid
nucleus. Red: mAb 7E8 detected by Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected by Alexa488-anti-rabbit IgG. Blue: Hoechst stain.
D. Quantification of the .2 daughters phenotype in Disp2 parasites. Parasites undergoing endodyogeny were counted and scored for the
percentage of vacuoles in which parasites were assembling .2 daughters. Most vacuoles contain one or more parasites assembling .2 daughters in
the Disp2 strain. Values represent means 6 SD, n = 3, from a representative experiment. *P,0.001. E–F. Parasites lacking ISP2 can perform
karyokinesis before budding. (E) ISP1 is an early marker for bud formation visible before nuclear segregation during endodyogeny. No daughter ISP1
signal is visible in these parasites although the spindle apparatus is assembled and has already separated the chromosomes into two nuclei, showing
that karyokinesis can precede budding in Disp2 parasites. (F) After undergoing a round of karyokinesis without budding, Disp2 parasites can bud
around each of the segregated nuclei. This vacuole contains two parasites (dashed outlines) that have undergone karyokinesis prior to budding and
are now assembling two daughters around each individual nucleus. Red: mAb 7E8 detected by Alexa594-anti-mouse IgG. Green: anti-tubulin
antibody detected by Alexa488-anti-rabbit IgG. Blue: Hoechst stain. G–H. Parasites lacking ISP2 display catastrophic replication defects. Parasites
were stained for the apicoplast thioredoxin-like protein 1 (ATrx1), which labels the apicoplast, as well as tubulin and DNA. (G) In the vacuole shown, a
few parasites have received both a nucleus and an apicoplast (arrow) while others contain only an apicoplast (double arrowhead) and some contain
neither (arrowhead). Several nuclei have been extruded into the vacuole along with one or more apicoplasts. (H) Other vacuoles containing extruded
nuclei also contained several daughter buds that appear to be outside of an intact mother parasites (,18 in this vacuole visible by tubulin). Many
nuclei and elongated apicoplasts are present in the vacuole and appear associated with the forming buds. For clarity, a dashed line indicates the
boundary of the parasitophorus vacuole. Red: anti-ATrx1 detected by Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected by Alexa488-
anti-rabbit IgG. Blue: Hoechst stain. All scale bars = 5 mm.
doi:10.1371/journal.ppat.1001094.g009
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brane domain. Our mutation of conserved N-terminal residues

that are predicted to be myristoylated and palmitoylated indicates

that these modifications are responsible for IMC membrane

targeting. These mutagenesis studies also agree with our deletion

analysis demonstrating that the N-terminal regions of ISP1 and 3

are sufficient for correct targeting. Together, these data suggest a

kinetic trapping model for ISP localization in which ISP proteins

are first co-translationally myristoylated in the cytosol enabling

sampling of membranes, then recognized and palmitoylated by a

unique PAT (or PAT activity) that is present in each sub-

compartment, thus locking the protein into the appropriate

membrane sub-compartment (Figure 10B).

For ISP1 and 3, this multiple PAT model agrees with our

deletion analysis showing that N-terminal regions of the proteins

are sufficient for sub-compartment localization. Recognition of

each ISP protein as a substrate would be determined by the

context of the sequences immediately surrounding the residues

required for myristoylation and palmitoylation. Indeed, additional

deletion analysis showed that the first ten residues of ISP1 mostly

retain apical cap targeting (data not shown). In contrast, while the

Figure 10. Model for ISP sorting within the parasite IMC. A. Alveoli, flattened membrane sacs, rest just under the plasma membrane atop a
filamentous network in the Toxoplasma IMC. These alveoli are arranged as a patchwork of rectangular plates with a unique cone-shaped plate
capping the apex. A small gap is present at the extreme apex and base of the IMC. The ISPs reveal three distinct sub-compartments within the IMC:
the apical cap (red, ISP1), central IMC (light blue, ISP2 and ISP3), and basal IMC (dark blue, ISP3). Colors indicate speculative arrangement of sub-
compartments within discrete alveoli or combinations thereof. B. Model for ISP sorting within the IMC. (1) ISP1/2/3 are co-translationally
myristoylated within the cytosol at a conserved second position glycine by the action of an N-myristoyl transferase (NMT). (2) This initial acylation
allows the ISPs to transiently associate with the various membrane systems within the cell, including the cisternae of the IMC. (3) Different PATs (or
PAT activities) located within the three distinct sub-compartments of the IMC specifically recognize and palmitoylate their unique ISP substrates,
locking them into the appropriate sub-compartment. An apical cap PAT with specificity for ISP1 locks it into the cap while a central IMC PAT is able to
recognize and palmitoylate both ISP2 and ISP3 within the central IMC sub-compartment. ISP3 is stably localized to the IMC base sub-compartment by
the action of a basal IMC PAT. (4) The presence of ISP1 in the apical cap provides an additional level of sorting by preventing the localization of ISP2
and 3 into this sub-compartment. While the N-terminus of ISP1 is sufficient for its sorting to the apical cap, the ISP1 C-terminal domain is required to
prevent the localization of other ISP family members into the cap, possibly through the modulation of the apical cap PAT specificity for ISP2 and 3.
doi:10.1371/journal.ppat.1001094.g010
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N-terminal region of ISP2 is sufficient for general IMC membrane

association, deletion of the C-terminal region or its substitution in

the ISP2N/1C chimera alters sub-compartment specificity. These

structural changes to ISP2 may remove important information for

establishing stringent PAT specificity, permitting incorporation

into other IMC sub-compartments. A similar effect was recently

discovered for the palmitoylated protein Vac8 in Saccharomyces

cerevisiae. While palmitoylation of wild-type Vac8 was only

catalyzed by one of the five S. cerevisiae PATs tested, truncation

of the Vac8 C-terminus resulted in its palmitoylation by all five

PATs [45]. Alternatively, it is possible that palmitoylation of the

ISP family is facilitated by a single PAT that is localized

throughout all three IMC compartments and regulated by

additional cofactors. Modulation of PAT activity against certain

substrates by additional protein cofactors has been shown in both

yeast and mammalian systems [46,47].

The presence of a Asp-His-His-Cys-cysteine-rich domain

(DHHC-CRD) is the hallmark of PAT activity and has allowed

for the identification of several PATs in other systems, including 7

in S. cerevisiae and 23 in mammalian genomes [48]. Within the

Toxoplasma genome, 18 DHHC-CRD containing proteins are

predicted to be encoded, a relatively higher number among

protists (e.g. the Giardia lamblia and Trypanosoma brucei genomes are

predicted to contain 9 and 12 PATs, respectively [49,50]),

indicating a more extensive PAT network may be present to

accommodate protein sorting within the numerous unique

membrane systems in apicomplexans. Future work localizing

and characterizing the putative Toxoplasma PATs will distinguish

between the possible models for ISP sorting suggested by our data.

Hierarchical targeting of the ISP family within the IMC
Relocalization of the other ISP family members into the apical

cap may explain the lack of any gross phenotype in Disp1 parasites.

Whereas targeting to the apical cap is mediated by the N-terminal

region of ISP1, relocalization of other family members into this

sub-compartment is dependent on the C-terminal portion of this

protein. Both the ISP1N/2C and ISP2N/1C chimeras support the

conclusion that this gate-keeping is specific to ISP1 and directed

against ISP2/3. Interestingly, while distal sequences of ISP2 are

also required for its exclusion (as shown by ISP21–41-HA), this is

not the case for a comparable truncation of ISP3.

Perhaps the simplest explanation for the mechanism of ISP2/3

exclusion from the apical cap is provided by our multiple PAT

model (Figure 10B). This model would suggest that in wild-type

parasites, the presence of ISP1, either directly or indirectly via

other proteins, modulates PAT activity in the apical cap, thus

preventing recognition of ISP2 and 3. In the absence of the ISP1

C-terminal domain, ISP2 and 3 are able to be recognized as

substrates of the apical cap PAT and also localize to this

compartment. This model would also suggest that the exclusion

insensitivity of truncated ISP2 (Figure 5F), as compared to

truncated ISP3 (Figure 5D), may simply result from a change in

the ability of PATs to specifically recognize and act upon this

altered molecule (discussed in the previous section). Alternatively,

deletion of ISP1 may result in relocalization of a central sub-

compartment PAT into the apical cap, thus enabling ISP2 and 3

to localize to this membrane region.

Finally, it is also possible that ISP1 exclusion is the result of a

receptor in the apical cap, which the C-terminal domain of ISP1

binds with a higher affinity than ISP2 or 3. The absence of the

ISP1 C-terminal domain would then allow binding of the similar

regions of ISP2 and 3 to the receptor in the apical cap. However,

the variable exclusion observed in C-terminal truncations of ISP2

and 3 argues against this scenario. We have attempted to identify

ISP1 binding partners by immunoprecipitation under gentle

conditions but have had no success, indicating that if partners

do exist, they are not strongly interacting. Regardless of the precise

mechanism, the targeting of the ISP family demonstrates that

organization of the Toxoplasma IMC is an interactive, complex

process. To our knowledge, this hierarchical targeting is a

completely unprecedented mechanism for sorting of palmitoylated

proteins in any membrane system. It will be interesting to see if

similar mechanisms of membrane organization are present in

other members of the eukarya.

ISP2 is important in daughter cell formation
Disruption of ISP2 results in defects in daughter cell formation,

indicating that ISP2 is important for proper coordination of

daughter parasite assembly. Our observation that ,5% of wild-

type parental strain vacuoles assemble .2 daughters is in

agreement with previous studies [51]. Toxoplasma populations have

been reported to undergo flux in the percentage of parasites

displaying this trait due to certain stresses [52], however the

dramatic (,60%) effects on daughter parasite assembly in the

Disp2 strain vastly exceed these previous reports. Furthermore, the

severe fitness loss in these parasites indicates this failure to properly

coordinate cell division has serious consequences for parasite

biology. This could be due to abortive replication events, as we do

observe ultrastructural and organelle partitioning defects that are

likely terminal (e.g. parasites lacking a nucleus or apicoplast and

immature daughter buds within the vacuole, Figure 9G–H).

However, many of the Disp2 progeny produced in parasites

assembling .2 siblings appear viable as they seem to properly

assembly the IMC and cortical cytoskeleton and also receive

nuclear DNA, an apicoplast and a mitochondrion (data not

shown). In these cases, poor control over the number of daughter

cells being assembled may also render a fitness cost on parasites

during the normally efficient proliferative tachyzoite life stage.

The increase in the number of daughter parasites per mother

cell results in several outcomes. In some parasites, DNA

replication and karyokinesis occur prior to bud formation

(Figure 9E–F), while in others, multiple rounds of DNA replication

appear to occur without karyokinesis, resulting in large nuclei that

are segregated in a single step among multiple daughters

(Figure 9D). In either case, mother parasites that produce greater

than 2 daughters are no longer performing endodyogeny, but

instead replicating by one form or another of endopolygeny

[19,51,53]. The presence of replication abnormalities in Disp2

parasites reminiscent of division in other Toxoplasma life stages and

other apicomplexan species suggests this protein plays a role in

coordinating progress along the proper cell division pathway in

tachyzoites and that this coordination is needed to maintain

parasite fitness.

It is unclear how Disp2 parasites ultimately recover from these

defects and return to normal growth and replication. In both of the

independent ISP2 knockouts performed months apart, the defects

in growth and daughter formation were stable for at least two

months. Recovery may be due to compensation via the other ISP

proteins or may instead involve other players. It will be interesting

to determine whether double knockouts of the ISP proteins, or

even a triple knockout, will yield a more severe and stable

phenotype. These functional implications for ISP2 underscore the

idea that apicomplexan-specific processes are likely tied to the

many hypothetical genes encoded within these parasites, some of

which will provide novel therapeutic targets. The conservation of

this family throughout the phylum suggests that the unique ISP

targeting mechanism is conserved and raises the possibility that

these proteins are more broadly involved in coordinating the
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various pathways of cell division that are critically important to the

pathogenesis of apicomplexan parasites.

Materials and Methods

Ethics statement
Antibodies were raised in mice under the guidelines of the

Animal Welfare Act and the PHS Policy on Humane Care and

Use of Laboratory Animals. Specific details of our protocol were

approved by the UCLA Animal Research Committee.

Toxoplasma and host cell culture
T. gondii RHDhpt (parental) strain and modified strains were

maintained in confluent monolayers of human foreskin fibroblast

(HFF) host cells as previously described [54].

Generation of monoclonal antibody 7E8
Monoclonal antibodies (mAb) were generated against a mixed

fraction of organelles from T. gondii [28]. For immunization,

,100 mg of purified organelles [55] were injected in RIBI

adjuvant into a BALB/c mouse. Following four injections, the

spleen was isolated, hybridoma lines were prepared, and

supernatants from individual clones screened for antibody

reactivity.

Antibodies
The following primary antibodies were used in IFA or Western

blot: rabbit polyclonal anti-tubulin [35], rabbit polyclonal anti-

SAG1 [56], anti-IMC1 mAb 45.15 [33], anti-ROP1 mAb TG49

[57], and anti-ATrx1 mAb 11G8 [28]. Hemagglutinin (HA)

epitope was detected with mAb HA.11 (Covance) or rabbit

polyclonal anti-HA (Invitrogen).

Light microscopy and image processing
Fixation and immunofluorescence staining of T. gondii were

carried out as previously described [55]. All cells imaged in this

study were formaldehyde-fixed except parasites in Figure S2B,

which were fixed with methanol. Image stacks were collected at z-

increments of 0.2 mm with an AxioCam MRm CCD camera and

AxioVision software on an Axio Imager.Z1 microscope (Zeiss)

using a 100x oil immersion objective. Deconvolved images were

generated using manufacturer specified point-spread functions and

displayed as maximum intensity projections.

Identification of ISP1 by immunoaffinity purification with
mAb 7E8

The protein recognized by monoclonal antibody 7E8 was

isolated from 56109 T. gondii RH tachyzoites lysed in radioim-

munoprecipitation assay (RIPA) buffer (50 mM Tris [pH 7.5],

150 mM NaCl, 0.1% sodium dodecyl sulfate [SDS], 0.5% NP-40,

0.5% sodium deoxycholate). Insoluble material was removed from

the lysate by centrifugation at 10,0006 g for 30 min after which

the remaining soluble lysate fraction was incubated with mAb 7E8

cross-linked to protein G-Sepharose beads (Amersham) using

dimethylpimelimidate as previously described [58]. After washing

in RIPA buffer, the bound protein was eluted using high pH

(100 mM triethylamine, pH 11.5) and the eluate was separated by

SDS-polyacrylamide gel electrophoresis (PAGE). Coomassie

staining identified a single 18-kDa band, which was excised and

trypsin digested before analysis by mass spectrometry at the

Vincent Coates Foundation Mass Spectrometry Laboratory, Stan-

ford University Mass Spectrometry (http://mass-spec.stanford.

edu).

Expression of epitope-tagged and fluorescent fusion
proteins

YFP-aTubulin and mRFP-TgCentrin2 were expressed in

parasites using previously described plasmids [20,59]. HA

epitope-tagged lines and YFP fusions pISP1/2/3-HA/YFP were

generated by cloning the genomic loci of ISP1 (primers P1/P2),

ISP2 (primers P3/P4) or ISP3 (primers P5/P6) into the expression

plasmids pNotI-HA-HPT or pNotI-YFP-HPT using the restriction

sites HindIII/NotI. These vectors contain a C-terminal HA tag or

YFP fusion and selectable marker HPT driven by the DHFR

promoter [60]. The ISP11–65 truncation was generated by cloning

YFP (primers P7/P8) at the restriction sites EcoRV/PacI in pISP1-

YFP. The ISP21–41 truncation was generated by cloning YFP

(primers P9/P8) at the restriction sites RsrII/NotI in pISP2-YFP.

The ISP31–36 truncation was generated by cloning the ISP3

promoter and residues 1–36 (primers P10/P11) at the restriction

sites PmeI/AvrII in the previously described vector ptubYFP-YFP/

sagCAT [61]. The ISP164–176 truncation was generated by cloning

the ISP1 promoter and start codon (primers P1/P12) at the

restriction sites HindIII/EcoRV in pISP1-YFP. The ISP1N/2C

chimera was generated by cloning ISP243–160 (primers P13/P4) at

the restriction sites EcoRV/NotI in pISP1-YFP. The ISP2N/1C

chimera was generated by cloning ISP167–176-YFP (primers P14/

P8) at the restriction sites RsrII/PacI in pISP2-HA. For expression,

1.66107 parasites were transfected with 30 mg of plasmid and then

analyzed by IFA as specified in figure legends.

Alpha-toxin treatment
Separation of the parasite IMC and plasma membrane was

achieved by treatment with C. septicum alpha-toxin as previously

described [33]. Briefly, freshly lysed, extracellular parasites were

washed and incubated 4 hrs in serum free media with or without

20 nM activated alpha-toxin. Following treatment, cells were fixed

in 3.5% formaldehyde, allowed to settle on glass slides and

analyzed by IFA.

Disruption of the cortical cytoskeleton of T. gondii
Tachyzoites were allowed to infect HFF monolayers on

coverslips in media containing 0.5 or 2.5 mM oryzalin (Sigma).

Parasites were allowed to grow 30–40 hrs post-infection and then

fixed and examined by IFA.

Generation of ISP2 and ISP3 antisera
The coding sequences for ISP2 (primers P15/P16) and ISP3

(primers P17/P18) were PCR amplified from T. gondii cDNA and

cloned into pET101/D-TOPO (Invitrogen). Constructs were

transformed into E. coli BL21DE3 cells, grown to A600 of 0.6–

0.8 and induced with 1 mM isopropyl 1-thio-b-D-galactopyrano-

side (Sigma) for 5 hrs at 37uC. Recombinant ISP2 and ISP3 were

purified over Qiagen Ni-NTA agarose under denaturing condi-

tions and eluted with a low-pH buffer as per the manufacturer’s

instructions. Eluted proteins were dialyzed against PBS and

,75 mg was injected per immunization into BALB/c mice

(Charles River) on a 21 day immunization schedule. Polyclonal

antiserum was collected from mice after the second boost and

screened by IFA and Western blot analysis.

Detergent extraction of ISP proteins
For detergent extraction experiments, 36107 freshly lysed

parasites were washed in PBS, pelleted and lysed in 1 mL TBS

(50 mM Tris-HCl [pH 7.4], 150 mM NaCl) containing 0.5% NP-

40 and complete protease inhibitors (Roche) for 15 min at 4uC
and then centrifuged for 15 min at 14,0006g. Equivalent amounts
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of total, supernatant and pellet fractions were separated on a 15%

gel, transferred to nitrocellulose and blotted using anti-IMC1, anti-

ROP1, mAb 7E8, polyclonal anti-ISP2, and polyclonal anti-ISP3.

Site directed mutagenesis
Mutations were generated by Quick Change Mutagenesis

(Strategene) using HA-tagged, wild-type ISP1, 2 or 3 with

mutagenesis primers as follows (forward primer given, reverse

compliment was also used): ISP1: G2A (P19), C7S (P20), C8S

(P21), C7,8S (P22). ISP2: G2A (P23), C5S (P24), C8S (P25), C9S

(P26), C8,9S (P27), C5,8,9S (P28). ISP3: G2A (P29), C6S (P30),

C7S (P31), C6,7S (P32). PCR amplified products were treated

with DpnI to digest wild-type template and transformed into E. coli.

Recovered clones were sequenced to confirm mutations.

Disruption of ISP1
The deletion of the ISP1 gene was accomplished by double

homologous recombination using a construct derived from the

pMini-GFP.ht knockout vector [62] which contains the selectable

marker hypoxanthine-xanthine-guanine phosphoribosyltransferase

(HPT) and also contains the green fluorescent protein (GFP) as a

downstream marker to distinguish homologous and heterologous

recombinants. The 59 flank (3,147 bp) and 39 flank (3,042 bp) of

ISP1 were amplified from strain RH genomic DNA using primer

pairs P33/P34 and P35/P36, respectively. These genomic flanks

were then cloned into pMini-GFP.ht upstream and downstream of

HPT, resulting in the vector pISP1-KO-HPT.

After linearization with NheI, 30 mg of pISP1-KO-HPT was

transfected into RHDhpt parasites and selection for HPT was

applied 12 hours post-transfection using 50 mg/ml mycophenolic

acid and 50 mg/ml xanthine. Surviving parasites were cloned by

limiting dilution eight days post-transfection and screened for GFP

by fluorescence microscopy. GFP-negative clones were assessed for

absence of mAb 7E8 staining by IFA. Western blot analysis was

carried out on whole-cell lysates of Disp1 clones and parental

strains using mAb 7E8 and anti-ROP1 antibody as previously

described [55]. The HPT gene was removed from RHDisp1 +
HPT by a second round of double homologous recombination.

The pISP1-KO-HPT vector was digested by EcoRV/NheI to

remove the HPT gene and then blunted using Klenow enzyme

and re-circularized by ligation. The resulting vector was linearized

by EcoRI and transformed into RHDisp1 + HPT, followed by

selection for the absence of HPT on 200 mg/ml 6-thioxanthine

(Sigma). After 3 weeks of selection, parasites were cloned and

screened for the absence of GFP expression. Clones that were

GFP-negative were then assessed for the inability to grow in

mycophenolic acid and xanthine, indicating loss of HPT. One such

clone was chosen and deletion of the ISP1 locus was confirmed by

PCR. This clone was designated Disp1.

Generation of Dku80Dhpt strain parasites
The HPT selectable marker was removed from the Ku80 locus

of the previously described Dku80 strain [38]. Briefly, 10 mg of a

PCR fusion construct containing a 59 Ku80 flank (primers P37/

P38) fused to a 39 Ku80 flank (primers P39/P40) was transfected

into RHDku80-HPT parasites. Selection against HPT with 6-

thioxanthine and confirmation of marker loss were carried out as

described above.

Disruption of ISP2 and ISP3
For disruption of ISP2, a knockout vector was generated by

cloning ,3 kb 59 (primers P41/P42) and 39 (primers P43/P44)

genomic flanks into a modified version of pMiniGFP.ht in which

HPT was replaced by the selectable marker DHFR-TSc3, yielding

the vector pISP2KO-DHFR-TSc3. After linearization by NotI,

30 mg of this vector was transfected into Dku80Dhpt parasites and

selection was applied 12 hours post-transfection using 1 mM

pyrimethamine. Parasites were cloned and confirmed to lack

ISP2 as described above. For disruption of ISP3, the vector pISP3-

KO-HPT was generated by cloning ,3 kb 59 (primers P45/P46)

and 39 (primers P47/P48) genomic flanks into pMiniGFP.ht. After

linearization by KpnI and transfection into the Dku80Dhpt strain,

parasites were selected for HPT, cloned and confirmed to lack

ISP3 as described above.

Competition growth analysis of Disp2 parasites
Freshly lysed parental and Disp2 parasites were counted and

mixed in desired ratios before infection of 3.36106 parasites into a

T25 flask of confluent HFFs. Parasites were allowed to disrupt the

monolayer before passing into a fresh T25. At initial infection and

at each passage, samples of the mixed culture were infected into

coverslips and allowed to grow 32 hours before fixation and

staining with polyclonal anti-ISP2 and rabbit polyclonal anti-

tubulin as a co-marker to monitor mixed culture composition. At

least 500 vacuoles were counted from each of 4 coverslips per

passage. Values represent mean 3 standard deviations for a

representative experiment.

Quantification of aberrant numbers of daughter parasite
assembly

Parental line and Disp2 parasites were infected onto coverslips

and allowed to grow 18–24 hours before fixation and staining with

mAb 7E8 as a marker for daughter buds and rabbit polyclonal

anti-tubulin as a co-marker. Fifty vacuoles containing parasites

undergoing bud formation were counted from each of 3 coverslips

per sample. Vacuoles containing one or more parasites assembling

.2 daughters were scored as aberrant. Values represent the mean

6 SD from a representative experiment.

Supporting Information

Figure S1 ISP ortholog groups. OrthoMCL DB (www.orthomcl.

org) was utilized to identify ortholog groups for the ISP family. ISP1

and 2 belong to one OrthoMCL group (OG4_23348) (A) while

ISP3 belongs to another group (OG4_34375) (B). The ISP1 and 2

group contains proteins from all apicomplexans available in the

OrthoMCL DB while the ISP3 group contains only proteins from

Neospora caninum, Plasmodium species, and Babesia bovis. EuPathDb

(www.eupathdb.org) accession numbers are given for each protein.

The P. berghei protein PB301233.00.0 and P. yoelii protein PYO2085

each lack a start methionine, indicating incomplete N-termini in the

annotation of the gene models associated with these proteins. The

related CP15/60 protein from Cryptosporidia forms a separate

OrthoMCL group (OG4_74892, data not shown).

Found at: doi:10.1371/journal.ppat.1001094.s001 (9.69 MB TIF)

Figure S2 Antibody confirmation of sub-compartment localiza-

tions for endogenous ISP2 and ISP3. A. ISP2 antisera confirms the

localization of endogenous ISP2 to the central IMC sub-

compartment in a fashion identical to the HA epitope-tagged

ISP2 shown in Figure 2B. Endogenous ISP2 is clearly absent from

the apical cap (brackets) and basal portion of the IMC. Red:

polyclonal anti-ISP2 detected by Alexa594-anti-mouse IgG. Green:

anti-tubulin antibody detected by Alexa488-anti-rabbit IgG. B-C.
ISP3 antisera functions poorly by IFA. The staining is, however,

sufficient to (B) confirm the localization of endogenous ISP3 to the

central and basal IMC shown by HA epitope-tagged ISP3 in
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Figure 2C and (C) confirm the attenuation of maternal ISP3 signal

and enrichment of ISP3 in daughter parasites during endodyogeny

as shown in Figure 2E. Red: polyclonal anti-ISP3 detected by

Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected

by Alexa488-anti-rabbit IgG.

Found at: doi:10.1371/journal.ppat.1001094.s002 (4.24 MB TIF)

Figure S3 Mutation of ISP2 residues predicted for acylation

results in ISP2 mistargeting. Mutations of residues predicted for

myristoylation or palmitoylation were generated in an HA

epitope-tagged copy of ISP2 and expressed in parasites under

the control of the endogenous promoter. A severe targeting defect

occurs in ISP2 (G2A) in which ISP2 signal is dispersed throughout

the cell in a punctate fashion. The ISP2 (C5S) mutant shows an

intermediate localization defect with some mistargeting and some

proper localization. Mutation of the conserved cysteine pair

residues individually or together does not grossly mistarget ISP2

(C8S), (C9S), or (C8,9S). A serious targeting defect occurs when all

three N-terminal cysteines are coordinately mutated in ISP2

(C5,8,9S). While ISP2 (C5,8,9S) is distributed throughout the

cytosol, signal concentration is observed perinuclear and just

apical of the nucleus (arrows). Red: anti-HA antibody detected by

Alexa594-anti-mouse IgG. Green: anti-tubulin antibody detected

by Alexa488-anti-rabbit IgG. Blue: Hoechst stain.

Found at: doi:10.1371/journal.ppat.1001094.s003 (7.83 MB TIF)

Figure S4 Mutation of ISP3 residues predicted for acylation

results in ISP3 mistargeting. Mutations of residues predicted for

myristoylation or palmitoylation were generated in an HA

epitope-tagged copy of ISP3 and expressed in parasites under

the control of the endogenous promoter. A severe targeting defect

occurs in ISP3 (G2A) with the mutant protein dispersed

throughout the cell in a punctate fashion. Individual cysteine

mutants ISP3 (C6S) and (C7S) show no gross defect in targeting.

Coordinated mutation of these cysteines results in gross mistarget-

ing of ISP3 (C6,7S) throughout the cell in a punctate fashion. As

seen in ISP1 and ISP2 coordinated cysteine mutants, a

concentration of signal is observed just apical of the nucleus

(arrows). Red: anti-HA antibody detected by Alexa594-anti-mouse

IgG. Green: anti-tubulin antibody detected by Alexa488-anti-

rabbit IgG. Blue: Hoechst stain.

Found at: doi:10.1371/journal.ppat.1001094.s004 (6.36 MB TIF)

Figure S5 Disruption of ISP3. Western blot analysis using

polyclonal anti-ISP3 confirms the loss of ISP3 in Disp3 parasites.

ROP1 serves as a loading control.

Found at: doi:10.1371/journal.ppat.1001094.s005 (0.49 MB TIF)

Table S1 Primers used in this study as discussed in text.

Restriction sites and mutated bases are shown in lowercase.

Found at: doi:10.1371/journal.ppat.1001094.s006 (2.29 MB TIF)

Video S1 ISP1 and 3 during Toxoplasma endodyogeny. Parasites

stably expressing ISP3-HA were allowed to infect HFFs and grow

24 hrs before fixation and IFA analysis. Serial sections were

acquired, deconvolved and projected as a three-dimensional

image. Visualization of ISP1 and ISP3 during endodyogeny shows

that ISP1 is present in the maternal IMC apical cap as well as in

the apical cap of each forming daughter. ISP3 exhibits different

dynamics during endodyogeny: while it is clearly seen in the

central and basal IMC compartments of each forming daughter,

the signal has disappeared from the maternal IMC. At this stage of

endodyogeny, the replicated nucleus is being segregated between

the two daughter buds forming within each mother. The distinct

compartments of the IMC revealed by ISP1 and 3 are already

clearly visible. Red: mAb 7E8 detected by Alexa594-anti-mouse

IgG. Green: anti-HA antibody detected by Alexa488-anti-rabbit

IgG. Blue: Hoechst stain.

Found at: doi:10.1371/journal.ppat.1001094.s007 (2.02 MB

MOV)

Video S2 ISP1 early bud rings in oryzalin treated Toxoplasma.

Parasites stably expressing ISP1-HA were allowed to infect HFFs

in the presence of 0.5 mM oryzalin and grow 30 hours before

fixation and IFA analysis. Serial sections were acquired,

deconvolved and projected as a three-dimensional image. In the

absence of cortical microtubules, a single mother parasite

repeatedly fails to undergo productive replication. Numerous

ISP1-labeled rings (red) are found clustered in the center of the

cell. IMC1, shown in green, does not co-localize with these

structures. Red: anti-HA antibody detected by Alexa594-anti-

rabbit IgG. Green: anti-IMC1 antibody detected by Alexa488-

anti-mouse IgG.

Found at: doi:10.1371/journal.ppat.1001094.s008 (1.57 MB

MOV)
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