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IMMERSIONS OF MANIFOLDSC)

BY

MORRIS W. HIRSCH

Introduction

Let M and N be differentiable manifolds of dimensions k and n respec-

tively, k<n. A differentiable map/: M^>N is called an immersion if / is of

class C1 and the Jacobian matrix of/ has rank k at each point of M. Such a

map is also called regular. Until recently, very little was known about the ex-

istence and classification of immersions of one manifold in another. The

present work addresses itself to this problem and reduces it to the problem of

constructing and classifying cross-sections of fibre bundles.

In 1944, Whitney [15] proved that every ^-dimensional manifold can be

immersed in Euclidean space of 2k — 1 dimensions, P2*-1. The Whitney-

Graustein theorem [13] classifies immersions of the circle S1 in- the plane E2

up to regular homotopy, which is a homotopy /< with the property that for

each t,ft is an immersion, and the induced homotopy/(* of the tangent bundle

of M into the tangent bundle of N is continuous. In his thesis [8], Smale

generalizes the Whitney-Graustein theorem to the case of immersions of S1

in an arbitrary manifold. In [9] Smale classifies immersions of S* in E" for

arbitrary k<n; the present work is based on this paper, in roughly the same

way that obstruction theory is based on the theory of homotopy groups.

The paper is divided into two parts. The first part is devoted to building

up machinery that will construct immersions over successive skeletons of a

triangulated differentiable manifold, if certain conditions are satisfied. We

start from the results of [9] and construct two invariants, fl and r. Given an

immersion/: Sk~1—>En, k<n, and a field/' of vectors transversal to f(Sk~1),

t(/,/') is an element of a certain homotopy group with the following proper-

ties: (1) t(/, /') =0 if and only if/ can be extended to an immersion g of the

/e-disk Dk whose normal derivative on the boundary of Dk is /'; (2) t(J, /')

= T(g, i') if (/>/') and (g, g') are "regularly homotopic" (in a sense to be

defined later). Given two immersions/, g: £>*—»£" that agree on S*_1 and have

the same first derivatives at points of S*_1, Q(f, g) is an element of a certain

homotopy group, and has the following properties: (1) Q(f, g) =0 if and only

if/and g are regularly homotopic "rel S*-1," i.e., the homotopy agrees with

/ and g on Si_1 at each stage, up to the first derivative; (2) fl(/, g) enjoys the

usual algebraic properties of a difference cochain. At this point we should like

to be able to make the following statement: "If / is an immersion of the
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t-skeleton of M and r(f) =0, then/ is extendible to the i+1 -skeleton of M".

Unfortunately, this makes no sense at all, because a skeleton of a manifold

is not a manifold, and immersions are only defined for manifolds. A second

difficulty is that r is defined for immersions of boundaries of disks, while a

triangulated manifold is composed of simplices. These difficulties are over-

come by the notion of JPimmersions. If B is a subset of M, an JlPimmersion

of B is essentially an immersion of a neighborhood of B; we identify two M-

immersions of B if their differentials agree at points of B. Af-regular homo-

topies are similarly defined. If B — M, an Af-immersion of B is simply an im-

mersion of M. fi and r have natural generalizations to Af-immersions and M-

regular homotopies, in fact, we define r only for if-immersions; Af-immersions

of skeletons make good sense, and fi and r can be defined for simplices as well

as disks by "approximating" a simplex by a diffeomorphically embedded

disk. The quoted statement above now makes sense, and is true, if immersion

is replaced by M-immersion. An Af-immersion has a well-defined differential,

which is a map of the tangent bundle of M over B into the tangent bundle of

A, taking fibers into fibers through vector space monomorphisms. The differ-

ential induces a map of the bundle of ^-frames of M over B into the bundle

of ^-frames of A, and this map is equivariant with respect to the action of

GL(k). It turns out that an if-immersion of the i-skeleton of M can be ex-

tended to the i+1 skeleton if and only if the differential can be extended to

an equivariant map of the bundle of ^-frames of M over the i+1-skeleton.

A similar statement holds for M-regular homotopies. These statements are

made precise in Theorems 5.7 and 5.9, which are the main theorems of Part

I. These theorems can be given the following interpretation: Given M of

dimension k, A of dimension n, k<n, the regular homotopy classes of immer-

sions of M in A are in one-one correspondence with homotopy classes of cross-

sections of the bundle associated to the bundle of ^-frames of M, whose fiber

is the bundle of ^-frames of A. (If A =En, the fiber may be taken to be the

Stiefel manifold Vn,k.) For another interpretation, see the introduction to §5.

It should be remarked that the restriction k<n is essential; the problem

of immersing a manifold in another of the same dimension is much harder

than the one we consider.

Part II consists of applications of the main theorems of Part I, chiefly

to the problem of the existence of immersions in Euclidean spaces. "Best

possible" results are obtained for projective spaces of dimensions less than 9;

it is shown that a parallelizable manifold can be immersed in Euclidean space

of one dimension higher with normal degree 0; certain sufficient conditions

that two immersions be regularly homotopic are given. The problem of im-

mersing a ^-dimensional manifold in P2*~2 is solved in the compact case when

kg5.
I wish to express my gratitude to my adviser, E. H. Spanier, for his gen-

erous help, and to thank S. Smale for many conversations, and for writing [9].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



244 M. W. HIRSCH [November

Definitions and Notation. By manifold we shall always mean a O

differentiable manifold, endowed with a fixed Riemannian metric d, with or

without boundary. Submanifold means "Cw-imbedded" submanifold in the

sense of Whitney [16]. If M is a submanifold of N and X is a vector tangent

to N at a point of M, X is called transversal to M if X is not tangent to M.

T(M) denotes the space of tangent vectors of M. A k-frame of M is a set of k

linearly independent tangent vectors of M (with the same base point). Tk(M)

is the space of all ^-frames of M. t(M) is the space of unit tangent vectors of

M. If B is any subset of M, T(M/B) is the space of tangent vectors of M

whose origin is in B; Tk(M/B) and t(M/B) are defined similarly. If XET(M),

| X | is the length of X in the Riemannian metric of M.

En is w-dimensional Euclidean space, with an orthonormal coordinate

system xi, • • • , x„. lim<n, Em is considered to be the subset of En defined by

setting Xi = 0, i = iw + l, • • • ,n. The k-diskDh is defined as \xEEk: \x\ ^l},

where for any xEEn, \x\ =(x\+ • • • -j-*2,)1'2. The boundary of Dk is the

unit sphere S*_1 of Ek, and is sometimes denoted by Dk. The common origin

of all the £* is 0. The Stiefel manifold of p-frames in Eq is denoted by VttP

and is defined as Tp(Eq/G). We shall frequently identify Vt,p with Tq(Ep),

of which it is a deformation retract by parallel translation.

Immersion means a C1 map of one manifold into another of not lower

dimension whose Jacobian matrix has highest possible rank at each point. A

regular homotopy of M in N is a family ft of immersions of M in A, tEI

= unit interval, such that/( is a homotopy in the ordinary sense, and differ-

entials/<* define a (continuous) homotopy of T(M) into T(N). If B is a closed

subset of M, a map /: B—+N is said to be differentiable of class Ck if for each

xEB there is a neighborhood U of x and a Ck map g: £7—>Af such that g| UC\B

=/| Uf\B. Milnor [5] shows that this implies that/can be extended to a Ck

map of a neighborhood of B.

If/: M'-*N is differentiable, then/*: P(Af)->P(yV) denotes the differential

of/. If/* is a vector space monomorphism on each fiber of T(M) (e.g., if/

is an immersion) then/* preserves linear independence, and there is an induced

map Tk(M)-+Tk(N) given by { Fi, • • • , F*}-+{/*F,, • • • ,f*Yk}. We shall
use /* to denote this map, also.

If B is a subset of M, and /, g: M—>N are immersions, then (/, /*) and

(g, g*) are tangent on B if f\B=g\B and /*| P(Af/P)=g*| T(M/B). This is
denoted by (/, /*) | B = (g, g*) | B. f and g are regularly homotopic (rel P) if

there is a regular homotopy/« of M in A7 such that/0=/,/i=g, and (ft, ft*) \B

= (/,/*) | P for all/.

Part I. General theory

1. Known results. Let M and vV be manifolds, and H a set of C1 maps from

Af into N. The C1 topology on J is that which is obtained by considering 7c

as embedded in the space of all continuous maps T(M)^>T(N), in the com-

pact open topology, under the embedding /—»/*.
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Definition. A map /: Q—»P has the covering homotopy property if the

following condition is satisfied: given a homotopy gt of a polyhedron P into

P and a map h: P—*Q such that fh = go, there exists a homotopy ht of P into

Q such that ho = h, and fht = gt.
Let £ = £*,„ be the space of all C°° immersions of Dk in P" in the C1 topol-

ogy. Let ($> = (8>k,„ be the set of all pairs (g, g') where g: 5*_1—»Pn is a C°° im-

mersion and g': Sk~l—>T(En) is a C" transversal field of g. 03 is topologized

as a subspace of Cartesian product of the space of immersions Sk~l—*En, in

the C1 topology, with the space of continuous maps S*-1—»F(PB), in the com-

pact-open topology.

Let tt: S->03 as follows: if hE&, let h!: Sk^-*T(E») be defined by h'(x)
= derivative of h along the radius at xES*-1, i.e., if r(x) is the unit tangent

vector of D that is normal to 5*_1 at x and which points away from the origin,

then h'(x) =h*r(x). ir(h) is defined to be (h\ 5*_1, h'). It is clear that ir is con-

tinuous.

Theorem 1.1. // k<n, then t: £*,„—»A3*,n, has the covering homotopy prop-

erty.

The proof is found in [9].

The intuitive content of this theorem is as follows: If we are given an im-

mersed disk in E" and we deform the boundary of the disk and the normal

derivatives along the boundary, then we can deform the whole disk at the

same time so as to induce the given deformation on the boundary and normal

derivatives. It is easily seen that this is false for k = n, as can be shown by very

simple examples with k = 1 or 2.

Let S' = S£,„ be the space of all maps Dh—*Vn,k, in the compact-open

topology. Let 03' = 03£iB be the space of all maps 5*_1—>7„,*, in the compact-

open topology. Let ir': &'—*(&' be the restriction map ir'(f) =f\Sk~1. It is well

known that ir' has the covering homotopy property.

Let ei(x)ET(Ek/x) be the ith coordinate vector based at x. For /GS,

define $(/)GS' by *(/)(*) =/*{ei(x), • • • , ek(x)}. Define <£: (B-KB' as fol-

lows: express et(x) uniquely as e/(x)+X,T(x), where r(x) is the outward nor-

mal to S*'1 at xG-S*-1 and ei(x) is tangent to S*-1. If (g, g')E®>, then

*(g, g'){x) = {g*ei(x)+Xig'(x), • ■ ■ , g*ek'(x)+Xkg'(x)}. These vectors are in-

dependent because g*e/ (x) is tangent to g(Sk~1) and g'(x) is transversal. The

following diagram is commutative:

8->&'

x w'

i>
03->03'

To see this, observe that if gGS and ir(g) = (/,/'), then/ = g| 5*_1 and/' is by
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definition the derivative of g along r(x), i.e., f'(x) —g*r(x). If X is any vector

at xESk~x, tangent to D, X can be expressed uniquely as X' +Xr(x) with X'

tangent to Sk-\ Then g*X = g*X'+Xg*r(x) =f*X'+Xf'(x). Applying this to

X = d(x), (ir'$>)(g)(x) = g*{ei(x), • • • , **(*)} = {f*e{ (x) + Xif'(x), • • • ,

f*ek'(x)+Xkf'(x)} = (&r)(g)(x), for ir(g)(x)=g(x) if xESk~\ Thus <Jtt = t'*.

If gE&k.n, put r*,„(g) = {/GS*,n:(/, f*)\Sk~l = (g, g*)\Sk-i}; This is

equivalent to Tk,n(g) =ir~1(ir(g)). Define

T'k,n(g) = {A:P*^7n,i:A|5*-1 = $(g)|5*-1}.

This is the same as T'tn(g) =ir'~1(ir'^(g)). Since the above diagram commutes,

*(Tk.n(g))ETUg).
Definition. If A and B are topological spaces, a map/: A—*B is a weak

homotopy equivalence if / induces a one-one correspondence between the arc-

components of A and those of B, and/: tt,(.4)—>7r<(.B) is an isomorphism for

all i=l, 2, ■ ■ ■ .

Theorem 1.2. Let i: Dk—*En be the inclusion map. If k<n, $:Tk,n(i)

—>T'Kn(i) is a weak homotopy equivalence.

Proof. See [9].
In the next section we shall prove this for any/GSt,„.

The following material is well known; see Steenrod's book [10] for de-

tails.

Let A be a topological space, simple in dimension k. Let/, g: Dk—*A, and

assume f(x) =g(x) if xG-S*-1. There is an element d(f, g) in irk(A) with the

following properties:

Lemma 1.3.
(a) d(f, g) = 0 if and only if f and g are homotopic (rel Sh~l).

(h) If h: Dk^A is such that h\ Sk~l =f\ Sk~1=g\Sk~\ then d(f, g) +d(g, h)

~d(f, h).
(c) d(f,f)=0.
(d) Given f and aEirk(A), there exists g: Dk—>A such that d(f, g) =a.

d(f, g) is represented by mapping the "top" hemisphere of 5* by/and the

"bottom" one by g, assuming that the orientation of Sk is given by the co-

ordinate frame {e\, • • • , ek} at the "north" pole of Sk.

Now let/, gE&k.n with gET(f), i.e., ir(g) = tt(/). Then $(/) and $(g) are

maps of Dk into Vn,k that are tangent on Sk~1, and Vn,k is simple in all dimen-

sions. (Either k = nor n — 1, in which case Vn,k is a group, or else 7ri(7n,*) =0.)

Therefore d($(f), <£(g)) is defined.
Definition. d($(f), $(g))GTt(7n,4) is called the obstruction to a regular

homotopy (rel 5*_l) between f and g and is denoted by Q(f, g).

Theorem 1.4. Assume k<n,f, gE&k,n, andf, gEV(i).

(a) fl(/, g) =0 if and only if f and g are regularly homotopic (rel 5*_1).
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1959] IMMERSIONS OF MANIFOLDS 247

(b) ///, g, hET(i), U(f, g)+Q(g, h)=Sl(f, h).
(c) fl(/,/)=0.
(d) Given fE^(i) and aE^k( Vn.k), there exists gGT(i) such that Q,(f, g) =a.

(e) // fl(/, g)=0 and H:DkXI-^Vn,k is a homotopy (rel S*"1) between

<&(/) and &(g), there exists a regular homotopy (rel Sk~l) Gt between f and g such

that the map F: DkXl-^Vn,k defined by F(x, t)=$(Gt)(x) is homotopic to H

(rel Sk~1Xl^JDkxi). (/ = {0, lj.)

Proof. Follows from 1.2 and 1.3; for example to prove (a), assume Q(f, g)

= 0. By definition, this means that d($(f), $(#)) vanishes. By 1.3, <£(/) and

$(g) are homotopic (rel S*_1). This means there is an arc in T'ti„(f) joining

<$(/) to <£(g). By 1.2, there must be an arc in Tk,n(f) joining/ to g. This arc

provides us with a regular homotopy (rel S*_1) between / and g. Conversely,

if / and g are regularly homotopic (rel Sk~l) by a regular homotopy /<, then

&(ft) is a homotopy (rel S*-1) between $(/) and $(g), so d ($(/), $(g)) =0 by

1.3a. The other statements of 1.4 follow similarly.

Let/, g: Sk—»En be C°° immersions. Let U be an open set of S* on which

/ and g agree, and let pEU. Assume that Sk—U is diffeomorphic to Dk. Let

/i =/| Sk—U and gi=g\Sk—U, and consider / and g as C°° immersions of Dk

in E". Since/ and g agree on U, it follows that 7r(/i) = 7r(gi), so that Q(/i, gi)

is defined. Put &(f, g)=Q(fi, gi)Eivk(Vn,k).

Theorem 1.5. If fl'(/, g) =0, / and g are regularly homotopic (rel p).

Proof. See [9] for details. The idea is to use 1.4a to obtain a regular

homotopy (rel S*-1) between /i and gi, which is equivalent to a regular

homotopy (rel boundary of U) between /|S*— U and g\Sk—U. It will be

shown in 2.5 that this regular homotopy can be combined with the constant

regular homotopy between /| U and g\U to produce the desired regular

homotopy (rel a neighborhood of p, hence rel p) between / and g.

2. Extension of 1.2 and 1.4. The object of this section is to remove the

restriction in 1.4 and 1.2 that/and g belong to T(i), and to prove 2.5, which

is used several times throughout Part I.

Lemma 2.1. Letf, g: M—*En be Ck immersions that satisfy the following con-

dition: for any XET(M), \f*X — g*X\ <|/*X|. Then for any tEI, the map
h: M^>E defined by h(x) =tf(x) + (l—t)g(x) is a Ck immersion.

Proof. By hypothesis, \f+X-g*X\ < |/*X| if X ^0. This implies that g*X
cannot vanish, nor can g*X be a negative multiple of f*X, because in either

of these cases, |/*Z —g*X| ^ \f*X\. Therefore either/*Z and g*Z are inde-

pendent, or they are positive multiples of each other; in either case, no posi-

tive combination of them can vanish. Therefore for every nonzero XE T(M),

htX^O, which is equivalent to saying that h is an immersion. It is obvious

that h is C*.
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Lemma 2.2. Let Q and R be topological spaces, with R compact. Let A be a

subset of Q; let U be an open subset of QXR containing A XR. Then there exists

an open set V in Q containing A such that AXREVXREU.

Proof. Ucan be written £/ = U< F,X Wit where i runs over an indexing set

A and F,- is open in Q, Wt is open in R. For each aEA, aXR is compact; it

follows that there is a finite subset A0 of A such that a XR CU1(E a« F,- X W, and

aE Vi if i'GA0. Since Aa is finite, F0 = n,SAa F,- is an open set of Q containing

a, and aXPCUt€Ao VaXW. Define F = U„ F„. It is easily checked that F

has the required properties.

Lemma 2.3. Let M be a manifold and C a compact space. Let pEM. Let

F, G be continuous maps of C into the space of immersions of M in En, with the

Cl topology, such that for every cEC, (G(c), G(c)*)|p=(P(c), P(c)*)|p.

Conclusion. There is a neighborhood W of p and positive real numbers

a, B such that for any XEt(M/W), cEC, tEI, it is true that a<\ tF(c)#X

+ (l-t)G(c)*X\<8.

Proof. Define v: CXT(M) Xl-^E1 by ti(c,x,t) = |zP(c)*X + (l -t)G(c)*X\.
7] is continuous and assumes a minimum «o and a maximum Bo on the compact

set CXT(M/p)XL Moreover, a0>0, for if XET(M/p), F(c)*X = G(c)*X,

hence n(c, x, t) = | P(c)*X| >0, because F(c) is regular. Next choose a and 8

such that 0<a<a0<B0<B; then ^(a, 8) is an open set ZJ in CXT(M)XI

that contains CXT(M/p)Xl. By 2.2 there is an open set V in t(M) such

that CXT(M/p)XlECXVXlEU, and t(M/p)EV. Since t(M) is locally
a product, we may apply 2.2 again and obtain an open set PFof M containing

p such that T(M/W)EV. Then W, a, 8, have the required properties.

Lemma 2.4. (The hypothesis and notation are as in 2.3.) Given e>0, there

is a neighborhood U of p such that if xE U—p and cEC,

\F(c)(x)-G(c)(x)\/d(x,p) <e.

Proof. Choose a fixed cGC Then F(c)(p)=G(c)(p), and we have the

equality:

\F(c)(x)-G(c)(x)\/d(x,p)

=  | [F(c)(x) - F(c)(p)] - [G(c)(x) - G(c)(p)] \ /d(x, p).

By the mean value theorem, there are points y, z on the geodesic between x

and p (which we may assume to be unique if x is close to p) such that the

expression on the right is equal to | P(c)*F—G(c)*Z| where Fand Z are unit

tangents to the geodesic at y and z respectively. Let X be the unit tangent at

p. Choose a convex neighborhood F= V(c) of p such that if y and z lie on a

geodesic in F through p, and X, Y, and Z are respectively the unit tangents

to this geodesic at p, y, and z, then | P(c)*F—G(c)*Z| lies within e of

| F(c)*X — G(c)*X|. This last is 0, since by hypothesis F(c)* and G(c)* agree

on vectors based at p. Thus for this particular c, | F(c)(x)—G(c)(x) | /d(x, p)
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1959] IMMERSIONS OF MANIFOLDS 249

<e. Since Pand G are continuous, this inequality holds for all c' in a neighbor-

hood W(c) of c. Since C is compact, there are points Cx, • • • , c, such that

CCU< W(d). It follows that [7=n< V(ct) satisfies the conditions of the

lemma.

The next lemma is needed in several places. The following example may

help to motivate it: Suppose we are given two immersions/ and g, defined

on a manifold M, such that for a point p of M, (/, /*) | p = (g, g*) | p. Then the

lemma says that we can deform g so that it becomes equal to / in some

neighborhood of p, and the deformation is constant outside an arbitrarily

small neighborhood of p. Intuitively, we pinch the images of /and g together

near p. Actually, the lemma allows us to do this for two regular homotopies

that agree at p at each stage, and p can be replaced by a subcomplex of M.

Lemma 2.5. Let L be a finite complex embedded in the manifold M in such

a way that each simplex of L is diffeomorphically embedded. Let Wbe a neighbor-

hood of L in M. Let C be a compact space and F, G maps of C into the space of

immersions of M in E" (C1 topology) such that for each cEC, (F(c), F(c)*)\L

= (G(c),G(c)*)\L.
Conclusion. There is an open set V of M such that L C 7C 7 C W, and a

homotopy Gt of C into the space of immersions of M hi P", satisfying the follow-

ing conditions:

(1) G0 = G.
(2) (Gt(c),Gt(c)*) M-W=(G(c),G(c)*)\M-W.
(3) (Gx(c), Gx(c)*)   V=(F(c),F(c)*)\V.

(4) Gt(c) is C if G(c) and F(c) are C.

(5) (Gt(c), Gt(c)*)\x = (G(c), G(c)*)\xif(G(c), G(c)*)\x = (F(c), F(c)*)\x.

Proof. Let L, be the t-skeleton of L. We shall deform G(c) over successive

skeletons of L.

Let X: I—*I be a C°° function such that X = 0 in a neighborhood of 0, X= 1
in a neighborhood of 1, and whose derivative is never negative. Let P>0 be

an upper bound for the derivative.

Let p he a vertex of L. We shall define a 5>0 so that the closed ball U

of radius 5 and center p is contained in W. Let p: M^>I be defined by p(x)

= X(d(x, p)/b) if xEU; p(x) = l if xEM—U. Because of the properties of

X, p is C00. Define h: M^>En by h(x) = (l—p(x))f(x)+p(x)g(x), where for a

fixed cEC, f(x)=F(c)(x), g(x)=G(c)(x). By the proper choice of 5, it will

turn out that for each tEI, the map Gt(c) = (l— t)g+th is a C°° immersion

of M in Pn satisfying (1), (2), (4), and (5); (3) holds if 7is interpreted to be

some neighborhood of the vertex p. S is chosen as follows: Choose a neighbor-

hood Ux of p and real numbers a, P so that for any tEI, XET(M/Ux), cEC,

(a) 0 < a < | tF(c)*X + (1 - t)G(c)*X \   < p.

This can be done by 2.3. Next choose a neighborhood f/2 of p so that for any

cEC and xE Ui—p,
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(b) | F(c)(x) - G(c)(x) | /d(x, p) < a/2K.

This is possible by 2.4. Now choose a neighborhood U3 of p such that for

any XEt(M/U3),cEC,

(c) \F(c)*X-G(c)*X\   <a/2.

This can be done because for XET(M/p), F(c)*X = G(c)*X for all c. Now

choose S>0 so small that the closed ball U oi center p and radius 5 is con-

tained in Uir\U2f~\Uz, and also U is contained in some coordinate neighbor-

hood of p. Assume also that no vertex of L other than p is contained in U.

Now let cEC; put f=F(c) and g = G(c). Define h: M^>E" by h(x)
= (l—p,(x))f(x)+u(x)g(x). It is clear that h is C00 and depends continuously

on c. We shall show now that for each ZGP the map g< = (1 —t)g-{-th is regu-

lar. By 2.1, it is enough to show that |A*X-g*Z| <|g*Ar| for each XEt(M);

however, because p = 1 in a neighborhood of M— U, it follows that &* = g* on

T(M/M—U), and therefore we need prove only that \h*X — g*X\ <\g*X\

for XEt(M/U). By (a), with Z = 0, a<|g*Z| ; thus it suffices to show that

|/**X-g*X| <a for X E t(M/U). A direct computation yields h*X

= u*X(g(x) -f(x)) + u(x)g*X + (1 - u(x))f*X. Therefore \h*X - g*Z|
^ | u*X(g(x) -f(x)) |+|(1 -p(x))(/*Z-g*X) |. By (c) the second term on the

right is less than a/2. If we show that Ip*^ <K/d(x, p), then the first term

is less than K\g(x) —f(x) \ /d(x, p) which is less than Ka/2K by (b), and we

are done. It is enough to show that | pc*^| <K/8. X has a unique expression

aY + bZ, where Y is a unit vector normal to the submanifold

A = {uEU:d(u, p)=d(x, p)} (X based at xEU), and Z is a unit vector

tangent to A. Observe that | a| ^ 1 because a2+62= 1. Since p is constant on

A, u*X = au* Y. Y is tangent to the geodesic though x normal to A ; it follows

from the definitions of u and K that |p*F| <K/8. This proves that gt is

regular.

We repeat the above construction for every vertex of L, and we observe

that we have proved the lemma for the special case dimension of P = 0 by

putting Gt(c)=gt, and taking for F the union of the interiors of the ZJ's

chosen for the various vertices p. We proceed by induction on dimension of L.

Assume the lemma is true in case L has dimension i. Let L have dimen-

sion i+1, and let Lf be the i-skeleton of L. Given W, C, F, G as in the hypoth-

esis, we apply the inductive hypothesis to Z,- to conclude that there is a

neighborhood U oi L and a deformation Gt of G such that LiEUEUEW,

(1), (2), (4), and (5) hold, and also

(3') (Gi(c), Gi(c)*) | U = (F(c), F(c)*) | U.

Let <r be an i+1 simplex of L. We can find real numbers a, 8, 8, greater

than 0 such that if d(x, cr)<8 and XE t(M/x),

(a') 0<a<|zP(c)*Z + (l-Z)Gi(c)*X| </3 for any ZGP cEC;

(b') | F(c) (x) - Gi (c) (x) | /d(x, a)<a/2KiixE<r,cEC;
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(c')   | F(c)*X-Gx(c)*X\ <a/2 for any cEC.
This can be done by 2.3, 2.4, the compactness of a, and the fact that

(F(c), F(c)*)\a = (Gx(c), Gx(c)*)\a by (5).
Let B(e) = {xEM: d(x, cr) =e, and x lies on a geodesic normal to a}. We

can choose 5 small enough so that if 0<e^ b, B(e) is a C°° submanifold of M

contained in W. Let B be the union of the B(e) for Ogegb. Let B' be the

subset of B consisting of points of B that lie on geodesies normal to a and pass-

ing through a. Make 5 still smaller so that B' C U.

Define p: B—*I by p(x) =X(d(x, a)/5); it is clear that jtt is C°° on the

interior of B. Let cEC and put/=P(c), g = Gx(c), and define h: B—>E" by

h(x) = (l—p(x))f(x)+p(x)g(x). It is easy to see that h is Cx on the interior

of P. It turns out that h = g on a neighborhood of the boundary of B: the

boundary of B is B'KJB(b); B'EU, and f(x)—g(x) in U by the assumption

(3'), while p = 1 in a neighborhood of B(8). It follows that we may extend h

to all of M by setting &(*) =g(x) if xG-M"—P, and h: M—>En is now CM.

We shall show that for each tEI, the map Gxt: M^>En defined by Gxt

= {l~t)g+th is regular. To do this, it suffices by 2.1 and (a') to show that

for any XET(M/B), \h*X-g*X\ <a. The proof of this follows from (a'),

(b'), and (c') in the same way as in the case <r = p, done earlier.

We do this for each i+1 simplex of L in succession; (5) insures that we

never undo our work, i.e., once Gx(c) has been deformed to agree with F(c)

locally, any remaining deformations preserve this property. Let 7 be the

union of U with the interiors of the P's constructed for each i + 1 simplex a

of L. Then 7, and the deformation obtained by first deforming G by Gt and

then deforming Gx by Gxt, satisfy (1) through (5). This completes the induc-

tion, and 2.5 is proved.

Lemma 2.6. The space S*,„ of CK immersions of Dk in E" is arcwise con-

nected, provided k<n.

Proof. Let/ and g be any two elements of S*,„. We shall prove that both

/ and g can be joined to the inclusion i: DkEE" by arcs in S*,„. It suffices to

do this for g.

Since k<n, there is an arc Tt in the group of proper affine transformations

of P" such that To is the identity and such that (Pig, (Pig)*) | 0 = (i, i*)\0,

where 0 is the center of Dk. Since Ttg is an arc in &k,n from g to Pig, we may

assume that g itself has the property (g, g*) 10 = (i, i*) | 0. By 2.5 (with L = 0,

C=c, F(c)=i, G(c)=g) we may assume that there is an r>0 such that if

\x\gr, g(x)=i(x)=x. For 0gtgl/2 define gt by gt(x) =g((l-2t+2tr)x).

Then go = g and gxn(x) — g(rx) = i(rx) = rx. For 1/2gtgl define gt(x) by

gt(x) = (2t — l+2r — 2tr)x. Then under this definition gxp(x) =rx and gx(x) =x.

Thus g(, for tEI, is an arc in £k,n from g to i. This completes the proof.

If k = n, a similar argument shows there are two arc components, the ele-

ments of which respectively preserve and reverse orientation. We shall not

use this result.
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Theorem 2.7. The map ^:Tk,n(f)—»r£_n($(/)) (defined in §1) is a weak

homotopy equivalence for every fE5k,„ provided k<n.

Proof. By 2.6, S*,„ is arcwise connected. Let a path in 8t,n running from

/ to i be chosen, and let C: I—>Gsk.n be its image under it, so that C(0) =ir(i),

C(V)=ir(f). Put C'=$C: I—>Gs't>n. C and C induce isomorphisms d and Ci

such that the following diagram is commutative for all j = 0, 1, • • • , where

xo is the set of arc-components:

(*|r(*))#
*ry(r(i), i)      ' i r,(r'(t), #(0)

K'   <*|r(/)),       ic:

By 1.2, ($|r(i)) is an isomorphism. Since Cf and C/ are also isomorphisms,

(<£>|r(/)) is an isomorphism.

Theorem 2.8. Let f, gE&k.n, k<n; assume ir(f)=Tr(g) so that 12(/, g) is

defined. Then
(a) Q(/, g) =0 if and only iff and g are regularly homotopic (rel S*_1).

(b) 0(/, g) +fi(g, A) =0(/, A) i/ AG7r(g).
(c) fl(/,/) = 0.
(d) GiVew aGir*(Fn,t), there exists gET(f) such that Q(/, g) =a.

(e) i/fl(/, g)=0 and H: DXl-^Vn,k is a homotopy (rel S*"1) between$(f)

and $(g), there is a regular homotopy (rel S*-1) G: DkXl-^E" such that G0=/,

Gi=g, and the map F: DkXl~^V„,k defined by F(x, t) =$(Gt)(x) is homotopic

to H (rel Sk~1XlUDkxi).

Proof. Follows from 2.9 and 1.3 (compare 1.4).

3. Af-immersions. Let A be an arbitrary subset of the manifold M. Let

/: A—*N and/': T(M/A)—*T(N) (N is a manifold) be continuous maps such

that the following diagram commutes:

/'
T(M/A) U T(N)

1    /   l
A      ±*   N

Definition. The pair (/,/') is called an M-regular map, or M-immersion,

of A in N if the following condition is satisfied: there is a neighborhood U of A

in M and an immersion g: ZJ—►vV such that g*| T(M/A)=f. It follows that

g|.4 =/. g is called an admissible extension off. Observe that/ is completely

determined by/'; nevertheless we shall use the redundant notation (/,/') for

Af-immersions. We say that (/, /') is Ck if g can be chosen to be C*. We shall

use the notation: (/,/'): A^*N is an M-immersion. The following properties

of Af-immersions (/,/'): A—+N are immediate:
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(1) /' is a vector space monomorphism on each fiber of T(M/A).

(2) If A is a submanifold of M,/is an immersion of A.

(3) If (g, g') is an Af-immersion of B in 7, and f (A) EB, then (gf, g'f)
is an Af-immersion of A in 7.

(4) If £/ is an open subset of M containing A, then an M-immersion of

A is a [/-immersion of .4, and conversely.

(5) If BEA, then (/|B,/'| T(M/B)) is an Af-immersion of B.

(6) If A=M, f is an immersion of M and f =/*.
(7) If 7 is a submanifold of M containing A, then (/, f'\ T(V/A)) is a

7-immersion of A.

(8) If W is an open set of N such that f(A)QW, then (/, /') is an Af-
immersion of A in W; conversely, any Af-immersion of A in W is also an

Af-immersion of A in N.

Definition. Let BEA EM be subsets. If (/,/'), (g, g'):A->N are M-

immersions such that/|5=g|P and/'| T(M/B)=g'\ T(M/B), we say that

(/, /') and (g, g') are tangent on B, and write this as (/, /') | B = (g, g') \ B.

By (1) above,/' induces a map Tk(M/A)-+Tk(N), given by {Xx, ■ ■ ■ ,Xk}

—+{fXi, • • • ,f'Xk}. We shall usef to denote this map also.

We topologize the set of Af-immersions of A in Af as a subspace of the

space of continuous maps (compact-open topology) of T(M/A)—*T(N), using

the embedding (/, /')—»/'. It follows that the various compositions, restric-

tions, and inclusions discussed in (1) through (8) above are continuous maps.

Next we prove a lemma that gives certain sufficient conditions that (/,/')

be an Af-immersion.

Lemma 3.1. Let A be a submanifold of M; assume 8M=dA= empty set.

Let f: A—*N be a C* immersion. Letf: T(M/A)^>T(AT) be a Ck map covering

f with the following properties: f is a vector space monomorphism on each fiber of

T(M/A), andf'\ T(A) =/*. Then (/,/') is a Ck M-immersion of A.

Proof. Let U be a tubular neighborhood of A, and 8: U-J>T(M/A) the

identification of U with a neighborhood of the zero cross-section of the normal

bundle of A in Af. The map g: U—>N given by

6 f
U -* T(M/A) U T(N) -» N,

where the last map is the exponential, is C, and g*| T(M/A)=f. Since/'

preserves linear independence by the hypothesis, the Jacobian matrix of g

has maximal rank at points of A; by continuity, it has maximal rank in a

neighborhood of A. This means g is an admissible extension of/, and so (/,/')

is an Af-immersion. It is obvious that (/, /') is Ck.

Definition. Such a g is called a canonical extension of/.

Let/, /', and A be as in 3.1. Suppose further that A has a family <b of

normal frames of highest dimension, i.e., for each xEA, <p(x) is an element
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of Tr(M/A) which spans the fiber of the normal bundle to A, where r = dim Af

— dim A. Then f'<j>(x) is a family of transversal r-frames on/(^4). Conversely,

given a family of transversal r-frames yf/(x), f is completely determined by

the conditions f'X=f*X ii XET(A), f'4>(x)=f(x). Keeping <p fixed, it is
clear that (/,/')—>(/, ^) is a one-one correspondence between Af-immersions

(/, /') and pairs (g, \p) where g is an immersion of A and \p is a transversal

r-field on g(A); for given/ and \p,f constructed as above satisfies the hypoth-

esis of 3.1, and therefore (/,/') is an Af-immersion. Specializing to the case

M = Ek+r, A =Dk, <p(x)= {ek+i(x), • • • , ek+r(x)} (where as usual ei(x) is the

ith coordinate vector at x), we have:

Theorem 3.2. There is a homeomcrphism between the space of Ek+r-immer-

sions (/,/'): Dk—»Pn and the space of pairs (g, ip), g: Dk-*En an immersion and

\j/ a transversal r-field. (This space is a subspace of (space of immersions, C1

topology) X (space of maps Dk—>Tr(En), compact-open topology).) The homeo-

morphism is given by (/, /')—>(/, 4>) where \f/(x) —f'{ek+\(x), • • • , ek+r(x)}.

Moreover, (/, /') is Ck if and only iff and \p are Ck.

Proof. It suffices to check the continuity of the map and its inverse;

this follows immediately from the definitions of the topologies involved.

An analogous result holds for S*_1:

Theorem 3.3. There is a homeomorphism between the space of Ek+r-immer-

sions (/, /'): S*_1—»Pn and the space of pairs (g, \p), where g: S4_1—>P" is an

immersion and \p is a transversal (r+1)-field. The homeomorphism is given as

follows: Let <j> be the normal (r + 1)-field on S*_1 given by <p(x)

= {r(x), ek+i(x), • • • , ek+r(x)}, where r(x) is the outward unit normal to S*_1

in Ek; the homeomorphism is defined by (f, /')—>(/, ^) where ^(x) =f'<p(x).

These theorems will enable us to generalize the results of the earlier sec-

tions to P*+r-immersions of Dk and Sk~l, by combining them with simple

properties of transversal fields.

Definition. Let (/, /') and (g, g') be Af-immersions of A in N such that

for a certain (possibly empty) subset B of A, (/,/') and (g, g') are tangent on

B. We say that (/, /') and (g, g') are M-regularly homotopic (rel B) if there is

a path (ht, hi) in the space of all Af-immersions of A in N joining (/, /') to

(g, &')> such that for each I, (ht, hl)\B = (f, f')\B. Such a path is called an
M-regular homotopy (rel B), and it is Ck if every (ht, hi) is Ck.

Definition. The space of all C°° P'-immersions of Dk in E" is denoted by

Q(k, n; q); the space of all CK P'-immersions of S*_1 in P" is denoted by

g(k, n; q).

It is clear that g(k, n; k) is the same as the space £*,„ defined in §1;

$'(k, n; k) is identified with (&*,„ by means of 3.3.

In order to prove the next theorem we need the following lemma; it

must be well known, but I do not know a reference. Let Af be a manifold.
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Lemma 3.4. Let 36 be the space of C maps Dk—*M and H' the space of C°°

maps Sk~1^M, both spaces having the compact-open topology. Let ir: 3E—>36' be

the restriction map. Conclusion: ir has the covering homotopy property.

Proof. Let P be a polyhedron and G:PXP-*3E', f:PX0^>%, such that

G(p, 0) = 7r/(/>, 0). We must extend / to F:PXI-*X so that wF=G. By a

compactness argument, / can be subdivided into subintervals lj so small that

if t, t'ELi, PEP, xESk~l, then G(p, t)(x) and G(p, t')(x) lie in the same

convex open set of M. It suffices to define F successively on PXP, PXh, etc.

Therefore we assume that I has the property that for any t, t'EI, PEP,

xGS*-1, G(p, t)(x) and G(p, t')(x) lie in the same convex open set of Af.

Let u: IXI— {(1, 0) }—*I be a function with the following properties:

u(x, y) is C°° in x when y is held fixed;

u(x, y) = l if x = l;

u(x,y)=0 if y = 0or 0^x^1/2.

If a, b are in a convex neighborhood of Af, tEI, let [a, b; t] be the point

c on the geodesic joining a to & in the convex neighborhood such that

d(a, c)/d(a, b) = l-t, d(c, b)/d(a, b) =t.HtEI, PEP, xEDk, define

w     WN       l[f(P,0)(x),G(p,t)(x/\x\);u(\x\,t)]      iixj*0,
F(p, t)(x) =  <

V(P,0)(x) ifs = 0.

This defines a map F: PXf—>£ with the required properties.

Now   let   irq: g(k,n;q) —» g'(k,n;q)    be   defined    by

*«tf.   f') = (f\Sk-\f')\T(E*/Sk-i).

H q = k, this is the map w: S*,„—KB*,„ defined in §1.

Theorem 3.5. 7r9 /fas iAe covering homotopy property if k<n.

Proof. The case q = k is covered by 1.1; assume o>£.

Let r: £'(*, »; 2)->5'(*. »; *) be defined by f (/,/') = (/,/') | T(Ek/Sk~^). Let
£: #'(£, n; k)—>(&k,n be the homeomorphism of 3.3; explicitly, £(/, /') = (/, \p)

with \[/(x)=f'r(x). Define y:g(k, n; q)—>S*,„ by 7(/,/') =/. It is easily seen

that the following diagram is commutative:

7
#0, «; o) -»S*.„

#'(£, »; 5) -> 03*,„

Let P be a polyhedron, which we may assume to be a product of intervals,

and suppose we are given maps h:P^g, Pf:PXf—><0' such that H(x, 0)

= irqh(x). We are to find G: P X/->$ such that irqG = H and G(x, 0)=h(x).

By 1.1, there exists G':PXl->8k,n such that irG'=^H, and G'(*, 0)

= yh(x). Let A-*DkXPXl be the bundle whose fiber over the point (d, p, t)

is the space of q — k frames transversal to G'(p, t)(Dk) at the point G'(p, t)(d).
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Via 3.2 and 3.3, we interpret h and H as defining a cross-section of A over

DkXPXO\JSk~1XPXl, and it suffices to prove that this cross-section can

be extended over DkXPXl so that it is Cx when restricted to DkXpXt. Since

P*XPXf admits P*XPXOWS*-xXPX/ as a deformation retract, the cross-

section can be extended. Since P is a product of intervals, A is a trivial bun-

dle, and a cross-section is merely a map into the fiber, which is a manifold.

3.4 implies that the cross-section can be chosen with the required differenti-

ability properties.

Definition. For (f,f')E$(k, n; q) put Tq(f,f) =<>,(/,/')).

Lemma 3.6. Let y: g(k, n; q)—>8k,n be the map described above. Then

711\(/> /'): Ft(f, f')—>Y(f) has the covering homotopy property.

Proof. The proof is similar in principle to that of 3.5 and the details are

left to the reader. The idea is that by 3.2, Tq(f, /') is the space of those im-

mersions and transversal fields that agree with (/, /') on S*_1, and y projects

this space onto the space of immersions that agree with / on S*-1. 3.6 says

that if the immersion is varied continuously, the transversal field can be

varied along with it.

Let <J?9: $(k, n; q)—>(space of continuous maps Dh—>F„,,), the latter space

with the compact open topology, as follows :$q(f,f')(x) ~f'{ei(x), • • • ,eq(x)}.

If q = k, $3 is the map <£ defined in §1. Define

r,'(/,/') = {g; Dk-^vn,k;g\sk-i = $,(/,/')}

with the compact-open topology; then ^q(Tq(f,f')) CIV (/,/').

Theorem 3.7. <i>9: r9(/, /')—»r,' (/, /') is a weak homotopy equivalence for

every (f, f) in g{k, n; q), if k<n.

Proof. Let p: F„,a—>F„,t be the bundle projection p{Xi, ■ • • , Xq}

= {Xi, • • ■, Xk}. Lety' -.T^ (f, f')-+T'(f) be dehnedbyy'(g) =pg: Dk-+Vn,k.
p, and hence y', has the covering homotopy property. It is easily seen that

the following diagram commutes:

r,(/,/')-^* r9' (/,/')

It   #       W
r(/)   —>   T'(f)

By 2.10, $ is a weak homotopy equivalence. By 3.6 y has the covering

homotopy property. Let Y = y~1(y(f, /')) and Y'=y'~l(y'$q(f, /')). If we

can show that $4| Y: Y^>Y' is a weak homotopy equivalence we are done,

for then <J>„ must be a weak homotopy equivalence, by applying the five

lemma to the following commutative diagram:

*<+l(T(f)) -+ TTi(Y) -> XiiW.f)) ~* TTi(T(f)) -> TTi-l(Y)

i(*|r)#l(*,|F)#   !**#       H*|r)*   IOMf),

Ti+i(r'(/)) - T,(F') -» X,(r,' (/,/')) -+ ir,(r'(/)) -> ttUY')
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By 3.2 Y is the space of transversal q — k fields of the immersion/, and Y' is

the space of continuous maps g: Dk—*Vn,q such that pg=$y(f, /'). Given a

q — k field £ transversal to / we obtain, by 4>9, a map g: Dk—>Vn,q such that

y'(g)=$y(f, /')• Conversely, given g: P*->7B,„ g(x)={gx(x), • • • , g,(x)}

such that pg(x) =/*{ei(x), • • • , ek(x)}, it follows that {gi+i(x), • • • , g9(x)}

must be transversal to f(Dk) atf(x), and thus g defines a transversal q — k

field £(g). Since "f^i- and £$, are identity maps on Y and F' respectively,

$a| F is a homeomorphism, and we are done.

Let (/, /'), (g, g')E$(k, n; q), with irq(f, f)=T,(g, g'), so that (/, /')
ETq(g, g'). Then $«(/,/') and $q(g, g') are maps Dk—>Vn,q which are tangent

on Sk~K

Definition. fi(/', g')=d($q(f, /'), *,(g, g'))G:ri(7B,8) is called the ob-

struction to an E"-regular homotopy (rel Sk~l) between (/,/') and (g, g').

Theorem 3.8. i2(/', g') has the following properties, if k<n:

(a) fi(/', g') =0 if and only if (/, /') and (g, g') are C°° E"-regularly homo-

topic (rel S*-1),

(b) Given (f,f')ES(k, n; q) and aE^k(Vn,q) there exists (g, g')ETq(f,f)
such that fl(/', g') =a,

(c) If (g, g') and (h, V) are in Vq(f,f), then fi(/', g')+Q(g', h') = Q(f, h'),
(d) fi(/',/') = o,
(e) If Q(f, g')=0 and H:DkXI->V„,q is a homotopy (rel 5*"1) between

$„(/,/') and 4>9(g, g'), there is a Ca Eq-regular homotopy (ft, //) (rel Sk~l) be-

tween (f,f')and (g,g') such that the map DkXl—^Vn,qgivenby(x,t) -^$q(ft,f!)
(x) is homotopic to H (rel DkXi^JSk~1Xl).

Proof. Follows immediately from 3.7 and 1.3.

An explicit definition of fi(/', g') is as follows: identify the upper and

lower hemispheres of Sk with Dk. Let co: Sk —» 7„,4 be the map w(x)

= f'{ex(x), • ■ • , eq(x)} if x is in the upper hemisphere, u(x)

= g'{ei(x), • • • , eq(x)} if x is in the lower hemisphere; oi(x) is well defined

on the equator because (/, /') and (g, g') agree on 5*_1. Then 12(/', g') is the

homotopy class of co.

Next we define an invariant r(g') defined for (g, g')E3'(k,n; q) whose van-

ishing implies that (g, g') comes from Q(k, n; q).

(/,/')E3'(k, n; q) is said to be extendible if there is a (g, g')Ed(k, n; q)

such that 7r9(g, g') = (/,/'). Theorem 3.5 has the following important con-

sequence: if (h, h') and (/,/') are in g'(k, n; q) and are C°° Eq-regularly homo-

topic, then (h, h') is extendible if and only if (/, /') is extendible.

Proof. To say that (/, /') and (h, h') are C°° P«-regularly homotopic is the

same as saying there is an arc joining them in g'(k, n;q). If (/,/') is extendible,

then the map of a one-point polyhedron into it can be lifted to $(k, n; q),

and by 3.5, the path connecting (/, /') and (h, h') can be lifted to $ also;

therefore (h, h') is in the image of irt, i.e., is extendible.
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Definition. Let (/, f'):Sk->En be a O £*-immersion, i.e., (/, /')

E$'(k, n; q). The obstruction to extending (/,/'), denoted by t(/')Gth-i(^,,),

is  the  homotopy class of  the  map  S*-1 —> F„.„ defined  by

x->f'{ei(x), ■• • , eq(x)}.

Theorem 3.9. If k<n and r(f) = 0, (/, /') is extendible.

Proof. As is shown above, it suffices to show that (/,/') is C°° P'-regularly

homotopic to an extendible P'-immersion, (i, i'). We shall do this as follows:

first we make (/,/') agree with (i, i') in a neighborhood of a point p. Then we

embed a k— 1 disk diffeomorphically in the complement of p so that its bound-

ary is in the neighborhood. We can consider / and i as E" immersions of this

disk that are tangent on the boundary; it turns out that the assumption

r = 0 implies that these immersions are P'-regularly homotopic (rel boundary

of the disk). This will imply that (/,/') and (i, i') are C°° £9-regu'arly homo-

topic. We can take for (i, *') either the identity or the reflection in a hyper-

plane; the latter is needed only if q — n and/' reverses orientation. There is a

proper affine transformation P of E" such that (Tf, Tf) \ p = (i, i') \ p where p

is a point of S*_1. Applying 2.5, (with L — p) we can deform (Tf, P*/') so

that it agrees with (i, i') in a neighborhood of p, and it suffices to show that

this new P«-immersion is extendible. We therefore assume: there is a point

PES''-1 and a neighborhood W of p such that (/, /') | W= (i, i') | W.
Let f: Dk~i—>Sk~1—p be a Cm regular homeomorphism such that X(Sk~2)

EW, and such that the orientations of the frames \ei(y), ■ ■ • , c*(y)} and

{{*ei(!Tl(y)). • • • . Uek-i^'Ky)), r(y)} agree for each yGf (P*"1)- It follows

that the field of frames {e,(y)}, i=l, • • • , k, defined on S*_1, can be de-
formed in P*(P*) to a family [el (y)} such that for xEDk-\ el (£(x)) =f*e,' (x)

fori=l, • • •, k — l, and el ($(x)) =r(£(x)). To see this, let A(x) be the linear

transformation, defined for each xGP*-1, that takes the frame e,(f(ac)) into

el (£(x)). Since these frames have the same orientation, A(x) is in the com-

ponent of the identity of GL(k). Since Dk~l is contractible, the map A : Dk~l

—*GL(k) is homotopic to the constant map taking Dk into the identity. Such

a homotopy yields the desired deformation of {e,(y)} for yE%(Dk~l); the

deformation can be extended over S*_1 by the usual homotopy extension

theorem. By 3.4 we may assume that the field {el (y)} is CK. For

i = fc + l, • • • , q put el(y)=et(y).
Define two C°° £9-immersions (k0, ko), (h, k{): Dk~l-yEn as follows:

z.       „   u,   , ^       f(m*ei(x), i=l,---,k-l,
ko=fi-, koet(x) =«„,.., „ .

V/ el (j-(x)), i = k, ■ ■ ■ , q,

...   ,./    ,s        f(tfW*), i = 1, •••,*- 1,
ki = if; k{ ei{x) = <

\i'el(£(x)), i = k, ■ ■ • , q.

Observe that (h, ko) and (ki, kl) agree on S*-2 because (/, /') and (i, i')
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agree on W. Assertion: fl(jfe0', kx')=r(f). To see this, let <p, <p':^(Dk-1)

-^P8(PVf(P*-1)) be the cross-sections <p(y) = {e,(y)}, <p'(y) = {e< (y)},

i=l, ■ • • , q. By the definition of e', <p and </>' agree f(S*-2). Since i' and/'

agree on T(E*/$(Sk~2)), the four maps i'<p, i'<p', f'<b, f<p': $(Dk~l)^Vn,q all

agree on %(Sk~2). We shall prove:

(1) d(f'<P,i'<b)=T(f'),
(2) d(f'<p',i'<p')=Sl(ko\k{),
(3) d(f'cb,i'<b)=d(f'<p',i'<p'),_

where d is the obstruction cochain (see 1.3). This will prove r(f') =Q(ko, kx).

(3) is proved by observing that d> and d>' are homotopic, since {e/ } is a de-

formation of {ei}. (2) follows from the definition of £2. (1) holds because

f'<p and i'<p have extensions X, p: S4_1—>7„,, defined by X(x) =f {et(x)},

p(x) =i'{ei(x)}; X and p agree on 17. [X] — [p] is the homotopy class of the

map obtained by joining two spheres at a point, mapping one by X, the other

by p, and composing this map with the map sending a third sphere onto the

join, the equator going into the common point, and one hemisphere going

onto each sphere, with degrees 1 and — 1 respectively. Since X and p agree on

17, this is the same as identifying each hemisphere with f (Dk~l) and mapping

one by X|f(-^*_1) and the other by p\%(Dk~l), which is exactly the definition

of d(f'<p, i'4>). Since i' and {et(x)} can be extended to the interior of Dk, p is

null homotopic. Finally, [X]=t(/') by definition. Thus d(f<p, i'd>)= [X]— [p]

= r(f). This proves (1) and so t>=Q.

It r(/')=0, then by 3.8 there is a O P«-regular homotopy (rel Sk~2),

(kt, k[): P*_1—>P". k&~x is a C" regular homotopy of f (P*_1) and it is tangent

to i on f(S*-2) at each stage /. By 2.5 (withZ=f(5*-2), C = I, F(t)=i, G(t)

= £~1kt) we may deform %~*kt so that it agrees with i in a neighborhood of

f(S*-2). We can cover the deformation by one of ki (see 3.2) so that (gt, gi)

defined below is a C°° P9-regular homotopy of Sk~l in Pn:

= i/W if y G Sh~1 " f(Z?i_,)'

g y       Ur'W    iiyEUD"-1),
, (kieiQrKy))    HyE r(Z)*-1),     »' - 1, • • •,«,

S' Xfe'i (y)    HyE S*"1 - f(D*-»),    i = 1, • ■ •, q.
Then

,,     //GO  « y G s"~l - kp*-1),

\hr\y) = m~Ky) = /(y)   if y G f(P*-').
Similarly, g\(y)=i(y); and

JA/(y)   if y G 5*-1 - f(P*-'),

go e'i (y) = (C/r)*eiCf-1(y)) = /^^(THy)) = /'«/ (y)
ykieArKy)) = \ .    4

» - 1, •••,*- l,

\fel(K-l(y)) =f'e'i(y), i = k, ■ ■ ■ , q.
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Similarly, glel (y) =i'el (y). This shows that (gt, gl) is a C°° £«-reguIar homo-

topy between (/,/') and (i, i'). This proves 3.9.

4. Immersions of simplices. In this section we extend the definitions and

properties of t and fi to P'-immersions of simplices.

A* denotes a fixed fe-simplex in £* whose barycenter is 0; A* is the bound-

ary of A*. 6: S*-1—>A* is the radial projection from 0: if xGS*~\ d(x) is the

intersection with A* of the half line radiating from 0 through x; 6 is a homeo-

morphism. A* is oriented so that 6 preserves orientation.

Let (/,/'): A*->Pn be a C°° £«-immersion. Let v: Sk~l-+Vn,q be defined by

v(x)=f'{ei(6(x)), ■ ■ ■ , eq(0(x))}. We define t(/')G^_i(F„,,) to be the

homotopy class of v.

Theorem 4.1. (/,/') is extendible to a C™Eq-immersion c/A* ifr(f') = 0 and

k<n.

Proof. Let h: U—>E" be an admissible C°° extension of/, where ZJ is an

£'-neighborhood of A*. Choose € > 0 small enough so that {x: d(x,Ak) < e} C ZJ.

Let a: Dk—>Ek he a regular C°° orientation preserving homeomorphism with

the properties that a(Sk~1) C(interior of A*), and if xES^1, d(a(x), 6(x)) <e;

thus a(Sk~1) E U.

Let k: S*"1—>£" be the C°° immersion A(a|S*-1)- Define

. (h*a*ei(x)        i = 1. • • • , k,
k':T(E* I S*-i) -* P(£») by tc'e^x) « { * '        .       '

Kh*ei(a(x))        i = k + 1, • • • , q.

(k, k') is a C°° £9-immersion of Sk~l in £" by 3.3. We now show that t(k')

= r(/'): let at: S*-1-*ZJbe defined by at(x) = (l-t)a(x)+t(d(x)-a(x)). Then
a0 = a;|S*_1 and ai=0. The two maps Sk~l—->Vk,k defined respectively by

x —>a*ei(x) and x—*e,«(x), i=l, • • • , fe, are homotopic, since each is null

homotopic, being extendible to Dk. This implies that the map S*_1—>F„,9

given by x —> A*{a*ei(x), • • • , a*e*(x), ek+i(a(x)), • • • , eq(a(x))} whose

homotopy class is t(k, k'), is homotopic to the map

x-*h*{ei(a(x)), • • • , eq(a(x))},

which in turn is homotopic to the map x —> h*[ei(6(x)), • • ■ , eq(6(x))}, using

at. The homotopy class of this last map is t(/'), because fa,X — f'X if

XET(E"/Ak). Therefore t(k') =t(/').

Now assume t(/')=0. By 3.9, (k, k') is extendible to a C°° £8-immersion

of Dk in £", which we shall also denote by (k, k'). Let (g, g'): a(P*)—»£" be

the C°° £8-immersion defined by g(a(x)) = k(x), g'e,-(a(x)) = k'c<(x), if

i = k+l, ■ ■ • , q, and gW,(x) = k'c,(x), i=l, • • • , fe. Then (g, gOlafS*-1)
= (h, h*) | a(S*-1). for if xGS*-1, we have by definition g(a(x)) = k(x) = h(a(x));

if i' = fe + l, • • • , g, g'c,(a(x))=K'c,(x)=A*c,(a(x)), while if i=l, • • • , fe,
g'a*e,(x) = k'et(x) =h*a*ei(x). Let gi be an admissible extension of g; applying

2.5 we may assume that gi and h agree on a neighborhood V of a(Sk~1) in £«.

Now define (fo,fo) as follows:/0:A*—»£" is given by
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(h(x)       ilxEUC\Ak,
fo(x) =   <

\g(x)        if x E a(Dk).

Since g and h agree on 7, /o is a well defined Ca immersion of A* in E", and

/o| A* =/./»': T(E"/Ak)^T(En) is defined as follows: if X is tangent to

. (h*X        HxEUr\Ak,
Ak at x, foX =  {

\gx*X       if x E «(P*).

/o' is well defined because g* and A* agree on T(E"/V). It follows from 3.1

that (/0, /o') is a C00 P«-immersion of A* in E"; although 3.1 is stated for sub-

manifolds, we can extend/to a neighborhood of A* in Ek, (e.g., UC\Ek) and

cover it with an extension of/0' and apply 3.1, taking the neighborhood as a

submanifold of P8. It is clear that (fo.fo) is an extension of (/,/'). This com-

pletes the proof.

Remark. / has an admissible extension that agrees with h in a neighbor-

hood of A*. (Compare 5.8.)

Let 0': P*—>A* be an extension of 0: 5*_1—>A*. Let p: Sk-*Dk be the vertical

projection p(xx, ■ • • , x*+i) = (xi, • • • , X*). Put p'=6'p, thus p' is a map of

Sk onto A*.

Let (/, /') and (g, g') be C°° P«-immersion of A* in E" that are tangent on

A*. Let v: Sk—>7„,, be defined by

, ,        (f'{ei(P'(x))}, i = 1, • • • , q, if xk+x ̂  0,
v(x) = <    , ,

{g'{ei(p'(x))l, i - 1, • • • , f, if xt+i g 0.

Definition. Q(/', g')G?r*(7n,a) is the homotopy class of n.

Theorem 4.2. If k<n and fi(/', g') = 0, then (/,/') and (g, g') are C°° E"-
regularly homotopic.

Proof. We leave the details to the reader, the proof being similar in prin-

ciple to that of 4.1. Let/i, gi be admissible extensions of / and g respectively;

fx and gi are C"° immersions of an P«-neighborhood of A*; (/i,/i*) and (gi, gi*)

are tangent to (/,/') and (g, g') respectively on A*. We apply 2.5 and assume

that/i and gi agree on a neighborhood U of A* in Eq. Let a: Dk^>Ek be a C"

regular orientation preserving homeomorphism such that a(Sk~l) E U(~\ (in-

terior of A*). a|5*_1 is homotopic in VT\Ak to 0: S*_I—>A*. Let ho=fxa,

hx=gxa; then A0 and hx are C°° immersions of Dk in E". Define

uikimwm-+nmwei(*) = {f7f>;   i = ̂ V'**
l/i*e,(a(*)),      * = k + 1, • • • , q,

and A/ is similarly defined in terms of g. Then for j = 0, 1, (Ay, A/) are CM

P'-immersions of Dk in P" that are tangent on 5*-1. It is easy to see that

fi(A0', hx')=Q(f, g'). If this last is 0, then by 3.8a there is a C" P«-regular

homotopy (rel 5*_1) (A,, A/) joining (A0, A0') and (Ai, hx'). This can be used
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to define an £8-regular homotopy on a(Dk), which can be combined with the

constant £8-regular homotopy on Ak — a(Dk) to produce an £8-regular homo-

topy (rel A*) between (/,/') and (g, g'). 2.5 is used to make this C°°.

Remark. If / and g agree on a neighborhood of A*, we can choose the

homotopy to be constant on a (possibly smaller) neighborhood of A*.

Theorem 4.3. Let (/,/'), (g, g'), (h, h') be C°° E"-immersions c/A* in £"

which are all tangent on A*.

(a) fi(/', g')+fi(g', h')=Q(f, h').
(b) fi(/',/')=o.
(c) Given aE^k(Vn,q) there exists (g, g') such that fi(/', g') =a.

(d) Suppose fi(/', g')=0, and k<n. Let P: A*Xf—>F„,8 be a homotopy

(rel A*) between the maps F0, Fi:Ak—*V„,q defined respectively by x—>/' {et(x)}

and x—>g' {ei(x)}, i = 1, • • • , q. Then there is a C00 E"-regular homotopy (/,, //)

between (/, /') and (g, g') such that the map AkXl—*Vn,q defined by (x, t)

->//e,(x) is homotopic (rel AkXIVAkXI) to F.

Proof, (a) and (b) follow directly from the definition of fi. (c) and (d)

follow from (b) and (e) of 3.8.

5. Immersions of manifolds. In this section we consider the problem of

extending an Af-immersion, or an Af-regular homotopy, defined on a skele-

ton of Af, to the next skeleton. For convenience we shall assume that we are

immersing Af in a manifold N without boundary. This is not a strong restric-

tion; an immersion into a manifold with a boundary can always be moved

away from the boundary by means of a vector field normal to the boundary.

The results of this section can be put in the following form: The correspond-

ence /—>/* induces a one-one correspondence between the regular homotopy classes

of immersions f : Af—»AZ and the equivariant-homotopy classes of equivariant

maps Tk(M)—*Tk(N), where fe = dim Af <dim N. First we discuss equivariant

maps.

Let a group G act on topological spaces A and B on the right and left

respectively. A map/: A—>B is equivariant (with respect to the given actions

of G) if for every xG^4 and gEG, we have f(xg) = g~~lf(x). A homotopy is

equivariant if it is an equivariant map at each stage. If / and g are equi-

variantly homotopic, we shall write /^^«g. If G acts on A, we let G act on

A XI by (x, t)g=(xg, t); similarly for ^4XfXf; by an equivariant map of

A XI, or A XIXI, we mean with respect to these actions.

Theorem 5.1. Let p: E—>B be a principal G-bundle and let p': E'^>B be an

associated bundle with fiber Y. Then the space of cross-sections of £' is homeo-

morphic to the space of equivariant maps £—> Y (both spaces having the compact-

open topology).

Proof. £' can be defined as the set of equivalence classes (e, y) of the fol-

lowing relation on £XF: (e, y)~(eg, g~xy), with p'(e, y) = p(e). If /: £—>F
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is equivariant, define the cross-section /': B—>P' by f'(x) — (e, f(e)) where e

is any element of p~l(x). If g: B—*E' is a cross-section, define g': E—*Y by

g'(e) =y where gp(e) = (e, y). It is easy to check that/' and g' are well defined,

g' is equivariant,/' is a cross-section, (/')'=/, (g')'=g, and/—>/' is a homeo-

morphism.

Now assume B is a simplicial complex. Let 5, denote the i-skcleton of B,

and let/: ZAJB,—>P' be a cross-section. Assume also that the fiber Y is simple

in dimension i. We recall the definition of the obstruction cochain of/: For

each xEB, let irx be the group 7r,(p'_1(x)). The groups irx form a local system;

see [10] for the definition and properties of local systems. For each simplex

o- of B let b(<r) be its barycenter, and put 7r, = 7ri,(,). Let Ci+1(B, L; {irx}) be

the group of relative i + l-cochains of B mod L with values in the local system

{tx} ; an element of this group assigns to each i + 1 simplex a of B an element

of ira. The obstruction cochain C(f) is defined as follows: assume a has an

orientation; let gt: cV—xr be a homotopy such that go(x) =x, gi(x) =b(cr). Since

/ covers g0, we can construct a homotopy ft covering gt such that /o =/.

Then C(f)(a) is the homotopy class of the map/i: cV—»/>'-1(&(<r)). For the

properties of C(f) see [10 ].

If we choose a local product representation <p: p'~1(<r)—xrX Y, then the

homotopy class of

defines C(f)(a) up to the action of ir0(G) on 7T,( Y), where 7r0(G) is the quotient

of G by the arc-component of the identity element, because two local product

representations differ by an element of G.

A local product representation for p'~l(a) is obtained by picking such a

representation, \p: p~l(a)^>aXG, for p~x(o-), and defining<p :p'_1(o-)—xrX Fas

follows: if eEp_1(x), let ^(e) = (x, g). Then <p(e, y) = (x, gy). It is easily seen

that this is independent of the choice of e.

Now let f: p~1(a)-^Y be equivariant and let g: a—>p'~l(a) be the cor-

responding cross-section (5.1). Chasing through the definitions involved

proves

Lemma 5.2. Up to the action ofito(G) on 7r,(y), C(g)(a) is obtained as follows:

Let \p: p~l(a)—>aXG be a local product representation. Let hEG be arbitrary.

Then C(g)(a) is the homotopy class of the map a—>F defined by x—>/(^,_1(x, A)).

It is natural to define the obstruction to extending an equivariant map to

be the obstruction cochain of the corresponding cross-section. If / is equi-

variant we denote its obstruction cochain by C(f). If / is defined on

p~l(L\JBi),f is extendible to an equivariant map of p~x(L\JBi+x) if and only

if C(/) = 0.
If Af is a manifold, we describe the action of G = GL(r) on P,(Af), rgq.

Let {Xi} ETq(M) and gGG, and suppose g is represented by the matrix
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(a,-k). Then {X,}g= F,- where F< is defined by F, = X,- if i = r + l, • • ■ , q,

and F,= ^ J.jaj.X,-, if i= 1, • • • , r. This defines an action of G on the right;

if G is to act on the left, we put gJA',} = {X^g"1. In particular, GL(k) acts

on Vn.k on the left.

Now let (/,/'): A*->£" be an £8-immersion. Put T=Tq(Eq/Ak) and let

p: P—>A* be the projection. Then/': p~1(kk)—>Vn,t is equivariant. It follows

from 5.2 that the obstruction to extending/' over T is the cochain that as-

signs to A* the homotopy class of the map A*—*Vn,q defined by x—>/' {e,(x)},

i= 1, • • • , q. Since this class is r(f'), we have proved

Theorem 5.3. r(/') = C(f')(Ak).

If go, gi are equivariant maps agreeing on p~1(LyjBi), we define the

obstruction to the equivariant homotopy (rel UUBi) between go and gi to be the

obstruction to a homotopy (rel L\JBi) between the corresponding cross-

sections. We denote the obstruction by d(g0, gi)ECi+1(B, L; \TTi+i(p'~i(x))}).

An analysis of definitions leads to

Theorem 5.4. Let (/, /'), (g, g'): A*—>£" be Eq-immersions tangent on A*.

ThenQ(f',g')=d(f, g')(Ak).

When t and fi vanish we have more precise results:

Theorem 5.5. Let (f,f'):Ak—>En be a C°° Eq-immersion, k<n. Suppose

h': P9(£8/A*)—>F„,9 is an equivariant extension off. Then (/,/') can be ex-

tended to a C°° E"-immersion (g, g'): A*—*En such that h'~eg' (rel A*).

Proof. Since/' is extendible, C(f') =0, and therefore r(f') =0 by 5.3. By
4.1, (/,/') has a C°° extension (fe, fe'), and fe' agrees with h' on Tq(Eq/Ah). By

4.3c there is a C°° £8-immersion (g, g') of A* in £n such that fi(fe', g') =d(fe', h').

Then d(g', h') = d(g', fe') +d(fe', h') = fi(g', fe') +d(k', h') by 5.4. Since d(fe', A')
= fi(fe', g') = -fi(g', fe'), d(g', h') =0, and so g'^/*' (rel A*).

Theorem 5.6. PcZ (/,/'), (g, g'):A*—>£" &e C°° Eq-immersions tangent on

A*. PeZ hi: Tq(Eq/Ak)—>Vn,q be an equivariant homotopy (rel Ak) between f and

g'. There is a C°° Eq-regular homotopy (rel A*) (ft, ft) between (/,/') and (g, g')

such that the two maps Tq(Eq/Aq) XI—+Vn,q defined respectively by (X, t)—>h[X

and (X, t)->fIXareequivariantly homotopic (rel Tq(Eq/Ak) XlVTq(Eq/Ak) XI).

Proof. Follows from 4.3d.

In the rest of this section we make the following assumptions: Af is a

manifold of dimension fe, A7 is a manifold without boundary of dimension

n>k. GL(k) acts on P*(A0 on the right and on Tk(N) on the left, in the

manner described earlier in this section. We assume that M has a C°° triangula-

tion in the sense of Milnor [5] or (equivalently) Whitehead [ll]. We shall

use only the property that each simplex of the triangulation is embedded in

Af by a C°° regular homeomorphism.
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Theorem 5.7. Let K and L be subcomplexes of M with KEL. Let (/, /'):

K—>N be a Cx M-immersion and assume that f is extendible to an equivariant

map <p': Tk(M/L)—*Tk(N). Let e be a positive number.

Conclusion. There is a C°° M-immersion (g, g'): L—>N such that

(1) (g,g')\K=(f,f);
(2) g'~^»'(relP);
(3) If <p: L—+N is the unique map covered by <p', then d(g(x), <p(x)) <e.

Proof. The idea is to reduce everything to the case of extending an immer-

sion defined on the boundary of a simplex (of a subdivision of Af) into Eu-

clidean space (a coordinate neighborhood of N) and then use the existence of

an extension of/' to conclude that r(f') =0.

Let 11= { Ui} be a family of open sets of Af with the following properties:

(a) <p(L)EViUi;
(b) Each Ui is a convex coordinate neighborhood of diameter less than e.

Let L' be a subdivision of L so fine that each simplex of V is contained

in a coordinate neighborhood, and the image of each simplex under <p is

contained in some £/,. For each simplex a of L' let U(a) be a particular Ui

containing <p(cr). Put V(a) = intersection of all U(p), aEp. Then 7(cr) is a

convex coordinate neighborhood, since it is a finite intersection of such, and

it contains c6(cr); if a is a face of p, V(&) E V(p). Let Li be the union of K with

the i-skeleton of L'. We shall define successively C°° Af-immersions (Aj, A/):

Li—*N such that:

(i) A,(o-)C7(cr),

(ii) A/^0'1 Tk(M/Li) (rel K) through an equivariant homotopy ^< with

the property that if a£Li, XETk(M/<x), then \pt(X)ETk(N/V(a)).

(iii)  (hi, A/)]P = (/,/').
If L has dimension m, then (hm, A„,) is the desired Af-immersion of L.

Define an Af-immersion (A0, ho): L0—>N by (A0, A0') = (c6, <p')\Lo. This is

trivially C°° and is an Af-immersion because an admissible extension can easily

be constructed by using the exponential map at points of Lo — K, while at

points of K, (<p, <p') coincides with the Af-immersion (/,/'). It is clear that

(i), (ii), and (iii) hold for i = 0.

Now assume that (A,-, A/): Li—>N is a C°° Af-immersion satisfying (i),

(ii) and (iii). Let o-C^.+i have dimension i+1, a (£.K. Let W be a coordinate

neighborhood of a in M; if we identify W with Ek, and 7(er) with P", then

(A,-, A/) | W is a C°° PMmmersion of a in E". By 5.5 we can extend (Aj, A/) to

<r so as to satisfy (ii). If gEK, then (Ai+i, h'i+l) is defined to be (/,/') on <r.

Thus (Aj, hi) can be extended over each i+1 simplex of P. Moreover, we can

assume that the extensions all agree in some neighborhood of L, by the re-

mark following 4.1. Thus we can put all the extensions together to obtain

(Aj+i, hi+1), a C°° Af-immersion of L satisfying (i), (ii) and (iii); this completes

the induction.
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Before proving the next theorem we must prove a lemma motivated by

(he following considerations: Let A be a subset of Af and (ft, ft) an Af-regular

homotopy of A in N. This means that/< is a homotopy of A, and for each t,

ft can be extended to an immersion g< of a neighborhood Ut, such that g<*

and // agree on T(M/A); but we cannot say that gt is a homotopy of some

neighborhood of A in M; even if the g< are defined on some common neighbor-

hood, they may not be continuous in t.

Lemma 5.8. Let (ft, ft): Ak—>N be a C°° Eq-regular homotopy. Assume there

is a neighborhood U of A* in Eq and a C°° regular homotopy gt: U^N such that

for each t, gt is an admissible extension of ft\ A*.

Conclusion. There exists a neighborhood W c/A* in £8 and a Cx regular

homotopy ht: W—*N such that for each t, ht is an admissible extension of ft, and

ht = gt in an Eq neighborhood of A*.

Proof. Let PGA* be obtained by shrinking A* slightly toward 0; we as-

sume that B is disjoint from A* and ZJ contains the boundary B of B. For each

t we can find an P8 neighborhood Vt oi B and a canonical extension (see §3)

fe<: Vt—>N oi ft. By a compactness argument (compare 2.4) we can choose

Vt = F to be independent of t; as t varies, fe( is a regular homotopy of F in N.

Since both g< and kt are admissible extensions of ft on B, it follows that

(gt, gt*)\B = (kt, kt*)\ B. By 2.5 (with L = B, C = I, Fand G given respectively

by kt and gt, W of 2.5 = UC\ V) we can deform g< so that it agrees with kt in

an P8 neighborhood Y of B, with FC UH\ V. Let V be an £8 neighborhood

such that BEYKJV'EV and cl(A*-P)fW is empty. Let ZJ' be an £8
neighborhood such that cl(A*-P) EU'EU, and U'CW is empty. Then
AkEU'yJY\JV; call this last set W. Define ht: W-*N,

gt(x), x E U',

ht(x) = • gt(x) = fe,(x), x E Y,

.*•(*), * = V.

It is easily seen that ht and W have the required properties.

Theorem 5.9. Let KELEM be subcomplexes of M. Let (/, /'), (g, g'):

P—►A7' be C" M-immersions. Let (ft, fl):K—*N be a C°° M-regular homotopy

satisfying the following conditions: (f0, fi ) = (/>/') | K, (fu f) = (g, g')\K',
there is a C°° regular homotopy of a neighborhood of K in N which is an admis-

sible extension of ft at each stage t. Assume also that f I can be extended to an

equivariant homotopy <pl: Tk(M/L)—>Tk(N), such thattpi =/', 4>( =g'- Choose

e>0.
Conclusion, (ft, ft) can be extended to a Cx M-regular homotopy (ht, hi):

L-+N such that:

(1) (h, hi) = (/,/') and (hu hl) = (g, g').
(2) The maps h' and <p': Tk(M/L) Xl—>Tk(A) are equivariantly homotopic

(rel Tk(M/L)XfVTk(M/K)XI).
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(3) There is a C°° regular homotopy of a neighborhood of L which is an ad-

missible extension of ht for each t.

(4) If<pt: L—>N is the unique map covered by <pi, d(ht(x), <pt(x)) <e.

Proof. Let c\x={Ui} be a family of open sets in N with the following

properties:

(a) <j>t(L) CUj Ui for each t.
(b) Each Ui is a convex coordinate neighborhood of diameter <e.

Choose a subdivision Q = to< • • ■ <t, = l of I and a subdivision L' of L

so fine that for any aEL' and i,= [tj-x, tj], <p(aXIj) is contained in some Ui

and each a is contained in a coordinate neighborhood of Af. Let <p(o~XIj)

EU(aXlj)EcU; put 7(o-X/,-)=n,c,, U(pXIi).

Let W be a neighborhood of P in Af and kt: W—>N a CK regular homotopy

such that for each t, kt is an admissible extension of /(, as in the hypothesis.

Put lj = L< \JK. Define (0O„ B'w): L0-^N by (0O«, 0oi) - (<t>t, <t>i) \ U- By the
definition of <p and <p', this is a C°° Af-regular homotopy, when restricted to K;

using the exponential map, it can be made into a C°° Af-regular homotopy of

Lo. Moreover, there is a C°° Af-regular homotopy Wo—*N of some neighbor-

hood I7o of Lo which is an admissible extension of 0o« for each t; this follows

from the assumptions made about ft and properties of the exponential map.

Observe that (0M, B'0l) = (g, g') | lo-

Now assume inductively that there is a G00 extension (0j(, B'u): Li-^N of ft

such that 0ji, (0^) = (g, g') | Li, and a C°° regular homotopy ipn: Wi—>N, where

Wi is a neighborhood of Lt, such that

(i) 0j(crX/,-)C7(o-X_fy) for each <xELi,j=l, • ■ • , s.

(ii) 0/~.0'|P*(Af/Lj)X7 (rel P*(Af/Lj)XJUP*(Af/P)X/).
(iii) ^jj is an admissible extension of 0j* for each t. These conditions hold

for i = 0. Let a be an i+1 simplex of Z,j+i not contained in K. We want to ex-

tend (0j, Bi) to a C°° Af-regular homotopy defined on a. To do this, let

a: Di+1—>(interior of a) be a C00 regular homeomorphism such that a(S')

EWif\<j. There is a CM map a': Tk(Ek/Di+1)^>Tk(M/a) such that (a, a') is a

C" P*-immersion. Then (\pita, i^.<*a') is a C00 P*-regular homotopy of S* in AT.

If we restrict our attention to values of t in /y, the homotopy takes place in

the coordinate neighborhood V(aXli) which may be identified with P".

Since o- is contained in a coordinate neighborhood of Af, we can apply 3.4

and conclude that (^jia, \f/it*a') can be extended a C°° P*-regular homotopy of

Di+1. Doing this for successive values of j we obtain a C°° extension (pt, Pi) of

(\pita, \pit*a'). It follows that (P&t~l, Pi a'-1) is an extension of (if/u, ̂ j<*) | a(S').

By 2.5 we can make this extension agree with (\j/it, yj/u*) in a neighborhood of

a(S'), and together they form a C°° extension of (Bit, B'it), say (qt, qi). By 5.8

there is a C00 regular homotopy of a neighborhood of cr into Af which is an

admissible extension of qt, for each t, and which agrees with \f/it in a neighbor-

hood of <r. Therefore, after doing this for each a, we can put all the (qt, qi)

together, since they have admissible extensions agreeing with \f/it, and we ob-
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tain a C°° Af-regular homotopy (yt, yl): Li+i—>N which is an extension of

(Sit, O'u)- By the inductive hypothesis, (71, 7/) | Z,, = (g, g') | Li. We must show

that for each i + 1 simplex o-C-Z-.+i, the obstruction to an Af-regular homotopy

(rel 0) between (71, yl) 10 and (g, g') \ a vanishes. Since everything takes place

in the coordinate neighborhood V(ffXl,), we shall use results on £8-immer-

sions in Euclidean spaces already proved. If this obstruction vanishes for

each <r, then the induction will be completed by applying 4.2 and obtaining

a CK Af-regular homotopy between (71, 7/) and (g, g')|Z,,+i (with the help

of 5.8 to piece the homotopies on each a together).

We shall use 5.4 and show that the equivariant maps 7/ and g', considered

as maps Tk(M/a)^Tk(N/V(aXl,)), areequivariantly homotopic (rel &), and

that the equivariant homotopy £< can be chosen so that £* ®yl, where <8>

means path multiplication, satisfies (ii). Since we are dealing with equivariant

maps, by 5.1 we may replace them by cross-sections of a certain bundle over

oXIXl- Since such a bundle is trivial, we can replace the cross-sections by

maps into the fiber F= Tk(A/V(crXl,)). Let G: irXfXf—> Y be an equivariant

homotopy as in (ii). Extend G to <rX0X/W<rXl XI by G(x, 0, t)=f"(x),

G(x, 1, /) =g"(x), where/" and g" are the maps a^*Y corresponding respec-

tively to/' and g'. Then extend G to aXlXl by G(x, t, 1) =<pl'(x), where <f>"

corresponds to </>'. Thus G maps all but the one face aXlXO of the boundary

of crXlXI; by a well known theorem of homotopy theory, we can extend G

to all of crXlXl; assume this has been done. Now let J= [ — 1, 0]. Define

H:crXIX{ -l}-»F by H(x, t, -l)=yl'(x), where 7" corresponds to 7'.

Extend H to <xX0XJ^JarXlXJ^JffXlX0 by H(x, 0, t) =y'0'(x) =/"(x),
H(x, t, t') =G(x, t, 0), H(x, t, 0) =G(x, t, 0). His defined on all but one face of
the boundary of <rXlXJ. An extension to the last face provides an equivari-

ant homotopy (rel a) between 7/ and g', while an extension to the whole of

trXIXJ provides an equivariant homotopy as in (ii) for the case i+1. Since

this extension is possible, the induction is complete and 5.9 is proven.

Theorem 5.10. Let f: Af—►A7' be a continuous map. If f is homotopic to an

immersion g: Af—>Ar, then f can be approximated by an immersion. (Recall that

dim Af <dim N.)

Proof. Since/ is homotopic to g, and g can be covered by the equivariant

map g*: Tk(M)—>Tk(N), f can be covered by such a map. The theorem fol-

lows upon applying 5.7 with K empty and L = M.

Part II. Applications

6. Immersions in Euclidean spaces. In this section we give some condi-

tions that are sufficient (and trivially necessary) for the inmersibility of a

manifold in Euclidean space of given dimension. All the results have general-

izations to Af-immersions of subcomplexes, with practically identical proofs.

As usual we identify Tk(En) with Vn,k by parallel translation. All immersions
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and cross-sections are to be understood to be C°°. M is a manifold of dimension

k<n.

Theorem 6.1. Af is immersible in E" with a transversal r-field if and only

if there is an equivariant map ip: Tk(M)—+Vn,k+r. Moreover, given such a \p,

there is an immersion f: M—>En and a transversal r-field <j> such that the map

Tk(M)—>7„,t+r defined by

{Xi, • • ., X>] -> {f*Xu ■ ■ ■ ,UXk, <px(x), ■■-, 4>r(x)},

where the Xi are based at x and <p(x) = {<px(x), • • • , d>r(x)}, is equivariantly

homotopic to yp.

Proof. Let p: 7„,t+r—>Vn,k be the bundle projection that deletes the last r

vectors of each A+r-frame. The map pip: Tk(M) —»7„,* is equivariant; by

5.7 (with L = M, N = En, K empty) there exists an immersion/:Af—>Pn

such that/*: P*(Af)—»7„,* is equivariantly homotopic to pip. It follows from

the fact that p has the covering homotopy property that/* can be lifted to an

equivariant map g: Tk(M)—*Vn,k+r, so that f* = pg. The following map

tp : M —* V„,r is transversal to f:<p(x) = { F*+i, ■ • • , Yk+r} where if

{Xx, ■ ■ ■ , Xk} is any frame based at x, g{-X"i, • • • , Xt] — { Yi, ' • • , Yk+T}.

By the definition of the action of GL(k) on Vn,k+r, { Yk+x, • • • , Yk+r} de-

pends only on x. c6 defines a transversal field because Fi, • • • , Ft span the

tangent plane to/(Af) at/(x).

Using the correspondence between equivariant maps and cross-sections,

described in 5.1, the last result can be restated as follows:

Theorem 6.2. Af is immersible in P" with a transversal r-field if and only if

the bundle associated to P*(Af) with fiber 7„,*+r has a cross-section.

It is interesting to observe that the immersibility of Af in P" (or any other

manifold) depends only on the equivalence class of the principal bundle

Tk(M), and not on the complete differentiable structure of Af. In other words,

if Af and Af' are homeomorphic manifolds with equivalent frame bundles,

they are immersible in exactly the same manifolds, in fact their regular

homotopy classes of immersions correspond. For example, the manifolds

constructed by Milnor [6] which are homeomorphic, but not diffeomorphic,

to S1, have trivial frame bundles, since ir»(0(7)) =0, and hence they can be

immersed in P8. It is not known whether there exists a pair of homeomorphic

manifolds with inequivalent frame bundles.

Theorem 6.3. // Af is parallelizable it is immersible in Ek+1.

Proof. If Tk(M) is trivial, any associated bundle has a cross-section, and

6.2 can be applied with r = 0, n = k+l.

Theorem 6.4. If M is immersible in En+r with a transversal r-field, it is

immersible in Pn(2).

O The proof shows that such an immersion in E*+r regularly homotopic to one in £*.
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Proof. It suffices to show that Af is immersible in £n+r-1 with a trans-

versal r — 1 field, and apply this result r times.

Let S be the unit n+r—i sphere in £n+r. Let/: Af—»£n+r be an immersion

with a transversal r-field. It is well known that this field can be normalized,

so we assume that/ has an orthonormal r-field x(x)= {xi(*)> ■ • • > Xr(x)}.

Consider r(x) as having origin 0; then Xr(x) defines an element of S. The map

Xr: Af—>S can be covered by a map <j>: P*(Af)—>P*+r-i(S) by sending each

frame {Xu • • • ,Xk} based at x into {f*Xu ■ ■ ■ ,f*Xk,xi(x), ■ • ■ ,Xr-i(*)};

and it is clear that <f> is equivariant. Since fe <n and r ^ 1, dim Af <dim S and

therefore Xr is homotopic to a constant map M-^aES. This homotopy can

be covered by an equivariant homotopy <j>t, with <£o=0. Then <pi: Tk(M)

—>Tk+r-i(S/a) = F„+r_i,i+r-i, and 0i is equivariant. The theorem is proved by

applying 6.1.

Theorem 6.5. If M is immersible in E" (any n) with a trivial normal

bundle, it is immersible in £*+1.

Proof. Apply 6.4.

Theorem 6.6 (Whitney). Af is immersible in £2*-1.

Proof. By 6.4 it suffices to immerse Af* in £2* with a transversal field. Af

can always be immersed in £2* because x,-(F*+r,t)=0 for i = 0, • • • , r—1

[10] and therefore the bundle associated to P*(Af) with fiber V2k.k has a cross-

section, and we apply 6.2. We distinguish three cases: (1) Af not compact, or

with boundary. In this case ZJ*(Af)=0, and so the obstruction to a cross-

section in the bundle associated to Tk(M) with fiber V2k-.i,k vanishes and

again 6.2 can be applied. (2) Af compact, without boundary, fe odd. In this

case the Stiefel-Whitney class IF* of Af, which is the obstruction to a normal

field, vanishes. (See [12] for the properties of IF*.) This follows from the

fact that if fe is odd, Wk has order 2 [10, 38.11] while it lies in an infinite

cyclic group [10, last sentence of 39.5]. (Observe that the local systems de-

fined by the tangent sphere bundle of Af and the normal sphere bundle of

an immersion of Af in £2* are the same.) (3) Af compact, fe even. It will be

shown in 8.2 that Af can be immersed in £2* in such a way that the normal

class of the immersion vanishes. This implies that the immersion has a nor-

mal field.
Next we examine the problem of immersing the fe-dimensional manifold

M in £2*""2. We are able to give complete results for compact Af if fe = 3, 4, 5,

and fe^l (mod 4). In these cases the immersibility of Af in £2*~2 is a topo-

logical invariant of Af.

Theorem 6.7. Every compact 3-manifold M is immersible in £4.

Proof. By 6.4 it suffices to immerse Af in £* with a normal 2-field. By 6.6

Af can be immersed in £'. W2(M) is the obstruction cohomology class to
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constructing a normal 2-field on Af in P6; if Af is compact, W2 = 0 [14].

Therefore there is a normal 2-field on the 2-skeleton; the obstruction cochain

to extending this field over Af vanishes, since it has values in 7^(73,2) =0 [10].

Theorem 6.8. Let M have dimension A = l (mod 4). Then M is immersible

in E2k~2 if and only if Wk~l(M) =0.

Proof. One implication is obvious. If on the other hand JF*-1 = 0, then

Af is immersible in P2* with a normal 2-field on the A —1 skeleton. This field

can be extended to Af, for the obstruction cochain to doing so has values in

jrt_i(7M)-0 if A = l (mod 4) [7].
Now suppose Af has dimension 5. Using the formulas of Wu [17] for

Stiefel-Whitney classes, it is easy to show that I74(Af)=0. Applying 6.8

proves

Theorem 6.9. Every compact 5-manifold is immersible in P8.

Theorem 6.10. Let W2 and P* be the normal Stiefel-Whitney and Pontryagin

classes, respectively, of the compact A-manifold M. M can be immersed in Ps if

and only if there exists an integral cohomology class aEH2(M) such that

a=W2 (mod 2) and a2=Pi.

Proof. Let Af be immersed in P7 (6.6); W2 and P4 are determined by the

normal 2-sphere bundle on the immersion. By [14] W* = 0, i.e., the character-

istic class of the normal sphere bundle vanishes. By a result of Massey [3],

the existence of a is equivalent to the existence of a cross-section of the nor-

mal sphere bundle, i.e., a normal field. By 6.4, this is equivalent to the exist-

ence of an immersion of Af in P'.

The complex projective plane is an example of a 4-manifold that is not

immersible in P'. This is because P4 is three times the fundamental class,

and the pairing H2XH2-^H* given by the cup product is the natural pairing

ZXZ—*Z, while 3 is not the square of an integer.

7. Immersions of projective spaces. Let P* denote the real projective

space of dimension A.

Theorem 7.1. The following immersions are possible:

(a) P» in E*,

(b) PB in P7,

(c) P'inE7,

(d) P7 in P8,

(e) P°inE".

Proof. P* and P7 are known to be parallelizable, so (a) and (d) follow

from 6.3. Since P7 is orientable, any immersion of it in P8 has a transversal

field, and since PSCP*CP7, there exist immersions of P6 and P8 in P8 with

transversal fields, by d; (b) and (c) now follows from 6.4. Finally, (e) follows

from 6.8 because TF8(P») = 0.
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(a) was first proved by Milnor [4] and Lashof-Smale [2].

A consideration of normal Stiefel-Whitney classes shows that (a) through

(d) are best possible, but the problem of immersing P9 in £16 is open.

Theorem 7.2. Let k be even. P* is immersible in £*+1 if and only if P*+1 is

parallelizable (3).

Proof. If P*+1 is parallelizable it is immersible in £*+2, and any such

immersion has a normal field (6.3). Therefore pkEPk+1 is immersible in

£*+2 with a normal field, and by 6.4 P* is immersible in £*+1.

Conversely, if P* is immersed in £*+1, and fe is even, its normal line

bundle is the unique nontrivial line bundle over P*, and is therefore equiva-

lent to the normal line bundle of P* in P*+1. Therefore we can immerse a

tubular neighborhood of P* (in Pk+1) in Ek+1 EEk+2. The obstruction to ex-

tending this P*+1-immersion of P* in £*+2 takes values in irk(Vk+2.k+i). The

assumption that P* is immersible in £*+1 means that all the normal Stiefel-

Whitney classes must vanish, and this is only possible if fe has the form

2* —2, if fe is even. For these values of fe, 7r*(Vk+2,k+i) =0; see [7] for the cases

fe = 2, 6; for higher values of fe (of the form 2' —2) see [l]. Therefore P*+1 is

immersible in £*+2. The composite immersion S*+1—>P*+1—>p*+2, where the

first map is the double covering, is an immersion of Sk+1 in £*+2 with even

normal degree. (The normal degree of an immersion Afn—>£n+1 is the homo-

logical degree of the induced map Afn—>S", each point x of Afn going into the

oriented line normal to the image of T(Mn/x).) Milnor [4] shows that in this

case S*+1 is parallelizable, and since P*+1 is immersed in £*+2, Pk+1 must also

be parallelizable [4].
8. Regular homotopy. In [9] Smale proves that two immersions of S2k in

£4* are regularly homotopic if and only if they have the same normal class,

and that any even 2fe-dimensional cohomology class is the normal class of

some such immersion. We generalize this result in two ways: replacing S2*

by Af2*, and replacing £4* by A74* (but not both!). Thus, for these special

cases the normal class and the homotopy class are the only invariants of the

regular homotopy class of the immersion.

Lemma 8.1. Let D be a k-disk, and f, g: D—>£2* immersions such that

(/, /*) | D = (g, g*) | D. Let <f> be a field transversal to f (and g) on D. Let C be the
value of the obstruction cochain to extending <f> over f(D) on the generator of

Ck(D, D), and C the corresponding value of the obstruction to extending <f> over

g(D); thus C, C E"iTk-i(Y), where Y is the fiber of the bundle of vectors trans-

versal to f (or g). Let d: Trk(V2k,k)—>irt_i(F) be the boundary operator of the

homotopy sequence of the bundle V2k,k+i—^V2k,k, whose fiber is also Y.

Conclusion. 3fi(/, g) = C- C.

(*) According to recent results of Kervaire, Bott, and Milnor, S4, and hence P*, is parallel-

izable only if d*=*l, 3, 7.
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Proof. Let S be the A-sphere obtained by identifying the boundaries of

two copies of D. Let B—>5 be the bundle obtained by identifying the trans-

versal bundles of/and g over D. Let <p: S-+Vik,k be the map <p(x) =/*{e,(x)}

if x is in the upper hemisphere of S, <p(x) =g* {et(x)} if x is in the lower hemi-

sphere, i=l, • ■ ■ , A, each hemisphere being identified with D. Then by

definition, S2(/, g) is the homotopy class of <p, which is the same as <pt(s) where

s is the generator of iTk(S) that corresponds to the orientation of 5 given by

orienting its upper hemisphere by the orientation of D. d> can be covered by

the map <£: B—>Vik,k+x defined by $(X) = {/*ei(x), • • • ,f*ek(x), X} or $(X)

= {g*ei(x), • • • , g*ek(x), X} according as X is a transversal vector to f(D)

at f(x) or to g(D) at g(x); this map identifies the fiber of B over x with the

fiber of Vik,k+x over <j>(x). Therefore the following diagram is commutative:

Tk(B)     -+    irk(S)    ^irk-x(Y)

J. <?/ l<t>f 1 identity
A

Tk(Vik,k-x) -> irk(Vn,k) -+ Tt-i(F)

Therefore dU = dd>t(s) =d(s). By [10, 35.12] d(s) is the Kronecker index of the

characteristic class of B with the generator of Hk(S). This characteristic class

is the cohomology class of the obstruction cochain to a cross-section. Choos-

ing the cross-section <p, we see that the obstruction cochain to extending <p

takes the values C and — C on the respective upper and lower hemispheres of

S, when they are coherently oriented. Therefore the Kronecker index is

C-C' = d(s)=d<bt(s)=dn.

Theorem 8.2. Let M be a manifold of even dimension A. Two immersions

f, g: M—*E2k are regularly homotopic if and only if they have the same normal

class, and any even class of Hk(M) is the normal class of some immersion of M
in E2k.

(By Hk(M) we mean cohomology with coefficients in the local system

determined by the unit tangent sphere bundle of Af; this is the same system

as that determined by any immersion of Af in P2*; if Af is compact and with-

out boundary, Hk(M) is infinite cyclic [10], otherwise Hk(M) =0.)

Proof. If Pf*(Af) =0, the obstruction cohomology class to making/ and g

regularly homotopic vanishes, since it lies in Hk(M). (The first nonvanishing

homotopy group of 7a* ,* is in dimension A.) This disposes of the cases Af non-

compact or with boundary.

Assume Af is compact without boundary. If / and g are regularly homo-

topic, their normal bundles are equivalent, and so they have the same normal

class. To prove the converse, we can deform/ by a regular homotopy so that

it agrees with g (and /* with g*) on the A — 1 skeleton of Af. This can be done

by 5.9, because the obstruction to making/* and g* equivariantly homotopic

on the A —1 skeleton of Af has values in t*_i(72*,*) = 0. We can choose the
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equivariant homotopy so that the obstruction cochain to extending it van-

ishes on the complement of a fe-disk D embedded in Af. Therefore we assume

that/and g agree on M—D. Let 0 be a transversal field onf(M-D) =g(M—D);

we assume <j> is defined on the boundary of D also. It is clear that/ and g are

regularly homotopic if and only if fi(/|P, g|P)=0. Let mEHk(M) be the

generator corresponding to an orientation of D. It follows from definitions

that Wk(f) = Cm, Wk(g) => Cm, where C and C are defined as in 8.1. Now as-

sume fe is even. In this case the exact homotopy sequence of the bundle

V2k,k+i-^V2k,k with fiber Freducesto

d
0—>7r*( V2k,k)—»7Ti_i( F)—>7Tjfc_i( F2*,*+i)—>0

[10] which is the sequence 0—*Z—>Z—*Z2—->0. As in [10] there is an exact

sequence

5*
IP-^M;  Z2)-^Hk(M)-^Hk(M; Z2)

induced from the short sequence above. Since iP( Af) = Z and every element of

H»(M; Z2)

obviously has order 2, 5* = 0 and by exactness d* is one-one. It follows from

8.1 that d(fi(/|P, g\D)m) = (C-C')m = Wk(f)-Wk(g), which is 0 if/and g
have the same normal classes. Since d is one-one, fi = 0, and so/ and g are

regularly homotopic.

To prove the rest of the theorem, let/:Af—>P2* be a fixed immersion,

which exists by virtue of 6.2. By [17], Wk(f) is even. Let a = 2BEHk(M).
Letting D be a diffeomorphically embedded fe-disk of Af, let g: D-J>E2k be an

immersion such that (g, g*)| P= (/,/*) | D and such that fi((g,/)|P) =/3; this is

possible by 2.8d. g can be extended to an immersion of Af by defining g(x)

=f(x) for xEM—D, and by 2.5 we can deform g slightly so that it is a C°°

immersion of Af. Then as above, dfi((g,/)|P) = Wk(g) — Wk(f). Since d is multi-

plication by 2, we have shown that IF*(g) =a+Wk(f). Since 8 was arbitrary,

this completes the proof.

Theorem 8.3. Let S be a sphere of even dimension fe and N a manifold of

dimension 2fe. A necessary and sufficient condition that two immersions f, g:

S—>yV be regularly homotopic is that they be homotopic and have the same normal

class. Given a homotopy class of S in N and an even element of Hk(S), there is an

immersion in the homotopy class with the element as normal class.

Proof. It suffices to prove the sufficiency of the condition. Choose a

homotopy (not regular) ft:S—*N with fo=f, /i=g- Cover ft by <j>t with

4>o=f: Tk(S)—>Tk(N). We can alter ft slightly so that/i agrees with g on some

neighborhood of So (S,- is the i-skeleton), by 2.5. Thus (/, /*) | S0 and (g, g*) | S0

are regularly homotopic. The obstruction cohomology class to extending this
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regular homotopy to one between / and g lies in H1^; irx(Tk(N)))=0. This

means that there is a different regular homotopy which is extendible to Si.

We can choose this regular homotopy to approximate the first as a homotopy,

because by 5.9, choosing a different regular homotopy is equivalent to choos-

ing a different equivariant map covering ft, and then altering it slightly to

obtain as its projection a regular homotopy, which it covers. This process

can be continued inductively over successive skeletons of 5 until the follow-

ing situation is reached: There is a regular homotopy ft of / such that

(/i,/i*) | Sk-x = (g, g*) | Sk-x, and/i and g are homotopic (rel S*_i) as continuous

maps. Moreover, we can assume that S has a simplicial subdivision so fine

that for any simplex a, f(a) and g(a) are contained in the same coordinate

neighborhood. Using the correspondence between regular homotopies and

homotopies of cross-sections, we can alter /* so that the obstruction cochain

is any given element of its cohomology class. Thus we can assume that there

is a A-disk D diffeomorphically embedded in S such that /i and g agree on

S—D. Picking a transversal field <p on the closure of fx(S — D) =g(S — D), and

observing that/i(P) and g(D) are contained in the same coordinate neighbor-

hood, we have reduced the first part of the theorem to 8.1, which has been

proved. The second part follows from the fact that irk-x(Vik,k) =0. This means

that the map 0:#*(S; irk(Tk(N))^>Hk(S; Tk(N))), induced by the map

Tk(N)—>N, is onto. Therefore given a map/: S—>N, to produce an immersion

homotopic to/, take any immersion g: S—>N (e.g., an immersion of S in a

coordinate neighborhood of N) and choose an immersion A: S-+N that

agrees with g on Sk~x and such that 0(fi(g, A)) =d(f, A), the difference cochain.

This can be done by 5.9 and the fact that equivariant maps Tk(S)—>Tk(N)

are classified by Hk(S; irk(Tk(N))). It is clear that d(g, A)=0(fl(g, A)) and

therefore d(/, g) = 0, so that g is in the homotopy class of /. The rest of the

theorem now follows from the analogous part of 8.2.

Theorem 8.4. Two immersions of M in E2k+1 are regularly homotopic.

Proof. The obstruction to a regular homotopy has values in iTk(Vik+x.k) =0.

9. The normal degree. Let/ be an immersion of the orientable A-manifold

Af in Ek+1. The normal degree off, as defined in §7, is denoted by 20/.

Theorem 9.1. // Mis parallelizable, there is an immersion f: Af—*P*+1 with

SD/ = 0.

Proof. Let <p: Tk(M)^>Vk,k be an equivariant map, which exists because

Af is parallelizable. Let /: Af—»P*+1 be an immersion such that /*: Tk(M)

—>Vk+x,k is equivariantly homotopic to the composite

Tk(M) -^ Vk.k C Vk+x.k

(see 6.1). Let \p: M-+Tk(M) be the cross-section corresponding to <p (see 5.1).
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Let p: Ffc+i,*—>S* be the map assigning to [Xi, ■ ■ ■ , Xk} the vector F of

unit length such that {a^, • • • , Xk, Y} is a fe + 1 frame inducing the stand-

ard orientation on £*+1. It is easy to see that £>/ is the degree of the map

pf*ip: Af—>S*, which is homotopic to pcpij/. Since p\ Vk,k is constant, pf*ip is

homotopic to a constant and therefore SD/ = 0.
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