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Abstract 

Most Chinese words are compounds formed through the 
combination of meaningful characters. Yet, due to 
compositional complexity, it is poorly understood how this 
combinatorial process affects the access to the whole-word 
meaning. In the present study, we turned to the recent 
development in compositional distributional semantics 
(Marelli et al., 2017), and employed a deep neural network to 
learn the less-than-systematic relationship between the 
constituent characters and the compound words. Based on the 
compositional representations derived from the computational 
model, we quantified compositionality as the degree of overlap 
between the compositional and the lexicalized representations 
as well as the degree of distinctness of the compositional 
representation. We observed that these two compositional 
attributes can affect compound recognition over and above the 
effects of constituent character features and compound features. 
Moreover, we found that this effect was increasingly stronger 
when holistic access to the compound meaning became more 
challenging. These findings therefore, from a computational 
perspective, provided new evidence for the combinatorial 
process involved in Chinese word recognition, which also shed 
light on the universal process of compound comprehension. 

Keywords: word recognition; compound word processing; 
Chinese word formation; compositionality; distributional 
semantic models 

Introduction 

Compound words, such as swordfish, allow speakers to create 

new expressions via the combination of existing elements. 

These words “are not just expressions that happen to embed 

other words but are structurally related to their constituents” 

(Günther & Marelli, 2019). In psycholinguistics, the semantic 

influences of constituent meanings on the processing of 

compound meaning are typically investigated through the 

measure of semantic transparency (ST). It has long been 

assumed that semantically transparent compounds (e.g., 

swordfish, as it refers to a type of sword-shaped fish) have 

processing advantages over those that are semantically 

opaque (e.g., ladybird, as it refers to a type of black-dotted 

bug that has little to do with the meaning of its constituents). 

Empirical evidence for the ST effect was however 

inconsistent. In lexical decision studies, Libben et al. (2003) 

showed that compounds with transparent heads (i.e., the 

second constituent of the compound; e.g., bedroom, 

strawberry) were recognized faster than those whose head 

were opaque (e.g. jailbird, hogwash). Ji and colleagues (2011) 

observed that the ST effect would only emerge when a 

compositional process was encouraged (Experiment 4: 

inserting space between constituents, e.g., rose bud; 

Experiment 5: presenting constituents in different colors, e.g., 

rose in red and bud in black). These findings have motivated 

researchers to reconceptualize the measure of ST from a 

compositional perspective (Gagné & Spalding, 2009; 

Günther et al., 2019; Marelli et al., 2015). It is the 

compositionality of the compound, characterizing the extent 

to which the whole-word meaning faithfully reflects the 

semantic combination of the constituents, that determines 

whether the compound meaning can be accessed through its 

constituents. 

Inspiring evidence for this view came from Marelli and 

Luzzatti (2012), who measured ST through ratings of 

compositionality (to what extent can a compound meaning be 

predicted from its constituents?) in addition to ratings of 

constituent relatedness (to what extent are the constituent 

meanings related to the compound meaning?). They observed 

that ST could moderate the effect of constituent frequency 

(reflecting how easily the meaning of a constituent can be 

accessed) in a lexical decision task only when this property 

was conceptualized from a compositional perspective. 

With the development of distributional semantics, Marelli 

et al. (2017) proposed the CAOSS framework (Composition 

as Abstract Operation in Semantic Space), which allows an 

explicit quantification of the compositional ST. Their idea 

was to measure the similarity between the compositional and 

the lexicalized compound meanings, as well as those between 

the compositional and constituents’ meanings within a 

distributional semantic space. To generate vector-based 

representations for the compositional meaning, they trained a 

regression model which learnt to optimally construct the 

observed compound meaning based on a linear combination 

of the constituents’ meanings (both represented as vectors in 

a distributional semantic space). The compositional 

representation for the combination of any constituents could 

thus be generated based on the parameter matrices obtained 

through training. Using these meaning representations, they 

defined a set of measures that characterized ST from the 

compositional perspective. It was interesting to observe that 

these measures could explain a number of semantic effects in 

English compound processing. 
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While the emerging picture from alphabetic languages (e.g., 

English in Marelli et al., 2017 and Günther & Marelli, 2019; 

German in Günther, Marelli, et al., 2020) has highlighted the 

compositional aspect of ST, research on how this property 

would influence Chinese word recognition is relatively 

impoverished. Chinese is a particularly interesting writing 

system to study this topic because compounding is the most 

common tool for Chinese word formation (Packard, 2000; 

over 70% of Chinese words are compounds; Institute of 

Language Teaching and Research, 1986; DeFrancis, 1989). 

Moreover, the constituent characters that serve as the 

building blocks for Chinese words have a number of unique 

features. Specifically, Chinese is a morpho-syllabic language, 

and there is usually a correspondence between a character, a 

syllable, and a morpheme. Unlike what is presented in 

alphabetic languages where morphemes have obscure 

boundaries (i.e., a morpheme can involve a variable number 

of letters and syllables), constituent characters are highly 

salient perceptual units (e.g., there are two characters in the 

compound 冰箱 refrigerator, each displayed in a box-shaped 

area, and pronounced as /bing1/ and /xiang1/, respectively). 

Because of that, morphological segmentation can be executed 

with minimal effort, which potentially allows rapid activation 

of the morphemic meaning (see Tsang & Chen, 2013a and 

2013b for evidence from priming studies; see Tsang et al., 

2018 and Tse et al., 2017 for evidence from megastudies of 

lexical decision). It has been assumed that after the activation 

of the constituent characters, a combinatorial process is 

actively involved to compute the compound meaning (i.e., the 

combinatorial route). On the other hand, constituent 

characters usually exhibit meaning ambiguity (Chen et al., 

2023; e.g., 花  refers to both flower and to spend) and 

phonological inconsistency (Tan & Perfetti, 1999; e.g., 曾 is 

pronounced as /ceng2/ or /zeng1/) when appear in isolation. 

This made some researchers (e.g., Packard, 1999) to assume 

that Chinese words are recognized more efficiently through 

holistic processing (i.e., the holistic route). 

In the present study, we intend to bridge this knowledge 

gap by exploring the effect of compositionality on Chinese 

compound processing. Specifically, we took into account two 

attributes associated with the end product of the 

combinatorial route. The first attribute is the extent to which 

the compositional meaning representation (i.e., semantic 

combination of the constituents) converges with the 

lexicalized representation (i.e., the whole-word meaning) of 

a compound word, which characterizes the essence of ST 

from the compositional perspective and potentially the 

relationship of the holistic route and the combinatorial route. 

The second attribute is the degree of accessibility of the 

compositional representation of a compound word, which 

characterizes the efficacy of the combinatorial route. These 

two attributes are expected to provide a new interpretative 

 
1 While implementing the Notch model, we did not employ the 

pretrained BERT (bert-base-chinese) as in Tseng and Hsieh (2022), 

but opted to use MacBERT (chinese-macbert-large) that had more 

parameters, pre-trained with improved masked language model task, 

and could therefore represent language more accurately. Based on 

framework to understand the processing differences in word 

recognition. In terms of compound compositionality, when 

there is no direct access to the whole-word meaning and thus 

the holistic route does not automatically prevail, low 

compositionality would hinder compound processing as there 

is a competition between the combinatorial route and the 

holistic route. High compositionality would facilitate 

compound processing as the two routes were in sync. In terms 

of accessibility of the compositional meaning, the more 

distinct the end product of the combinatorial route, the easier 

it is to be accessed and activated during compound processing. 

To quantify these two attributes, we turned to the recent 

development in compositional distributional semantics 

(Marelli et al., 2017) to obtain the vector representations for 

the compositional meaning. One complication to apply the 

CAOSS framework to Chinese morphology comes from the 

more complex and less-than-systematic relationship between 

the constituent characters. To illustrate, there are roughly five 

morphological structures in Chinese (Huang & Liao, 2017), 

which are coordinate (e.g., 城市  city, literally city-city), 

subordinate (e.g., 黑板 blackboard, literally black-board), 

verb-object (e.g., 扫地 sweep the floor, literally sweep-floor), 

verb-resultative (e.g., 说明 illustrate, literally speak-clear), 

and subject-predicate (e.g., 晚安 good night, literally night-

peace). We therefore adopted the Notch model (Nonlinear 

Transformation of Chinese Embeddings; Tseng & Hsieh, 

2022) to model the rather unsystematic relations between the 

constituent characters. Specifically, we employed a 

sophisticated deep neural network architecture (with millions 

of parameters to fine-tune; see below), which was trained to 

simulate the compositional process by nonlinearly combining 

the representations of the constituent characters within the 

semantic space. The model was able to capture the interplay 

between these constituents by learning their role-dependent 

meanings. Using the Notch-generated vectors, we quantified 

the compositionality and accessibility of the compound’s 

compositional representation based on its distributional 

properties within the semantic space. We then examined how 

these attributes would influence lexical decision latencies 

using two-character words in MELD-SCH (Megastudy of 

Lexical Decision in Simplified Chinese; Tsang et al., 2018). 

Method 

Computational Model 

Vector representation of the compositional compound 

meaning was derived via the Notch model (Tseng & Hsieh, 

2022), which was trained to acquire the compounding rules 

(i.e., how constituent characters can be combined to generate 

the compound meaning). The model’s architecture included 

a pre-trained MacBERT1 (chinese-macbert-large; Cui et al., 

our pilot observation, composition metrics derived from the 

MacBERT-based Notch model could better predict lexical decision 

latencies. In addition, it is important to note that either BERT or 

MacBERT are character-based (i.e., inputs to the model are 
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2020) followed by a task-specific fully-connected layer. To 

compute the compositional meaning for a compound such as 

冰箱 refrigerator, the model took the sequence of character 

constituents, 冰 ice and 箱 box, as input, and mapped the 

encoded final state corresponding to the [CLS] token (1024 

dimensions) onto a vector of 300 dimensions. With a mean-

squared-error loss function, the model was fine-tuned to 

generate a vector (i.e., the composition vector) that could 

approximate the compound’s lexicalized embedding2. It is 

important to note that multiple encoder blocks within 

MacBERT kept mixing and warping the constituents’ 

embeddings that were generated at the model’s first layer. 

This process allowed the embeddings of the constituents to 

change according to their specific roles in the compound 

meaning (from a theoretical point of view, constituent 

characters modulated each other’s meaning, which formed 

the word; Xu, 1994). Hence, the output of the [CLS] token at 

the final encoder block was by no means a simple linear 

combination of the constituent embeddings, but instead a 

more dynamic nonlinear combination of the role-dependent 

constituent embeddings. 

We utilized a total of 500 thousand words to train and 

validate the Notch model, of which their observed 

embeddings (300 dimensions, pre-trained using skip-gram 

with negative sampling algorithm; Mikolov et al., 2013) were 

provided by Li et al. (2018)3. Specifically, we retrieved all 

words in the SUBTLEX-CH database (Cai & Brysbaert, 

2010), with the remaining words selected sequentially from 

the embedding database. It is important to note that even 

though we focused our analysis on the two-character 

compounds in later sections, we did not restrict the length of 

the words for model training, as this allowed us to have a 

larger number of word sample, helping to avoid model overfit. 

More importantly, accommodating words of different lengths 

to train the compositional model may enhance its 

generalizability and facilitate the learning of the constituents’ 

role-dependent meanings. Our dataset therefore included 

11,043 words with one character, 212,268 words with two 

characters, 184,278 words with three characters, 65,581 

words with four characters, and 26,830 words with five or 

more characters. The word sample was randomly split into a 

training set of 490 thousand words and a validation set of 10 

thousand words. Special care was taken to match the 

proportion of words of different lengths within the two sets. 

All word embeddings were normalized into unit length before 

training and validation. 

 
tokenized into single characters). Therefore, composition is always 

involved in the Notch architecture. 
2 In computational linguistics, embeddings are high-dimensional 

real-valued vectors that encode the words’ semantic information. In 

this study, the word embedding and vector are used interchangeably. 
3 We did not follow the original implementation of the Notch 

model, which utilized the 100-dimensional word embeddings from 

Tencent AI lab (Song et al., 2018). We observed that many words in 

this dataset were coarse-grained as it was designed to be more task-

oriented. 

The model was trained for one epoch with a batch size of 

8. AdamW optimizer (Loshchilov & Hutter, 2019) was used 

with a learning rate of 1e-4, betas of (0.9, 0.999), and a L2 

weight decay of 0.01. The learning rate was first warmed up 

for 400 steps and then linearly decayed for the rest of the 

training. 

Composition Metrics 

Based on the compositional embeddings (i.e., the vectors 

generated by the computational model) and actual 

embeddings of the 500 thousand words in our dataset, two 

composition metrics are defined to characterize the end 

product of the combinatorial route. Specifically, we consider 

the distributional properties associated with the 

compositional embedding, and hypothesized that if a word’s 

compound meaning is highly predictable given the 

combination of its constituents, the compositional embedding 

of the compound should be close to its actual embedding. 

Moreover, the distinctness of the compositional compound 

meaning should also be reflected in the distributional 

properties of its lexical neighborhood. In distributional 

semantics, the similarity between two words’ meaning is 

computed as the cosine distance between their respective 

embeddings. Therefore, two computed metrics, the similarity 

between the compositional and the lexicalized meaning 

representations (SimCL) and the range of the similarities 

between the compositional representation and its lexical 

neighbors (SimRangeTop50), are defined as follows. A few 

compound examples with high versus low values on these 

metrics are shown in Table 1. 

SimCL: the cosine distance between the compositional 

and the actual compound embeddings. It measures the extent 

to which a word’s compositional meaning aligns with (or 

diverges from) its lexicalized meaning. 

SimRangeTop504: the range of the cosine distances of the 

top 0.01% neighbors (50 words among the 500 thousand 

words) that are closest to the compositional compound. This 

metric is used to capture the extent to which the 

compositional embedding has a distinct presence within the 

semantic space. That is, if the compositional representation is 

highly distinct, there should be relatively few lexicalized 

items, possibly only one, which are sufficiently close to it. In 

that case, lexical access should be swift. Conversely, if the 

closest and the 50th closest lexical neighbors of the 

compositional representation are of similar distances, the 

compositional meaning should be ambiguous, which can 

result in a delay in lexical access. 

4  In Tseng and Hsieh (2022), a similar computed metric, 

SimRange, was also derived from the similarity between the 

compositional compound and its 50 closest neighbors. While 

SimRange was defined as the difference of similarity between the 

0.90 and 0.10 quantiles, SimRangeTop50 was defined as the 

difference between the max and min value. Based on our pilot 

analysis, SimRangeTop50 could better characterize the 

distributional properties of the compositional compound, and could 

better predict lexical decision latencies of real words in MELD-SCH. 
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Table 1: Compound examples with high and low values on the SimCL and SimRangeTop50. 

 

Composition metrics Low-value items (< the 10th percentile) High-value items (> the 90th percentile) 

SimCL 海绵 sponge (sea + silk floss) 乐器 music instrument (music + equipment) 
 开方 square root (open + square) 寒冷 cold (cold + cold) 
SimRangeTop50 红心 red heart (red + heart) 背后 behind (back + back) 
 拂晓 dawn (touch lightly + morning) 复杂 complex (repeat + miscellaneous)  

Analyses on Lexical Decision Task 

To examine how lexical decision times were influenced by 

the computed metrics, we used the real word data from 

MELD-SCH (Tsang et al., 2018). This database comprises z-

transformed response times (zRT; at the participant level) and 

error rates for a total of 12,578 Chinese words. Responses to 

these items were collected from 504 Chinese native speakers, 

and for each word, information on a series of psycholinguistic 

variables were also made available. 

Here, we restricted our analyses to two-character 

compound words (10,022 in total), as the majority (about 

73.6%) of modern Chinese words consist of two characters 

(Institute of Language Teaching and Research, 1986). In 

addition, we intended to add variables at the character level 

into our statistical model (see below). We first removed items 

whose error rates across participants was above 30%. After 

implementing this criterion, 9,627 words were left in total 

(drop rate = 3.94%). Further, because variables of interest 

may not be available for all words or their constituent 

characters, latencies for 9,620 real words (drop rate = 0.07%) 

eventually served as the dependent variable in the regression 

model. 

In addition to the psycholinguistic variables provided in 

MELD-SCH, we computed family size (Hsieh et al., 2023; 

type-based and position-specific) for each constituent 

character using the SUBTLEX-CH frequency database (Cai 

& Brysbaert, 2010). Log-transformation were implemented 

to all variables of interest whenever appropriate. For 

variables serving as interaction terms, they were centered to 

mean before entering into the regression model. 

Results 

Before examining the efficacy of the composition metrics, we 

started from a baseline linear mixed effects model which 

included the set of lexical, semantic, and phonological 

variables that were known to predict word recognition. These 

variables were considered in the literature on compound 

processing (e.g., Günther & Marelli, 2019; Günther et al., 

2020; Hsieh et al., 2023) as well as in the original megastudy 

(Tsang et al., 2018) based on which our analyses were 

conducted. We then included the composition metrics over 

and above the baseline variables, and examined whether they 

could significantly improve the model using likelihood-ratio 

tests. Overly influential outliers were first identified on the 

basis of a threshold of 2.5 units of standardized residual errors. 

The models were then refitted on the truncated dataset 

without outliers (model criticism; Baayen, 2008; see also 

Günther & Marelli, 2019). 

For our analyses, linear mixed effects models were built 

with the lme4 package (Bates et al., 2015). Subsequent 

analyses were implemented with the MuMIn (Bartoń, 2023) 

and r2glmm packages (Jeager, 2017) in R.  

Baseline Model 

Variables at the word and character level were taken into 

account as fixed effects of the baseline model. These 

variables included word frequency (LogWF) and number of 

strokes (NumStroke), as well as character frequency (LogCF), 

family size (LogFS), number of meanings (LogNoM), and 

number of pronunciations (LogNoP) of the first (C1) and 

second character (C2). Random intercepts for C1 and C2 

were also included to capture the partial repeated-measure 

structure of the word sample, and to account for item 

variability without introducing an idiosyncratic effect for 

each item (since we had exactly one observation per item). 

The baseline model included all variables of interest (all ps < 

0.010), except C1.LogNoM (p = 0.984) and C2.LogNoP (p = 

0.057). Variance inflation factors for these variables ranged 

from 1.03 and 2.62 (as estimated by the R package usdm; 

Naimi et al., 2014), indicating that multicollinearity was not 

an issue for this model. The significance of variables at the 

character level was consistent with the results in previous 

megastudies (Tsang et al., 2018; Tse et al., 2017), suggesting 

that character features are activated during compound 

processing. 

Efficacy of the Computed Metrics 

To examine whether the computed metrics could explain 

unique variance in lexical decision latencies, we included the 

metrics over and above the baseline variables. As indicated 

by the likelihood ratio test, the inclusion of SimCL and 

SimRangeTop50 significantly improved the fit of the model, 

χ2(2) = 233.59, p < 0.001. Both metrics showed facilitatory 

effect on lexical decision latencies, as higher values were 

associated with faster responses. Moreover, there was a 

moderate correlation between the two metrics (r = 0.462), and 

the finding that SimRangeTop50 emerged as a significant 

predictor in addition to SimCL suggested that the two metrics 

captured at least some unique aspects of the compositional 

meaning, i.e., the end product of the combinatorial route. 

Interaction with Other Predictors 

Following previous studies (e.g., Günther & Marelli, 2019; 

Marelli & Luzzatti, 2012), we employed the same procedure 
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(i.e., comparing one model with all the variables included so 

far to the other one with an extra predictor) to assess the 

potential interactions between the composition metrics 

(SimCL and SimRangeTop50) and the other variables (i.e., 

LogWF, as well as LogCF, LogFS, LogNoM, and LogNoP 

for C1 and C2). According to the likelihood ratio tests, the 

SimCL by LogWF, χ2(1) = 21.23, p < 0.001, SimRangeTop50 

by LogWF, χ2(1) = 19.11, p < 0.001, SimRangeTop50 by 

C2.LogCF, χ2(1) = 24.50, p < 0.001, and SimRangeTop50 by 

C2.LogFS interactions, χ2(1) = 4.55, p = 0.033, explained 

additional variance in zRT, although the ones involving 

SimRangeTop50 and LogWF as well as SimRangeTop50 and 

C2.LogFS did not approach significance in the final model. 

Table 2 shows the added parameters and their respective 

contributions in terms of R2 improvement over the previous 

predictors. 

 

Table 2: Parameters of the final model. 

 

Parameter Estimate SE t df p % ΔR2 R2 

Intercept -0.30 0.003 -90.82 943 < 0.001   

LogWF -0.21 0.003 -68.17 9149 < 0.001   

Stroke 0.004 0.001 6.25 3044 < 0.001   

C1.LogCF 0.03 0.005 5.53 3028 < 0.001   

C2.LogCF 0.03 0.005 4.74 2220 < 0.001   

C1.LogFS -0.06 0.009 -6.84 1788 < 0.001   

C2.LogFS -0.06 0.010 -6.42 1318 < 0.001   

C2.LogNoM 0.06 0.014 4.24 1166 < 0.001   

C1.LogNoP 0.09 0.031 2.84 1323 0.005   

Baseline model       0.435 

SimCL -0.42 0.048 -8.65 9245 < 0.001 2.67 0.446 

SimRangeTop50 -0.29 0.044 -6.72 8081 < 0.001 0.63 0.449 

SimCL × LogWF 0.19 0.046 4.07 9111 < 0.001 0.27 0.451 

SimRangeTop50 × C2.LogCF 0.19 0.043 4.45 7747 < 0.001 0.19 0.451 

Composition metrics      3.80 0.451 

Note: Degree of freedom (df) is estimated with the lmerTest package (Kuznetsova et al., 2017). From the baseline model, 

the contribution of each additional parameter over the previous predictors is displayed as ΔR2 in percentage. 

Discussion 

Decades of psycholinguistic research has revealed the roles 

of constituent characters in compound processing (i.e., 

arguments for compound processing through a combinatorial 

route; e.g., Tsang & Chen, 2013b; Tsang et al., 2018; Tse et 

al., 2017). At the same time, there are also arguments that 

compounds should be processed as a whole (e.g., Bai et al., 

2008; Packard, 1999). In the present study, we empirically 

tested these hypotheses by obtaining two composition 

metrics that characterized the distributional properties of the 

end product of the combinatorial route. Compositional 

meaning representation was derived from a computational 

model trained to acquire the compounding rules. Using a 

megastudy of word recognition (Tsang et al., 2018), we 

examined how these metrics, reflecting the ease of 

composition based on the constituent characters, would affect 

Chinese compound processing. 

While establishing the baseline model, we demonstrate that 

characters do not simply act as orthographic codes to access 

compound meaning. Their lexical (i.e., character frequency), 

semantic (i.e., family size, number of meanings), and 

phonological features (i.e., number of pronunciations) are 

also shown to predict the response times for compound 

processing. Over and above the baseline variables, the main 

effects of the composition metrics provide strong evidence 

that after the activation of the constituent characters, a 

combinatorial process is involved to compute the meaning of 

the compound word. With respect to SimCL, processing is 

faster when the compositional meaning representation is 

closer to the word’s lexicalized meaning representation. We 

interpret this as the benefits of compositionality: If 

constituent characters can be easily combined to indicate the 

whole-word meaning, the holistic route converges with the 

combinatorial route, resulting in an advantage in compound 

processing. This finding indicates that SimCL captures the 

essence of the compositional aspect of ST, i.e., the 

predictability of a compound meaning based on the meanings 

of the morphemes (Marelli & Baroni, 2015). It is also in line 

with the past research findings that in cases where the 

constituents can be easily integrated, conceptual combination 

is facilitated and is less cognitively demanding (Gagné & 

Spalding, 2009). 

With respect to SimRangeTop50, a higher value implies 

that the compositional meaning representation as the end 

product of the combinatorial route has a distinct presence in 

the semantic space and thus can be easily activated in 

compound processing. In contrast, a lower value suggests that 

the compositional representation is in close proximity of 

many lexicalized neighbors, and to resolve the uncertainty 

brought by these distractors, processing cost can increase. 

Our results also revealed that the computed metrics showed 

interactions with specific properties of the word as well as the 

constituent characters. Specifically, there is an interaction 
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between SimCL and word frequency: For low-frequency 

words, the effect of SimCL is highly prominent, whereas for 

high-frequency words, this effect is weakened (see Figure 1a). 

This result is in line with the argument that holistic 

processing prevails for words with high frequency of usage 

(Tse, 2010), as they are more likely to be retrieved as a whole. 

(Cui et al., 2021; Shen et al., 2018). Because of that, whether 

the compositional and the lexicalized representations 

converge would not make much difference. Conversely, low-

frequency words do not have such benefit, as there is a lack 

of readily retrievable holistic representation. Because their 

meaning must be analyzed in terms of morphemes, the extent 

to which the compositional representation deviates or aligns 

with the lexicalized representation would have a direct 

impact on the efficiency of compound processing. 

The effect of SimRangeTop50, on the other hand, is 

qualified by an interaction with character frequency. That is, 

the facilitatory effect of SimRangeTop50 is much more 

prominent when the second constituent characters are low-

frequency characters; when they are of high frequency, the 

facilitatory effect becomes dampened. This finding can be 

expected, as high-frequency second character is likely the 

constituent of one or more other high-frequency words 

(Tsang et al., 2018). Therefore, although the compositional 

embedding has a distinct presence in the neighborhood with 

less distractors, semantic activation of these high-frequency 

words could hinder the access to the target word (see also 

Amenta et al., 2015).  

To summarize, our results shed further light on the 

processes involved in Chinese compound recognition. In 

particular, we observed that two attributes associated with the 

end product of the combinatorial route, i.e., compositionality 

and accessibility of the compositional representation, can 

influence the efficiency of compound processing. Our results 

indicate that the combinatorial route seems to be always in 

action when processing the compound word, although for 

high-frequency compounds, lexical representations are more 

readily accessible from the holistic route. For a writing 

system like Chinese whose morphemic information is 

extremely prominent, taking into account these two attributes 

can help resolve the debate on whether Chinese words are 

recognized holistically or through a combinatorial process 

implemented on the constituent characters. We believe that 

the compositional distributional model, as well as the derived 

computed metrics, can be applied to explain the processing 

differences among compound words in other languages, 

which can help understand compound representation more 

generally. 

 

 

 
 

Figure 1: Interactions between (a) SimCL and LogWF and (b) 

SimRangeTop50 and C2.LogCF on lexical decision latencies. 

In each subplot, the moderator was discretized with 

representative values selected for visualization (mean and 

mean ± 1 SD according to Aiken et al., 1991). The moderator 

was treated as a continuous variable in the regression analysis. 
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