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Materials under vibration experience internal stress waves that can cause material fail-1

ure or energy loss due to inelastic vibration. Traditionally, failure is defined in terms2

of material acceleration, yet this approach has many drawbacks, principally because it3

is not invariant with respect to scale, type of vibration, nor material choice. Here, the4

likelihood of failure is instead considered in terms of the maximum vibration or particle5

velocity for various metals, polymers, and structural materials. The exact relationship6

between the maximum particle velocity and the maximum induced stress may be de-7

rived, but only if one knows the details of the vibration, material, flaws, and geometry.8

Statistical results with over thousands of individual trials are presented here to demon-9

strate a wide variety of vibrations across a sufficient variety of these choices. Failure in10

this context is defined as either fracture or plastic yield, the latter associated with inelas-11

tic deformation and energy loss during vibration. If the maximum permissible cyclical12

stress in material vibration is known, to at least an order of magnitude, the probability of13

this type of failure may be computed for a range of vibration velocities in each material.14

The results support the notion that a maximum particle velocity on the order of 1 m/s15

is a universal and critical limit that, upon exceeding, causes the probability of failure to16

become significant regardless of the details of the material, geometry, or vibration. We17

illustrate this in a specific example relevant to acoustofluidics, a simple surface acous-18

tic wave device. The consequences of particle velocity limit analysis can effectively be19

used in materials and structural engineering to predict when dynamic material particle20

velocity can cause inelastic losses or failure via brittle fracture, plastic deformation, or21

fatigue failure.22
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I. INTRODUCTION23

In the study of acoustic wave propagation in elastic solids, there is a physical limit to how24

much materials can vibrate before failing. This phenomenon appears across disciplines, from25

the study of actuating robotics or microelectromechanical (MEMS) devices (Kimberley et al.,26

2009) to vibration fatigue and crack propagation of complex structures and earthquakes ex-27

plored by civil engineers and geologists alike (Dehghani and Ataee-Pour, 2011; Mikitarenko28

and Perelmuter, 1998). If such a physical limit could be found, especially if it were defined in29

terms of easily measured parameters and the properties of the material being used, the choice30

of materials and geometry in engineering design could be made simpler. Additionally, finite31

element modeling of vibrations would be easier, alleviating the need to resort to complex, dy-32

namic stress-strain models to evaluate the risk of failure (Halfpenny, 1999). In a vast majority33

of cases, vibration and acoustics are carried in physical structures with the aim of avoiding in-34

elastic or plastic deformation, fatigue failure, or fracture in these structures. Here, we assume35

that any of these phenomena represent structural failure.36

For years, the acceleration has been used to describe both the potential and severity of fail-37

ure due to localized peak stress (Gaberson et al., 2000). Termed shock severity, it often is pre-38

sented (Nwosu et al., 2016; Standard, 1989) as a number of g ’s, with g = 9.81 m/s2, represent-39

ing earth’s gravitational acceleration. This concept is applied across many disciplines, from40

petroleum and geological engineering (Zhang and Zhao, 2014) to planetary dynamics (Ramesh41

et al., 2015) and microdevices (Kimberley et al., 2009), and from the formal literature to data42

sheets for public consumption. A notable example of the latter among many, the 1.8” hard drive43
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used in the last popular portable music player—Apple’s classic iPod—is described by Toshiba44

as being able to tolerate 2000g from a drop and 2g vibration at 15–500 Hz while operating45

(Collins, 2004). Gaberson expressed understandable frustration with this use of acceleration to46

determine the risk of failure, stating “g ’s as any kind of shock severity is useless, even in the face47

of 50 years of tradition”.48

Due to the direct relationship between strain and displacement in a stress wave, maximum49

displacement has also been occasionally used to determine the likelihood a given material will50

fail under vibratory conditions (Hunt, 1960), though it does not often appear in the published51

literature outside of earthquake research (Cosenza and Manfredi, 2000), where even there it is52

considered to have modest utility (Hancock and Bommer, 2006).53

The particle (or vibration) velocity is a potential alternative to these two choices. Remark-54

ably, it may prove to be the most universal quantity in defining the limiting motions of acoustic55

wave propagation and vibration in materials. Many years ago, Crandall and Hunt separately56

(Crandall, 1962; Hunt, 1960) determined that the internal stress and the particle velocity in57

elastic solids were directly related to each other—to at least an order of magnitude—for a few58

specific forms of vibration in otherwise flaw-free and continuous structures. Gaberson (Gaber-59

son et al., 2000) defined the closely related pseudovelocity (V0) and claimed it to be the most60

useful quantity to determine the risk of structural damage due to its vibration. The pseudove-61

locity is defined (using ,) as the maximum displacement multiplied by the angular frequency:62

V0 ,ωmaxx,t u(x, t ) = 2π f U0 (please consult the glossary of terms in Appendix A).63
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In fact, the particle velocity can serve to define the risk of failure and changes in observed vi-64

bration phenomena that otherwise depend upon stress. The basic idea is to define a maximum65

particle velocity to represent the true limit of structural vibration while avoiding failure.66

That the particle velocity is not more widely appreciated and utilized does seem to be a con-67

sequence of relying on the acceleration in assessing failure risk, as Gaberson describes, proba-68

bly from the familiarity of using g -loading for predicting static failure. The cleverly presented69

relationship by Hunt and Crandall (Crandall, 1962; Hunt, 1960) between stress and particle ve-70

locity in unflawed structures appears to be forgotten. At the very least, it appears that this71

relationship has never been applied to a broader range of materials, other forms of structural72

vibration, nor structures with flaws or significant damping.73

In recent years, disciplines such as acoustofluidics (Connacher et al., 2018a; Friend and Yeo,74

2011) and ultrasonic actuation (Watson et al., 2009) have arisen that employ much higher fre-75

quency acoustic waves to drive observable motion of fluids, cells, particles, motor components,76

and so on for a variety of purposes. The desire to produce these results from piezoelectric ma-77

terials operating at resonance to maximize the energy transformed from electrical to kinetic78

forms results in very large energies concentrated in small volumes, on the order of 0.1 W in a79

100 µm box for short periods. In water or most solids one would consider using in these ap-80

plications, this represents a specific energy of ∼100 MW/kg, remarkably exceeding the specific81

energy of coal, natural gas, and gasoline (termed higher heating value in (Demirbas, 2007)).82

More energy is trapped in a volume by the mechanical motion induced by high frequency vi-83

bration than is released from the same volume by chemical reaction of these common fuels.84
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It should come as no surprise, then, that failure of these devices is widespread, especially85

in research and development. The motivation of this work is to identify an overall limit to the86

vibration as a design tool, using the risk of failure—either inelastic vibration giving rise to sig-87

nificant energy loss or outright failure of the material.88

In what follows, we seek to identify a maximum practical particle velocity that fulfills these89

criteria. It turns out that the particle velocity does appear to be a useful tool in judging the risk90

of a broadly defined “failure” from damping, fatigue, fracture, or plastic yielding across a variety91

of materials and vibration types.92

The paper is organized as follows. We first describe the analysis framework used to deter-93

mine the limiting particle velocity for avoiding probable material failure. This is followed by an94

update of the classic concept of a material-defined upper limit to vibration amplitude (Cran-95

dall, 1962; Hunt, 1960). By virtue of the Monte Carlo method, we are able to then introduce96

extensions to this classic concept, taking in turn the effects upon the maximum particle ve-97

locity due to changes in the geometry of the structure, the effects of damping, the presence of98

cracks in brittle materials or stress concentrations in ductile materials, and the peculiar effects99

of fatigue. We chain these disparate effects together for a sample run, some of them active,100

others not, as randomly determined for each run. After tens of thousands of runs, it becomes101

evident that one can indeed define an overall maximum particle velocity, a universal, limiting102

order-of-magnitude for the particle velocity that, when exceeded, will potentially lead to mate-103

rial failure or inelastically-limited vibration with a probability of 50%. For each effect, randomly104

chosen parameters are selected over defined, reasonable ranges as necessary to produce a so-105
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lution. The method is extensible, in that the reader can employ the approach for their situation106

as required to determine the appropriate maximum particle velocity.107

II. ANALYTICAL AND STATISTICAL ANALYSIS OF MAXIMUM PARTICLE VELOCITY LIMITS108

Our goal in this effort is not to exhaust every possible combination of material, vibration,109

shape, and failure mode. Instead, we consider specific cases that appear to adequately rep-110

resent the vast range of options. The Monte Carlo method is then employed to choose, at ran-111

dom: a material, the type and presence of a flaw in the material, the details of the vibration, and112

a structure carrying the vibration, potentially with geometric constraints. A choice for each of113

these parameters is made within what we believe to be a reasonable range to define a trial run.114

This run produces a prediction of the maximum stress present in the structure. This stress may115

then be compared to the yield stress for the material, corrected to deal with the dynamic nature116

of the motion and the damping of the material.117

The entire aim is to seek a correlation between the order of magnitude of the particle velocity118

induced in a structure—perhaps with a flaw, significant damping, or constrained geometry—119

and the overall probability of failure of that material. Using this correlation, we seek to produce120

an order-of-magnitude estimate for the limiting particle velocity that may exist for a given ma-121

terial, and hopefully for all the materials we have selected for consideration as representatives122

of most practical engineering materials.123
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A. Process of Analysis124

It will be later shown in subsection II B that an maximum particle velocity vmax may be de-125

fined as a material property from the material’s yield strength, stiffness, and density. Beyond126

this value, the material’s failure is assured. How the material fails depends on the details.127

The strategy is to first select a representative material: diamond, steel, aluminum, copper,128

polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), glass, con-129

crete, or wood. All materials are presumed to be isotropic for tractability, and in realizing the130

use of anisotropic or composite media affects the material properties, but does not change131

them by orders of magnitude. These materials represent, broadly, those used in typical engi-132

neering structures that would be subjected to large amplitude vibration.133

It is important to note here that mechanical damping is another means to potentially limit134

the amplitude of vibration or acoustic waves in a structure. Following the classic approach in135

defining damping, one may define a loss factor for harmonic oscillations, η= D/2πW , where D136

represents the energy dissipated over each vibration cycle and W represents the combination137

of the energy stored and introduced into the system over a given cycle (Carfagni et al., 1998).138

Unlike the damping ratio, the loss factor, η, remains appropriate here even for strongly nonlin-139

ear systems (Pritz, 1998).140

In many disciplines, however, the quality factor, Q, is a far more familiar and easily deter-141

mined measure of the damping present in a given vibration that is responsible for energy loss.142

The greater the Q, the lower the energy lost to damping (Carfagni et al., 1998). The relationship143
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between them is often approximated by Q ≈ 1/η, though the full definition is more complex:144

1

Q
,=√

1+η−√
1−η, (1)

which may be rearranged and expanded to produce an approximate series relation of the loss145

factor in terms of the quality factor,146

η= 1

Q
− 1

8Q3
− 1

128Q5
+O

[(
1

Q7

)]
, (2)

where O is the order of the error in the approximation (Bachmann–Landau notation, (Bach-147

mann, 1894)).148

In any case, the ratio of energy lost per cycle, D , to the total energy, W , D/W , 2πη≈ 2π/Q.149

Notably,150

lim
Q→2π+

D

W
= 1. (3)

The key implication of this result is to recognize that, whatever the nature of the vibration in-151

duced in a system, if Q < 101, the limiting particle velocity is not due to material failure. It is152

instead governed by the energy loss to damping, and acoustic or vibration energy is dissipated153

too quickly to sustain vibration. Thus, most rubbers and some plastics are unrealistic choices154

as they will be limited by their acoustic loss during elastic deformation, instead of a failure cri-155

teria which might be due to inelastic deformation or fracture. In this study, all the selected156

materials exhibit quality factors Q > 101, a requirement for their selection.157

We then choose the form of acoustic wave propagation, noting that it reduces the particle158

velocity at which failure is guaranteed from the material-defined value vmax to a limiting par-159
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ticle velocity, vlim. In other words, for a particular case defined by the type of acoustic wave160

and the shape of the structure that carries it, vlim defines the threshold between material in-161

tegrity and failure. By contrast, the intrinsic threshold between material integrity and failure is162

always defined by vmax. Local stress concentrations, fatigue, fracture toughness, and flaws are163

responsible for the difference.164

We represent the reduction from an ideal vmax to vlim as a product165

vlim ,
5∏

i=1
Ψi j vmax, (4)

for the j th case of N total cases. The type of vibration transmitted through the structure as an166

acoustic wave—for example, longitudinal or transverse waves—reduces the material’s maxi-167

mum particle velocity by a certain amount, defined byΨ1 j . The frequency of the acoustic wave168

strongly affects the damping and the effective stiffness of the material, which collectively acts169

to also reduce the limit particle velocity, represented byΨ2 j . The material may also have a flaw,170

a hole, crack, or similar penetrating geometry, producing a stress concentration that reduces171

the limit particle velocity vlim even further—by a factor ofΨ3 j . We also consider the possibility172

of ductile failure (with Ψ4 j ) or fatigue failure (Ψ5 j ) in reducing the maximum particle velocity173

to the limiting particle velocity. The relationship is outlined in Fig. 1.174175

Choosing the material allows us to determine vmax. We then define the limit particle velocity176

as vlim for the j th run such that j ∈ {1,2, . . . , N }, with N = 10,000 here. We note that vlim, j ≤177

vmax for all j , and define vlim, j , β j vmax such that β j ,
∏5

i=1Ψi j and 0 ≤ β j ≤ 1 for all j , as178

0 ≤ Ψi j ≤ 1 for all i , j . The probability, Pf(v) that the selected material will fail for a chosen179

particle velocity, v , is then determined by pairwise comparing this value to each and every180
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FIG. 1. From material property-based maximum particle velocity vmax to case-specific particle velocity

limit vlim, via factors Ψ1 j to Ψ5 j for the j th run using a selected material. Each factor Ψi j is briefly

defined in the text here and detailed later.

vlim, j determined above via the following equation:181

Pf(v),
1

N

N∑
j=1

H
(
v − vlim, j

)
, (5)

where H (χ) ,
(
χ+|χ|)/(2χ) except for H (0) , 1, the Heaviside step distribution with a182

dummy variable χ.183

All this analytical machinery states that, upon choosing a particle velocity v , if v ≥ vlim, j ,184

the probability of failure for the j th run is 1 or 100%. However, the limiting velocity, vlim, j ,185

is different for each ( j th) case, because the values of Ψi j will vary from case to case. Thus186

under some circumstances the failure may not happen, while others will produce failure. The187

probability Pf(v) takes all N cases into consideration.188

We seek to produce a particular order of magnitude estimate for the particle velocity that189

would lead to a 50% chance of material failure. Given the many possibilities withinΨi j , this is190

likely the best we can hope for.191

We next consider the basic relationship between failure and the maximum particle velocity192

in a material before considering the details in computing each Ψi j term required to find the193
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case-limited particle velocity, vlim. In doing so, we refer to Fig. 2 to illustrate the vibrations and194

potential flaws.195

x

x

(a)

(a1)

(a2)

y

z

z

(b) (c)

(d)

xx

u(x,t)

P
2a

2b

Rod or beam

Deformed beam

Neutral axis

w(x,t)w(x,t)

Planar cross-sections

2a

(a3)

FIG. 2. A rod or beam made from one of the selected materials may (a) transmit an acoustic longitudinal

wave along its length—the x axis. This is seen by a (a1) pattern of (a2) regularly spaced cross-sectional

lines becoming (a1,b) closer and farther apart as the acoustic wave progresses along the rod. The (b)

motion u(x, t ) is a particle displacement along the x axis. There may be lateral contraction along the

y and z axes as the acoustic wave stretches the material in the rod along the x axis in a Pochhammer-

Chree model of the longitudinal wave propagation, not shown here for clarity. Likewise, shear waves

could be present, and instead of u(x, t ) along the x axis, there would be lateral motion along either y or

z, perhaps both. The stress generated in the rod or a beam could be locally increased due to the presence

of a stress concentration, modeled (a3) here as an elliptical flaw penetrating the structure along the y

axis. Even if the flaw’s edges around its periphery are not sharp, the stress can be significantly greater

here, for example at point P , than in the bulk material. Moreover, if the edges are sharp and the material

is brittle (with a known KIC), the failure stress may be significantly lower than the yield stress. This is

represented in some cases with (c) a through crack of total length 2a. It is possible that the structure

could be transmitting (d) bending instead of axial or shear vibration. We represent this with the Euler-

Bernoulli beam model, where the beam is “thin” (over ten times longer than its lateral dimensions), the

planar cross-sections remain plane during deformation, the beam is symmetric about the z axis, and the

deformation w(x, t ) is insufficient to cause significant rotary inertia or shear deformation. This model

permits us to define a neutral axis at which the axial stress is always zero.

196

197
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B. Material Upper Limit Particle Velocity by Yield Stress in One-Dimensional Axial Vibration198

We first consider the classic model of one-dimensional planar acoustic waves propagating199

through a homogeneous media, seeking to set the stage for extensions from this model to pro-200

duce equally convenient results for other systems.201

Internal stress caused by continuous harmonic vibration is a function of material density202

and stiffness and is proportional to the maximum particle velocity within the solid. That is,203

the maximum speed a wave moves inside the material can determine the corresponding max-204

imum stress during one full sinusoidal vibration cycle. As previously stated, cyclical plastic205

deformation—inelastic deformation—during vibration is undesirable and likely limits the par-206

ticle velocity as well. Thus, we seek a material-dependent maximum particle velocity limit de-207

fined by the material-specific yield stress.208

An equation that relates the maximum particle velocity during vibration to the material209

stress may be derived along the lines of Hunt and Crandall’s approach and is expressed using210

the vibrational Mach number (Mv = V0/c)(Crandall, 1962; Hunt, 1960), where V0 and c are the211

surface particle velocity amplitude and the acoustic wave phase velocity, respectively. Using212

linear dynamic elasticity for an isotropic, homogeneous media, the following one-dimensional213

elastic wave equation may be derived:214

∂2u

∂x2
= 1

c2
0

∂2u

∂t 2
. (6)

Presuming a harmonic traveling wave of sinusoidal form for displacement u(x, t ) produces215

the solution u(x, t ) =U0 sin(ωt−kx) to the wave eqn. (6), with the wavenumber k = 2π/λ=ω/c.216
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Ignoring lateral motion (until later), the strain in a slim rod as this wave propagates along it is217

ε= ∂u/∂x and the particle velocity is v = ∂u/∂t , producing ε(x, t ) =−v(x, t )/c. So the maximum218

strain generated by the passage of the acoustic wave in one dimension is219

εmax = (V0/c) = Mv. (7)

The speed of this longitudinal wave is c = √
E/ρ, where ρ is the material’s density and E is its220

Young’s modulus. Thus, the maximum stress is,221

σmax = Eεmax =
√
ρEV0. (8)

We define material failure as equivalent to the condition when the stress at a point in the system222

exceeds the yield stress limit σy where plastic deformation occurs. Though this is not neces-223

sarily true failure, in the context of continuous vibration it is not desirable since it produces an224

irreversible change in the properties of the system.225

With this definition in mind, the critical particle velocity associated with the material’s fail-226

ure due to vibration may be defined as227

vmax ,
σy√
ρE

. (9)

However, the assumption of a one-dimensional, longitudinally-vibrating, infinite rod in228

Fig. 2 is simply unrealistic for most applications, and so the material property-based particle229

velocity limit in eqn. (9) is inadequate. The geometry, flaws, and size of the vibrating speci-230

men may affect the estimate for this limit (Crandall, 1962; Hunt, 1960). Damping may limit231
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the maximum possible particle velocity in soft and plastic materials, while imperfections in232

brittle materials may cause stress concentrations and a higher risk of fracture-driven failure233

(Pritz, 1998). The particle velocity limit also depends on the lateral dimensions of the structure,234

sometimes called the “Poisson effect”, which can take up elastic energy and effectively act to235

slow the speed of sound during vibration (Bancroft, 1941).236

C. Geometric and Acoustic Waveform Effects237

In most cases, the vibration under evaluation occurs in complex structures not represented238

by simple axial wave propagation theory. The complexity of the structure is likely to signifi-239

cantly affect the relationship between particle velocity and material stress. To take this into240

account, we consider other forms of vibration and use dimensionless parametersΨi j to define241

the maximum particle velocity limits for them.242

Other modes of vibration may propagate at speeds of sound different than simple longitu-243

dinal waves in thin media. For example, shear waves travel at a slower speed: cshear =
√

G/ρ <244 √
E/ρ. Torsional waves (Liu et al., 2009), Rayleigh waves, flexural waves, or Love waves, among245

others, can also propagate in or upon a material.246

This affects the relationship between the limiting material stress and the maximum particle247

velocity. For example, flexural waves in beams propagate far slower than longitudinal waves,248

implying the maximum particle velocity is greater for flexural waves. But there is more to con-249

sider. In modeling flexural waves in beams, for example, the Timoshenko beam model includes250

the effects of rotational inertia and lateral shearing ignored in the Euler-Bernoulli beam model,251

leading to an even slower wave speed in a Timoshenko beam and consequently a greater maxi-252
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mum particle velocity at failure (Hunt, 1960). Changing a model can change the estimate of the253

maximum particle velocity. The many models devised over the years for beams, membranes,254

rods, plates, shells, and other structures and the details they demand could easily overwhelm255

any effort to find a ubiquitous maximum particle velocity, if it exists.256

Our approach to this problem is the observation that while these different models are cer-257

tainly important, they do not affect the relationship between the limiting material stress and258

the maximum particle velocity beyond about an order of magnitude. Since we seek to only find259

the order of magnitude of the maximum particle velocity, we may choose a representative subset260

of the models to proceed. While it may be true that including more models of other phenom-261

ena would improve our estimate, we contend it is unlikely to significantly change the results.262

And even then, our aim here is to demonstrate a process for finding the maximum particle ve-263

locity across a series of models using a statistical approach, which we believe to be useful for264

design choices and developing an intuitive feel for what limits the propagation of acoustics and265

vibrations in materials and structures.266

We can furthermore expect that whatever form the vibration might be, in an elastic media267

the basic relation between the maximum particle velocity and the limiting stress will be analo-268

gous to the relation found for longitudinal vibrations, differing only by a constant (Hunt, 1960).269

Evidence of this is provided in a broader derivation in the Appendix. In lieu of considering ev-270

ery possible form of vibration, we next consider a pair of simple cases: transverse vibration of271

a beam and axial wave propagation in a narrow rod.272
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1. Transverse vibration of an Euler-Bernoulli beam273

To illustrate our point in a concrete manner, we first consider the Euler-Bernoulli beam274

model for transverse, flexural vibration of a beam, and then return to axial vibration with the275

Pochhammer-Chree rod model. The Euler-Bernoulli beam equation, for a homogeneous elas-276

tic and slender beam, is277

−E I
∂4w

∂x4
= ρA

∂2w

∂t 2
, (10)

where I , A, and w(x, t ) are the second moment of area of the beam’s cross-section, the area of278

the beam’s cross-section, and transverse displacement shown in Fig. 2(d), respectively, with the279

displacement dependent upon the axial coordinate x and time t . The corresponding stress is280

σ(x, y, t ) = E I ∂
2w
∂x2 at any point in the beam. The maximum stress, σmax, is located at ymax = Y ,281

the maximum distance from the neutral axis along the cross-section of the beam, and is given282

by283

σmax = k
√

Eρv, (11)

with k = p
E A/I as a factor dependent upon the cross-sectional shape. Since typical beams284

have a convex cross-sectional shape, this factor, k, is typically greater than one, and may be as285

small as k = p
3 for a rectangular cross-section and as large as k = 2

p
2 for a triangular cross-286

section. We choose to represent k in our modeling as a normally (Gaussian) distributed random287

value between these two limiting cases. The justification for a normal distribution, instead of,288

say, a uniform distribution is the observation that these limiting beam shapes are less common289

than those that produce intermediate values of k. In any case, the net effect upon the results of290

choosing another distribution for this factor is minor.291
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The maximum particle velocity limit is reduced from the longitudinal wave-based prediction292

in eqn. (9) by a factor of 1/k. In other words, the limiting particle velocity limit due to the293

transverse vibration of an Euler-Bernoulli beam is vlim =Ψ1 j vmax, whereΨ1 j = 1/k j and k j is a294

uniformly random value between
p

3 and 2
p

2.295

2. Axial wave propagation in a rod and the Pochhammer-Chree solution296

Returning briefly to longitudinal wave vibration, one potential geometric effect that may ap-297

pear is the lateral confinement and elasticity ignored by the one-dimensional analysis. This is298

known to introduce an additional degree of freedom to an acoustic wave propagating through299

the structure. The motion will reduce the speed of sound for the propagation of the wave, lead-300

ing to a change in the relation between the terms in eqn. (7) and consequently eqn. (9). We301

consider a simple elastic, homogeneous, and isotropic round bar with circular cross section as302

a representative example of this phenomena. As the diameter of the rod, D → ∞, this effect303

would likewise become negligible, returning us to the original model in subsection II B. How-304

ever, for small values of D < 2λ, the actual speed of sound crod is reduced as either the Poisson’s305

ratio ν or the diameter-to-wavelength ratio ∆= D/λ is increased (Bancroft, 1941). Thus, based306

on eqn. (9), the limiting particle velocity for a longitudinal wave including lateral effects would307

be vlim, j =Ψ1 j vmax, where Ψ1 j = crod, j /c0. The index j refers to the j th run using a particular308

material in the analysis, where crod, j /c0 is chosen at random with uniform distribution over the309

range 0.563 to 1 based on physically permissible values of Poisson’s ratio, ν, and the diameter-310

to-wavelength ratio ∆= D/λ according to Bancroft (1941).311
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D. The Effects of the Frequency of the Acoustic Wave on Damping and Dynamic Material Stiffness312

Since the Young’s modulus of an isotropic material under vibration actually depends upon313

the frequency of the vibration (Pritz, 1998), significantly stiffening with an increase in the fre-314

quency, the ratio of Young’s modulus appropriate for this frequency, the dynamic Young’s mod-315

ulus E( f ), to its (nearly) static counterpart, E0, may be approximated from the loss factor,316

η= π

2

log( E( f )
E0

)

log( f
f0

)
, (12)

where we suppose f0 = 1 Hz, E0 ∼ E( f0) represents low-frequency vibration (Pritz, 1998). There-317

fore, we may define the reduction in the limiting particle velocity due to damping and the fre-318

quency of the acoustic wave as319

Ψ2 j =
√

E0

E( f j )
=

(
10− 2η

π

) f0

f j
. (13)

Later, when we use eqn. (13) to statistically determine the limiting particle velocity by produc-320

ing N total runs for each material, the frequency f j as a random value between 100 Hz and321

109 Hz on a base-ten logarithmic scale, a typical range for the majority of acoustic phenomena.322

E. Effects of Flaws as Stress Concentrations and Cracks323

Flaws in most engineering materials can significantly reduce the failure stress. Depending324

on the orientation and size of the flaw, a stress concentration may locally form around the325

flaw and contribute to broader failure of the material. It is overwhelmingly difficult to pursue326

broad treatment of elastoplastic fracture mechanics applied to the many forms of stress and327
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flaw shapes that may arise in practical situations. Moreover, the micromechanics of failure in328

flawed media is a complex subject under study for many years (Curran et al., 1987). Instead329

of being drawn into these aspects, we once again choose an exemplar to represent an order-330

of-magnitude estimate of this phenomena: elliptical flaws in a material, uniaxially loaded by331

stress, σ, as the vibration or acoustic wave propagates through the system, producing a large332

range of stress concentration factors due to variance in their size and orientation. If the mate-333

rial is also brittle, then the material may separately fail by exceeding its critical fracture tough-334

ness as the flaw becomes sharp-tipped: a crack.335

1. Ductile failure336

Stress concentrations in a ductile material around a flaw may produce plastic yielding that337

represents failure as an acoustic wave is transmitted through it. For example (Anderson and338

Anderson, 2005), in an elliptical through flaw of length 2a by 2b, the stress produced near the339

flaw’s semimajor axis end (see point P in Fig. 2(a3)), σc, is greater than the uniaxial stress σy by340

a factor φ representing the stress concentration. Here, 2a is oriented along z and 2b is oriented341

along x; the flaw extends all the way through the structure along y . For this flaw geometry,342

illustrated in Fig. 2(a3), σc = φσy, where φ = 1+ 2(a/b). This implies that once σc → σf, the343

failure stress or σc → σy, the yield stress, the result is at least local plastic yielding that would344

be undesirable in continued vibration. At worst, the material fails. With this potential flaw345

representing the class of myriad flaws that may be present in ductile materials, the limiting346

particle velocity will be the maximum particle velocity scaled by the factor Ψ−1
3 j , φ j = 1 +347
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2(a j /b j ). For our statistical analysis, we require the ratio (a j /b j ) to be randomized between 0.1348

to 10 on a base-ten logarithmic scale.349

2. Brittle failure350

In a brittle material, the stress in the vicinity of a sharp-tipped crack is generally dependent351

on the square root of the distance from the crack tip, and it and the growth of the crack to352

eventual failure both depend upon the fracture toughness KC, a material property. The stress353

intensity factor, K , may be calculated for a given stress and crack size, and here we choose as354

our exemplar the plane strain mode I fracture toughness, KIC. As a defined property of brittle355

materials, it may be used to determine the failure stress, σ f = KIC/
p

aπ, for a crack of length 2a356

centrally located in a thin, semi-infinite plate material. The crack is presumed to be perpendic-357

ularly oriented to the direction of the stress as shown in Fig. 2(c).358

3. Failure in flawed material for a given analysis is either due to brittle or ductile failure359

The randomly preselected crack size for each run is as j , randomly defined between 10−6
360

and 1 mm on a base-ten logarithmic scale. Depending on this crack length, some materials361

may either fail via brittle or ductile failure. To determine which, we determine the critical crack362

size for brittle failure,363

ac = 1

π

(
K

σy

)2

, (14)

where σy is the yield stress. For the j th run, if as j > ac, the material will fail from the brittle364

crack, and the limiting particle velocity is further reduced due to this by a factorΨ4 j =
√

ac
as j

. If,365
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however, as j < ac, the material will fail by exceeding the ductile yield stress, σy, before brittle366

failure becomes a problem, and soΨ4 j = 1.367

F. Effects of Endurance and Fatigue368

Ductile materials may also fail under cyclical stresses well below the material’s yield stress.369

Cyclical vibrations from acoustic wave transmission and vibration, in particular, may exceed a370

material’s endurance limits due to fatigue that accumulates with time. As with the other effects,371

the many ways this effect may impact a given material’s response to vibration depends upon372

the characteristics of the material and the vibration, and so we again constrain our analysis into373

a tractable version by limiting the number of vibration cycles to at most 106 and a frequency374

between 0.1 kHz to 1 MHz on a base-ten logarithmic scale when fatigue is relevant. Fatigue375

arises in the context of structural vibration and in this context is only relevant over this limited376

frequency range. The fatigue endurance-limited stress of such a material after 106 cycles is377

written as σE, and is less than the yield stress σy. We define in the statistical analysis the effect378

this would have on the limiting particle velocity asΨ5 j ,σE/σy.379

III. RESULTS380

The probability of failure of eleven selected materials—diamond, steel, aluminum, copper,381

polypropylene (PP), polyvinyl chloride (PVC), Polymethyl methacrylate (PMMA), glass, con-382

crete, wood, and lithium niobate—illustrates a consistent trend towards failure at a particle383

velocity of v = O[0.1−10] m/s (Fig. 3). The results produced by N = 10,000 runs per material384

is monotonically increasing with respect to the particle velocity in the plot, with the horizontal385
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vlim

FIG. 3. The probability of failure Pf versus particle velocity v for eleven selected materials (see text).

Ten thousand (N ) runs for each material choice produces a nearly continuous distribution of failure

probability with respect to the particle velocity. The result is nearly sigmoidal, but with small yet impor-

tant discrepancies between materials and over v . These arise from the effects of the different forms of

acoustically-driven failure.

axis plotted as a base-ten logarithm for clarity. There is no scatter in this data nor error bars to386

provide as each ( j th) result lies at a specific combination of the particle velocity and probability387

of failure.388
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We then nondimensionalize the particle velocity as v̂ , v/vmax, remembering that vmax is a389

material property. By further considering the probability of failure based on this dimensionless390

particle velocity v/vmax, the data appears to collapse to produce a similar probability of failure391

for a given dimensionless particle velocity v̂ regardless of the chosen material in Fig. 4, with the392

notable exceptions of diamond and wood. These two examples indicate the importance of the393

toughness of flawless diamond, the fragility of diamond with flaws, and the unique failure char-394

acteristics of wood. Wood has extremely large yield and failure stress values when considering395

its other properties, due to its composite and porous structure, and this strongly affects the396

predicted results despite the absence of anisotropy. Other single crystal and composite media397

are likely to exhibit similar results.398399

Referring to the results in Figs. 3 and 4, the probability of failure at low vibration velocities400

with Pf ≈ 0 until 10−2 m/s, where wood, copper, diamond, and glass are first to exhibit nonzero401

failure probabilities, followed by steel, lithium niobate, aluminum, and the polymers. Diamond402

produces a different distribution of failure probabilities with respect to particle velocity than403

the other materials, partially a consequence of its hardness and high yield stress, and partially404

because it is more fragile than most of the other materials when it has a flaw.405

Crucially, consider the distribution of particle velocities at which Pf = 50% for the chosen406

materials, as tabulated in Table I. The results indicate that the mean particle velocity at Pf = 50%407

is 1.31 m/s for these eleven materials, incorporating various forms of vibration, frequencies,408

flaws, and fatigue. With the 95% confidence interval from 0.46 to 1.58 m/s (10−0.07±0.27 m/s)409

for vlim predicted from logistic regression of all the data for all materials, it appears reasonable410

to conclude that a limiting particle velocity of vlim = O [1 m/s] exists. Furthermore, by non-411
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vlim vmax

FIG. 4. Probability of failure Pf versus the dimensionless particle velocity v̂ for the eleven selected mate-

rials. Diamond exhibits a broader range of particle velocities over which failure may occur because of its

unique toughness without flaws and fragility with flaws. Most of the other materials, except for wood,

fall into a narrowly defined group.

dimensionalizing the data, a dimensionless limiting particle velocity also may be predicted to412

be v̂lim = O [0.1] with a 95% confidence interval within 0.034 to 0.12 (10−1.19±0.28) via logistic413

regression.414
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TABLE I. Particle velocity, dimensional (v) and dimensionless (v̂), for each of the selected materials

where the probability of failure at Pf = 50% over all N = 10000 cases per material.

Material v (m/s) v̂ (—)

Copper 0.14 0.06

Glass 0.25 0.18

Wood 0.30 0.02

Concrete 0.58 0.15

Steel 0.96 0.11

Polyvinyl Chloride (PVC) 0.93 0.04

Aluminum 2.40 0.12

Acrylic (PMMA) 2.04 0.05

Diamond 3.09 0.005

Polypropylene (PP) 3.02 0.10

Lithium Niobate (LN) 0.69 0.19

Mean 1.31 0.09

95% Confidence Interval 0.46 – 1.58 0.034 – 0.12

IV. APPLICATION TO ACOUSTOFLUIDICS415

Surface acoustic waves (SAW) are both classic and modern, with wide use in communica-416

tions since the classic development of interdigital transducer (IDT) electrodes in 1965 (White417

and Voltmer, 1965) and numerous acoustofluidics applications in the past twenty years (Con-418

nacher et al., 2018a; Friend and Yeo, 2011). Only in acoustofluidics has it become necessary419

to drive the devices near their structural limits, leading to rapid device failure. The maximum420

particle velocity on the substrate has been empirically shown to be O[1 m/s] (Friend and Yeo,421
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2011), but there has been no theoretical analysis nor experimental results to show why this ac-422

tually occurs or might be important. Here, we present the surface particle velocity amplitude423

on a lithium niobate (LN) substrate due to IDT-generated SAW. The velocity is measured via424

laser Doppler vibrometer, exhibiting a maximum particle velocity of O[1 m/s].425

A. Experimental Setup and Results for Surface Acoustic Wave Particle Velocity Measurement426

We designed and fabricated SAW interdigital transducer (IDT) devices on double-side pol-427

ished 128◦ Y -rotated cut LN (Precision Micro-Optics Inc., Burlington, MA,USA) for surface428

acoustic wave generation and propagation. The fabrication and usage details, including im-429

ages of the devices, are provided in ample detail elsewhere (Mei et al., 2020). A wavelength of430

λ= 100 µm was selected for an operating frequency of ∼40 MHz (from f = v/λ) to define each431

IDT, comprised of twenty simple finger pairs with finger and gap widths of λ/4 and an aperture432

of 2 mm. For lithium niobate wafers of 500 µm thickness, 40 MHz is approximately the mini-433

mum frequency that may be used to generate useful Rayleigh SAW. Lower frequencies typically434

reported in much of the acoustofluidics literature are actually generating Lamb waves instead435

(Connacher et al., 2018b). Standard UV photolithography (using AZ 1512 photoresist and AZ436

300MIF developer, MicroChem, Westborough, MA) was used alongside sputter deposition and437

lift-off processes to fabricate the 10 nm Cr / 1 µm Au IDT upon the 500 µm thick LN substrate438

(Connacher et al., 2018b). Absorbers (Dragon Skin™, Smooth-On, Inc., Macungie, PA) were439

used at the center and periphery of the device to prevent edge reflections and spurious bulk440

waves. Surface acoustic waves were generated by applying a sinusoidal electric field to the441

IDT at resonance using a signal generator (WF1967 multifunction generator, NF Corporation,442
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Yokohama, Japan) and amplifier (ZHL–1–2W–S+, Mini-Circuits, Brooklyn, NY, USA). The actual443

voltage, current, and power across the device were measured using an oscilloscope (InfiniVi-444

sion 2000 X-Series, Keysight Technologies, Santa Rosa, CA). The particle velocity perpendicu-445

lar to the substrate surface was measured using a laser Doppler vibrometer (LDV, UHF–120SV,446

Polytec, Waldbronn, Germany).447

By increasing the voltage of the signal delivered to the IDTs, the particle velocity of the SAW448

perpendicular to the substrate surface also increases—to a limit. The particle velocity increases449

linearly when the voltage is relatively small, up to an apparent limit at about 1.2 to 1.4 m/s;450

this limit at O[1] m/s appears when the input signal is relatively large, and remains relatively451

constant until the device fails in this example at around 20 V. When using these devices, the452

brittle LN can unexpectedly and suddenly fail once the vibration velocity reaches O[1] m/s; by453

contrast, using such devices at lower vibration velocity amplitudes is possible for months to454

years.455456

This device is a simple version of the many such devices used for acoustofluidics. The SAW457

is converted into sound propagating in a fluid in contact with such a substrate. Because this458

sound is intense and produces compressibility in the fluid, a combination of the density varia-459

tions and particle velocity—in the presence of viscosity sufficient to cause a phase shift between460

them—altogether gives rise to acoustic streaming. Acoustic streaming is transmitted most of-461

ten via the streamwise acceleration or the Reynolds stress, and scales with ρU 2, where ρ and462

U are the fluid density and amplitude of the LN surface’s particle velocity, respectively. Since463

U ∼ 1 m/s for the LN substrate at its limit, the steady acoustic pressure is ∼ 1 kPa for most flu-464

ids. This is a relatively weak pressure limit and is difficult to improve upon, a key reason why465
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FIG. 5. Particle velocity of SAW generated and propagating upon a lithium niobate substrate versus

the applied voltage on the IDT. There is a linear relation between an increasing applied voltage and the

particle velocity, until 15 V, at which point the particle velocity becomes essentially constant between 1.2

and 1.4 m/s, corresponding to the estimated particle velocity limit of O[1 m/s] from the earlier analysis.

acoustic streaming in its traditional form is not very effective in high-pressure applications.466

However, there are other approaches that may produce useful results (Zhang et al., 2021a,b),467

exploiting alternatives to acoustic streaming by relying on the nonlinear coupling between an468

enclosing channel’s deformation and the propagation of the primary sound field in the fluid469

to produce far greater pressures and flow speeds. The key point is that while there are many470

advantages to using acoustic waves in propelling fluids via acoustic streaming, seeking to do so471

against anything more than a modest pressure head is unlikely to work.472
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V. CONCLUSIONS473

We have sought to define a limiting particle velocity for acoustic waves and vibrations as474

defined upon the concept of material failure in a variety of conditions and material choices.475

The relationship between maximum particle velocity and maximum stress during vibration476

has been found and used for this purpose. While the particle velocity limit is not merely de-477

fined by material failure, it can be treated in this way by noting that the appearance of inelastic478

material responses—plasticity, significant anelastic damping—may be included as “failure” in479

the context of acoustic waves and vibrations because these phenomena will limit the particle480

velocity all the same.481

The particle velocity limits were defined in terms of the maximum particle velocity, a mate-482

rial property. Dimensionless parameters Ψi j were defined to represent geometric effects and483

modes of vibration, damping, cracks and imperfections, endurance and fatigue, and the weak-484

ening of the material due to cracks in brittle materials. Statistical results were presented using485

the Monte Carlo method for eleven different materials of N = 10000 specimens each, random-486

izing the geometry, wave modes, and frequency to relate the probability of material failure to487

the limiting particle velocity. A limiting particle velocity of vlim = O [1 m/s] exists with a 95%488

confidence interval from 0.46 to 1.58 m/s (10−0.07±0.27 m/s) predicted from logistic regression489

of all the data for all materials, types of vibration, and failure modes considered in this study.490

The nondimensional limit is v̂lim =O [0.1] with a 95% confidence interval from 0.034 to 0.12.491

The concept of the limiting particle velocity as an invariant at O[1 m/s] is useful when one492

recognizes that the classic use of acceleration as a failure criteria does not apply in acoustic493
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devices. Acceleration is not invariant with respect to frequency. Similarly, the displacement494

amplitude cannot be used because it is likewise dependent upon the frequency. Regardless495

of the phenomenon and its frequency, one may begin with the assumption that failure of a496

material may be a risk when O[1 m/s]. Beyond failure, anelastic response of materials may497

equally arise at this particle velocity, suggesting it as a practical limit to motion that may be498

induced in a material without extraordinary effort or damaging the material’s integrity. In other499

words, even if the material does not fail, it may fail to produce larger amplitude responses due500

to energy losses. This was illustrated via a simple experiment where SAW was generated across501

the surface of lithium niobate.502

The consequences of particle velocity limit analysis can effectively be used in materials and503

structural engineering to predict when dynamic material vibration velocity can cause failure504

in various forms (i.e., brittle fracture, repeated plastic deformation, fatigue failure). Further-505

more, this analysis may be useful in predicting the potential amplitude and frequency limits of506

actuators that rely on resonant or driven vibrations. In the future, material structures evalu-507

ated for vibration failure via finite element modeling of complex geometry, damping, and flaws508

may be simplified. Rather than calculating the likelihood of dynamic failure by localized time-509

dependent stress-strain relationships, strain energy expressions, or bespoke failure models, the510

local nodal velocity could be used as a proxy for predicting failure and the presence of damag-511

ing vibrations.512

Finally, the implications of O[1 m/s] as a limiting particle velocity are profound when ex-513

ploring the highest end of the frequency range f = 1 Hz to 1 GHz that we considered. With514

vlim = O[1 m/s], we have a maximum displacement of only ulim = (2π f )−1vlimO[0.1 nm] at515
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1 GHz, yet an acceleration of αlim = 2π f vlimO[1010] m/s2. Such large accelerations are respon-516

sible for many of the peculiar phenomena observed and reported in acoustofluidics, and will517

surely be the source of more interesting results to come.518

ACKNOWLEDGMENTS519

The authors are grateful to the University of California for provision of funds and facilities in520

support of this work. The work presented here was generously supported by a research grant521

from the W.M. Keck Foundation to J. Friend. The authors are also grateful for the support of this522

work by the Office of Naval Research (via grants 12368098 and N00014-20-P-2007), and sub-523

stantial technical support by Eric Lawrence, Mario Pineda, Michael Frech, and Jochen Schell524

among Polytec’s staff in Irvine, CA and Waldbronn, Germany. Fabrication was performed in525

part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the Na-526

tional Nanotechnology Coordinated Infrastructure, which is supported by the National Science527

Foundation (Grant ECCS–1542148).528

REFERENCES529

530

Anderson, T., and Anderson, T. (2005). Fracture Mechanics: Fundamentals and Applica-531

tions, Third Edition (Taylor & Francis, Philadelphia, PA USA), https://books.google.com/532

books?id=MxrtsC-ZooQC.533

33

http://https://books.google.com/books?id=MxrtsC-ZooQC
http://https://books.google.com/books?id=MxrtsC-ZooQC
http://https://books.google.com/books?id=MxrtsC-ZooQC


Auld, B. (1990). number v. 1 in Acoustic Fields and Waves in Solids Acoustic Fields and Waves in534

Solids (R.E. Krieger, Melbourne, FL USA).535

Bachmann, P. (1894). Die analytische zahlentheorie, 2 (Teubner).536

Bancroft, D. (1941). “The velocity of longitudinal waves in cylindrical bars,” Physical Review537

59(7), 588.538

Carfagni, M., Lenzi, E., and Pierini, M. (1998). “The loss factor as a measure of mechanical539

damping,” in SPIE proceedings series, pp. 580–584.540

Collins, L. (2004). “Picoplatters,” IEE Review 50(4), 44–47.541

Connacher, W., Zhang, N., Huang, A., Mei, J., Zhang, S., Gopesh, T., and Friend, J. (2018a).542

“Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications,” Lab543

on a Chip 18, 1952–1996.544

Connacher, W., Zhang, N., Huang, A., Mei, J., Zhang, S., Gopesh, T., and Friend, J. (2018b).545

“Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications,” Lab546

on a Chip 18(14), 1952–1996.547

Cosenza, E., and Manfredi, G. (2000). “Damage indices and damage measures,” Progress in548

Structural Engineering and Materials 2(1), 50–59.549

Crandall, S. H. (1962). “Relation between strain and velocity in resonant vibration,” The Journal550

of the Acoustical Society of America 34(12), 1960–1961.551

Curran, D., Seaman, L., and Shockey, D. (1987). “Dynamic failure of solids,” Physics Reports552

147(5), 253 – 388.553

Dehghani, H., and Ataee-Pour, M. (2011). “Development of a model to predict peak particle ve-554

locity in a blasting operation,” International Journal of Rock Mechanics and Mining Sciences555

34



48(1), 51–58.556

Demirbas, A. (2007). “Fuel alternatives to gasoline,” Energy Sources, Part B: Economics, Plan-557

ning, and Policy 2(3), 311–320.558

Friend, J. R., and Yeo, L. Y. (2011). “Microscale acoustofluidics: Microfluidics driven via acous-559

tics and ultrasonics,” Reviews of Modern Physics 83, 647–704.560

Gaberson, H., Pal, D., and Chapler, R. (2000). “Shock spectrum classification of violent environ-561

ments that cause machinery failure,” in Proceedings of the 18th International Modal Analysis562

Conference, pp. 1126–1135.563

Halfpenny, A. (1999). “A frequency domain approach for fatigue life estimation from finite ele-564

ment analysis,” in Key Engineering Materials, Trans Tech Publ, Vol. 167, pp. 401–410.565

Hancock, J., and Bommer, J. J. (2006). “A state-of-knowledge review of the influence of strong-566

motion duration on structural damage,” Earthquake Spectra 22(3), 827–845.567

Hunt, F. V. (1960). “Stress and strain limits on the attainable velocity in mechanical vibration,”568

The Journal of the Acoustical Society of America 32(9), 1123–1128.569

Kimberley, J., Cooney, R., Lambros, J., Chasiotis, I., and Barker, N. (2009). “Failure of au RF-570

MEMS switches subjected to dynamic loading,” Sensors and Actuators A: Physical 154(1), 140571

– 148.572

Liu, D. K.-C., Friend, J., and Yeo, L. (2009). “The axial-torsional vibration of pretwisted beams,”573

Journal of Sound and Vibration 321(1-2), 115–136.574

Mei, J., Zhang, N., and Friend, J. (2020). “Fabrication of surface acoustic wave devices on575

lithium niobate,” JoVE (Journal of Visualized Experiments) (160), e61013.576

35



Mikitarenko, M., and Perelmuter, A. (1998). “Safe fatigue life of steel towers under the action of577

wind vibrations,” Journal of Wind Engineering and Industrial Aerodynamics 74, 1091–1100.578

Nwosu, H., Obieke, C., and Ameh, A. (2016). “Failure analysis and shock protection of external579

hard disk drive,” Nigerian Journal of Technology 35(4), 855–865.580

Pritz, T. (1998). “Frequency dependences of complex moduli and complex poisson’s ratio of581

real solid materials,” Journal of Sound and Vibration 214(1), 83–104.582

Ramesh, K., Hogan, J. D., Kimberley, J., and Stickle, A. (2015). “A review of mechanisms and583

models for dynamic failure, strength, and fragmentation,” Planetary and Space Science 107,584

10 – 23.585

Standard, M. (1989). “Environmental test methods and engineering guidelines,” MILSTD-810E,586

AMSC F 4766.587

Watson, B., Friend, J., and Yeo, L. (2009). “Piezoelectric ultrasonic micro/milli-scale actuators,”588

Sensors and Actuators A: Physical 152, 219–233.589

White, R. M., and Voltmer, F. W. (1965). “Direct piezoelectric coupling to surface elastic waves,”590

Applied Physics Letters 7(12), 314–316.591

Zhang, N., Horesh, A., and Friend, J. (2021a). “Manipulation and mixing of 200 femtoliter592

droplets in nanofluidic channels using mhz-order surface acoustic waves,” Advanced Science593

(Accepted 12 March 2021).594

Zhang, N., Horesh, A., Manor, O., and Friend, J. (2021b). “Powerful acoustogeometric streaming595

from dynamic geometric nonlinearity,” Physical Review Letters (Accepted 19 March 2021).596

Zhang, Q. B., and Zhao, J. (2014). “A review of dynamic experimental techniques and mechan-597

ical behaviour of rock materials,” Rock Mechanics and Rock Engineering 47(4), 1411–1478.598

36



Appendix599

1. Key Parameters and Notations600

Parameter Notation SI Units

“Defined as” , —

Acceleration α m/s

Crack size a m

Critical crack size ac m

Cross section area A m2

Sound velocity in solid, longitudinal, one dimensional c0 m/s

Sound velocity in solid, longitudinal, circular rod crod m/s

Circular rod diameter D m

Young’s modulus E Pa

Frequency of vibration f Hz

Ductility factor Fduct m

Shear modulus G Pa

Second moment of area I m4

Fracture toughness KIC Pa
p

m

Wavelength in solid λ m

Poisson’s ratio µ —

Vibrational Mach number Mv —

Number of cases per material N —

Order of approximation error (Bachmann, 1894) O <varies>

Probability of failure Pf %

Factor reducing maximum particle velocity to produce limiting particle velocity Ψi j —

Density ρ kg/m3

Stress σ Pa

Endurance limit σE Pa

Brittle fracture failure stress σf Pa

Yield strength σy Pa

Time t sec

Longitudinal displacement u(x,t) m

Vibration velocity v m/s

Limiting vibration velocity vlim m/s

Maximum vibration velocity vmax m/s

Circular frequency ω rad/s

Transverse displacement w(x,t) m

Distance to neutral axis (bending) y m

601

37



2. A Derivation of the Relationship Between the Maximum Particle Velocity and the Stress for a602

Planar Acoustic Wave in an Elastic Medium603

a. Introduction604

The purpose of this appendix is to illustrate to readers the general applicability of the con-605

cept relating the particle velocity to the strain, and consequently the material properties. We606

progress through a brief derivation of the governing equations and a simple solution of them for607

an isotropic material. Solutions for anisotropic materials, coupled media, and finite deforma-608

tions build upon this basic approach, though often demand computation to produce solutions.609

b. The equation of motion for a solid elastic material610

Derivation of Newton’s second law for an infinitesimal volume of elastic media (Auld, 1990)611

produces612

∇·T+ f = ρ∂
2u

∂t 2
, (15)

and, in component notation, we are able to write613

∂Ti k

∂xk
+ fi = ρ∂

2ui

∂t 2
. (16)

The equations relate the stress T, body force f, and particle displacement u in the elastic ma-614

terial. We note in passing the occasional use of the momentum density ([M][L]−2[T]−1) in the615

literature, defined as p = ρv where v = ∂
∂t u, so that616

∇·T+ f = ∂p

∂t
. (17)
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From the strain (S)-displacement (u) relationship, noting ∇s =
(∇+∇T

)
is the symmetric gradi-617

ent operator and (·)T is the transpose operator,618

∇su = S ⇒∇sv = ∂S

∂t
(18)

using a time derivative on both sides.619

For a standard elastic solid, the strain is the stress multiplied by the compliance or S = s : T,620

with : as the double-dot product, and so621

∂S

∂t
= S :

∂T

∂t
⇒∇sv = S :

∂T

∂t
, (19)

where v = d/d t (u) is the particle velocity, producing622

c : ∇sv = ∂T

∂t
. (20)

Here we also use the definition of the stiffness c such that c : s =δ, with δ as the identity tensor.

If we take ∇·T+ f = ρ ∂
∂t v and take its derivative with respect to time, t ,

∇· ∂T

∂t
+ ∂f

∂t
= ρ ∂2

∂t 2
v ⇒

∇· (c : ∇sv)+ ∂f

∂t
= ρ ∂2

∂t 2
v ⇒

∇iαcαβ∇β j v j + ∂

∂t
fi = ρ ∂2

∂t 2
vi , (21)

the equation of motion in component form, written in terms of the particle velocity vi , stiffness623

cαβ, and the body force fi . In this form, we have chosen to abbreviate the component notation624
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by taking advantage of the inherent symmetry present in even a very anisotropic material, such625

that the full fourth-order stiffness tensor ci j kl may be written as cαβ where α,β ∈ {1,2, . . . ,6}.626

c. Assuming a harmonic propagating wave627

Suppose we have a harmonic wave, an acoustic wave propagating along eη = a1e1 + a2e2 +628

a3e3, and assume the unit vectors ei form a right-handed orthogonal coordinate system. Then629

the terms in eqn. (21) will be proportional to e ι(ωt−k(eη·r)).630

This lets us greatly simplify the operators ∇iα and ∇β j , replacing them, respectively, with631

matrices632

ιk



a1 0 0 0 a3 a2

0 a2 0 a3 0 a1

0 0 a3 a2 a1 0


≡ ιkiαk ≡ ιkiα (22)

and633

ιk



a1 0 0

0 a2 0

0 0 a3

0 a3 a2

a3 0 a1

a2 a1 0



≡ ιkβ j k ≡ ιkβ j . (23)
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If we set the applied forces, fi = 0∀i ∈ {1,2,3}, then ∇iαcαβ∇β j v j + ∂
∂t fi = ρ ∂

∂t vi becomes634

−k2kiαcαβkβ j v j =−ρω2vi . (24)

By defining the Christoffel matrix Γi j ≡ kiαcαβkβ j ,635

k2Γi j v j = ρω2vi . (25)

From the Christoffel equation (25) we may obtain (k2Γi j −δi jρω
2)v j = 0, the slowness equation.636

Little more can be done to solve this equation without knowing the details of the material’s637

anisotropy, but let us consider the simplest case here.638

d. In an isotropic medium produces the expected relationship between the particle velocity and639

the strain640

Let us presume the wave is in an isotropic medium, noting that c12 = 1
2 (c11 − c44) and the641

substantial symmetry present in the media otherwise, leaving only two independent constants642

to define it.643

The Christoffel matrix becomes644

[Γi j ] = [kiα][cαβ][kβ j ] =



c11a2
1 + c44(1−a2

1) (c12 + c44)a1a2 (c12 + c44)a1a3

(c12 + c44)a2a1 c11a2
1 + c44(1−a2

2) (c12 + c44)a2a3

(c12 + c44)a3a1 (c12 + c44)a3a2 c11a2
3 + c44(1−a2

3)


(26)
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Suppose we assume that the wave is propagating along e3. Since the material is isotropic,645

it does not matter which direction we choose. Then eη = 0e1 + 0e2 + 1e3 and k = keη = ke3:646

k2Γi j v j = ρω2vi becomes647

k2



c44 0 0

0 c44 0

0 0 c11





v1

v2

v3


= ρω2



v1

v2

v3


(27)

and so k2c44v1 = ρω2v1, k2c44v2 = ρω2v2, and k2c11v3 = ρω2v3.648

A shear wave is propagating along e3 with v = e1v1e ι(ωt−kx3) where xi is a coordinate along649

ei that must have k2c44 = ρω2. Likewise, another shear wave exists such that v′ = e2v2e ι(ωt−kx3)
650

with k2c44 = ρω2. Finally, v" = e3v3e ι(ωt−kχ3) with k2c11 = ρω2 as the longitudinal wave. These651

bulk waves have different speeds depending on c44 and c11.652

Now it is useful to note the particle displacement u can be found through integration of the653

particle velocity v,654

u =
∫

vd t = v

ιω
e ι(ωt−kx3)e3, (28)

and so the resulting strain along the e3 direction is655

S33e3 = ∂u

∂z
e3 =−vk

ω
e ι(ωt−kx3)e3. (29)

Since656

vk

ω
= 2πv

2π f λ
= v

f λ
= v

c0
(30)
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where c0 is the speed of sound, we find that the magnitude of the longitudinal strain is a ratio657

of the particle velocity to the speed of sound in the media for the longitudinal wave described658

by v′′,659

|S33| = vk

ω
= v

c0
. (31)

The shear wave solutions will produce similar results.660

3. Schematic of Experimental Setup for Surface Acoustic Wave Particle Velocity Measurement661
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