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ABSTRACT OF THE DISSERTATION 

Mathematical Modeling of CTL Delay and Human Fertility Decline 

By 

Shaun Stipp 

Doctor of Philosophy in Ecology and Evolutionary Biology 

University of California, Irvine, 2015 

Professor Dominik Wodarz, Chair 

 

 Mathematical and computational models are invaluable tools that enable one to 

explore the implications of the assumptions one makes about how complex systems 

operate. In Chapter 1, mathematical models are used to address the question of whether a 

delay in CTL (cytotoxic T lymphocyte) arrival to the site of an infection can increase the 

chances of the CTL clearing this infection. The results of three models of increasing 

complexity imply that there are conditions in which such an advantage of a CTL delay can 

occur. The mechanism for this advantage as suggested by the models is that as the infection 

progresses, the virus depletes its source of growth, allowing the CTL to drive the infection 

to lower levels.  In addition, when the rate of CTL activation is proportional to the level of 

viral antigen, a delay is advantageous in that a higher virus load results in the activation of 

more CTL. Chapter 2 uses mathematical and computational models to address the 

phenomenon of human fertility decline. We assume a framework in which two 

populations—high- and low-fertility—can convert members of the other population into 

members of its own. We find that when the low-fertility individuals are favored in the 

conversion process, the low-fertility population can dominate the high-fertility population 
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when the rate of cultural transmission is high and mortality is low.  Chapter 3 investigates 

the matter of fertility decline in a framework where a continuum of fertilities is possible. 

Individuals take the weighted average of the fertility of individuals around them with 

copying error. Outcomes of long-term fertility are investigated with different model 

assumptions relating to how individuals are assigned a weight in the average. Although the 

qualitative behavior of the time series of fertility and the influence of parameters on it vary 

depending on model assumptions, the most general and relevant insight of the models is 

that long-term fertility is lower under conditions of low mortality.  
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Introduction 

 

The timing of events in biological systems are relevant to the outcomes of their dynamical 

processes. For example, theoretical work has shown that delays in development to 

reproductive maturity can confer a fitness advantage in variable environments, when in 

constant environments these same life history strategies would incur a fitness cost 

(Tuljapurkar, 1990). On this note, degrees of iteroparity and semelparity seem to be 

facultatively adjusted in some circumstances based on the risk of mortality (Baird et al 

1986); the woodlouse Porcellionides pruinosus has been shown to breed continuously in 

the tropics, when under temperate conditions it is semelparous (Dangerfield and Telford, 

1990); iteroparity, but not fecundity, has been shown to increase in the mosquito 

Wyeomyia smithii as opportunities for blood meals are increased (Bradshaw, 1986); and 

sea squirts are polymorphic with respect to their life history, with either semelparous or 

iteroparous dominating the population depending on the season (Grosberg, 1988). In the 

case of small, isolated populations, subsets of the population may be consigned to breed at 

different times, a phenomenon known as “cohort splitting” (Willows, 1987). 

 Delays in the context of space become particularly relevant for processes in the 

immune system. For example, experiments suggest that in a rechallenge cytotoxic T 

lymphocytes (CTL) can only effectively extravasate to the peripheral tissues and perform 

their effector function when newly or persistently stimulated by viral antigen, whereas 

protection against intravenous injection will be successful without antigen (Kundig et al. 

1996) The authors hypothesized that the difference in antigen-dependence was due to the 

time it takes CTL to reach the peripheral tissues. A kinetic analysis of HIV infection has also 
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shown a delay in CTL expansion, which is believed to be due to CTL requiring minimum 

antigen levels to mount a response (Davenport et al. 2004). Furthermore, it has been 

reported that hepatitis C virus outpaces an acute CTL response by several weeks in 

chimpanzees and this may contribute to viral persistence. Perhaps the most detailed 

analysis of acute CTL response in both space and time was conducted by Frey et al. (2013), 

in which a form of in situ hybridization was used to visualize the spread of pneumonia 

virus of mice (PVM) as well as the CTL response to the infection. In this study, a strong CTL 

infiltration into the lung occurred only after maximal viral loads were achieved. The 

authors proposed that such a delay in CTL response may be necessary to ensure effective 

clearance of the pathogen. The first chapter of this dissertation complements the work of 

Frey et al. in that a theoretical framework is constructed to model a CTL-mediated 

clearance of an infection and determine whether and under what conditions a delayed CTL 

response will be more effective than an early CTL response in clearing the pathogen. 

Numerical simulations are employed with varying parameter values and amounts of CTL 

delay. The resulting minima of infected cells are plotted, lower minima corresponding to a 

greater probability of clearing the infection in the short-term. 

 Variability of reproductive strategies in response to local conditions is also a 

defining feature of own species. The nomadic bands of hunter gatherers comprising all of 

humanity prior to the ninth century B.C.E. would have had a lower fertility than the 

agricultural societies that followed (Hirchman, 2005; Lawson, 2011; Livi-Bacci, 2017). This 

fertility schedule would have been characterized by long interbirth intervals maintained 

via amenorrhea caused by long periods of breastfeeding. Childbearing also started late due 

to a late age of menarche. Long interbirth intervals and late onset of childbearing is 
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believed to have been adaptive in a nomadic culture because a woman could only carry one 

child at a time and the mobility of the band in general would have been impaired by 

dependent children. The growth of children in these in modern hunter-gatherer societies is 

also reported to be slow, which is advantageous in that they would be easier to carry. 

 Then came the Neolithic demographic transition. Agriculture was discovered 

independently in different societies between 5000 – 8000 B.C.E., and the world 

experienced a surge in the human population. Early theories proposed that this growth was 

due to a decrease in mortality and higher birth rate resulting from a more reliable food 

supply and a consequent improved ability to resist infection. However, it is clear from 

archeological evidence that mortality was higher among Neolithic farmers than it was in 

hunter-gatherers. Stature and bone density decreased, and signs of morbidity were 

abundant. It has been proposed that the higher morbidity and mortality among these 

populations was due to a less varied diet, depressing overall health and the ability to resist 

infection. A higher population density also increased the frequency of contacts between 

people and animals, resulting in a higher transmission rate of disease. Contaminated water 

supplies did not help in this regard. The fertility rate among these agricultural societies was 

indeed higher, however. A non-nomadic society relaxed the burden on mothers of having to 

carry their children, and the agrarian way of life resulted in economic incentives for large 

families, as even small children could perform basic chores and keep an eye on livestock. It 

is also reasonable to suggest that some portion of the increase in fertility was a 

compensation for high mortality. 

 More recent human history has been characterized by a different sort of 

demographic transition beginning in the late 18th to early 19th century in Western Europe 
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and spreading to all corners of the globe in modern times.  This transition involves a 

change from a high fertility and high mortality regime to low fertility and low mortality 

regime, with the reduction in mortality often preceding the reduction in fertility, especially 

in countries undergoing the transition more recently (Kirk, 1996). There is disagreement 

as to the cause of the modest decrease in mortality evident in the 19th century. One 

proposal is that a greater availability of food supply due to improved farming technology 

and extensive trade networks enabled individuals to better resist infection (McKeown, 

1972). Another scholar has proposed that there was a reduction in infection as a result of 

cultural practices promoting good hygiene (Razzell, 1974). While this dispute has not been 

resolved, it is fairly clear that the bulk of increase in lifespan throughout the 20th century is 

due to the ability to control and treat infectious disease, with a small fraction of the 

improvement due to increases in income (Preston, 1976). 

 Explanations for the reduction in fertility have been more elusive than those for 

mortality. Early theories posited that fertility reduction resulted from changes in lifestyle 

accompanying development, but these classical theories have little support in that only 

modest correlations between historical fertility and measures of development have been 

found (Knodel and van de Walle, 1979; Notestein, 1945; Thompson, 1929). Moreover, 

regions undergoing a fertility reduction more often shared more in common with respect 

to language and culture than with respect to development. As a result, some scholars 

advanced ideational theories of fertility decline, which propose that changes in social 

values result in an overall lower rate of fertility (Cleland and Wilson, 1987; Lesthaeghe, 

1983), while other scholars propose a complex interaction between socio-economic 

circumstances and ideational factors (Mason, 1997). 
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 Fertility reduction observed in developed countries displays a consistent diffusion 

pattern throughout the society and has been characterized by distinct changes in fertility 

tempos over time. As countries undergo a fertility transition, the social elites are usually 

observed to reduce their fertility first (Knodel and van de Walle, 1979). This relationship 

between social class and fertility persists in some form today, as null or negative 

relationships are often observed between fertility and measures such as education and 

income (Vining, 1986). In the first societies to undergo the demographic transition, fertility 

reduction frequently took the form of family limitation, where reproduction was stopped 

once a desired number of children had been reached (Knodel and van de Walle, 1979). In 

the twentieth century, fertility reduction in developed societies takes the form of later ages 

at first birth, largely attributable to the increases in years of educational participation 

(Cohen et al 2011). 

 The reduced fertility in modern societies has been discussed in evolutionary terms. 

It at first seems strange that humans appear to be reducing their fertility during times of 

abundant resources. An easy resolution to the dilemma might be expected in theories 

related to optimal clutch size (Lack, 1947). Such theories state that intermediate numbers 

of offspring will pay off in future generations, as parents can invest more in few offspring 

than in many, which will translate into greater survival and reproduction. Unfortunately, 

researchers employing this methodology have failed to find any evidence of a quantity-

quality tradeoff in humans, in terms of fitness (Kaplan et al 1995; Kaptijn et al 2010). Other 

researchers invoke an adaptive lag hypothesis, which states that the modern environment 

is different from the ancestral environment in such way that psychic and behavioral traits 

which used to translate into maximal fitness are no longer operating to this end (Alvergne 
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and Lummaa, 2014; Perusse, 1993). Still another faction claims that modern fertility 

reduction is explicable via evolutionary but non-genetic modes of inheritance (Boyd and 

Richerson, 1985; Cavalli-Sforza and Feldman, 1981; Fogarty et al., 2013; Ihara and 

Feldman, 2004). The second and third chapters of this dissertation employ this last 

approach to explain the key features of the demographic transition. In the second chapter, 

individuals belong to either a high- or low-fertility population, each of which can convert 

members of the other population into members of its own. Competition outcomes are 

observed for various rates of conversion, levels of social status, and rates of exogenous 

mortality. The third chapter investigates the evolutionary dynamics of fertility as a 

continuous, culturally transmitted trait and investigates the role of social status in its 

transmission. Outcomes are observed for various values of copying error, error quantity, 

rates of transmission, costs of reproduction on status, and mortality.  
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Chapter 1: Timing of CD8 T cell effector responses in viral infections 

 

1.1 Introduction 

 

CD8+ T cells, or cytotoxic T lymphocytes (CTL), represent an important branch of the 

immune system in the control and clearance of viral infections. The role of CTL in the 

management of infections has been studied in detail for human pathogens such as human 

immunodeficiency virus (HIV) (Leslie et al 2004; Goulder and Watkins, 2004; Rowland-

Jones et al 1997; Asquith and McLean, 2007) and hepatitis B (Maini et al 2000; Guidotti et 

al 1999; Sobao et al 2002) and C viruses (Nelson et al 1997: Timm et al 2004; Lechner 

2000; Moskophidis et al 1997). They can induce lysis of infected cells, or shut down the 

replication of viruses within infected cells via soluble mediators (Levy et al 1996; Seich Al 

Basaten et al 2013). While they serve a positive role in this respect, they can also negatively 

affect the organism in a phenomenon called “CTL-induced pathology” (Zinkernagel and 

Hengartner, 1994), which occurs when the CTL destroys tissue sufficiently to cause 

disease. The correlates of CTL-mediated control and CTL-induced pathology have been 

studied in much detail (Guidotti and Chisari, 2006) 

There is literature which suggests the rate at which CTL respond to viral antigen has 

an important role in how effectively they can control virus replication and limit pathology. 

In one instance, LCMV-specific CTL failed to protect the animals against peripheral re-

challenge, yet they were successful against intravenous infection (Kundig et al 1996). The 

authors of this study proposed that the time it takes for CTL to reach the peripheral tissues 

was responsible for this observation. A delay in HIV response was also found in a kinetic 
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analysis of data from an HIV vaccine trial (Davenport et al 2004). In this case, the authors 

of the study proposed that viral antigen needed to reach a certain level before CTL could 

respond to the infection. The most detailed analysis of the kinetics of acute CTL responses, 

however, was conducted by Frey (2013). Using in situ hybridization techniques to visualize 

the spread of PVM and its CTL response in space and time, they found that CTL infiltrated 

the lungs only after maximal viral loads had been achieved, which coincided with the 

manifestation of symptomatic disease. The authors hypothesized that such a CTL delay was 

necessary to ensure effective CTL-mediated clearance of the infection. If this claim is true, it 

will have great implications for CTL-based vaccination approaches, as such vaccines are 

often designed to accelerate CTL effector activity with the aim of minimizing pathology 

(Davenport et al 2007). 

Given that the development of maximal CTL mediated activity can take time during 

which the virus infection can spread to target tissue, strategies designed to accelerate CTL 

effector activity are discussed in the literature, especially in the context of vaccination 

approaches. This project instead operates on the hypothesis that a delay in CTL effector 

activity can be more effective at clearing an infection. Mathematical models were employed 

that investigated the effectiveness of CTL to clear an infection under different conditions, 

including amounts of CTL delay. It was found that a delayed CTL effector response can be 

more likely to clear an infection than an early response under certain conditions. Although 

a delayed CTL effector response could come at the cost of CTL-induced pathology, a greater 

likelihood to clear an infection might be the greater selective pressure. Thus an inherent 

delay in CTL-mediated anti-viral activity might be adaptive. These models are used to 
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interpret experimental data summarized above, in particular that of Frey et al (2013), 

which motivated our work. 

 

1.2 Results 

 

1.2 i. The Simplest Model 

 

This project used a modified version of a familiar system of ordinary differential equations.  

 

𝑑𝑆

𝑑𝑡
= 𝜆 − 𝑑𝑆 − 𝛽𝑆𝐼 

 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝑎𝐼 − 𝑘𝐼𝑍 

 

𝑑𝑍

𝑑𝑡
= −𝑏𝑍 

 

Susceptible target cells, infected cells, and CTL are represented by variables S, I, and 

Z, respectively. Susceptible cells are produced at a rate λ, die at a rate d, and are converted 

to infected cells at a rate β. The free virus load is assumed to be proportionate to the level 

of infected cells, which is justified if the rate of virus production is much greater than the 

rate of infected cell production. Infected cells have an inherent death rate of a and are killed 

upon encountering CTL at a rate k. CTL die at a rate b. The properties of basic virus 

(1) 
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dynamics equations are well defined in the literature (Novak and May, 2000). An important 

quantity is the basic reproductive ratio, which needs to be greater than 1 for the virus to 

establish a successful infection. We set the initial number of CTL as Z(0) = 0, and then 

introduced a number of CTL at varying time thresholds Z(t=Tthr). Fig.1. gives the dynamics 

produced by this framework. The continued stimulation of CTL by antigen is not 

considered in this model for simplicity, thus the CTL are not maintained in the long-term, 

and the infected cell population will eventually grow back. We are interested in the short-

term infection dynamics, as the lower the minimum level of infected cells in this phase, the 

greater the likelihood of clearing the infection. Note that the concentration of cells is being 

modeled, not their number, so a population size of 1 would not represent extinction.  

 

 

 

Fig. 1. Simulation of model (1). The virus population is depicted by the solid line, the 

effector CTL by the dashed line. Virus growth starts at time zero, and the CTL population is 

introduced at a later time point. Upon introduction of the CTL, the virus population 

declines. Owing to the simplicity of the model, the CTL population also declines and is not 
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maintained in the long-term. Following the CTL decline, the virus population re-grows. The 

minimum virus load achieved by CTL-mediated activity is a measure of the effectiveness 

with which the acute CTL reduce virus load. We examine how this minimum depends on 

the timing of CTL introduction under different parameter regimes. Parameters were 

chosen as follows: Lambda = 1, d = 0.0001, Beta = 0.001, a = 0.0002, b = 0.75, k = 0.25. 

Initial conditions were as follow: S(0) = lambda/d, I(0) = 0.1. 

 

Fig. 2a. plots minima as a function of the amount of delay for different parameter 

regimes. β is varied left-to-right, as the parameter was shown through numerical 

simulations to have the greatest effect on the relationship between CTL introduction time 

and minimum number of infected cells. The purpose is not to model a specific infection, 

hence, parameters are simply chosen to demonstrate the possibility of an advantageous 

delay in CTL response. 

 At high rates of virus replication, increased CTL delays result in monotonically 

decreasing minima of infected cells (Fig. 2a (i)). At high rates of viral replication and long 

CTL delays, the virus more completely depletes its source of growth, the target cells (Fig. 

3a). A lower availability of target cells results in a faster decline in the infected cell 

population in the presence of CTL, thus resulting a lower minimum infected cell population. 

This is despite the fact that there is a higher level of infected cells to depress at high rates of 

infection and long CTL delays. At intermediate levels of virus replication, a minimum 

amount of CTL delay is required for the effect of the virus depleting its source of growth to 

outweigh its resistance to being depressed from high levels. This results in the one-hump 

pattern observed in Fig. 2a (ii). At even lower virus replication rates, an even greater 

amount of delay is necessary for this tradeoff to be observed (iii). Although beyond a 

certain amount of delay target cells are depressed sufficiently to result in lower minima, an 

absence of any CTL delay is more effective in this regime. The rate of target production, λ, 
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also has an effect on the ability of CTL to clear the infection with long delays, as shown in 

the dashed line of Fig. 2a (ii). The target cell population is not reduced by the virus as easily 

at high rates of production, thus reducing the effectiveness of a delay in reducing the level 

of infected cells. In this simulation, the rate of d is also adjusted such that the initial tissue 

size is the same as in the solid line.      

 To summarize, the effectiveness of a delayed CTL response in clearing the infection 

is dependent on how effective the virus is at the depleting the target cell population. It is 

more difficult for CTL to reduce the infected cell population from high levels resulting from 

high rates of infection and extended CTL delays than it is for the CTL to reduce the infected 

cell population from lower levels. However, high rates of infection and greater CTL delays 

result in a more depleted target cell population, which enhances the ability of CTL to 

reduce the infected cell population. There is therefore a tradeoff that arises. In the 

parameters regimes investigated, a CTL delay is more effective at clearing the infection 

when the rate of infection is sufficiently high. 
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Fig. 2. Dependence of minimum virus load on the delay with which effector CTL arrive at 

the site of the infection, for models (1)-(3). For each delay (or CTL introduction time), the 

models were simulated, giving rise to a time series similar to the one seen in Fig. 1. The 

minimum virus load was determined and plotted. (a) Model (1), (b) model (2) and (c) 

model (3). For a-c, panels (i)-(iii) show the dependence for different parameter 

combinations. A dashed curve in some of the graphs shows the dependence for an 

increased turnover rate of the target cell population, with other parameters remaining 

identical. Specifically, the parameters were chosen as follows. (a) λ = 1, d = 0.0001, a = 

0.0002, b = 0.075, k = 0.25. Upon introduction, Z = 5. (a(i)) β = 0.0004; (a(ii)) β = 

0.00006, dashed line: λ = 100, d = 0.01; (a(iii)) β = 0.00001. (b) λ = 1, d = 0.0001, a = 

0.0002, b = 0.075, k = 1, a = 0.5, g = 0.01, r = 1. (b(i)) β = 0.00005; (b(ii)) β = 0.00001, 

dashed line: λ = 100, d = 0.01; (b(iii)) β = 0.000002. (c) Basic parameter same as for (b), 

with the parameters p = 1, u = 1, u0 = 1, η = 0.5. (c(i)) β = 0.00005; ((ii)) β = 0.00001, 

dashed line: λ = 100, d = 0.01; (c(iii)) β = 0000005. The initial conditions were as follows: 
S(0) =λ/d, I(0) = 0.1, R(0) = 0.2, V(0) = V0(0) = 0. All other variables were set to 0.  
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Fig. 3. Time-series simulations comparing the dynamics for shorter (dashed line) and 

longer (solid line) CTL delays. (a) Simulation of model (1). The diamond symbol indicates 

the point at which the CTL population is introduced for the short delay scenario, and the 

circle indicates the CTL introduction time for the longer delay scenario. (b) Simulation of 

model (2). The upper panel that shows the virus load curves also shows the dynamics of 

the CTL effector populations, as this model explicitly describes clonal expansion. 

Parameters were chosen as follows. (a) λ = 1, d = 0.0001, β = 0.0004, a = 0.0002, b = 

0.075, k = 0.25. Initial conditions: S(0) = λ/d, I(0) = 0.1. (b) λ = 1, d = 0.0001, β = 

0.00005, a = 0.0002, b = 0.075, k = 1, α = 0.5, g = 0.01, η = 0.5, r = 1. Initial conditions: 

S(0) = λ/d, I(0) = 0.1, R(0) = 0.2, V(0) = Vo(0) = 0. All other variable were set to zero.   

 

1.2 ii. Model with Clonal Cytotoxic T Lymphocyte Expansion and Migration 

 

Here a more realistic model is explored in which the clonal expansion of CTL as well as the 

migration of CTL from the lymphoid tissue to the site of infection are explicitly modeled. 

The processes by which CTL responses are initiated remains incompletely understood, and 
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there is disagreement about how this process should be described mathematically. In the 

models below, the simplest process comparable to the model in the previous section is 

explored—that is, CTL start to undergo rounds of programmed proliferation in the 

presence of any amount of viral antigen in the lymphoid tissue, and these rounds of 

replication do not depend on further antigenic stimulation. One should note that the rate of 

CTL activation in this model is not proportional to the amount of antigen present in the 

lymphoid tissue. CTL activation is assumed to happen with a constant rate regardless of 

antigen concentration, as long as antigen is present. This is an unrealistic assumption that 

represents the next layer of complexity in the model. In the next section, we will explore a 

model in which the rate of CTL activation is proportional to the amount of antigen. The 

model is given by the following set of ordinary differential equations:  

 

 

 

As before, the number of susceptible CTL are represented by S, and the number of infected 

CTL are represented by I. R represents the number of resting CTl at the start of the 

infection. Resting CTL become activated at a rate α, and activated CTL proliferate at a rate r. 

(2) 



19 
 

The factor 2 comes from the division of cells. After the final division, activated CTL 

differentiate into effector CTL, represented by E, at a rate g. These effector CTL then arrive 

at the site of infection after a certain some delay, denoted by τ. Thus this is a delay 

differential equation, implemented using Matlab. As in the previous model, this model only 

examines the acute phase of the infection. There is no sustained CTL activity in response to 

viral antigen, and thus the level of infected cells will eventually grow back. The value of the 

minimum virus load again correlates with the likelihood to clear the infection.  

 The results of this model are highly comparable to those of the previous model. Fig. 

3b illustrates the mechanism behind these results. At high rates of virus replication, a delay 

in CTL response will always result in a lower level of infected cells during the acute 

response to the infection (Fig. 2b (i)), resulting in a higher likelihood of virus clearance. At 

intermediate rates of virus replication, the amount of CTL delay must cross a certain 

threshold for the effect of reducing the number of target cells to overcome the difficulty of 

reducing infected cells from high levels (Fig. 2b (ii)). At low rates of virus replication, 

although a reduced target cell load will eventually outweigh the effect a high virus load at 

high CTL delays, it is better for the CTL to initiate an early response than a later response 

(Fig. 2b (iii)). As before, a lower level of infected cells corresponds to a greater likelihood 

to clear the infection.  

 

1.2 iii. Antigen-driven expansion of Cytotoxic T Lymphocyte 

 

In the previous model, it was assumed that any amount of viral antigen would activate 

resting CTL and that the rate of the activation did not depend on level of antigen. Here, it is 
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assumed that the amount of resting CTL recruitment is proportionate to the amount of viral 

antigen in the lymphoid tissue. In accordance with data, it is assumed that the rate of CTL 

proliferation and division after recruitment is determine by a program not dependent on 

the amount of viral antigen. This model includes two additional values: the amount of viral 

antigen present at the site of the infection, V, and the amount of viral antigen present in the 

lymphoid tissue, V0. These variables do not represent the amount of replicating virus but 

the amount viral antigen displayed on antigen presenting cells. The model is given by the 

following system of ordinary differential equations:  

 

 

 

 
Viral antigen at the site of infection is produced by infected cells with a rate p, decays with 

a rate u, and is transported to the lymphoid tissue with a rate η. Viral antigen in the 

lymphoid tissue decays with a rate u0, which may relate to the dissociation of viral antigen 

from the surface of APCs. The CTL activation, proliferation and differentiation process is 

 

(3) 
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similar to model (2). The difference is that now the rate of CTL activation is proportional to 

the amount of viral antigen in the lymphoid compartment. The number of effector CTL at 

the site of infection is given by E and occurs with a time delay τ. Note that although CTL 

recruitment is proportional to the level of viral antigen, only the initial program of CTL 

proliferation and differentiation is modeled, not the sustained stimulation of CTL. Thus 

only the acute infection dynamics are considered, as in the previous two models, where 

CTL arrive at the site of infection, perform effector activity, and die. 

 In the previous models, two main factors determined the effectiveness of CTL to 

drive the virus to low levels. The first is the level of infected cells present when CTL arrive 

at the site of the infection. The second is the level of target cells present as a source of 

growth for the virus. While a CTL delay would allow the virus to rise to higher levels, thus 

making clearance more difficult, such a delay would also allow the virus to more 

completely deplete their source of growth, the target cells. A depleted target cell population 

results in a faster rate of infected cell decline in the face of CTL and a greater likelihood of 

clearing the infection. In this third model, there is an additional factor which determines 

the effectiveness of CTL to clear the infection: The rate at which resting CTL are stimulated 

by viral antigen. An early CTL response might not be effective at clearing the virus, as early 

in the infection, the level of infected cells is low, and fewer CTL will have been recruited to 

fight the pathogen. CTL will be more stimulated by higher levels of the pathogen later in the 

infection and thus more likely to clear the virus. In this model, the effect of a CTL delay on 

the infection dynamics represents a balance of all three processes described above. 

 In this model, any amount of CTL delay is advantageous in clearing the infection 

when the rate of viral replication is high (Fig. 2c (i)). This result is comparable to the 



22 
 

previous two models. However, there are two potential mechanisms for this observation, 

possibly occurring at the same time. 1) Later CTL delays result in a reduced target cell 

population, resulting in a higher rate of decline in the infected cell population upon 

introduction of CTL (Fig. 4a (ii)). 2) Long CTL delays result in a higher infected cell 

population, which stimulates the CTL into recruitment at a higher rate than in short CTL 

delays. (This is not shown in Fig. 4a, but can be observed.) As shown in Fig. 2c (ii), the 

results of intermediate rates of viral replication are comparable to those in the previous 

models and explained via the same mechanism. At first, a longer CTL delay results in a 

higher minimum level of infected cells. Then even longer delays result in lower minima of 

infected cells. This pattern is observed because the effect of a depleted target cell 

population outweighs the positive effect of higher infected cell populations at sufficient 

amounts of delay. In this regime, the size of the CTL population as it kills the virus is not 

significantly effected by the delay (Fig. 4b(iii)). As in the previous models, the rate of tissue 

turnover can influence the effect of a CTL delay (Fig. 2c(ii), solid versus dashed line). Very 

low rates of viral replication produce a qualitatively different outcome than what was 

observed in the previous two models (Fig. 2c(iii)). The minimum level of infected cells at 

first decreases dramatically with longer CTL delays. Then with further CTL delay, this effect 

is reversed. Although higher levels of infected cells are achieved with longer CTL delays, the 

magnitude of the CTL response is higher in response to larger infected cell populations 

(Fig. 4c), thus enhancing the CTL’s ability to clear the infection. The effect of greater 

antigenic stimulation on the size of a CTL response is observable in this parameter regime 

and not others because the rate of infection is low. At low rates of infection, CTL delays 

have a greater effect on the infection to grow to certain levels. This effect is eventually 
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reversed because beyond a threshold level of infected cells, all available CTL are used, and 

therefore higher minima result due to the CTL having to reduce greater populations of 

infected cells. Although the population of target cells is more reduced at longer CTL delays, 

the effect of this process is outweighed by the high level of infected cells. 

  

  

Fig. 4. Time series showing the dynamics of (i) infected cells, (ii) uninfected target cells and 

(iii) effector CTL over time for model (3). Panels (a-c) correspond to the parameter 

regimes in Fig. 2c(i)-(iii). The different colored curves in each graph represent different 

CTL delay times. Colors going from shortest to longest delay time are as follows: black, 

blue, red, greed, orange. These graphs illustrate the reason for the dependencies seen Fig. 
2c. See text for details. For parameter values and initial conditions, see Fig. 2. 
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1.3 Discussion 

 

The numerical simulations investigated in this study show that the relationship between 

the timing of CTL responses and their ability to reduce virus load during acute infections is 

not straightforward. Under a wide range of parameter regimes, a delay in a CTL response 

can result in lower levels of infected cells and thus a greater chance of clearing the 

infection. This is due to the fact that when CTL delay, infected cells reach higher levels. This 

results in a greater depletion of target cell and/or a higher rate of CTL activation, both of 

which cause a more rapid decline of infected cells resulting in lower minima. This 

improved ability to eliminate infected cells is expected to come at the cost of higher 

pathology during acute infection as a result of the higher amount of virus that is present. 

 A methodological difficulty of this investigation was that the outcomes of the models 

could only be explored with numerical simulations. Therefore, the outcomes were 

investigated over wide ranges of each parameter. Only the patterns reported here were 

discovered. The choice of parameters in these models were not based on any particular 

infection, and we are not aware of what parameter values would be biologically realistic for 

the infections discussed here. Parameter measurement in the context of specific infections 

will be the next step in supporting the claim that a delayed CTL response can be adaptive.  

Our model assumed a delay in the arrival of CTL at the site of infection, which was 

modelled by assuming that it takes a certain amount of time for differentiated effector CTL 

to migrate to the site of the infection. A similar effect would be observed if it was assumed 

that CTL only became activated once the virus load had crossed a certain threshold. Indeed, 

this explanation was invoked for a CTL delay in a kinetic analysis of HIV infection data in 
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the context of a vaccine trial (Davenport et al 2004). While the biological mechanism would 

be different, the net effect is similar. 

As mentioned in the Introduction, a study conducted by Frey et al. examining the 

spatio-temporal dynamics of CTL responses against PVM provided the strongest evidence 

for a delayed arrival of CTL to the site of infection (Frey et al 2013). Indeed, this 

experimental study motivated our work with the aim to offer a possible explanation for 

these results. The CTL responses were observed to infiltrate the lung only after maximal 

virus load was achieved, and this coincided with the development of symptomatic 

pathology in the mice. The authors of this study speculated that these characteristics might 

enhance the ability of the CTL response to clear the infection. Using mathematical models, 

we provided a theoretical basis for this claim. The model suggests that allowing the virus to 

grow to near maximal levels might indeed enhance the ability of the CTL to clear the 

infection under certain conditions and via the following mechanisms: late CTL responses 

allow the virus to deplete its source of growth (the target cells), and higher virus loads 

cause resting CTL to be recruited at a higher rate. The model further suggests that there 

might be a general trade-off between the level of acute virus load/pathology and the ability 

of a CTL response to clear a virus infection. While responding early when the virus load is 

small will reduce the degree of pathology, it can reduce the chances to clear the infection in 

the long-term, which could be costly. A CTL delay can also result in pathology from the CTL 

themselves in that they perform their function by killing the hosts own cells. In light of the 

hypothesis driving this project, it can therefore be speculated that a delayed CTL response 

has evolved against other selection pressures in order to maximize the chances that the 

infection is successfully resolved. 
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 In the context of vaccination, it is thought that delayed CTL responses to challenge 

present an obstacle to successful CTL-mediated protection against infection (De Boer, 

2007; Wodarz et al. 2000). The goal of vaccination is often to increase the speed with which 

CTL arrive at the site of infection. Although this would be the best strategy to prevent 

infection in the first place, this immune response may have instead evolved to maximize 

the chances of virus clearance, which may explain some of the difficulties observed in the 

context of CTL-based vaccination approaches. 

  It is important to consider that, while under some parameter regimes a delayed CTL 

response can be more effective at clearing an infection, under others it is better for CTL to 

arrive at the site of the infection as soon as possible. Which outcome is observed depends 

on measures such as the replication rate of the virus and the rate of tissue turnover, which 

vary from one infection to another. This may lead one to speculate as to whether a 

universal CTL delay evolved, arising from the greater selection pressures of viruses more 

effectively cleared with a delay. This would of course imply that CTL responses to other 

infections are less effective than they could be. From an experimental point of view, it 

would be constructive to perform a comparative study of the spatio-temporal dynamics of 

different infections in different tissues. The work of this project suggests that a delay may 

or may not be beneficial to the host depending on the conditions, thus it will be important 

to measure crucial parameters such as the rate of tissue turnover and the replication rate 

of the virus. It would also be of interest as to whether different CTL delays exist for 

different infections and whether the amount of delay is adaptive in each case.  
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Chapter 2: The role of mortality and cultural transmission in human fertility decline 

 

2.1 Introduction 

 

“Demographic transition” refers to a marked change in the demographic variables of a 

society, which can include measures of birth and death. The demographic transition of 

concern here is that of Europe and North America over the last few centuries and more 

recently in many developing countries. This transition is characterized by a radical decline 

in birth and death rates, with the latter often preceding the former (Kirk, 1996).  

 The mortality rate in pretransition societies is high (Livi-Bacci, 2017). In fact, it is 

even higher than that of the hunter-gatherer societies that preceded them. The most widely 

accepted explanation for the high mortality of this mode of life is the high population-

density. Frequent contacts between humans and other animals increase the rate of 

infection. Poor nutrition from an unvaried diet might also be a contributor and could very 

well limit the population’s ability to fight infection.   

The decline of mortality in the early part of the European transition is notable, as it 

preceded improvements in sewage control that occurred in the 1870’s and long before the 

availability and distribution of sulfonamides (McKeown, 1972; Bengtsson, 2001). Although 

the first smallpox vaccine had been developed, its impact could by no means account for 

the entirety of this mortality decline. One proposed explanation for this early decline 

relates to increases in food production that enabled the population to better resist 

infection, while another relates to improvements in personal hygiene, which include more 

frequent bathing and washing, use of soap, and the use of cotton clothing (Razzell, 1974). 
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Whatever the reason for this early decline in mortality, life expectancy gains in the 19th 

century were modest in comparison to those of the 20th century. While the population of 

Europe gained 10 years of life expectancy in the 1800’s, it gained over 30 in the 1900s, and 

the evidence suggests that the bulk of this increase was due to the control and treatment of 

infectious disease (Preston, 1976).  

 Early theories concerning the fertility component of the demographic transition 

proposed that fertility declines were caused by the lifestyle and low mortality conditions 

that accompany economic development (Kirk, 1996; Notestein, 1945; Thomson, 1929). 

Low mortality resulted in larger families in the absence of fertility control. The economic 

benefit of children also declined as sources of production shifted away from the family to a 

larger scale, children were no longer available as sources of labor due to mass schooling, 

and changes in social life provided alternatives to large families.  However, later studies 

showed only a minor correlation between fertility and socioeconomic variables and that 

regions that underwent a fertility transition often shared a similar language and culture 

(Knodel and Van de Walle, 1979). In response, scholars proposed “ideational” theories for 

fertility decline. In the case of Lesthaeghe (1983), a set of societal values emphasizing the 

individual were established, such that individuals now made decisions that resulted in 

lower fertility in a number of ways. For Cleland and Wilson (1987), this meant the 

establishment of social norms that promoted the access to, knowledge of, and the 

willingness to implement various means of birth reduction. Still later scholars disputed the 

claim that either of socioeconomic or ideational explanations should be favored, 

maintaining that families may still limit fertility according to their micro- and macro-

economic circumstances in ways that have not been given attention by demographers 
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(Hirschman, 1994; Mason, 1997). This view allows for a complex interaction between 

societal values, i.e., ideation, economic conditions, and individual decision making. Such 

scholars also stressed the consideration of a causal role for mortality as in the classical 

theories of transition.  

 The demographic transition may at first seem counterintuitive in evolutionary 

terms, as human beings appear to be limiting their reproduction during times of apparently 

abundant resources. Although maximum levels of fertility may not be optimal in a variety 

of environmental conditions, the magnitude of the decline in fertility is striking and 

deserves an explanation. Furthermore, fertility is negatively correlated with wealth in post-

transition societies, when the evidence suggests that the opposite is the case in pre-

transition societies (Cronk, 1991; Perusse, 1993; Vining, 1986).  

Various explanations for fertility reduction in humans have been proposed from an 

evolutionary perspective. One proposal is that humans may be making a quantity-quality 

tradeoff because of the high parental investment required of each child in modern societies. 

Unfortunately, this hypothesis has no empirical support, as it appears that men who have 

the most children also have the most grandchildren (Kaplan, 1995). Theory would predict 

that the number of grandchildren should peak at some intermediate level of fertility if this 

hypothesis were correct. Others have claimed that fertility reduction is simply a poor 

evolutionary adaptation to a radically different environment, particularly as a result of 

modern contraception. Although it has been shown that high status men in a Canadian 

sample copulated more frequently than low status men, which would result in more 

offspring in the absence of contraception (Perusse, 1993), this explanation does not stand 

up against the evidence of history and certain modern societies in the pre-transition phase. 
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The fertility decline in Europe began long before effective contraception was widely 

available (Knodell and van de Walle, 1979), and some African countries have yet to 

undergo a transition, despite the availability of contraception. Overall, the major weakness 

of the adaptive-lag hypothesis is that it does not specify what in the environment has 

changed and why this change results in a lower fertility. 

 There is now a vast literature on cultural evolution and transmission (Mesoudi, 

2017; Creanza, 2017).  Models of cultural transmission have been applied to the matter of 

fertility decline by groups led by Feldman (Cavalli-Sforza and Feldman, 1981; Fogarty et al., 

2013; Ihara and Feldman, 2004). The simplest of these models is merely an infection model 

of the Lotka-Volterra form. Not surprisingly, when low-fertility individuals convert 

members of the high-fertility population at some rate, the low fertility population invades 

at sufficiently high rates of transmission. In a niche construction approach, two cultural 

traits are transmitted: one coding for a preference for some background trait (such as the 

tendency to prefer education), and the other for a tendency to have fewer offspring. It is 

assumed that there is a positive relationship between the frequency of the background trait 

and the rate of learning from non-parental adults.  Provided that those with fewer offspring 

are overrepresented in transmission from non-parental adults, the low fertility trait can 

invade the population. When the frequency of the background trait is positively associated 

with the survival of individuals, the relative average fertility decreases following a decrease 

in mortality in a way similar to that observed in the demographic transition of the last two 

centuries. In a later model, fertility, mortality, and cultural transmission have an age-

structure, such that reproduction and mortality vary throughout the lifespan of individuals, 

and individuals acquire a cultural trait at different rates depending on if the individual 
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learned from is a parent, same-age peer, or non-parental adult. In this model, when the 

cultural trait reduces fertility and increases survival, the age-structure of the population 

resembles that of Western societies after demographic transition, provided the rate of 

transmission from same-age peers and non-parental adults is high.   

 Although two of the above models include mortality explicitly, in one case mortality 

reduction spreads through a cultural trait that increases transmission, and in the other case 

mortality reduction is endogenous to the fertility-reducing trait itself. In the models that 

follow, mortality is considered as an exogenous variable, alongside parameters which vary 

the rate of transmission and the social status of low-fertility individuals. The following 

simulations model populations in which a fertility-reducing trait spreads via cultural 

transmission in both spatial and non-spatial settings, with and without age-structure. 

 

2.2 One Age-Class 

 

The results have been obtained using an agent-based model that employs birth and death 

processes combined with a voter model framework. Agents occupy a grid containing n × n 

spaces. Agents are one of two types: high-fertility (h) and low-fertility (l). The grid is 

sampled randomly 2m times, where m is the total number of individuals currently 

occupying the grid. Should a given sampling land on a space occupied by an individual, 

there is 0.50 probability that a birth/death procedure will be applied and a 0.50 probability 

that a voting procedure will be applied.  

When the birth/death procedure is applied, the individual chosen reproduces with a 

probability prepr(h) or prepr(l), depending on whether the individual is of high- or low-
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fertility, and dies with a probability pdeath. If an individual reproduces, their offspring is 

placed randomly into one of the neighboring spaces on the grid. Reproduction does not 

take place if this space is already occupied. The offspring of an individual are of the same 

fertility type as their parent. When an individual dies, the space that they occupy becomes 

empty. 

Individuals chosen to vote are converted to the opposite fertility type (high or low) 

with a probability equal to the frequency of this opposite type among their neighbors. The 

social status of high-fertility individuals is also adjustable by a parameter pcomm, such that 

they are not included in the voting procedure with a probability 1-pcomm. Additionally, the 

influence of voting relative to reproduction and death can be modified by a parameter 

ptransmit, such that the voting procedure is skipped altogether with a probability 1-ptransmit. 

This framework is applied under two different assumptions regarding spatial 

interactions. First, we consider two competing populations who can only interact with their 

nearest-neighboring positions in both reproduction and voting mechanisms. When 

individuals reproduce, they can only place their offspring in a nearest-neighboring position 

if it is unoccupied. When individuals vote, they can only consider the fertility types of 

individuals in the nearest-neighboring positions. Second, we consider perfect mixing, such 

that individuals can place their offspring randomly into any unoccupied space on the grid, 

and the radius of individuals included in the voting procedure encompasses the entire grid. 

In section 2.4, we apply these same considerations to two competing age-structured 

populations. Non-periodic boundary conditions are assumed throughout. 
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2.3 i. Nearest-Neighbor Interactions 

 

We first describe the basic mechanisms of the model independently of each other. When 

birth and death processes are at work in the absence of any voting procedure, one 

population excludes the other with some frequency that depends on the reproduction rate, 

common death rate, and the initial frequencies of both populations. The winning 

population grows according to common logistic growth dynamics. 

 

Fig. 1. Competing populations with only birth/death process. Initial number of both h (high 
fertility) and l (low fertility) individuals is 450. Reproduction probability of the high-
fertility population: prepr(h) = 0.07. Reproduction probability of the low-fertility 
population: prepr(l) = 0.05. Common mortality rate: pdeath = 0.01. Winning population 
displays common logistic growth dynamics.  
 
One should note that the only long-term outcome of stochastic population models is the 

extinction of both populations. Additionally, both populations might persist long enough in 

such models as to imply coexistence in practical terms. However, in the parameter regimes 

given in Figs. 1 and 2, the competitive exclusion of one population to the other occurs at 

such short time scales that these qualifications are not relevant for our analysis. 
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 We next consider the voter model dynamics in the absence of any reproduction and 

mortality (Fig. 3.). The designation of h or l represents arbitrary labeling in this scenario, 

except insofar as population h can be given lesser weight in the voting procedure by a 

parameter pcomm. In this case, when we start with a full grid, the outcome is entirely 

determined by drift dynamics, with the long-term outcome being that the whole population 

is of one type or the other (h or l). 

 

 

Fig. 2. Fraction of runs where population h wins in a voter model dynamic with respect to 
pcomm (the frequency with which population h is considered in the voting procedure) and 
the initial frequency of population l. n =30. The frequency of population h wins decreases 
as pcomm and the initial frequency of population l decrease. pcomm has a greater effect on the 
outcome than the initial frequency of population l. Each data point reflects the frequency of 
h wins out of 500 runs. 7396 data points.  
 
 
 
When pcomm = 1.00 and the populations start at equal frequency, each population has an 

equal chance of fixation. The frequency of population l wins increases as its initial 
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frequency is increased and pcomm is decreased. pcomm has a far greater influence on the 

outcome than the initial composition of the population, as can be seen in the scale of the 

horizontal axis. Population h needs a considerable advantage in initial frequency in order 

to win at a low pcomm. 

 Now we combine these mechanisms and investigate the outcome for various values 

of pcomm, ptransmit, and pdeath. We find that population l is more likely to invade or win at high 

values of ptransmit, low values of pcomm, and low values of pdeath (Figs 3, 4, and 5). Unlike the 

outcomes observed when the mechanisms of birth/death and voting operate in isolation, 

some parameter regimes allow both populations to persist for a considerable amount of 

time, such that they coexist for all practical purposes. Thus, coexistence is defined 

arbitrarily as both populations coexisting for more than 100,000 time steps. This 

coexistence is obtained at intermediate values of the three parameters. 

 

Fig. 3. Exclusion/coexistence outcomes of model with both voting and birth/death 
mechanisms. Nearest-neighbor interactions. Outcomes are shown with respect to the rate 
of voting (ptransmit), mortality (pdeath), and the weight of high-fertility individuals in the 
voting procedure (pcomm). n = 30. Reproduction probability of population h (high fertility): 
prepr (h) = 0.05. Reproduction probability of population l (low fertility): prepr(l) = 0.03. 
Initial population of h individuals = 450. Initial population l individuals = 450. Purple: 
population h wins. Yellow: population l wins. Green: coexistence. 604 data points. 
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Population l wins with greater frequency as ptransmit is increased and pcomm and pdeath 
decrease. Coexistence is obtained for intermediate values of these variables.  
 

 

Fig.4. Cross-sections of Fig. 3. Purple: population h wins. Yellow: population l wins. Green: 
coexistence. Left: Outcome with respect to pcomm and pdeath. Population l is more likely to 
win as pcomm and pdeath are lowered. 625 data points. Center: Outcome with respect to 
ptransmit and pdeath.  Population l is more likely to win as pdeath is lowered and ptransmit is 
increased. 625 data points. Right: Outcome with respect to pcomm and ptransmit. Population l is 
more likely to win as pcomm is decreased and ptransmit is increased. 410 data points. 
 

 
 
Fig. 5. Time series of three possible outcomes of model with both voting and birth/death 
mechanisms. Nearest-neighbor interactions. Reproduction probability of population h 
(high fertility): prepr (h) = 0.05. Reproduction probability of population l (low fertility): 
prepr(l) = 0.03. Left: Population l wins. pdeath=0.00102; ptransmit= 0.00810; pcomm= 0.88865. 
Center: Population h wins. pdeath=0.00181; ptransmit= 0.00402; pcomm= 0.87607. Right: 
Coexistence between populations h and l. pdeath=0.00185; ptransmit= 0.00594; pcomm= 
0.86714. 
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2.3 ii. Perfect Mixing 

 

In this scenario, we investigate the outcomes of the same model under the assumption of 

perfect mixing. Rather than limiting individuals to their nearest-neighboring positions, 

individuals can place their offspring into any unoccupied space on the grid, and the radius 

of individuals considered in the voting procedure encompasses the entire grid. Such 

assumptions will also allow us to represent the model as a system of ordinary differential 

equations. 

 

 
 
Fig. 6. Exclusion/coexistence outcomes of model with both voting and birth/death 
mechanisms. Perfect mixing. Outcomes are shown with respect to the rate of cultural 
transmission (ptransmit), mortality (pdeath), and the weight of high-fertility individuals in the 
voting procedure (pcomm). n = 30. Reproduction probability of population h (high fertility): 
prepr(h) = 0.05. Reproduction probability of population l (low fertility): prepr(l) = 0.03. 
Initial population of h individuals = 450. Initial population of l individuals = 450. Purple: 
population h wins. Yellow: population l wins. Green: coexistence. 604 data points. 
Population l wins with greater frequency as ptransmit is increased and pcomm and pdeath are 
decreased. Coexistence is obtained for intermediate values of these variables.  
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Fig. 7. Cross-sections of Fig. 6. Purple: population h wins. Yellow: population l wins. Green: 
coexistence. Left: Outcome with respect to pcomm and pdeath. Population l is more likely to 
win as pcomm and pdeath are lowered. 407 data points. Center: Outcome with respect to 
ptransmit and pdeath. Population l is more likely to win as pdeath is lowered and ptransmit is 
increased. 783 data points. Right: Outcome with respect to pcomm and ptransmit. Population l is 
more likely to win as pcomm is decreased and ptransmit is increased. 410 data points.   
 
 
 
Comparable results were achieved to those in the nearest-neighbors scenario, with the 

additional artifact that coexistence occurs more frequently and over a wider parameter 

regime (Figs 6 and 7). (Comparable time series are obtained as for the model with nearest-

neighbor interactions, as well as for remaining models, thus they are not shown.) 

Population l is more likely to invade or become fixed at high values of ptransmit, low values of 

pcomm, and low values of pdeath.  

 The ordinary differential equations that describe the dynamics are as follows. 

  

𝑥̇ℎ = 𝑟ℎ𝑥ℎ (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥ℎ −

𝛽𝑙𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
+

𝛽ℎ𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
 

𝑥̇𝑙 = 𝑟𝑙𝑥𝑙 (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥𝑙 +

𝛽𝑙𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
−

𝛽ℎ𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
 

 

Representing the model this way allows one to determine possible equilibria and the 

conditions for their stability analytically. xh and xl give the numbers of high- and low-
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fertility individuals, respectively. rh and rl give the intrinsic rates of increase of populations 

h and l, where rh > rl to reflect the higher fertility of population h, and K represents the 

density-dependence of growth. The populations share a common death rate d. Individuals 

of each population are converted to members of the other population at a rate proportional 

to the frequency of the other type multiplied by a rate constant βh or βl. If we assume that 

population l is more effective at conversion than population h, such that βl > βh, and allow β 

= βl – βh, the system simplifies to  

 

𝑥̇ℎ = 𝑟ℎ𝑥ℎ (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥ℎ −

𝛽𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
 

𝑥̇𝑙 = 𝑟𝑙𝑥𝑙 (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥𝑙 +

𝛽𝑥ℎ𝑥𝑙

𝑥ℎ + 𝑥𝑙
 

 

The resulting system is an infection model with density-dependent infection terms. The 

density-dependence of conversion is not relevant for our analysis, so these terms can be 

dropped, rendering 

 

𝑥̇ℎ = 𝑟ℎ𝑥ℎ (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥ℎ − 𝛽𝑥ℎ𝑥𝑙  

𝑥̇𝑙 = 𝑟𝑙𝑥𝑙 (1 −
𝑥ℎ + 𝑥𝑙

𝐾
) − 𝑑𝑥𝑙 + 𝛽𝑥ℎ𝑥𝑙  

 

The system can converge to the following equilibria. 
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𝑥ℎ
(0)

= 0 

𝑥𝑙
(0)

= 0 

𝑥ℎ
(1)

=
𝐾(𝑟ℎ − 𝑑)

𝑟ℎ
 

𝑥𝑙
(1)

= 0 

𝑥ℎ
(2)

= 0      

𝑥𝑙
(2)

=
𝐾(𝑟𝑙 − 𝑑)

𝑟𝑙
 

𝑥ℎ
(3)

=
𝛽𝑑𝐾 + 𝑑𝑟ℎ − 𝑑𝑟𝑙 − 𝛽𝐾𝑟𝑙

𝛽(𝛽𝐾 + 𝑟ℎ − 𝑟𝑙)
 

𝑥𝑙
(3)

=
𝛽𝑑𝑟ℎ + 𝑑𝑟ℎ − 𝑑𝑟𝑙 − 𝛽𝑑𝐾

𝛽(𝛽𝐾 + 𝑟ℎ − 𝑟𝑙)
 

 

The trivial equilibrium is stable when rh < d and rl < d. Population h wins when 

 

𝑑 >
𝛽𝐾𝑟ℎ

𝛽𝐾 + 𝑟ℎ − 𝑟𝑙
 

 

Population l wins if 

 

𝛽𝐾𝑟𝑙

𝛽𝐾 + 𝑟ℎ − 𝑟𝑙
> 𝑑 

 

(Trivial equilibrium. Both 

populations go extinct.) 

(High-fertility excludes low-

fertility population) 

(High- and low-fertility 

populations coexist.) 

(Low-fertility excludes high-

fertility population.) 
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Mathematica shows that the system has no bistability when the trivial equilibrium is not 

obtained, thus coexistence is obtained when 

 

𝛽𝐾𝑟ℎ

𝛽𝐾 + 𝑟ℎ − 𝑟𝑙
> 𝑑 >

𝛽𝐾𝑟𝑙

𝛽𝐾 + 𝑟ℎ − 𝑟𝑙
 

 

and the conditions for the trivial equilibrium do not hold.  

 The behavior of the system can also be assessed in terms of the basic reproductive 

ratio, R0, a measure in infectious disease dynamics which gives the average number of 

infected agents that arise in the lifetime of a single infectious agent when placed into a 

completely uninfected population. An infection becomes established in a population when 

R0 > 1. R0 can be derived for the above infection model by determining the conditions 

under which the growth rate of population l is positive at very low numbers, when the 

system consists almost entirely of h individuals. This method renders the following value 

for R0: 

 

𝛽𝐾𝑟ℎ

𝑑(𝑟𝑙 − 𝑟ℎ + 𝛽𝐾)
 

 

Thus, population l will invade when the above expression exceeds 1. 
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2.4 Four Age-Classes 

 

We now consider the same framework with four age-classes instead of one. This allows us 

to vary an individual’s fertility depending on its age. Individuals remain in each age-class 

for 100 time-steps before advancing to the next. Neither population h nor l reproduces in 

the first or last age-class, which represent the pre- and post-reproductive stages of life, 

respectively. Population h begins reproduction in the second age-class; population l begins 

reproduction in the third age-class. Populations h and l have the same rate of reproduction 

in the third age class. Mortality is held constant across age-classes, as our main interest lies 

in the conditions under which a population with a delayed reproduction can outcompete a 

population which begins reproduction earlier in life. All individuals die after spending 100 

time steps in the 4th age-class.  

 As before, individuals occupy an n × n grid, and the grid is sampled 2m times, where 

m is the number of individuals currently occupying the grid. For each sampling there is a 

0.50 probability that the birth/death routine will be applied and 0.50 probability that the 

voting routine will be applied. When the birth/death routine is chosen, individuals have a 

prepr(hi) or prepr(li) probability of reproducing, depending on whether the individual is a 

member of population h or l, where i gives the age-class of the individual reproducing. i 

varies from 1 to 4. Individuals die with a probability pdeath, which does not depend on age-

class or whether the individual belongs to the h or l population. The voting routine 

functions the same as in the previous model and does not depend on the age-class of the 

individual that is voting or the surrounding individuals that are considered in the voting 
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procedure. Nearest-neighbor interactions and complete mixing are investigated separately 

as in the previous section. 

 

2.4 i. Nearest-Neighbor Interactions 

 

Comparable results were observed as for those of a single age-class (Figs 8 and 9). 

Population l is more likely to win at high values of ptransmit and low values of pcomm and 

pdeath. Coexistence is achieved at intermediate parameter values. This outcome is defined as 

both populations persisting together for more than 100,000 time steps. 

   

 

Fig. 8. Exclusion/coexistence outcomes of age-structured model with voting and 
birth/death processes. Nearest-neighbor interactions. Outcomes are shown with respect to 
the rate of cultural transmission (ptransmit), mortality (pdeath), and the weight of high-fertility 
individuals in the voting procedure (pcomm). n = 30. Reproduction probabilities of 
successive age-classes of population h (high fertility) are as follows: prepr(h1) = 0.0; prepr 
(h2) = 0.3333; prepr(h3) = 0.3333; prepr(h4) = 0.0. Reproduction probabilities of successive 
age-classes of population l (low fertility) are as follows: prepr(l1) = 0.0; prepr(l2) = 0.0; 
prepr(l3) = 0.03333; prepr(l4) = 0.0. Initial population of h individuals = 450. Initial 
population l individuals = 450. Purple: population h wins. Yellow: population l wins. Green: 
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coexistence. Population l wins with greater frequency as ptransmit is increased and pcomm and 
pdeath are decreased. Coexistence is obtained for intermediate values of these variables. 600 
data points. 
 
 

 
 
Fig. 9. Cross-sections of Fig. 8. Purple: population h wins. Yellow: population l wins. Green: 
coexistence. Left: Outcome with respect to pcomm and pdeath. Population l is more likely to 
win as pcomm and pdeath are lowered. 500 data points. Center: Outcome with respect to 
ptransmit and pdeath. Population l is more likely to win as pdeath is lowered and ptransmit is 
increased. 500 data points. Right: Outcome with respect to pcomm and ptransmit. Population l is 
more likely to win as pcomm is decreased and ptransmit is increased. 500 data points. 
 
 
 
2.4 ii. Perfect Mixing 

 

We now consider the outcomes and analysis of the age-structured model with perfect 

mixing. Outcomes comparable to the previous models were observed, and coexistence was 

more frequent with perfect-mixing than it was with nearest-neighbor interactions as was 

observed in the one-age-class model (Figs 10 & 11). 
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Fig. 10. Exclusion/coexistence outcomes of age-structured model with voting and 
birth/death processes. Perfect mixing. Outcomes are shown with respect to the rate of 
cultural transmission (ptransmit), mortality (pdeath), and the weight of high-fertility 
individuals in the voting procedure (pcomm). n = 30. Reproduction probabilities of 
successive age-classes of population h (high fertility) are as follows: prepr(h1) = 0.0; 
prepr(h2) = 0.3333; prepr(h3) = 0.3333; prepr(h4) = 0.0. Reproduction probabilities of 
successive age-classes of population l (low fertility) are as follows: prepr(l1) = 0.0; prepr(l2) 
= 0.0; prepr(l3) = 0.03333; prepr(l4) = 0.0. Initial population of h individuals = 450. Initial 
population l individuals = 450. Purple: population h wins. Yellow: population l wins. Green: 
coexistence. Population l wins with greater frequency as ptransmit is increased and pcomm and 
pdeath are decreased. Coexistence is obtained for intermediate values of these variables. 
1000 data points. 
 
 

 
 
Fig. 11. Cross-sections of Fig. 10. Purple: population h wins. Yellow: population l wins. 
Green: coexistence. Left: Outcome with respect to pcomm and pdeath . Population l is more 
likely to win as pcomm and pdeath are lowered. 500 data points. Center: Outcome with respect 
to ptransmit and pdeath. Population l is more likely to win as pdeath is lowered and ptransmit is 
increased. 500 data points. Right: Outcome with respect to pcomm and ptransmit. Population l is 
more likely to win as pcomm is decreased and ptransmit is increased. 500 data points 
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As with the one-age-class model, perfect mixing allows one to represent the model as a 

system of equations. Age-structured models are easily represented with systems of 

difference equations.  

 

 

 

xi,j and yi,j represent the populations of high- and low-fertility individuals, respectively, at 

age-class i and time j. The f’s represent the age-specific fertilities of x or y at the age-class 

given by the subscript of the variable, and q represents the density-dependence of fertility, 

which is given by  

 

Density-dependence increases as N decreases. The s’s represent the age-specific rates of 

survival from one age-class to the next and can be understood as the compliment of the 
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age-specific mortality rate. βxy gives the net rate of conversion of high-fertility individuals 

to low-fertility individuals and is given by 

 

𝛽 ×
∑ 𝑦𝑛,𝑡

4
𝑖=1

∑ 𝑥𝑛,𝑡
4
𝑖=1 +∑ 𝑦𝑛,𝑡

4
𝑖=1

, 

 

where 0 ≤ β ≤ 1 is a parameter which reflects the extent to which the rate of conversion 

increases with the frequency of y. The dynamics of this system are difficult to assess 

analytically. However, numerical simulations show that it is easier for the low-fertility 

population to invade as survival increases (or rather, as mortality decreases)(Fig. 12).  The 

cycles seen in the low-fertility population of Fig. 12 d) are a common occurrence in 

populations with only one reproductive age-class. In such a case, a single cohort 

reproduces at only one age as it progresses through its life, at which point the population 

surges. When the original cohort dies, the offspring of this cohort constitute the only 

members of the population, and they are found in only one age-class. The cycle then 

repeats. Such cycling behavior is not observed in cases where both populations coexist, as 

age-classes 2-4 of the low-fertility population become filled when members of the high-

fertility population are converted. This mechanism is evidenced by the fact that cycles of 

the low-fertility population in d) only appear when the high-fertility population begins to 

fall off at a much higher rate, at which point the rate of conversion of the high-fertility 

population is no longer sufficiently high to fill the age-classes of the low-fertility 

population.  
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Fig. 12. Dynamics of competing age-structured populations as represented by difference 
equations. Members of the high-fertility population are converted to members of the low-
fertility population at a rate proportional to the frequency of the low-fertility population.  
Green: Low-fertility population. Red: High-fertility population. All parameters but the age-
specific rates of survival are held constant for each simulation. The age-specific fertilities of 
the high-fertility population are as follows: fx1 = 0, fx2 = 3.0, fx3 = 3.0, fx4 = 0. The age-
specific fertilities of the low-fertility population are as follows: fy1 = 0; fy2 = 0; fy3 = 3.0; fy4 
= 0. Fertility saturation term: N = 1000. Rate of conversion: β = 0.40. Age-specific survival 
rates are increased from a-d. a) sx1 = sx2 = sx3 = sy1 = sy2 = sy3 = 0.50. b) sx1 = sx2 = sx3 = sy1 
= sy2 = sy3 = 0.75. c) sx1 = sx2 = sx3 = sy1 = sy2 = sy3 = 0.875. d) sx1 = sx2 = sx3 = sy1 = sy2 = 
sy3 = 0.95. The low-fertility population invades or becomes fixed as survival is increased. 
 
 
 
2.5 Discussion 

 

This chapter investigated the evolutionary dynamics of a fertility-reducing trait that is 

transmitted via a voter model framework in a reproducing population. The outcomes were 

investigated at varying rates of mortality and transmission and for varying weights of high-
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fertility individuals in the voting routine. It was found that low-fertility individuals could 

persist in the population when the mortality rate and the weight of high-fertility 

individuals were low and the rate of cultural transmission was high. The basic framework 

was applied under conditions of nearest-neighbor interactions and perfect mixing, with 

and without age-structure with the same basic result.  

 Empirical data suggest that fertility transitions are difficult to initiate unless 

mortality is lowered first (Mason, 1997). The numerical and analytical results achieved via 

these simulations may provide some insight into a possible mechanism behind this 

observation. When viewed in the context of infection models, decreasing the mortality rate 

increases the population density, which in turn gives an advantage to the transmission 

process by increasing the frequency of contacts between individuals. In other words, 

lowering mortality increases the basic reproductive ratio of the infection (Heesterbeek, 

2002). This connection between fertility reduction and density-dependence is consonant 

with data suggesting that birth rates in human populations have an inverse relationship 

with population density (Lutz, 2006). 

 Fertility transitions have occurred in Europe in regions which are very dissimilar in 

socioeconomic terms but share a common culture and language (Knodel and van de Walle, 

1979). Conversely, bordering regions which are similar in terms of socioeconomic 

variables may not all undergo a fertility decline when they have different languages and 

culture. These patterns appear suggestive of a transmission process like that modelled in 

this project. This project considered both scenarios where cultural transmission operates 

under nearest-neighbor interactions and perfect mixing. Either assumption may be 

justified depending on the type of communication networks available. Under conditions of 
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perfect mixing, the breadth of the coexistence regime increased, which may have 

implications for the role of mass media and communications in the spread of this trait.   

This chapter also compliments the work of Feldman et al. (1981; 2004; 2013), 

which did not consider mortality as an exogenous variable.  The models share a finding of 

Feldman’s work in that low-fertility individuals must be given greater weight in the 

transmission process in order to invade. This finding is consistent with the empirical 

observation that it is often social elites who adopt fertility reduction first (Cleland and 

Wilson, 1987; Knodel and van de Walle, 1979), and that individuals often imitate the 

behavior of others who have higher social status, even when this behavior has no obvious 

connection to social status (Henrich, 2001; Henrich and Gil-White, 2001). 

 One limitation of the model thus far is that it corresponds to the spread of a discrete 

trait when a continuum of fertilities is possible. Although investigating a discrete trait is 

convenient in deriving mechanisms analytically, a framework allowing for a continuum of 

traits deserves to be described. In addition, the model does not specify how social status is 

built or explain the inverse relationship between social status and fertility. This is to be 

addressed in the next chapter.  
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Chapter 3: A continuous model of human fertility decline 

 

3.1 Introduction 

 

Many countries have undergone a reduction in fertility over the last few centuries (Kirk, 

1996). Western European countries have in fact seen below replacement fertility since the 

1970’s and 1980’s (Castles and Francis, 2003; Golstein et al. 2003). Classical theories of the 

demographic transition explained this fertility reduction in terms of changes in lifestyle 

that accompanied economic development (Notestein, 1945; Thompson, 1929). Mortality 

was much lower in developed countries, which would result in more children in the 

absence of fertility control; work in urban areas reduced economic incentives for large 

families; and mass schooling reduced the availability of children as sources of labor. 

Changes in social life also provided alternatives to large families. However, later studies 

showed only a modest correlation between fertility and measures of development (Knodel, 

1979). Instead, it was shown that regions which underwent a fertility reduction shared 

similar languages and culture. Scholars then proposed ideational theories of fertility 

reduction, which relied on changes of values and social norms (Lesthaeghe, 1983; Cleland 

and Wilson 1987). As varied as theories of fertility reduction are, it is generally agreed that 

the fertility transition is difficult to initiate in the absence of a reduction in mortality 

(Mason, 1997).  

 It has been said that fertility reduction in the presence of abundant resources is the 

ultimate challenge to the application of evolutionary thinking to human behavior (Vining, 

1986). This view could very easily be dismissed as shallow. Maximal reproduction 
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frequently does not maximize fitness. Organisms must weigh current reproduction against 

their offspring’s survival and reproduction, the survival and reproduction of future 

generations, and their own future survival and reproduction. Such quantity-quality 

tradeoffs have been observed in African agricultural societies and, to some extent, hunter-

gatherer societies (Lawson and Mace, 2011; Borgerhoff Mulder, 1997). However, studies of 

developed populations show no evidence of a quantity-quality tradeoff that results in 

greater long-term fitness (Kaplan et al. 1995; Kaptijn et al. 2010). Moreover, the upper 

classes tend to have fewer children than the lower classes, while their mortality rates are 

nearly the same. Clearly the higher fertility of lower classes is not a compensation for 

mortality which the upper classes lack. 

 The issue of fertility reduction is frequently discussed in terms of how fertility is 

related to social status. In the context of heritable wealth, it has been shown that when 

individual earning potential is low, long-term fitness is maximized when the wealth 

inherited by each offspring is high, which necessarily requires a lower rate of immediate 

reproduction (Rogers, 1990). In addition, low fertility appears to be fitness optimizing 

when the amount of resources invested in an individual offspring significantly increases 

the further resource generating ability of this offspring’s lineage (Hill and Reeve, 2005). 

Other work on fertility with respect to social status advances the adaptive lag hypothesis—

the claim that behaviors which previously maximized fitness among our ancestors are no 

longer operating to this end in the modern environment (Alvergne and Lummaa, 2014; 

Perusse, 1993). Fertility reduction operating via social status has also been captured in 

models of cultural transmission (Cavalli-Sforza and Feldman, 1981; Fogarty et al., 2013; 

Ihara and Feldman, 2004). In a cultural niche construction model, Ihara and Feldman 
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incorporated social status into their framework in the form of a preference for education. 

In this model, a preference for education serves as a culturally transmitted background 

trait, and this background trait is statistically associated with a fertility-reducing 

preference that is also culturally transmitted. The model shows that it is much easier for 

the fertility-reducing trait to invade when those with a preference for education are 

overrepresented in the transmission process.  

 Fertility often increases with social status in pretransition societies (Martin Fieder 

et al. 2005; Borgerhoff Mulder, 1988; Chagnon, 1988; Perusse, 1993). This fact makes sense 

for a social species. However, the opposite appears to be true in post-transition populations 

as a whole. One reason for this inverse relationship could be that, in modern societies, a 

higher social status requires extended periods of education and vocational training, both of 

which are not easily accrued while investing time and resources in dependent children.  

This claim is evidenced by the fact that education has always been inversely related to 

fertility for human civilization as a whole, whereas the relationship between status via 

income and occupation merely ceases to be strongly positive over historical time (Skirbekk 

2008). One can increase income without investing in additional time-consuming training, 

but one cannot advance their education without some cost in terms of time. It has also been 

shown that for men, via mate selection, income is often positively related to fertility but 

education does not show a positive relationship as often (Fieder and Hubar, 2007; 

Hopcroft, 2015). The relationship between education and fertility is almost invariably 

negative for women, who invest more time in the care of their children and with extended 

education may miss their fertility window altogether (Huber et al. 2010; Fieder et al 2005). 
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Finally, simulations suggest that it is in fact fertility that impacts education more than the 

converse (Cohen et al 2011). 

 In the models that follow, the work of the previous chapter is supplemented by 

modelling the cultural transmission of a continuous trait. In the first set of models, social 

status is assumed to be endogenous to one’s level of fertility, and individuals of low fertility 

are copied preferentially over individuals of higher fertility, with copying error. In the 

second set of models, an individual’s social status is built gradually, but social status 

accrual is suspended for some time after the individual reproduces. Other members of the 

population copy the fertility rates of their neighbors according to the social status of these 

neighbors. Individuals are copied with error as before. 

 

3.2 Results 

 

Here, we model the cultural transmission of fertility in such a way that a continuum of 

fertilities can occur in the population. This is in contrast to the previous models, which only 

allowed for the possibility of two fertility types (high verses low). We accomplish this with 

two agent-based models which will be called ABM I and ABM II. The simulations differ in 

their assumptions about social status. In ABM I, individuals with a lower fertility are 

preferentially copied, thus an individual’s social status is considered endogenous to their 

fertility. In ABM II, individuals build social status stochastically, but each individual’s ability 

to build social status is suspended for some time after a reproduction event. Individuals 

preferentially copy the fertility of those around them according to the social status of those 

being copied. Thus in ABM II, social status is decoupled from fertility. In both models, two 
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weighting procedures are used: relative weighting and linear weighting. In ABM I, relative 

weighting refers to the fact that individuals of a given fertility preferentially copy those of a 

lower fertility, regardless of the exact fertility of the individual doing the copying. In this 

same model with linear weighting, the weight given to those whose fertility is being copied 

is an inverse linear function of their exact fertility. In ABM II, relative weighting refers to 

the fact that the fertility of those with a higher social status is copied preferentially to those 

with a lower social status. In linear weighting, the weight given to those whose fertility is 

being copied is an inverse linear function of their exact social status.  

 

3.2 i. ABM I: Endogenous Social Status 

 

Individuals occupy an n × n grid as before. The grid is sampled 2m times, where m is the 

total number of individuals, and when an individual is selected in a sampling event there is 

a 0.50 probability that either the conversion routine or the birth/death routine will be 

applied to this individual. The weight of conversion relative to birth/death can be modified 

by a parameter ptransmit, which gives the probability of the conversion routine being applied 

should it be chosen. When the birth/death procedure is called, the individual chosen 

reproduces according to their reproduction probability prepr(i,j), or dies according to a 

common mortality rate pdeath. An individual’s offspring are placed in one of the nearest-

neighboring positions randomly. If the nearest-neighboring space is already occupied, the 

reproduction event does not take place. When the conversion routine is applied, the 

individual selected converts their reproduction probability to the average of their nearest 

neighbors. The boundary conditions are non-periodic. 
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If an individual is called on to convert, there is the possibility of copying error, such 

that this individual makes some error q in determining the average. Thus the resulting 

fertility lies marginally above or below the correct average (rnb ± [q × rnb]). rnb is the 

average reproduction probability of the neighborhood, and q is a constant. The rate at 

which mutation occurs may also be adjusted by a parameter pmut. As in the previous 

models, individuals of high fertility are underrepresented in the conversion process. This is 

accomplished by assigning high-fertility individuals a lower weight when calculating the 

average, thus the resulting average is a weighted average ∑
𝑤1𝑟1+𝑤2𝑟2+⋯

𝑤1+𝑤2+⋯
, where the r’s are 

the reproduction probabilities of the nearest neighbors. 

  High-fertility individuals can be assigned a lower weight in a number of ways. We 

distinguish between two such weighting methods: relative weighting and linear weighting. 

Under the assumption of relative-weighting, if the neighbor to be included in the average 

has a higher fertility than the individual being converted, then they are assigned a weight of 

a < 1, whereas neighbors with a fertility less than or equal to the individual being 

converted have a weight of 1. In the linear weighting method, the weight with which a 

neighbor is considered is simply a linear function of the neighbor’s reproduction rate, and 

this function does not depend on the reproduction rate of the individual being converted: 

wi = (-s × ri) + 1, where s is a constant.  

 

3.2 i. a. Relative Weighting 

 

In this weighting procedure, high values of pdeath result in ever increasing values of rave, the 

average reproduction probability of the population as whole. The simulation is stopped 
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when a single individual in the population exceeds a reproduction probability of 1- pdeath. 

Intermediate values of pdeath result in intermediate values of rave, with lower values of rave 

achieved for lower values of pdeath in this range. A narrow range of rave is possible for this 

range of pdeath. Low enough values of pdeath result in ever decreasing values of rave until 

population crash (Figs 1 and 2). 

 The effects of other parameters on long-term rave of have been investigated (Figs 3, 4 

and 5). The effects of the other parameters on long-term rave are comparable to those of the 

death rate. Intermediate values of pmut, q, and a individually result in intermediate values of 

rave, with lower long-term rave achieved for lower values of these parameters in this range. 

High values of these parameters individually result in ever increasing rave to maximal 

levels. The simulations are stopped when a single individual exceeds a reproduction 

probability of 1 – pdeath. 

 Lowering the value of ptransmit, the rate at which individuals undergo a conversion 

procedure, has an inverse of effect on the long-term rave. Low values of ptransmit result in 

ever-increasing rave to maximal levels. As before, the simulations were stopped when a 

single individual exceeded a reproduction probability of 1-pdeath. Intermediate values of 

ptransmit result in intermediate long-term values of rave, with lower values corresponding to 

higher long-term rave in this range (Fig. 6).    
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Fig. 1. Dynamics of average reproduction probability (rave) for six different death 
probabilities (pdeath) assuming endogenous social status and relative weighting. Individuals 
adopt the weighted average of the fertility of those around them.  A copying error occurs 
with a probability of pmut. Individuals with a fertility greater than or equal to the individual 
taking the average are assigned a weight of 1 in the average. Individuals with fertility less 
than the individual taking the average are assigned a weight of a. Other parameters include 
the size of the copying error q and the rate at which individuals take the average (ptransmit). 
Parameter values: pmut = 0.01; q = 0.02; ptransmit = 0.001; a = 0.90. The long term-
reproduction probability is higher for high values of pdeath. High values of pdeath result in an 
ever-increasing rave to maximum values. Intermediate values of pdeath result in intermediate 
values of rave. Low values of pdeath result in ever decreasing values of rave leading to 
population crash.  
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Fig. 2. Low values of mortality (pdeath) result in ever decreasing values of average 
reproduction probability (rave) leading to population crash. Model assumes endogenous 
social status and relative weighting as in Fig. 1. Parameter values: pmut = 0.01; q = 0.02; 
ptransmit = 0.001; a = 0.90; pdeath = 0.0001. 
 
 
 

 
Fig. 3. Long-term average reproduction probability (rave) with respect to probability of 
copying error (pmut) in model assuming endogenous social status and relative weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability pmut. Individuals with a fertility greater than or equal to the 
individual taking the average are assigned a weight of 1 in the average. Individuals with 
fertility less than the individual taking the average are assigned a weight of a. Other 
parameters include the size of the copying error q, the rate at which individuals take the 
average (ptransmit), and the probability of death (pdeath). rave in long-term increases with 
respect to pmut. rave converges to intermediate values for intermediate values of pmut and 
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increases to maximum values of for high values of pmut. Other parameters: ptransmit = 0.001; 
q = 0.025; a = 0.85; pdeath = 0.005. 
 
 
 

 
Fig. 4. Long-term average reproduction probability (rave) with respect to the size of copying 
error (q) in model assuming endogenous social status and relative weighting. Individuals 
adopt the weighted average of the fertility of those around them. A copying error occurs 
with a probability pmut. Individuals with a fertility greater than or equal to the individual 
taking the average are assigned a weight of 1 in the average. Individuals with fertility less 
than the individual taking the average are assigned a weight of a. Other parameters include 
the rate at which individuals take the average (ptransmit) and the probability of death (pdeath). 
rave in long-term increases with respect to q. rave converges to intermediate values for 
intermediate values of q and increases to maximum values of for high values of q. Other 
parameters: ptransmit = 0.001; pmut = 0.05; a = 0.85; pdeath = 0.005. 
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Fig. 5. Long-term average reproduction probability (rave) with respect to the rate of 
transmission (ptransmit) in model assuming endogenous social status and relative weighting. 
Individuals adopt the weighted average of the fertility of those around them with a 
probability ptransmit. A copying error occurs with a probability pmut. Individuals with a 
fertility greater than or equal to the individual taking the average are assigned a weight of 1 
in the average. Individuals with fertility less than the individual taking the average are 
assigned a weight of a. Other parameters include the size of the copying error q and the 
probability of death (pdeath). rave in long-term decreases with respect to ptransmit. rave 
converges to intermediate values for intermediate values of ptransmit and increases to 
maximum values for low values of ptransmit. Other parameters: pmut = 0.12; q = 0.01; a = 
0.95; pdeath = 0.005. 
 
 
 

 
Fig. 6. Long-term average reproduction probability (rave) with respect to the weight of high 
fertility individuals in the average (a) in model assuming endogenous social status and 
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relative weighting. Individuals adopt the weighted average of the fertility of those around 
them. A copying error occurs with a probability pmut. Individuals with a fertility greater 
than or equal to the individual taking the average are assigned a weight of 1 in the average. 
Individuals with fertility less than the individual taking the average are assigned a weight 
of a. Other parameters include the size of the copying error q, the rate at which individuals 
take the average (ptransmit), and the probability of death (pdeath). rave in long-term increases 
with respect to a. rave converges to intermediate values for intermediate values of a. rave 
increases to maximum values for high values of a. Other parameters: ptransmit = 0.001; pmut 
= 0.12; q = 0.01; pdeath = 0.005.  
 
 
 
3.2 i. b. Linear Weighting 
 
 
 
In this weighting procedure, a continuum of long-term reproduction probabilities is 

possible. High mortalities result in high long-term rave, and low mortalities result in low 

long-term rave, with a continuum of results in between (Fig. 8). Very low pdeath does not 

result in ever-decreasing rave that leads to a population crash as in the previous weighting 

method. Furthermore, pmut and q do not have any effect on the long-term rave in this 

weighting method.  

 In this weighting method, ptransmit and s both have an inverse relationship with long-

term rave (Figs 9 and 10). Recall that ptransmit is the rate at which individuals undergo a 

conversion procedure should the conversion routine be chosen, and s is the slope of the 

weighting function. High values of ptransmit and s result in low long-term rave, and low ptransmit 

and s result in high long-term rave, with a continuum of results in between.   
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Fig. 7. Dynamics of average reproduction probability (rave) for three different death 
probabilities (pdeath) in model assuming endogenous social status and linear weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability pmut. The weight that an individual is assigned in the 
average is a linear function of their fertility (wi = (-s × ri) + 1, where ri is the reproduction 
probability of the neighbor and s is a constant). Other parameters include the size of the 
copying error q and the rate at which individuals take the average (ptransmit). Average 
reproduction probability in long-term decreases as pdeath decreases. Purple: pdeath = 0.03; 
Green: pdeath = 0.025; Blue: pdeath = 0.02. Other parameters: ptransmit = 0.10; pmut = 0.10; q = 
0.04; s = 1.10.  
 
 
 

 
Fig. 8. Long-term average reproduction probability (rave) with respect to the rate of 
transmission (ptransmit) in model assuming endogenous social status and linear weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability pmut. ptransmit is the probability that the averaging procedure 
takes place. The weight that an individual is assigned in the average is a linear function of 
their fertility (wi = (-s × ri) + 1, where ri is the reproduction probability of the neighbor 
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and s is a constant). Other parameters include the size of the copying error q and the 
probability of death (pdeath). rave decreases continuously with respect to ptransmit. Other 
parameters: s = 1.10; pmut = 0.05; q = 0.06; pdeath = 0.03. 
 
 
 

 
Fig. 9. Long-term average reproduction probability (rave) with respect to s in model 
assuming endogenous social status and linear weighting. Individuals adopt the weighted 
average of the fertility of those around them. A copying error occurs with a probability pmut. 
The weight that an individual is assigned in the average is a linear function of their fertility 
(wi = (-s × ri) + 1, where ri is the reproduction probability of the neighbor and s is a 
constant). Other parameters include the size of the copying error q, the rate at which 
individuals take the average (ptransmit), and the probability of death (pdeath). rave decreases 
continuously with respect to s. Other parameters: ptransmit = 0.01; pmut = 0.05; q = 0.06; 
pdeath = 0.03. 
 
 

3.2 ii. ABM II: Decoupled Social Status 

 

In ABM II, individuals occupy an n × n grid as before. The grid is sampled 2m times at each 

iteration, where m is the total number of individuals occupying the grid. Each individual 

sampled has a 0.50 probability of undergoing a birth/death update or a social update. The 

birth/death procedure is the same as in ABM I. When the social update is applied, the 

chosen individual has a 0.50 probability of applying a social advancement procedure and a 

0.50 probability of performing a conversion procedure. When the social advancement 

routine is applied, the individual undergoing the update increases their social status by 1. If 
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an individual reproduces, this individual cannot have the social advancement procedure 

applied to them for some fixed number of time steps w. When the conversion procedure is 

applied, the individual chosen converts their fertility to the weighted average of individuals 

in the neighborhood ∑
𝑤1𝑟1+𝑤2𝑟2+⋯

𝑤1+𝑤2+⋯
. The weight that a neighbor is given in the average 

depends on this neighbor’s social status according to either linear weighting or relative 

weighting.  Under the assumption of relative-weighting, if the neighbor to be included in 

the average has a lower social status than the individual being converted, then they are 

assigned a weight of a < 1, whereas neighbors with a social status greater than or equal to 

the individual being converted have a weight of 1. In the linear weighting method, the 

weight with which a neighbor is considered is a linear function of the neighbor’s social 

status: wi = (s × ssi), where ssi is the social status of the neighbor. Copying errors are 

applied the same as in ABM I. 

 

3.2 ii. a. Relative Weighting 

 

In this model, under the assumption of relative weighting, manipulating pdeath has effects on 

the long-term rave comparable to ABM I. High rates of pdeath result in ever increasing values 

of rave until maximal reproduction probability is achieved. Low to intermediate values of 

pdeath result in relatively stable values of rave in the long-term, with lower values of pdeath 

resulting in lower values of rave in this range. Low values of pdeath do not result in ever-

decreasing values of rave until population crash as in the relative weighted model of section 

3.2 i. a. Increasing the rate of ptransmit has the effect of lowering rave in the long-term. Very 

low values of ptransmit can result in increasing values of rave to maximal reproduction, but 
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this increase does not appear to be the sort of threshold effect seen in section 3.2 i. a. or 

when increasing values of pdeath in this section. Increasing the value of a results in higher 

long-term values of rave when equilibria are achieved. High values of a can result in maximal 

reproduction as well, but this again does not appear to be a threshold phenomenon.  

Changing the values of pmut or q has no effect on the long-term average values of rave 

in the long-term when equilibria are achieved, although the behavior of the time series is 

more erratic for high values of either parameter. If equilibria are not achieved, the rave 

increases until maximal reproduction probability. The values of pmut or q that achieve this 

outcome have no obvious pattern or directionality. (Results not shown)  

Changing the value of w has an effect unique among all the parameters. Increasing w 

decreases the long-term rave up to a certain value. Beyond this value, maximal reproduction 

probability is achieved in the long-term.  

 

 

Fig. 10. Dynamics of the average reproduction probability (rave) with six different death 
probabilities (pdeath) in model assuming decoupled social status and relative weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
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error occurs with a probability of pmut. Individuals with a social status greater than or equal 
to the individual taking the average are assigned a weight of 1 in the average. Individuals 
with social status less than the individual taking the average are assigned a weight of a. 
Social status is built stochastically. When an individual reproduces, they must wait for 
some time-period w before they can build social status. Other parameters include the size 
of the copying error q and the rate at which individuals take the average (ptransmit). The long 
term-reproduction probability is higher for high values of pdeath. High values of pdeath result 
in an ever-increasing rave to maximum values. Lower values of pdeath result in stable levels 
of rave. The equilibrium levels of rave decrease with decreasing levels of pdeath. Other 
parameters: pmut = 0.02; q = 0.02; ptransmit = 0.003; a = 0.40; w = 5.  
 
 
  

 

Fig. 11. Dynamics of average reproduction probability (rave) for three different rates of 
transmission (ptransmit) in model assuming decoupled social status and relative weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability of pmut. ptransmit is the probability that the averaging 
procedure takes place. Individuals with a social status greater than or equal to the 
individual taking the average are assigned a weight of 1 in the average. Individuals with 
social status less than the individual taking the average are assigned a weight of a. Social 
status is built stochastically. When an individual reproduces, they must wait for some time-
period w before they can build social status. Other parameters include the size of the 
copying error q and the probability of death (pdeath). rave in long-term decreases with 
respect to ptransmit. rave converges to intermediate values for intermediate values of ptransmit 
and increases to maximum values for low values of ptransmit. Other parameters: pmut = 0.02; 
q = 0.02; pdeath = 0.02; a = 0.40; w = 2. 
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Fig. 12. Dynamics of average reproduction probability (rave) for four different values of a in 
model assuming decoupled social status and relative weighting. Individuals adopt the 
weighted average of the fertility of those around them. A copying error occurs with a 
probability of pmut. Individuals with a social status greater than or equal to the individual 
taking the average are assigned a weight of 1 in the average. Individuals with social status 
less than the individual taking the average are assigned a weight of a. Social status is built 
stochastically. When an individual reproduces, they must wait for some time-period w 
before they can build social status. Other parameters include the size of the copying error 
q, the rate at which individuals take the average (ptransmit), and the probability of death 
(pdeath). rave converges to intermediate values for intermediate values of a. rave in long-term 
increases with respect to a. rave increases to maximum values for high values of a. Other 
parameters: ptransmit = 0.07; pmut = 0.02; q = 0.02; pdeath = 0.001; w = 2. 
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Fig. 13. Dynamics of average reproduction probability (rave) for different values of w in 
model assuming decoupled social status and relative weighting. Individuals adopt the 
weighted average of the fertility of those around them. A copying error occurs with a 
probability of pmut. Individuals with a social status greater than or equal to the individual 
taking the average are assigned a weight of 1 in the average. Individuals with social status 
less than the individual taking the average are assigned a weight of a. Social status is built 
stochastically. When an individual reproduces, they must wait for some time-period w 
before they can build social status. Other parameters include the size of the copying error 
q, the rate at which individuals take the average (ptransmit), and the probability of death 
(pdeath). Long-term average reproduction probability decreases with respect to w with 
diminishing effect up to a certain threshold. Setting w beyond this threshold results in ever 
increasing reproduction probability until maximal reproduction probability is achieved. 
Other parameters: ptransmit = 0.004; pmut = 0.02; q = 0.02; pdeath = 0.001; a = 0.40. 
 
 
 
3.2 ii. b. Linear Weighting 

 

Lowering pdeath in ABM II under the assumption of linear weighting has an effect 

comparable to ABM I under linear weighting. Lower values of pdeath result in lower long-

term values of rave. Increasing the rate of ptransmit had an inverse effect on the long-term 

values of rave. Increasing w decreases the long-term values of rave, but this effect diminishes 

as w increases. Very high values of w result in ever increasing rave until maximal 
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reproduction probability is achieved. Adjusting pmut, q, and s did not have an effect on the 

average long-term value of rave.  

 

 

Fig. 14. Dynamics of average reproduction probability (rave) for four different death 
probabilities (pdeath) in model assuming decoupled social status and linear weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability of pmut. The weight that individuals are assigned in the 
average is a linear function of their social status (wi = (s × ssi), where ssi is the social status 
of the neighbor, and s is a constant). Social status is built stochastically. When an individual 
reproduces, they must wait for some time-period w before they can build social status. 
Other parameters include the size of the copying error q and the rate at which individuals 
take the average (ptransmit). Average reproduction probability in long-term decreases as 
pdeath decreases. Other parameters: ptransmit = 0.07; pmut = 0.02; q = 0.02; s = 0.01; w = 2. 
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Fig. 15. Dynamics of average reproduction probability (rave) for different rates of 
transmission (ptransmit) in model assuming decoupled social status and linear weighting. 
Individuals adopt the weighted average of the fertility of those around them. A copying 
error occurs with a probability of pmut. The weight that individuals are assigned in the 
average is a linear function of their social status (wi = (s × ssi), where ssi is the social status 
of the neighbor, and s is a constant). Social status is built stochastically. When an individual 
reproduces, they must wait for some time-period w before they can build social status. 
Other parameters include the size of the copying error q, the rate at which individuals take 
the average (ptransmit), and the probability of death (pdeath). rave in long-term decreases 
continuously with respect to ptransmit. Other parameters: s = 0.01; pmut = 0.02; q = 0.02; 
pdeath = 0.02; w = 2. 
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Fig. 16. Dynamics of average reproduction probability (rave) for different values of w in 
model assuming decoupled social status and linear weighting. Individuals adopt the 
weighted average of the fertility of those around them. A copying error occurs with a 
probability of pmut. The weight that individuals are assigned in the average is a linear 
function of their social status (wi = (s × ssi), where ssi is the social status of the neighbor, 
and s is a constant). Social status is built stochastically. When an individual reproduces, 
they must wait for some time-period w before they can build social status. Other 
parameters include the size of the copying error q, the rate at which individuals take the 
average (ptransmit), and the probability of death (pdeath). rave in the long-term decreases as w 
increases. The effect of increasing w diminishes at higher values. rave increases to maximal 
values if w is beyond a certain threshold. Other parameters: ptransmit = 0.07; s = 0.01; pmut = 
0.02; q = 0.02; pdeath = 0.02.  
 
 
 
3.3 Discussion 

 

 Some patterns of outcome with respect to changing parameters are intuitive, while 

others are not. For example, in all models, as ptransmit is increased, rave is decreased. In all 

models with relative weighting, decreasing parameter a, the weight that higher fertility 

individuals are given in the average, has the effect of increasing the long-term rave. One 

might not predict that increasing pmut, the rate of mutation, or q, the size of the mutation, 

would increase long-term rave in ABM I under the assumption of relative weighting, but 
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have no effect on long-term rave in ABM I with linear weighting or either weighting 

procedure in ABM II. One might expect s, the slope of the weighting function in the linear 

weighting assumption, to have a negative effect on the long-term rave under either the 

assumptions of ABM I or ABM II. While increasing s did have this effect in ABM I, changing s 

had no effect on the long-term rave in ABM II. These observations highlight the importance 

of comparing models with different assumptions, however trivial the differences may seem. 

Another parameter of interest was w, the amount of time an individual has to wait after 

reproducing to continue building social status. As w increases, the long-term rave decreases 

up to a certain value of w, beyond which rave instead increases to maximal values. This 

threshold effect is caused by the fact that, depending on initial conditions, the variation of 

individual reproduction events is not great enough to include any individual that would 

delay reproduction by w to have a social advantage and be emulated.  

  We considered nearest neighbor interactions. Not only could the assumption of 

perfect mixing be investigated, but more complex, random, or realistic types of interactions 

could be explored as well. Sexual reproduction was incorporated into the models but did 

not produce any qualitative differences in results, thus these results were not included. A 

social status building procedure was considered in ABM II in order to somewhat decouple 

reproduction from social status, but it is still assumed that it is fertility itself that is copied. 

This may be justified if it is assumed that there is a value system or preference map that is 

adopted in developed countries that results in low fertility, and it is this value system or 

preference map that is transmitted (Lesthaege, 1983). Furthermore, it has been shown that 

individuals’ values, beliefs, and behaviors are adopted by others according to their social 
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status, even when the traits adopted have no obvious logical connection to the social status 

of the individuals being copied (Henrick and Gil-White 2001; Hendrick, 2008).  

 In ABM II, the social status building routine is minimalistic. Its only function is to 

decouple social status from fertility. Individuals’ fertility is copied according to social 

status, and reproduction limits one’s ability to build social status. One could explore a more 

detailed model in which some of an individual’s social status is inherited from parents, the 

size of this inheritance effects their future ability to accrue resources, and individuals vary 

in the extent to which they allocate resources to building social status or having children 

(Hill and Reeve, 2005). In addition, one could investigate outcomes of a model which 

allows this choice in allocation to be different between the sexes, as has been modeled 

elsewhere (Hopcroft and Whitmeyer, 2011). Mate selection could also be incorporated into 

the model such that the sexes differ in choosiness with respect to social status. 

Incorporating these details could produce patterns emerging in the literature of a near 

universal negative relationship between social status and fertility for women and an 

occasionally positive relationship for men in modern societies (Feider and Huber, 2007; 

Hopcroft, 2015). 

Arguably the most important result of this study is that long-term average 

reproduction probability is lower at lower mortality rates in all models. This outcome is 

consistent with a phenomenon often noted by demographers, that fertility transitions are 

difficult to initiate in the absence of a mortality decline (Mason, 1997). Lowering the 

mortality rate increases the population density, which increases the frequency of contacts 

between individuals, resulting in a greater rate of transmission relative to reproduction. If 

low fertility individuals are overrepresented in the transmission process, then fertility 
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should decrease as the population density increases. Thus this work provides a mechanism 

for the general pattern of the demographic transition of the 19th and 20th centuries. One 

prediction that follows from the mechanism proposed by the model is that fertility should 

be lower in areas of high population density. This does in fact appear to be the case (Lutz et 

al. 2006). Another important observation from the models, given some assumptions, is that 

a low enough mortality rate results in an ever-decreasing rave, such that a population crash 

results. Western European countries have seen below replacement fertility for some time 

(Castles and Francis, 2003; Golstein et al. 2003). Also, ideal family size among young adults 

in German speaking countries is below replacement level, suggesting that such a trend is 

likely to continue in the future. Such observations may result from the type of cultural 

evolutionary dynamics explored in this project.  
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