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Pareto Extrapolation: Bridging Theoretical and

Quantitative Models of Wealth Inequality∗

Émilien Gouin-Bonenfant† and Alexis Akira Toda‡

Department of Economics, University of California San Diego

November 13, 2018

Abstract

We propose a new, systematic approach for analyzing and solving heterogeneous-agent
models with fat-tailed wealth distributions. Our approach exploits the asymptotic linearity
of policy functions and the analytical characterization of the Pareto exponent to make the
solution algorithm more transparent, efficient, and accurate with zero additional computa-
tional cost. As an application, we solve a heterogeneous-agent model that features persis-
tent earnings and investment risk, borrowing constraint, portfolio decision, and endoge-
nous Pareto-tailed wealth distribution. We show that relaxing the borrowing limit from
25% of annual income to 250% increases inequality by reducing the bottom 50% wealth
share from 11% to 6.7% and decreases welfare by 8.2% in consumption equivalent.

Keywords: asymptotic linearity, Bewley-Huggett-Aiyagari model, Pareto exponent,
power law, solution accuracy.

JEL codes: C63, D31, D58, E21.

1 Introduction

Macroeconomic models increasingly incorporate heterogeneity. Doing so allows researchers
to identify who gains and who loses from new policies, but also assess how the effectiveness
of policies depend on the nature of heterogeneity. Since the first generation of heterogeneous-
agent models such as Huggett (1993) and Aiyagari (1994), one challenge has been to generate a
realistic wealth distribution. Empirically, it is well known since Pareto (1895, 1896, 1897)’s sem-
inal work that the wealth distributions obey the power law: the fraction of agents with wealth
w or larger decays like a power function w−ζ , where ζ is called the Pareto exponent. Thus suc-
cessful economic models of wealth inequality should endogenously generate fat-tailed wealth
distributions.
∗We thank Mark Bils, Fedor Iskhahov, Narayana Kocherlakota, Alisdair McKay, John Stachurski, and seminar

participants at Australian National University and Rochester for comments.
†Email: egouinbo@ucsd.edu.
‡Email: atoda@ucsd.edu.
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We are now much closer to understanding the economic forces that determine wealth in-
equality, and many models have been proposed that can account for the extreme concentration
of wealth we observe in the data. Two parallel literatures have emerged. The first studies rel-
atively simple models and provides theoretical characterizations of the power law behavior
of the wealth distribution, often relying on analytical solutions. The second studies rich gen-
eral equilibrium models and conducts quantitative analysis and experiments that rely heav-
ily on numerical methods. However, there has always been the trade-off between analytical
tractability and the richness of models. The former requires strong (and oftentimes unrealistic)
assumptions, while the latter requires numerical methods, which are in general not well-suited
for studying the tail behavior of the wealth distribution because models are commonly solved
on a finite grid and hence misses the top tail by definition. What is lacking in the current lit-
erature is a systematic approach for analyzing and solving heterogeneous-agent models that
(potentially) generate fat-tailed wealth distributions but do not admit closed-form solutions.

In this paper, we propose a simple, systematic approach for tackling heterogeneous-agent
models with fat-tailed wealth distributions numerically. Our approach consists of (i) the
“asymptotic analysis” of the individual optimization problem to compute the Pareto exponent
of the wealth distribution and (ii) the “Pareto extrapolation” of the wealth grid to compute the
equilibrium and wealth distribution accurately. Our approach enables researchers to analyze
rich heterogeneous-agent models that feature persistent earnings and investment risk, borrow-
ing constraint, meaningful portfolio choices, recursive utility, and endogenous Pareto wealth
distributions, etc., which have been intractable with existing methods.

In the “asymptotic analysis” step we solve, given the candidate equilibrium object (risk-
free rate, wage, etc.), a simplified, or “asymptotic” individual optimization problem semi-
analytically. Roughly speaking, this problem ignores all additive elements and focuses on pro-
portional elements. For example, consider the income fluctuation problem, which is a building
block of Bewley-Huggett-Aiyagari models. The asymptotic problem in this case is one with no
income (i.e., consumption is financed only through savings), which can be solved analytically
as in Merton (1969) and Samuelson (1969). The benefit of studying the asymptotic problem
is threefold. First, its solution determines the behavior of rich agents, which governs the tail
property of the wealth distribution. This enables researchers to determine whether the model
generates a fat-tailed wealth distribution, and if so, to compute the theoretical Pareto exponent
explicitly. This is important because a successful model of inequality should endogenously
generate a fat-tailed wealth distribution, and knowing the Pareto exponent allows one to cal-
culate measures of inequality such as the top 1% wealth share. Second, the analysis of the
asymptotic problem places parametric restrictions on the equilibrium object through equilib-
rium considerations such as the existence of a solution to the individual optimization problem
and a wealth distribution with a finite mean. This enables researchers to narrow down the
set of equilibrium object and search for the equilibrium more efficiently. Third, the solution
to the asymptotic problem can be used as an initial guess for solving the actual individual
optimization problem, making the algorithm more efficient and stable.

In the “Pareto extrapolation” step, we extrapolate the wealth distribution off the grid us-
ing the theoretical Pareto exponent computed from the asymptotic analysis to correct for the
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truncation error when constructing the transition probability matrix governing the state vari-
ables and computing aggregate quantities from the actual optimization problem. The benefit
of Pareto extrapolation is twofold. First, it makes the solution more accurate at no additional
computational cost. This is because the correction terms take care of the truncation error, and
these terms are introduced only at the largest grid point, which is negligible compared with
the total number of grid points. Second, and more importantly, Pareto extrapolation enables
researchers to avoid making mistakes. While it is true that we can solve models to any accu-
racy if we use sufficiently large and fine grids and sufficiently strong computing power, with
existing methods one can never be sure whether the truncation error is small enough. As an
illustration, suppose some researcher says “I truncate the grid so that there is less than (say)
10−4 of the probability mass at the top grid point”. This is not a good idea because (i) the mass
at the largest grid point is severely biased downwards with existing methods, and (ii) even
with mass 10−4 at the largest grid point, there can be substantial amount of wealth held by
those agents.

In summary, our approach makes the solution and analysis of heterogeneous-agent mod-
els with fat-tailed wealth distributions (i) more transparent (because it exploits economic the-
ory as much as possible), (ii) more efficient (because it narrows down the equilibrium object
and uses good initial guesses), and (iii) more accurate (because it corrects for truncation er-
rors). Furthermore, we achieve all of that with zero additional computational cost because the
asymptotic analysis is semi-analytical and the correction terms in the Pareto extrapolation are
introduced only at one grid point.

To illustrate the usefulness of our approach, we present two exercises. First, using a simple
heterogeneous-agent model that admits a closed-form solution (and a Pareto wealth distribu-
tion) as a laboratory, we show that the error with existing methods can be substantial, while
it is minimal with our approach. Specifically, we find that the error with our method (with an
exponentially-spaced grid with 100 points) ranges from 0.002 to 0.6% depending on the choice
of the largest grid point, whereas it is 3.3–21% with the usual (“Truncation”) method that does
not introduce correction terms. Simulation-based methods with 10,000 agents also have about
11% of error. The errors in the existing methods are especially severe when the Pareto exponent
is smaller than 2, which is typical for wealth (1.5) and firm size (close to 1, Zipf’s law).

Second, we develop a Merton-Bewley-Aiyagari (MBA) model that features persistent id-
iosyncratic endowment and investment risk, borrowing constraint, portfolio decision, recur-
sive utility, and endogenous Pareto-tailed wealth distribution. To the best of our knowledge,
our paper is the first to solve such a complicated model without relying on (restrictive) closed-
form solutions, and we obtain tractability through the asymptotic analysis of the individual
optimization problem and the Pareto exponent formula. We provide a step-by-step approach
to solving the model and use it as a laboratory to conduct a counterfactual experiment. We
show that relaxing the borrowing limit from 25% of annual income to 250% increases inequal-
ity by reducing the bottom 50% wealth share from 11% to 6.7%, and decreases welfare by 8.2%
in consumption equivalent due to increased poverty.
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1.1 Related literature

Our paper is related to a large literature that spans across many disciplines, including quanti-
tative macroeconomics, economic theory on consumption and portfolio choices, mathematical
and statistical results on Pareto tails, and numerical analysis.

It is well-known in the quantitative macroeconomics literature that idiosyncratic unem-
ployment risk and incomplete financial markets alone are insufficient to generate a sufficiently
dispersed wealth distribution (Krueger, Mitman, and Perri, 2016). Recently, Stachurski and
Toda (2018) have theoretically proved that in standard Bewley-Huggett-Aiyagari models, the
wealth distribution necessarily inherits the tail property of the income distribution, and there-
fore standard heterogeneous-agent models cannot explain the wealth distribution. They also
argue that introducing other ingredients such as random discount factors (Krusell and Smith,
1998), idiosyncratic investment risk (Quadrini, 2000; Cagetti and De Nardi, 2006), and ran-
dom birth/death (Carroll, Slacalek, Tokuoka, and White, 2017; McKay, 2017) can generate fat
tails. However, because these papers are all numerical, it is not clear how to build and solve
general heterogeneous-agent models that feature fat-tailed wealth distributions. Our paper
contributes to the quantitative macroeconomics literature by showing the usefulness of the
theoretical analysis of the asymptotic problem and providing a general solution algorithm for
such models.

As mentioned in the introduction, since numerical methods are in general not well-suited
for studying the tail behavior of the wealth distribution, most papers that study the power law
behavior in the wealth distribution use analytical solutions. Nirei and Souma (2007) and Ben-
habib, Bisin, and Zhu (2011) solve growth models with idiosyncratic investment risk and use
the properties of Kesten (1973) processes to obtain a Pareto wealth distribution. Moll (2014),
Toda (2014), Arkolakis (2016), Benhabib, Bisin, and Zhu (2016), and Nirei and Aoki (2016) con-
sider stochastic birth/death and obtain the double Pareto wealth distribution based on the
mechanism of Reed (2001).1 For reviews of generative mechanisms of Pareto tails used in
these papers, see Gabaix (2009). Our paper bridges this literature on power law in economics
and quantitative macroeconomics by showing that the theoretical insight carries over to rich
quantitative models.

The usefulness of the asymptotic problem for computing the Pareto exponent in general
models that admit no closed-form solutions was pointed out by Toda (2018b).2 However, Toda
(2018b) does not consider the solution algorithm for general equilibrium models with fat-tailed
wealth distributions. The asymptotic linearity of consumption policies has been known for a
long time since at least Huggett (1993) and Krusell and Smith (1998), among others. Ben-
habib, Bisin, and Zhu (2015) show the asymptotic linearity in an i.i.d. environment and obtain
a Pareto lower bound for the wealth distribution. In Appendix A, we argue that similar results
should hold in richer models. To analytically characterize the Pareto exponent of the wealth

1Other recent applications include firm dynamics (Acemoglu and Cao, 2015), asset pricing (Toda and Walsh,
2015, 2017), dynamics of inequality (Gabaix, Lasry, Lions, and Moll, 2016; Aoki and Nirei, 2017; Cao and Luo, 2017;
Kasa and Lei, 2018), bequests (Zhu, 2018), and entrepreneurship (Jones and Kim, 2018).

2The asymptotic problem is related to the “method of moderation” in Carroll, Tokuoka, and Wu (2012), who
bound the consumption policy function from above and below by closed-form solutions to improve accuracy and
stability.
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distribution in a general Markovian environment, we apply the recent results from Beare and
Toda (2017).

Our paper is also related to the literature on solution methods for heterogeneous-agent
models such as Krusell and Smith (2006), Algan, Allais, and Den Haan (2008), Reiter (2009,
2010), Den Haan (2010a,b), and Algan, Allais, Den Haan, and Rendahl (2014), among others.
In particular, we use the insight from Algan, Allais, and Den Haan (2008) and Winberry (2018),
who approximate cross-sectional distributions using finite-dimensional parametric families.
In our case, because economic theory suggests that the upper tail of the wealth distribution is
Pareto and it is possible to compute the Pareto exponent from the solution to the asymptotic
problem, we use this Pareto distribution to approximate the upper tail. Although we do not
take a stance on how to deal with the rest of the distribution, we use Young (2010)’s non-
stochastic simulation to compute the wealth distribution from the transition probability matrix
arising from the law of motion.

The closest paper to ours in spirit is Achdou, Han, Lasry, Lions, and Moll (2017). They
recast the Bewley-Huggett-Aiyagari model in continuous-time, which allows them to obtain
a number of novel characterizations and results, including closed-form expressions for the
stationary wealth distribution (in a special case) and the marginal propensity to consume of
agents close to the borrowing constraint. They also prove that a stationary equilibrium exists
and is unique when the intertemporal elasticity of substitution is weakly above one. Finally,
they leverage finite-difference methods and propose a fast solution algorithm that can be ap-
plied to much more general heterogeneous-agent models in continuous time. While our paper
is different—we focus on the complications arising with fat-tailed wealth distributions—we
share the same goal of bridging the gap between theoretical and quantitative work in macroe-
conomics.

2 Solving heterogeneous-agent models with Pareto tails

In this section we propose a new solution algorithm for heterogeneous-agent models with fat-
tailed wealth distributions based on Pareto extrapolation. We first point out the issues with
existing solution algorithms, and then outline our new method.

2.1 Issues with existing algorithms

Suppose that we want to solve a Bewley (1977, 1983)-Huggett (1993)-Aiyagari (1994) model
numerically when the wealth distribution could be fat-tailed. The conventional solution algo-
rithm (which we refer to as the “Truncation” method throughout the paper) would be roughly
as follows.

1. The researcher sets up a finite grid for wealth denoted by WN = {wn}N
n=1, where N is

the number of grid points and w1 < · · · < wN . Suppose there are also other exogenous
state variables (e.g., income, return on wealth, etc.), which can take S possible values
indexed by s = 1, . . . , S. Given the guess of the equilibrium object (e.g., interest rate,
wage, etc.), we can solve the individual optimization problem on the S× N grid using
dynamic programming.
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2. Having solved the individual optimization problem and obtained the law of motion for
individual wealth, the researcher constructs the SN× SN transition probability matrix P
of all state variables. The stationary distribution π ∈ RSN

+ is obtained by solving P′π = π

(so π is an eigenvector of P′ corresponding to the eigenvalue 1).

3. Finally, the researcher imposes the market clearing condition by integrating the individ-
ual decision rules (capital, labor, etc.) over the grid using the stationary distribution π to
find the equilibrium objects (interest rate, wage, etc.).

There are two potential issues with this truncation method when the stationary wealth
distribution is fat-tailed, both of which are related. First, consider the largest grid point wN .
This grid point in principle does not represent just the point w = wN , but the entire interval
w ∈ [wN , ∞). Therefore when we construct the transition probability from wN to other grid
points, instead of assuming that the current wealth state w is concentrated at wN , we need to
take into account that w is really distributed over the interval [wN , ∞) according to the (true)
stationary distribution. Since the interval [wN , ∞) contains substantial probability mass when
the wealth distribution is fat-tailed, failing to account for this will overestimate the transition
probability to lower wealth states, and hence underestimate the top tail probability.

Second, suppose that we use the stationary distribution π = (πsn) to compute aggregate
quantities used in market clearing conditions. For concreteness, consider the aggregate wealth

W =
S

∑
s=1

N

∑
n=1

πsnwn. (2.1)

The right-hand side of (2.1) essentially supposes that the top tail is concentrated on the grid
point wN , whereas in fact it is distributed over the interval [wN , ∞). Thus failing to account
for this will underestimate the aggregate wealth, which affects the computation of equilibrium
through market clearing conditions.

Of course, one may choose a very large truncation point wN (say, one million times the
aggregate wealth) to reduce the truncation error, but that is computationally inefficient because
it will either increase the number of grid points (making the solution algorithm slower) or
decrease the grid density (making the solution less accurate). As we show in Section 3, the
solution accuracy of the usual truncation method is poor when the wealth distribution is fat-
tailed, even if we take a very large truncation point.

One may also argue that the above two issues are specific to the particular algorithm that
involves truncation, and other methods such as simulation (Aiyagari, 1994; Krusell and Smith,
1998) may not be subject to those issues. As we see below, however, the situation is equally
problematic. Simulation-based methods essentially use the law of large numbers to approxi-
mate the market clearing condition. Suppose we simulate I agents and compute the sample
mean of wealth 1

I ∑I
i=1 wi. The question is how fast the sample mean converges to the popula-

tion mean. If the Pareto exponent ζ exceeds 2, then wealth has finite variance and we can apply
the Central Limit Theorem. In this case the sample mean converges at rate I1/2. If ζ < 2 on
the other hand, it is well-known that the rate of convergence to the stable law is only I1−1/ζ .3

3See, for example, Durrett (2010, Theorem 3.7.2) for an accessible proof. Based on this insight, Gabaix (2011)
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Therefore solving a model accurately may require an impractically large number of agents.
As an illustration, Table 1 shows the order of error Imax{−1/2,1/ζ−1} in the sample mean

for various sample size I and Pareto exponent ζ.4 If ζ ≥ 2 and we use 10,000 agents (the
number used in Aiyagari (1994)), then the order of the error in the sample mean is 10000−1/2 =

1/100 = 1%. However, the error order is much larger if the Pareto exponent is smaller. With
ζ = 1.5 (a typical number for the wealth distribution according to Pareto (1897), Klass, Biham,
Levy, Malcai, and Solomon (2006), and Vermeulen (2018)), the error order with 10,000 agents
is 4.6%, which is substantial. If the Pareto exponent is 1.1 (a typical number for the firm size
distribution, which obeys Zipf’s law (Axtell, 2001)), then even with ten billion agents (I =

1010), which is about the same order of magnitude as the world population, the error order is
still 12.3%. To drive the error down to 1%, quite a modest number, the required sample size
for ζ = 1.1 is I = 100

ζ
ζ−1 = 1022 (ten sextillion), which is about the same order of magnitude

as the number of stars in the universe or sand grains on earth.5 Therefore we cannot expect to
solve such models accurately using simulation.

Table 1: Order of error Imax{−1/2,1/ζ−1} in sample mean.

Sample size I Pareto exponent ζ
≥ 2 1.5 1.3 1.1

100 = 1 1.00000 1.00000 1.00000 1.00000
102 0.10000 0.21544 0.34551 0.65793
104 0.01000 0.04642 0.11938 0.43288
106 0.00100 0.01000 0.04125 0.28480
108 0.00010 0.00215 0.01425 0.18738
1010 0.00001 0.00046 0.00492 0.12328

2.2 The Pareto extrapolation algorithm

Our new solution algorithm for heterogeneous-agent models, which we call the “Pareto ex-
trapolation” method, differs from the usual “truncation” method only when computing the
stationary distribution and aggregating individual behavior. Therefore we focus the descrip-
tion of the algorithm only at this aggregation step.

The Pareto extrapolation method consists of three main sub-steps that correct the trunca-
tion errors in the standard algorithm:

The Pareto extrapolation algorithm.

1. Solve an “asymptotic” individual optimization problem semi-analytically and com-
pute the theoretical Pareto exponent ζ.

argues that a substantial fraction of aggregate fluctuations is due to idiosyncratic shocks to large firms.
4In Table 12 in Appendix D, we assess the accuracy of the Aiyagari model in Section 3 using simulation and

obtain similar results to Table 1.
5http://www.abc.net.au/science/articles/2015/08/19/4293562.htm
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2. Construct the SN × SN transition probability matrix by approximating the wealth
distribution for w ≥ wN by a Pareto distribution with exponent ζ.

3. Compute the aggregate wealth by approximating the wealth distribution for w ≥ wN

by a Pareto distribution with exponent ζ.

Below, we explain each step in more detail.

2.2.1 Computing the theoretical Pareto exponent

Our method uses the theoretical Pareto exponent ζ to correct the truncation errors. Thus the
first step is to compute the theoretical Pareto exponent of the wealth distribution implied by
individual behavior.

For this purpose we can use the insight from Toda (2018b). Since the tail property of the
wealth distribution depends on the behavior of wealthy agents, and for those agents labor in-
come is negligible compared to capital income (because labor income enters additively to the
budget constraint, whereas capital income is proportional to wealth), we can consider a sim-
plified problem where the labor income is zero. Assuming that agents have homothetic prefer-
ences (e.g., additive CRRA, Epstein-Zin, etc.), which is almost always the case in applications,
this simplified problem becomes a homogeneous problem in the sense that all control variables
scale with wealth. We refer to this problem as the “asymptotic” problem. Such problems can
be solved semi-analytically even in a Markovian (non-i.i.d.) environment as shown by Toda
(2014, Theorem 5), and the decision rules become linear in wealth. (Appendix A formally de-
fines the asymptotic problem and discusses the asymptotic linearity of policy functions in an
abstract dynamic programming setting.)

For concreteness, suppose that agents solve an optimal consumption-savings problem of
the form

maximize E0

∞

∑
t=0

[β(1− p)]t
c1−γ

t
1− γ

(2.2a)

subject to wt+1 = Rst(wt − ct + yst), (2.2b)

wt ≥ w
¯

. (2.2c)

Here β > 0 is the discount factor, p ∈ [0, 1) is the birth/death probability (infinitely-lived
case corresponds to p = 0), γ > 0 is the relative risk aversion, ct is consumption, wt is wealth
at the beginning of period t excluding current labor income, st is some Markov state, ys is
income in state s, Rs > 0 is the gross return on wealth in state s, and w

¯
is minimum wealth.

By definition, the asymptotic problem studies the limiting case when w → ∞. In this case,
income y and minimum wealth are negligible, so we replace the budget constraint (2.2b) and
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borrowing constraint (2.2c) by

wt+1 = Rst(wt − ct), (2.3a)

wt ≥ 0, (2.3b)

respectively. Note that the problem is now homogeneous because the utility function is ho-
mothetic: an agent twice as rich will consume twice as much, state-by-state. We can maximize
a homothetic function subject to homogeneous constraints of the form (2.3) semi-analytically
quite efficiently, as explained in Toda (2014) in detail. After solving this problem, the law of
motion for wealth becomes linear, w′ = Gsw for some gross growth rate Gs > 0.

Now let us go back to the general case and write the law of motion of the asymptotic
problem as

wi,t+1 = Gi,t+1wit,

where Gi,t+1 > 0 is the gross growth rate of wealth between time t and t + 1 for individual i
and wit is wealth. Thus, in the asymptotic problem, the law of motion for wealth necessarily
satisfies Gibrat (1931)’s law of proportional growth. Assuming that agents enter/exit the econ-
omy at constant probability p > 0, Beare and Toda (2017) show that under mild conditions the
stationary wealth distribution has a Pareto upper tail and characterize the Pareto exponent ζ,
as follows. Suppose that there are finitely many idiosyncratic states (other than wealth) de-
noted by s = 1, . . . , S, and let P = (pss′) be the transition probability matrix, which we assume
to be irreducible. For z ∈ R, let

D(z) = diag
(

E
[
ez log Gi,t+1

∣∣∣ sit = 1
]

, . . . , E
[
ez log Gi,t+1

∣∣∣ sit = S
])

(2.4)

be the diagonal matrix consisting of the conditional moment generating functions of the log
growth rate log Gi,t+1. For a square matrix A, let ρ(A) denote its spectral radius (the maximum
modulus of all eigenvalues of A). Then under mild conditions Beare and Toda (2017) show
that the equation

ρ(PD(z)) =
1

1− p
(2.5)

has a unique positive solution z = ζ > 0, and that the stationary wealth distribution has a
Pareto upper tail with exponent ζ. Toda (2018b) argues that if agents are infinitely lived but
there exists a stationary distribution due to other mechanisms than random entry/exit (e.g.,
borrowing constraint), then we can just set p = 0 in (2.5) to compute the theoretical Pareto
exponent.

We can summarize this step as follows.

Computing the theoretical Pareto exponent.

1. Verify that the utility function is asymptotically homothetic (e.g., CRRA, HARA,
Epstein-Zin) in consumption.

2. Define the asymptotic problem (e.g., no labor income, no borrowing constraint).
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3. Solve the asymptotic problem semi-analytically and derive the law of motion w′ =
Gsw.

4. Define the diagonal matrix (2.4) of conditional moment generating functions of log
growth rates.

5. The theoretical Pareto exponent ζ > 0 is the solution to (2.5).

See Toda (2018b) for more details about the actual implementation of this step.

2.2.2 Constructing the transition probability matrix

Having characterized the theoretical Pareto exponent ζ > 0, the next step is to construct the
transition probability matrix for all state variables.

Let w′ = g(w, s) be the law of motion for wealth for the original (non-asymptotic) prob-
lem, which can be obtained by numerically solving the individual optimization problem using
dynamic programing on the grid S×WN , whereWN = {wn}N

n=1 is the grid for wealth. Let

In = [wn, wn+1), n = 1, . . . , N − 1

be the half-open interval with endpoints wn and wn+1. Let IN = [wN , ∞). For n = 1, . . . , N, let
us construct the transition probability as follows.

Case 1: n < N. Take the lower grid point of In, which is wn. If g(wn, s) ∈ Ik for some k < N,
then we can take θ ∈ [0, 1) such that

g(wn, s) = (1− θ)wk + θwk+1 ⇐⇒ θ = θnk =
g(wn, s)− wk

wk+1 − wk
. (2.6)

We can then assign probabilities 1− θ, θ to the grid points wk, wk+1 (i.e., states k and k + 1),
respectively (Figure 1). If g(wn, s) < w1 or g(wn, s) ≥ wN , then just assign probability 1 to state
1 or N. (Assigning probabilities to neighboring grid points to match the law of motion this
way is essentially the same as what Young (2010) calls “non-stochastic simulation”.)

wk−1 wk wk+1 wn

w′ = g(wn, s) = (1− θ)wk + θwk+1

pk|n = 1− θ pk+1|n = θ

Ik

Figure 1: Construction of transition probabilities from a grid point.

Case 2: n = N. Suppose for the moment that there is an untruncated grid W∞ = {wn}∞
n=1,

and for n ≥ N we know the probability of w = wn conditional on w ∈ IN ∩W∞. Let this
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probability be denoted by qn. By definition, we have ∑∞
n=N qn = 1. Now for each n ≥ N, we

can do precisely as in the previous case, and add probabilities (1− θnk)qn and θnkqn (where θnk

is defined by (2.6)) to the grid points wk, wk+1 whenever w′ = g(wn, s) ∈ Ik for k < N (Figure
2). If g(wn, s) < w1 or g(wn, s) ≥ wN , then just add probability qn to the transition to state 1 or
N. The nice thing is that for large enough n, the next period’s state w′ = g(wn, s) is likely large
(contained in IN), so we only need to compute θnk for finitely many n (say n = N, . . . , N′).

wk−1 wk wk+1 wN wn ∞
qn ∝ n−ζ−1

w′ = g(wn, s) = (1− θ)wk + θwk+1

pk|n = 1− θ pk+1|n = θ

Actual grid Hypothetical grid

Ik IN

Figure 2: Construction of transition probabilities from a hypothetical grid point.

Now it remains to compute the conditional probability qn. Assume that for n ≥ N, the grid
spacing wn+1 − wn is some constant h > 0. Assuming that the stationary distribution has a
Pareto upper tail with exponent ζ > 1, we can set qn ∝ n−ζ−1 for n ≥ N. (If ζ ≤ 1, then the
mean is infinite, which is impossible in equilibrium. In this case we exit from the loop and
use a different guess for the equilibrium object.) As mentioned before, for n ≥ N′ the next
state will always be N (w′ = g(wn, s) ∈ IN), so there is no need to compute qn individually.
Approximating the infinite sum by an integral, we can compute

∞

∑
n=N′

qn ∝
∞

∑
n=N′

(nh)−ζ−1 ≈ h−ζ−1
∫ ∞

N′
x−ζ−1 dx = h−ζ−1 1

ζ
(N′)−ζ .

Imposing the condition ∑∞
n=N qn = 1, we can obtainqn = Cn−ζ−1, (N ≤ n < N′)

∑∞
n=N′ qn = C

ζ (N′)−ζ ,

where the constant of proportionality C is given by

1
C

=
1
ζ
(N′)−ζ +

N′−1

∑
n=N

n−ζ−1.

We can summarize this step as follows.

Constructing the transition probability matrix.
Let ζ > 1 be the theoretical Pareto exponent,WN = {wn}N

n=1 be the grid, and {g(w, s)}S
s=1

be the law of motion.

1. Choose a spacing parameter h > 0.
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2. Imagine a hypothetical infinite gridW∞ = {wn}∞
n=1, where wn = wN + (n− N)h for

n > N, andW∞ agrees withWN for n ≤ N.

3. Linearly extrapolate the law of motion g(w, s) for w > wN (using the slope between
the last two grid points, or better yet, the theoretical slope from the solution to the
asymptotic problem). Take N′ ≥ N such that g(wN′ , s) > wN for all s:

N′ = min {n ≥ N | ∀s, g(wN + (n− N)h, s) > wN} .

Thus, if w′ = Gsw is the asymptotic law of motion, after some algebra we obtain

N′ = N + max
s

⌈
wN − g(wN , s)

Gsh

⌉
, (2.7)

where dxe denotes the smallest integer exceeding x.

4. For each (s, n), (s′, n′) ∈ {1, . . . , S} × {1, . . . , N}, compute the transition probability
from state (s, n) to (s′, n′) using the non-stochastic simulation described above: use
Case 1 for n < N and Case 2 for n = N. Collect the probabilities into an SN × SN
transition probability matrix P.

A few remarks are in order. First, the above algorithm has essentially zero additional com-
putational cost, despite its complicated appearance. The reason is that extrapolation from the
Pareto distribution is used only at the largest grid point wN . Thus, although we are computing
transition probabilities from SN points, which the usual truncation algorithm needs to com-
pute anyway, the Pareto extrapolation algorithm requires only S× 1 = S additional operations,
which is negligible. In our numerical implementation in Section 3, we find that the computing
time of this step is trivial, and therefore we do not report it.

Second, the SN × SN transition probability matrix P is sparse. To see this, let us evaluate
the number of nonzero elements of P. For each s and n < N, there are at most two states the
next wealth can take. For n = N, in principle the next wealth state can be anything. Therefore
the number of nonzero elements of P is at most

2S2(N − 1) + S2N = S2(3N − 2).

Thus the fraction of nonzero elements of P is

S2(3N − 2)
(SN)2 =

3N − 2
N2 → 0

as N → ∞, so P is sparse. Achdou, Han, Lasry, Lions, and Moll (2017) mention that “[c]ontinuous
time imparts a number of computational advantages relative to discrete time [. . . , which] relate
to [. . . ] the fact that continuous-time problems with discretized state space are, by construc-
tion, very sparse.” While it is true that continuous-time problems have some advantages over
discrete-time problems (e.g., partial differential equations versus nonlinear difference equa-
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tions), discrete-time problems also do possess sparsity if appropriately solved.
Third, although we have implicitly assumed that N′ in (2.7) is larger than N, for particular

models it may be N′ ≤ N, which is true if and only if g(wN , s) ≤ wN for all s. In that case we
do not need to consider any extrapolation since the true distribution is not fat-tailed, and the
algorithm becomes identical to the truncation method.

Finally, the Pareto extrapolation method requires the spacing parameter h > 0. Since the
Pareto extrapolation algorithm uses a hypothetical evenly-spaced grid (with grid spacing h)
beyond the largest grid point wN , the most natural choice for h is wN − wN−1, the distance
between the two largest actual grid points. Conducting numerical experiments similar to those
in Section 3, we have found that this choice is numerically optimal.

2.2.3 Computing the aggregate wealth

When computing the equilibrium, we need to impose the market clearing condition in some
way or another. In Aiyagari models the relevant market clearing condition is for capital, and
the demand side is often trivial. To compute the supply of capital (wealth), we can do as fol-
lows. First let P be the SN × SN transition probability matrix computed above. Let π = (πsn)

be its stationary distribution, where πsn is the probability of being in state (s, n). Note that
since π is the (unique) eigenvector of P′ corresponding to the eigenvalue 1 and the matrix P is
sparse by construction, computing π is not an issue. The aggregate wealth is (in principle) then

∑s,n πsnwn, as in (2.1). The only caveat is that for state N, the probability is not concentrated on
the grid point wN but it is a Pareto distribution with exponent ζ and minimum size wN . Since
its density conditional on x ≥ wN is

f (x) = ζwζ
Nx−ζ−1,

the conditional mean of wealth is∫ ∞

wN

xζwζ
Nx−ζ−1 dx =

ζ

ζ − 1
wN .

Thus we can compute the aggregate wealth as

E[w] ≈
S

∑
s=1

(
N−1

∑
n=1

πsnwn + πsN
ζ

ζ − 1
wN

)
. (2.8)

Comparing (2.8) to (2.1), we can see that the usual truncation method introduces an error
because the last term is wN instead of ζ

ζ−1 wN . Since wN is typically large, if ζ is close to 1
(Zipf’s law), then failing to account for the term ζ

ζ−1 will introduce significant error.
The same correction applies to computing the integral of more general functions. Suppose

we would like to compute the expectation of the power function wν for some power ν. For
example, ν = 1 corresponds to aggregate wealth, ν = 2 the variance of wealth, and ν = 1− γ

with γ > 0 appears in calculating the welfare for CRRA preferences with relative risk aversion
γ > 0. Assuming that wealth has a Pareto upper tail with exponent ζ > ν, then the conditional
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expectation of the upper tail is

E [wν |w ≥ wN ] =
∫ ∞

wN

ζwζ
Nxν−ζ−1 dx =

ζ

ζ − ν
wν

N .

Therefore the analog of (2.8) is

E[wν] ≈
S

∑
s=1

(
N−1

∑
n=1

πsnwν
n + πsN

ζ

ζ − ν
wν

N

)
, (2.9)

which implies that we need to multiply the value for the largest grid point by the factor ζ
ζ−ν .

Similarly, noting that

E [wν log w |w ≥ wN ] = E
[

d
dν

wν

∣∣∣∣w ≥ wN

]
=

ζ

(ζ − ν)2 wν
N +

ζ

ζ − ν
wν

N log w,

setting ν = 0 we obtain

E[log w] ≈
S

∑
s=1

(
N−1

∑
n=1

πsn log wn + πsN

(
log wN +

1
ζ

))
. (2.10)

Therefore we need to add 1/ζ to the value for the largest grid point when computing the
expectation of log wealth.

3 Evaluating solution accuracy

As in any new numerical method, the first order of business is to evaluate the solution ac-
curacy. In this regard, Den Haan, Judd, and Juillard (2010) “find it troublesome that [. . . ] the
accuracy of numerical solutions obtains so little attention by so many authors these days.” One
reason why accuracy gets little attention may be due to the lack of benchmark closed-form so-
lutions for heterogeneous-agent models.6 For this purpose, we present a simple (minimal)
heterogeneous-agent model with idiosyncratic investment risk that admits a semi-analytical
solution, which we use as a benchmark for evaluating numerical solutions.

3.1 Model

We consider a standard Aiyagari (1994) model, except that the model features no idiosyncratic
labor income risk (to make the model analytically tractable) but only investment risk (to gen-
erate a fat-tailed wealth distribution). The production side is completely standard: there is a
representative firm with Cobb-Douglas production function F(K, L) = AKαL1−α, where A > 0
is productivity and α ∈ (0, 1) is the capital share. Capital depreciates at rate δ each period.
There are two types of agents, capitalists and workers, of whom there is a mass 1 continuum
each. Workers are identical, supply one unit of labor inelastically, and consume the entire wage

6In the context of representative-agent asset pricing models, several authors such as Collard and Juillard (2001),
Schmitt-Grohé and Uribe (2004), and Farmer and Toda (2017) use the closed-form solution of Burnside (1998) to
evaluate solution accuracy.
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(hand-to-mouth).7

For reasons that will become clear shortly, capitalists are born and go bankrupt with prob-
ability p each period (Yaari (1965)–Blanchard (1985) perpetual youth model). Newborn agents
are exogenously endowed with initial wealth w0 > 0, and capital is destroyed after bankruptcy.
Capitalists have constant relative risk aversion (CRRA) utility as in (2.2a) and supply capital
to the firm. Importantly, the gross return on capital is not risk-free as

R f = FK(K, 1) + 1− δ = AαKα−1 + 1− δ, (3.1)

but rather zsR f , where s = 1, . . . , S denotes the exogenous Markov state and zs > 0 is the gross
return on capital relative to the risk-free rate (essentially the excess return). Let P = (pss′) be the
transition probability matrix, which we assume to be irreducible. We assume that E[zs] = 1, so
capital income is just a zero-sum redistribution of aggregate capital income across capitalists.
An interpretation is that capitalists earn persistent heterogeneous returns (Fagereng, Guiso,
Malacrino, and Pistaferri, 2016a; Cao and Luo, 2017) because some are more skillful in using
capital (or just lucky) than others. The initial state of a newborn capitalist is drawn from the
stationary distribution π = (π1, . . . , πS)

′ of the transition probability matrix P.
The timing is as follows. A capitalist enters period t with some resource (units of consump-

tion good) wt. He decides how much to consume ct, and the remaining amount kt+1 := wt − ct

is installed as capital. At the beginning of period t + 1, production takes place by pooling all
capital, and the capitalist receives the proceed wt+1 = zst R f kt+1, where R f is the gross risk-free
rate in (3.1) and zst is the predetermined gross excess return.8 Thus the budget constraint of a
capitalist is

w′ = zsR f (w− c). (3.2)

A stationary equilibrium consists of aggregate capital K, gross risk-free rate R f , optimal
consumption rule {cs(w)}S

s=1, and a stationary distribution Γ(w, s) such that (i) given R f , the
optimal consumption rule maximizes the utility (2.2a) subject to the budget constraint (3.2),
(ii) firms maximize profits, so (3.1) holds, (iii) the capital market clears, so

K =
∫
(w− cs(w))dΓ(w, s), (3.3)

and (iv) Γ(w, s) is the stationary distribution of the law of motion

(w, s) 7→
{
(zsR f (w− cs(w)), s′), with probability (1− p)pss′ ,

(w0, s′), with probability pπs′ .

By exploiting homotheticity, we can solve the model semi-analytically as discussed in Ap-
pendix B. We also prove that a stationary equilibrium exists and the wealth distribution has a
Pareto upper tail.

7The hand-to-mouth assumption is only for simplicity. Although we can also assume that workers behave
optimally, it is inessential for our purpose of discussing numerical algorithms and evaluating the solution accuracy.

8We can also allow for the possibility that the gross excess returns are risky by using zst+1 instead of zst .
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3.2 Solution accuracy with various grids

We use a numerical example to evaluate the solution accuracy with various grids. We consider
the parameter values in Table 2. By solving the equilibrium conditions discussed in Appendix
B, we obtain the gross risk-free rate R f = 1.0972, aggregate capital K = 3.4231, and Pareto
exponent ζ = 1.2826.

Table 2: Parameter values of the Aiyagari model.

Parameter Symbol Value

Discount factor β 0.96
Relative risk aversion γ 2
Bankruptcy probability p 0.025
Gross excess return z (0.95,1.05)

Transition probability matrix P
[

0.8 0.2
0.2 0.8

]
Productivity A 1
Capital share α 0.38
Capital depreciation rate δ 0.08
Initial wealth w0 1

For the numerical solution, we consider both the conventional truncation method as well
as the proposed Pareto extrapolation method with various wealth grid, truncation point, and
number of grid points. For the Pareto extrapolation spacing parameter h, we always take
h = wN − wN−1, the distance between the two largest grid points.

3.2.1 Evenly-spaced grid

We first consider an N-point evenly-spaced grid on (0, w̄], where we set the truncation point
to w̄ = 10, 20, 40 and the number of points to N = 100, 200, 400. Therefore the wealth grid is
{nd}N

n=1, where d = w̄/N is the distance between grid points.9

We evaluate the solution accuracy as follows. To ensure that all the differences of the nu-
merical solutions from the analytical one are entirely due to the construction of the transition
probability matrix, instead of solving for the equilibrium numerically for each method, we use
the equilibrium risk-free rate and consumption policies from the semi-analytical solution to
compute the stationary distribution on the wealth grid, and then compute the implied aggre-
gate capital using (2.1) and (2.8) for the Truncation and Pareto extrapolation methods, respec-
tively. For this exercise, our primary interest is the relative error

∣∣∣K̂/K− 1
∣∣∣, where K, K̂ are

the aggregate capital from the semi-analytical and numerical solutions, respectively. Table 3
shows the results.

We can make a few observations from Table 3. First, the conventional truncation method
is extremely poor in calculating the aggregate capital: the relative error is about 27–40% de-
pending on the specification. On the other hand, the Pareto extrapolation method is aston-
ishingly more accurate. Second, for the truncation method, choosing a larger truncation point

9Note that we exclude 0 from the wealth grid because in equilibrium agents never hit 0 due to the Inada condi-
tion.
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Table 3: Relative error (%) in aggregate capital for the truncation and Pareto extrapolation
methods with an evenly-spaced grid.

Method: Truncation Pareto extrapolation

w̄ N = 100 200 400 100 200 400

10 40.00 39.69 39.62 0.214 0.105 0.052
20 33.58 32.88 32.63 0.430 0.097 0.043
40 26.99 27.56 27.03 3.588 0.331 0.046

Note: N: number of grid points; w̄: wealth truncation point.

w̄ somewhat improves the accuracy, probably because it misses less of the upper tail. On the
other hand, the accuracy in the Pareto extrapolation method is not necessarily monotonic in
w̄. There seems to be a trade-off between less truncation (larger w̄) and higher density of grid
points (smaller d = w̄/N).

Figure 3a shows the stationary wealth distribution using w̄ = 10 and N = 100. The two
methods are indistinguishable except at the upper tail. To study the tail behavior, Figure 3b
plots the tail probability in a log-log scale. As we can see, the graphs show a straight line pat-
tern, which is consistent with the theoretical Pareto distribution. However, the graph for the
truncation method becomes concave towards the upper tail, which implies that it underesti-
mates the tail probability. On the other hand, the Pareto extrapolation method shows a straight
line pattern including the very top tail.
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Figure 3: Wealth distribution in the Aiyagari model.

These seemingly small differences have an enormous impact on aggregate quantities, as
we have seen in Table 3. To assess the robustness, Figure 4a shows the aggregate capital for the
semi-analytical solution as well as the Pareto extrapolation and truncation solutions when we
change the initial wealth in the range w0 ∈ [0.2, 5]. For all cases we set w̄ = 10 and N = 100.
The horizontal axis shows the corresponding equilibrium Pareto exponent. The graph for
the Pareto extrapolation method is indistinguishable from the semi-analytical solution except
when the Pareto exponent is very close to 1 (Zipf’s law), in which case the truncation method
is especially poor.
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Figure 4: Solution accuracy of the Aiyagari model.

Note: “None”, “Transition probability only”, “Aggregate wealth only”, and “Both” refer to (i) not using Pareto ex-
trapolation and using it to (ii) constructing the transition probability matrix only as in Section 2.2.2, (iii) calculating
aggregate wealth only as in Section 2.2.3, and (iv) both, respectively.

Figure 4b shows the relative errors
∣∣∣K̂/K− 1

∣∣∣ in a semi log scale. For this exercise, we
consider four solution methods that correspond to using/not using Pareto extrapolation when
constructing the transition probability matrix and/or calculating aggregate capital. For exam-
ple, “None” and “Both” in Figure 4b correspond to the truncation and Pareto extrapolation
solutions, respectively. According to the figure, using Pareto extrapolation for only one step
(either constructing the transition probability matrix or calculating aggregate capital) improves
the accuracy only slightly, and correcting the aggregate capital matters more. However, com-
bining both increases the solution accuracy dramatically.

The intuition for this (surprising) result is as follows. According to (2.8), the two sources of
errors introduced by the truncation method (incorrect transition probability matrix and incor-
rect aggregate wealth held by agents at the top grid point) interact with each other. With the
truncation method, the last term πsN

ζ
ζ−1 wN in (2.8) becomes π̃sNwN , with typically π̃sN < πsN .

Therefore, errors in πsN are inflated by a factor ζ
ζ−1 , which is large if ζ > 1 is small.

3.2.2 Exponentially-spaced grid

One may argue that the poor performance of the truncation method in Table 3 is due to the fact
that the truncation point w̄ = 10, 20, 40 is relatively small compared to the aggregate capital
K = 3.4231. What if we take w̄ much larger, say a million? Then we can no longer use evenly-
spaced grids because there will be too few points to cover the bottom of the wealth distribution.
Therefore we need to consider an exponentially-spaced grid.

In more general models, the state variable may become negative (e.g., asset holdings),
which causes a problem for constructing an exponentially-spaced grid because we cannot take
the logarithm of a negative number. One way to get around this issue is to shift the state space
by some positive number (shift parameter), take an evenly-spaced grid in logs, take the expo-
nential, and shift back the grid, as explained in Appendix C. We choose the shift parameter
such that the median grid point corresponds to the capital in a representative-agent model,
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which in our case is KRA = ((1/(β(1− p))− 1 + δ)/(Aα))
1

α−1 = 4.5577. Since an exponential
grid allows us to use far fewer points than an evenly-spaced grid, we consider N = 25, 50, 100.
(We have checked that increasing N further also increases the accuracy.) For the truncation
point, we consider w̄ = 102, 103, 104, 105, 106. Table 4 shows the results.

Table 4: Relative error (%) in aggregate capital for the truncation and Pareto extrapolation
methods with an exponentially-spaced grid.

Method: Truncation Pareto extrapolation

w̄ N = 25 50 100 25 50 100

102 27.54 23.36 21.08 1.697 0.186 0.588
103 20.85 15.27 12.32 2.423 0.785 0.002
104 17.12 10.78 7.62 2.553 0.905 0.184
105 14.93 8.06 4.93 2.546 0.879 0.222
106 13.19 6.27 3.32 2.445 0.807 0.210

Note: N: number of grid points; w̄: wealth truncation point.

The accuracy of the truncation method somewhat improves by using the exponential grid
with a large truncation point w̄ and many points. However, even with a large truncation like
a million and N = 100 grid points, the error still exceeds 3%. (Increasing N further decreases
the error, but only slightly for the truncation method.) Again, the Pareto extrapolation method
is overwhelmingly more accurate.

3.3 Equilibrium implications of solution accuracy

So far we have evaluated the accuracy of each solution method by comparing the implied
aggregate capital to the one from the semi-analytical solution. However, aggregate capital is
usually not a quantity of interest. Therefore we now evaluate the solution accuracy by solving
for the entire equilibrium.

We consider four possibilities, truncation or Pareto extrapolation with evenly- or exponentially-
spaced grid. Since according to Table 4 the truncation method seems to work best when there
are many points and the truncation point is large, to give it the best chance, we use N = 100
and w̄ = 106 for the exponential grid. For the evenly-spaced grid, we also take N = 100 for
a fair comparison, and based on Table 3, we choose a small truncation point w̄ = 10 to give
the Pareto extrapolation method the best chance. To ensure that all the differences of the nu-
merical solutions from the analytical one are entirely due to the construction of the transition
probability matrix, for each guess of the equilibrium risk-free rate, we use the semi-analytical
solution to the optimal consumption-savings problem to compute the law of motion for wealth
for all numerical methods. The first three rows of Table 5 show the equilibrium risk-free rate,
aggregate capital, and Pareto exponent.

As expected, the truncation method with the evenly-spaced grid is poor, so we do not
discuss it further. The truncation method with the exponentially-spaced grid performs reason-
ably well, with relative errors of 0.046% for the interest rate and 0.45% for aggregate capital.
The relative errors for the Pareto extrapolation method are 0.0026%, 0.026%, and 0.050% for
the interest rate, aggregate capital, and Pareto exponent, respectively, for both the evenly- and
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Table 5: Numerical solutions to the Aiyagari model.

Method: Truncation Pareto Analytical

Grid: Even Exp. Even Exp.
N: 100 100
w̄: 10 106 10 106

R f 1.1184 1.0977 1.0972 1.0972 1.0972
K 2.8530 3.4073 3.4239 3.4222 3.4231
ζ NA NA 1.2833 1.2820 1.2826

Top 0.01% 0.03 16.04 13.27 18.10 13.19
Top 0.1% 0.31 26.30 22.06 27.86 21.91
Top 1% 3.16 41.84 36.67 42.83 36.39
Top 10% 31.19 65.36 60.90 65.79 60.44

Note: the table presents equilibrium quantities in the Aiyagari model using both analytical and numerical methods.
N: number of grid points; w̄: wealth truncation point; R f : gross risk-free rate; K: aggregate capital; ζ: Pareto
exponent; Top x%: wealth share (%) of the wealthiest x%. “Truncation” and “Pareto” refer to the truncation and
Pareto extrapolation methods for solving the equilibrium, and “Analytical” shows results from the semi-analytical
solution. “Even” and “Exp.” refer to the evenly- and exponentially-spaced grids. For the top wealth shares in the
analytical solution, see Footnote 10.

exponentially-spaced grids. Given that the truncation method with an exponential grid is al-
ready reasonably accurate, however, one may wonder what is the point of improving it further.

One obvious reason to prefer the Pareto extrapolation method is that we can obtain 20 times
more accurate results at no additional computational cost, so there is just no reason not to use
it. However, a more compelling reason is that the interest rate, aggregate capital, and Pareto
exponent are not the only quantities of interest (although the truncation method cannot even
compute the Pareto exponent). One may be interested in other quantities, such as the top 1%
wealth share.

We construct the top wealth shares as follows. For each grid point, we can compute the
aggregate wealth held by agents at least as rich as that grid point (using either truncation or
Pareto extrapolation, depending on the solution method). Dividing that number by aggregate
wealth gives the top wealth share at that grid point. By interpolating between points, we can
define the top wealth shares inside the grid. To compute the top wealth shares outside the
grid, we do as follows. For the Pareto extrapolation method, we use the theoretical Pareto
exponent ζ to extrapolate the wealth share beyond the largest grid point. More precisely, let
πN = ∑S

s=1 πsN be the probability mass on the largest grid point wN in the Pareto extrapolation
method. Then the density for x ≥ wN is given by f (x) = πNζwζ

Nx−ζ−1, where ζ is the Pareto
exponent. Using this, the tail probability Pr(X ≥ x) is proportional to x−ζ , whereas the total
wealth held by wealthy agents E[X; X ≥ x] is proportional to x−ζ+1. Therefore the wealth
share s(p) of the wealthiest fraction p ∈ (0, 1) of agents is given by s(p) = Cp1−1/ζ , where the
constant of proportionality C can be easily calculated from πN , wN , ζ, and aggregate capital K.
Taking the logarithm, we obtain

log s = (1− 1/ζ) log p + log C,
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so top wealth shares are linear in a log-log scale.
For the truncation method, since it is not obvious how to extrapolate the top wealth share

beyond the largest grid point, we simply interpolate by a cubic spline using the point (0, 0) (by
definition, the top 0% wealth share is 0) and all the grid points. The last four rows of Table 5
present some top wealth shares for representative groups.10 Figure 5a plots the wealth shares
of the richest 0.01–10%.
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Figure 5: Top wealth shares in the Aiyagari model.

Note: “Analytical”, “Pareto”, and “Truncation” refer to the semi-analytical solution and the numerical solutions
using the Pareto extrapolation and truncation methods, respectively. “Even” and “Exp.” refer to the evenly- and
exponentially-spaced grid.

Interestingly, both the truncation and Pareto extrapolation methods with the exponentially-
spaced grid overestimate the top wealth shares. On the other hand, the Pareto extrapolation
method with the evenly-spaced grid essentially gives identical results to the semi-analytical
solution. Since the log10 relative errors in Figure 5b are uniformly less than −2, the top wealth
shares from the Pareto extrapolation method with the evenly-spaced grid are accurate up to
two significant digits.

Why is the Pareto extrapolation method with exponentially-spaced grid poor at computing
top wealth shares, despite its accuracy in computing the equilibrium according to Table 5? The
reason is probably because the exponentially-spaced grid (with a large truncation such as 106)
places relatively few points in the middle of the distribution, by its very nature that it places
many points in the bottom (because the exponential function is flat at the bottom) and the
top (because the truncation point is large) of the distribution. In fact, the exponential grid
places only 10 (16) points out of 100 between the 5 and 95 percentile (1 and 99 percentile) of the
wealth distribution, whereas the evenly-spaced grid places 77 (95) points. However, the Pareto
tail result of Beare and Toda (2017) does not say anything about the middle of the distribution.
Since the top wealth shares depend on the entire shape of the distribution, placing few points
in the middle (where it can be non-Pareto) makes the solution less accurate.

10Technically, for the semi-analytical solution we cannot compute the exact top wealth shares since the functional
form of the wealth distribution is unknown (we only know the tail behavior characterized by the Pareto exponent
ζ). For this case, to compute the stationary distribution, we use the Pareto extrapolation method with a highly
accurate 3,000-point evenly- or exponentially-spaced grid with truncation w̄ = 100, 106, respectively. The results
with the two methods were identical up to three significant digits, so we take it as the truth.
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3.4 What grid should we use?

From the above observations, one might be tempted to use the evenly-spaced grid all the time
because it dominates the exponential grid in every aspect according to Table 5. However, we
do not think that is the way to go. The reason is that in more general models, the policy
functions are nonlinear (only asymptotically linear), unlike in the model of Section 3.1, which
is exactly linear. To deal with potential nonlinearity, researchers usually need to use a large
enough grid, such as the exponential. However, we would like to assign enough points to
the middle of the distribution to approximate the non-Pareto part. Is there a simple grid that
achieves both objectives?

An easy way is to first construct an exponential grid as discussed in Appendix C, and then
replace the bottom half points by an evenly-spaced grid. We refer to this grid as the hybrid
(affine-exponential) grid. Since the Pareto extrapolation method does not require a large trun-
cation point (in fact, in Table 3 smaller w̄ is generally more accurate) because it can recover the
tail behavior of the wealth distribution using a single parameter, the Pareto exponent ζ, when
using the hybrid grid, we can also choose a relatively small truncation point such as w̄ = 1000.
Redoing the above exercise with this specification, the relative errors in the interest rate, aggre-
gate capital, and Pareto exponent are now 2.7× 10−7, 2.7× 10−6, and 5.3× 10−6, respectively,
which are minuscule even comparing to the evenly- or exponentially-spaced grids. The top
10, 1, 0.1, 0.01% wealth shares are, respectively, 61.02, 37.70, 23.28, 14.35%, which are off from
the true values only by about one percentage point (compared to about five percentage points
error for the exponential grid). Therefore the hybrid grid seems to achieve the right balance
between high accuracy and large coverage. In fact, there are now many grid points in the
middle of the distribution: 47 (61) points out of 100 between the 5 and 95 percentile (1 and 99
percentile) of the wealth distribution.

Based on these observations, we recommend the following strategy for solving heterogeneous-
agent models with fat-tailed wealth distribution.

Strategy for solving fat-tailed heterogeneous-agent models.

1. Before solving the model, find out a typical scale for the state variable (wealth), per-
haps by solving a representative-agent model without any shock.

2. Solve the heterogeneous-agent model using the Pareto extrapolation method with
the hybrid affine-exponential grid. More concretely,

(a) Construct the exponentially-spaced grid with a truncation point about 1000
times the typical scale for the state variable.

(b) Replace the bottom half grid points by an evenly-spaced grid.

3. After solving the model, recompute the wealth distribution from the already com-
puted equilibrium law of motion using a finer grid if necessary.
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Note that there are many other possibilities. In the value function iteration step, since we do
not need the wealth distribution, we can just use an exponentially-spaced grid with relatively
few points to increase the speed. When computing the market clearing condition, we can
interpolate the policy functions on an evenly-spaced grid and then use Pareto extrapolation
method for accuracy.

The beauty of the Pareto extrapolation method is that we do not need to worry about the
truncation error, because it is designed to correct for it. One can thus choose the grid by fo-
cusing on the nonlinearity in the policy functions and placing enough points in the middle
(non-Pareto) part of the wealth distribution. With the truncation method, on the other hand,
we are forced to use the exponential grid with a huge truncation point to reduce the truncation
error. However, doing so necessarily places too many points in the upper tail of the wealth
distribution (where in fact we do not need any points because the behavior is governed by
a single parameter, the Pareto exponent) and too few points in the middle (non-Pareto) part,
leading to inaccuracy.

4 Merton-Bewley-Aiyagari model

Having now established that the solution method we propose is accurate, we apply it to study
wealth inequality in an incomplete market general equilibrium model in the spirit of Aiyagari
(1994). Agents face an income fluctuation problem as in Bewley (1977, 1983) and those who
choose to invest face uninsurable investment risk that leads to an investor’s problem similar
to Merton (1969) and Samuelson (1969), although in a Markovian setting as studied in Krebs
(2006) and Toda (2014). The model (which we refer to as the Merton-Bewley-Aiyagari, or MBA
model) generates a fat-tailed wealth distribution, where the Pareto exponent is shaped by rich
general equilibrium effects. We provide a step-by-step approach to solving the model and
analyzing its quantitative implications.

We use the model to showcase how the asymptotic analysis of the individual problem can
be used to solve for a general equilibrium, and how solution accuracy affects the quantitative
implications of the model.

4.1 Model

Time is discrete and denoted by t = 0, 1, . . . .

Agents The economy is populated by a unit measure of infinitely-lived agents with Epstein-
Zin preferences

Ut =
(
(1− β)c1−1/ε

t + β Et[U
1−γ
t+1 ]

1−1/ε
1−γ

) 1
1−1/ε

, (4.1)

where ct > 0 is consumption, Ut > 0 is continuation utility, β ∈ (0, 1) is the discount factor,
γ > 0 is the coefficient of relative risk aversion, and ε > 0 is the elasticity of intertemporal sub-
stitution.11 Agents differ in productivity/ability states denoted by s ∈ S = {1, . . . , S}, which

11By considering the limit γ → 1, we interpret E[U1−γ]
1

1−γ as exp(E[log U]) if γ = 1. Similarly, we interpret
((1− β)c1−1/ε + βv1−1/ε)

1
1−1/ε as c1−βvβ if ε = 1.
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evolve over time according to a Markov chain with irreducible transition probability matrix
P = (pss′). The idiosyncratic productivity states are independent and identically distributed
across agents and we assume the law of large numbers for the continuum as in Sun (2006).
Therefore if π = (π1, . . . , πS)

′ denotes the (unique) stationary distribution of the transition
probability matrix P, at any point in time exactly fraction πs > 0 of agents are in state s.

Labor and financial markets A type s agent has labor productivity hs ≥ 0 and earns labor
income (1 − τh)ωhs, where ω > 0 is the “piece-rate” wage determined in equilibrium and
τh ∈ [0, 1) is a labor income tax. We assume that tax proceeds are wasted. A type s agent has
investment ability zs > 0 and earns excess returns in the financial market, as described below.
Without loss of generality we assume that z1 ≤ · · · ≤ zS, so the Markov state s indexes the
agent’s investment ability. There are two types of assets, risk-free and risky. The risky asset is
subject to an investment income tax τI ∈ [0, 1). Let R f be the gross risk-free rate determined
in equilibrium. We assume that the ex post gross return on risky investment for an investor in
state s is

Rsj = (1 + (1− τI)(zs + εj − 1))R f , (4.2)

where zs is the investment ability and εj is a zero-mean i.i.d. random variable that can take
J possible values ε1 < · · · < εJ . Let pj > 0 be the probability of state j. Thus high-skilled
investors earn higher returns on average (zs), but there is some element of luck (εj). We can
interpret this as lack of diversification. We assume that z1 + ε1 > 0, so agents have limited
liability even in the worst possible state. To prevent arbitrage, we also assume that zS + ε1 < 1,
so even the most skilled investor underperforms the risk-free asset with positive probability.
For notational simplicity let

zsj = τI + (1− τI)(zs + εj) (4.3)

be the after-tax ex post excess return in state (s, j). Then (4.2) can be compactly written as Rsj =

zsjR f . From the above assumptions, note that (i) zsj is increasing in both s and j, (ii) zsj > 0 for
all s, j, and (iii) zS1 < 1.

Technology Technology is represented by a representative firm with a constant-returns-to-
scale production function F(K, L). Capital depreciates at rate δ ∈ [0, 1]. Therefore the firm’s
problem is

max
K,L≥0

[
−K +

1
R f

(F(K, L)−ωL + (1− δ)K)
]

. (4.4)

That is, the firm buys capital K at end of time t, hires labor to produce, and pays the profit and
depreciated capital to the shareholders (who discount using the risk-free rate since there is no
aggregate risk).

Budget constraint Letting w be the financial wealth at the beginning of the period, the budget
constraint of an agent is

w′ = R f (w + (1− τh)ωhs − I − c) + zsjR f I ≥ w
¯

, (4.5)
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where w
¯

is an exogenous minimum wealth constraint and I ≥ 0 is the investment in the risky
asset.

Equilibrium Our equilibrium concept is the stationary equilibrium defined as follows.

Definition 4.1 (Stationary equilibrium). A stationary equilibrium consists of a gross risk-free
rate R f , a piece-rate wage ω, aggregate capital K, aggregate labor L, optimal decision rules
{cs(w), Is(w)}S

s=1, value functions {vs(w)}S
s=1, and a stationary distribution Γ(w, s) such that

1. given R f and ω, aggregate capital K and aggregate labor L solves the profit maximization
problem (4.4),

2. given R f and ω, for each s the optimal decision rule (cs(w), Is(w)) maximizes the recur-
sive utility (4.1) subject to the budget and borrowing constraint (4.5), i.e.,

vs(w) = max
c,I≥0

(
(1− β)c1−1/ε + β E

[
vs′(w′)1−γ

∣∣∣ s
] 1−1/ε

1−γ

) 1
1−1/ε

, (4.6)

3. the capital market clears, so

K =
∫
(w + (1− τh)ωhs − Is(w)− cs(w))dΓ(w, s) +

∫
zs Is(w)dΓ(w, s), (4.7)

4. the labor market clears, so

L =
S

∑
s=1

πshs, (4.8)

5. Γ(w, s) is the stationary distribution of the law of motion for (w, s) ∈ [w
¯

, ∞)× S defined
by

(w, s) 7→
(

R f (w + (1− τh)ωhs − Is(w)− cs(w)) + zsjR f Is(w), s′
)

(4.9)

with probability pj pss′ .

Note that an investor who invests I units of wealth supplies zs I units of capital to the firm
(see (4.7)), so investors not only supply funds but also “expertise”. This assumption (together
with E[εj] = 0) makes the (pre-tax) gross return to investment (zs + εj)R f consistent with the
aggregate resource constraint.

4.2 Solving the model

4.2.1 Asymptotic problem

Since the solution to the asymptotic problem plays an important role in the Pareto extrapola-
tion algorithm (especially for computing the theoretical Pareto exponent), in this section we
discuss the properties of the asymptotic problem.

We first derive the asymptotic problem and convert it in a more convenient form. Since
there is no labor income in the asymptotic problem, the budget constraint (4.5) becomes

w′ = R f (w− I − c) + zsjR f I ≥ 0, (4.10)
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where zsj is as in (4.3). Letting θ = I
w−c ≥ 0, (4.10) becomes

w′ = R(θ)(w− c), (4.11)

where R(θ) = R f (zsjθ + 1− θ) is the gross portfolio return. The following proposition charac-
terizes the solution to the asymptotic problem.

Proposition 4.2 (Asymptotic problem). Suppose γ 6= 1. For s = 1, . . . , S, define

ρs = max
0≤θ≤θ̄s

E
[
(zsjθ + 1− θ)1−γ

∣∣∣ s
] 1

1−γ
, (4.12)

where θ̄s := 1
1−zs1

> 0. Then ρs is well-defined and there exists a unique maximizer θ∗s . Letting
D = diag(ρ1−γ

1 , . . . , ρ
1−γ
S ), the asymptotic problem has a solution if and only if

βR1−1/ε
f ρ(DP)

1−1/ε
1−γ < 1, (4.13)

where ρ(DP) is the spectral radius of DP. Under this condition, the value function of the asymptotic
problem is given by vs(w) = bsw, where b = (b1, . . . , bS) � 0 is the unique positive solution to the
system of nonlinear equations

bs =



(
(1− β)ε + βε

(
R f ρs E

[
b1−γ

s′

∣∣∣ s
] 1

1−γ

)ε−1
) 1

ε−1

(ε 6= 1)

(1− β)1−βββ

(
R f ρs E

[
b1−γ

s′

∣∣∣ s
] 1

1−γ

)β

(ε = 1)

(4.14)

for s = 1, . . . , S. The optimal consumption-investment rules of the asymptotic problem are

cs(w) = c̄sw := (1− β)εb1−ε
s w, (4.15a)

Is(w) = Īsw := θ∗s (1− (1− β)εb1−ε
s )w. (4.15b)

Remark. Clearly θ∗s is independent of R f . By (4.14), bs is increasing in R f . Therefore consump-
tion cs(w) is increasing and investment I is decreasing in R f if ε < 1, and the opposite is true
if ε > 1.

4.2.2 General equilibrium

Since the diagonal matrix D = diag(ρ1−γ
1 , . . . , ρ

1−γ
S ) depends only on exogenous parameters,

the spectral condition (4.13) puts a restriction on R f . The following lemma puts further restric-
tions on R f based on equilibrium considerations.

Lemma 4.3 (Finite aggregate wealth). Let everything be as in Proposition 4.2 and suppose that (4.13)
holds. Define

Gs := (1− (1− β)εb1−ε
s )R f (E

[
zsj
∣∣ s
]

θ∗s + 1− θ∗s ) (4.16)
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and G = (G1, . . . , GS)
′. Then in equilibrium it must be

ρ(P diag G) < 1. (4.17)

The intuition for Lemma 4.3 is as follows. Using the budget constraint and the optimal con-
sumption and portfolio rules for asymptotic agents established in Proposition 4.2, the expected
growth rate of wealth in state s becomes Gs in (4.16). The spectral condition (4.17) ensures that
wealth of rich agents does not grow on average and makes the aggregate wealth finite, which
must be the case in stationary equilibrium.

Under the assumptions of Lemma 4.3, the following lemma provides an explicit algorithm
for computing the Pareto exponent ζ.

Lemma 4.4 (Pareto exponent). Let everything be as in Lemma 4.3 and

Gsj = (1− (1− β)εb1−ε
s )R f (zsjθ

∗
s + 1− θ∗s ) > 0

be the ex post gross growth rate of wealth for asymptotic agents in state (s, j). Define the conditional
moment generating function of log growth rate by

Ms(z) = E
[
ez log Gsj

∣∣∣ s
]
=

J

∑
j=1

pjGz
sj

and the diagonal matrix D(z) = diag(M1(z), . . . , MS(z)). Suppose that pss > 0 for all s and GsJ > 1
for some s. Then there exists a unique solution z = ζ > 1 to

ρ(PD(z)) = 1.

The Pareto exponent of the wealth distribution is ζ > 1. If GsJ ≤ 1 for all s, then the wealth distribution
does not have a Pareto tail.

Finally, it is trivial to show that the equilibrium risk-free rate must satisfy

R f > 1− δ, (4.18)

otherwise the demand for capital would be infinite. Based on the above results, we can solve
for the general equilibrium as follows.

1. For each s, solve the optimal portfolio problem of the asymptotic agents (4.12). Com-
pute the bounds on the gross risk-free rate R f implied by (4.13) and (4.18).

2. For a range of R f within the bounds, solve the system of nonlinear equations (4.14),
compute Gs by (4.16), and update the bound on R f implied by (4.17).

3. Given a guess of R f within the bound, compute the capital demand Kd implied by
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profit maximization12

R f = FK(Kd, L) + 1− δ.

Then, compute the wage as ω = FL(Kd, L).

4. Given R f and ω, solve the individual optimization problem using dynamic program-
ming (see Appendix E for details), compute the stationary distribution from the law
of motion (4.9) using the Pareto extrapolation algorithm, and compute the aggregate
capital supply Ks (4.7) (with the correction term as in (2.8)) and labor (4.8).

5. If excess demand Kd−Ks is within error tolerance, stop. Otherwise, update R f (steps
3 and 4 only).

4.3 Calibration

A time period represents a year and we calibrate the model to the U.S. economy.

Preferences, technology, and taxes We assume a Cobb-Douglas production function F(K, L) =
KαL1−α, where α ∈ (0, 1) represents the capital share. We set the technological and preference
parameters (β, γ, α) to standard values (see Table 6). For the elasticity of intertemporal sub-
stitution, most macro papers assume that it is less than 1, while most finance papers assume
that it is greater than 1. To be neutral, we set ε = 1, which is also supported by studies using
disaggregated data to estimate the elasticity (Mankiw and Zeldes, 1991; Attanasio and Weber,
1993; Beaudry and van Wincoop, 1996; Vissing-Jørgensen, 2002). We set the investment tax
rate to τI = 0.389 to match the 2017 combined corporate income tax rate. We set the labor in-
come tax rate to τh = 0.260 to match the 2017 average income tax rate for a single filer without
children.13 Finally, we set the borrowing limit to 1/4 of average annual labor income as in Ka-
plan, Moll, and Violante (2018). Our calibration implies that average value of hs in a stationary
equilibrium is 1, so w

¯
= − 1

4 ω.

Table 6: Parameter values.

Parameter Symbol Value

Discount factor β 0.96
Relative risk aversion γ 2
Elasticity of intertemporal substitution ε 1
Capital share α 0.38
Investment income tax rate τI 0.389
Labor income tax rate τh 0.260
Borrowing limit w

¯
− 1

4 ω

13We obtain the data on corporate and labor income tax rates from the OECD tax database tables II.1 and I.6,
respectively.
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Exogenous individual states We assume that labor productivity {ht}∞
t=0 and investment abil-

ity {zt}∞
t=0 depend contemporaneously on two Markov state variables sπ and sτ, with associ-

ated transition probability matrices Pπ and Pτ. We interpret the first state sπ as a “perma-
nent component”, which affect both labor productivity and investment ability and takes three
states: low, high, and high-entrepreneur. The second state sτ, which we call the “transitory
component” affects only labor productivity and takes three values: low, average and high.
The index s = sπ × sτ can thus take 9 states.

Labor productivity Labor productivity in state s is the product of a permanent component
and a transitory component:

hs = hπ
s hτ

s .

The permanent component hπ
s takes two values: 0.3980 (low) and 1.6020 (high and high-

entrepreneur). The high state workers (high and high-entrepreneur) thus earn a wage rate
4.03 times higher than low state workers, in line with the ratio of the mean annual income of
the top half to the bottom half of full-time workers in the U.S.14 We interpret agents as dynas-
ties with perfect altruism, and assume that the permanent component of labor productivity is
very persistent and changes on average every 40 years. Moreover, we choose transition prob-
abilities for the permanent component as to imply that, in a stationary equilibrium, 50% of the
agents are in the low state and 3.7% are in the high-entrepreneur state. We chose the value of
3.7% to match the fraction of households that invest at least half of their net worth in a business
(see footnote 15). The transition probability matrix Phπ is thus given by

Phπ =

0.9875 0.0116 0.0009
0.0125 0.9866 0.0009
0.0125 0.0116 0.9759

 . (4.19)

We model the process for the transitory component of labor productivity hτ as an AR(1) in
logarithm

log hτ
t = ρ log hτ

t−1 + σηt, (4.20)

where ηt ∼ N(0, 1). Guvenen (2009) estimates values of ρ = 0.821 and σ = 0.170 by estimating
a model that allows for heterogeneous lifetime earning profiles. We discretize the process (4.20)
over a three-point grid using the method proposed by Farmer and Toda (2017), while imposing
that the unconditional mean of hτ is equal to one. We obtain values for hτ of 0.6584 (low state),
0.9150 (average state), and 1.5115 (high state). The resulting transition probability matrix Phτ

is given by

Phτ =

0.8290 0.1630 0.0080
0.0815 0.8370 0.0815
0.0080 0.1630 0.8290

 . (4.21)

14We use data from the American Community Survey and restrict the sample to employed individuals aged
between 20 and 60. For every year, we truncate the sample at the 5th and 95th percentile and then compute the
ratio of the mean annual income in the bottom and top half of the sample. We then average the ratio over the
2000-2016 period and obtain an average ratio of 4.03.
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Since hπ and hτ are independent and both have an unconditional mean of one, we have that
the average labor productivity hs is one in equilibrium.

Investment returns We assume that investment ability z is fully determined by the perma-
nent component sπ. For the low and high states, we set z = 1, which implies that those
agents do not earn an excess return on their investments (i.e., they earn the risk-free rate R f ).
Since investment returns are risky, those agents will never invest. For the high-entrepreneur
state, we set z = 1.029, which implies an annual excess return of 2.9%. This is roughly the
difference between the average return on risky financial assets of households at the 80th and
60th percentiles of the financial wealth distribution in Norway as reported in Fagereng, Guiso,
Malacrino, and Pistaferri (2016b, Figure 2).

To calibrate the distribution of idiosyncratic investment return shocks ε, we use microdata
from the Survey of Consumer Finances and construct a measure of the rate of return on busi-
ness investment (business income over the market value of the business) for each household.15

Using the nonparametric discretization method proposed by Toda (2018a) on the de-meaned
data, we obtain a discrete distribution for ε, which takes values (−0.0836, 0.0761, 0.3795) with
probability (0.6345, 0.2822, 0.0833).

Putting the pieces together, we have S = 9 exogenous individual states and J = 3 idiosyn-
cratic investment return shock states. The transition probability matrix for the exogenous in-
dividual states is given by P = Phτ ⊗ Phπ , where ⊗ is the Kronecker product and Phπ , Phτ are
defined in (4.19) and (4.21), respectively. Table 7 summarizes the dependence of labor produc-
tivity and investment ability on the exogenous individual states s.

Table 7: Exogenous individual states.

Component Productivity/ability
s permanent transitory labor (hs) investment (zs)

1 low low 0.2620 1.00
2 low average 0.3642 1.00
3 low high 0.6016 1.00
4 high low 1.0547 1.00
5 high average 1.4659 1.00
6 high high 2.4215 1.00
7 high-entrepreneur low 1.0547 1.029
8 high-entrepreneur average 1.4659 1.029
9 high-entrepreneur high 2.4215 1.029

4.4 Quantitative results

Figure 6a shows the aggregate capital supply and demand curves for a range of values of R f .
The demand curve is determined by profit maximization of the representative firm, while the

15We use data from the Survey of Consumer Finances for the years 2001, 2004, 2007, 2010, 2013, and 2016 and keep
only households who have at least 50% of their net worth invested in businesses. Business income busseincfarm

is defined as “Income from business, sole proprietorship, and farm” while the market value of the businesses bus
is defined as “Total value of business(es) in which the household has either an active or nonactive interest”. We
winsorize the rate of return at the 5% to extreme values.
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supply curve is obtained by aggregating net capital supply from households, either supplied
directly to the firm or intermediated by investors (see (4.7)). The intersection of the curves pins
down the risk-free rate that clears the capital market. We obtain a value of 1.0199 (Table 8).
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Figure 6: Equilibrium.

The equilibrium interest rate in turn determines the Pareto exponent ζ of the wealth dis-
tribution (Figure 6b). Higher interest rates R f are associated with lower Pareto exponents ζ

(higher inequality). The reason is that the asymptotic growth rate of wealth increases linearly
with R f (see Lemma 4.4 for the case ε = 1). Intuitively, the “pace” at which rich agents get
richer is increasing in the interest rate, so there is more concentration of wealth at the top
of the distribution in economies with higher interest rates. We obtain an equilibrium value
of ζ = 1.4532 (Table 8), close but somewhat lower than what is estimated for the U.S. (1.52
according to Table 8 of Vermeulen, 2018).

While the wealth distribution exhibits a Pareto upper tail, the Pareto exponent ζ does not
fully summarize the extent of wealth inequality. For example, the borrowing constraint is an
important determinant of the wealth share of the poorest 50% of agents, yet ζ depends only on
the behavior of rich agents, who are not affected by the borrowing constraint.16 Figures 6c and

16To be precise, ζ can be computed using only the solution to the asymptotic problem (see Section 4.2.1), which
does not depend on the borrowing constraint.
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Table 8: Equilibrium objects.

Object Symbol Value

Aggregate capital K 32.3127
Risk-free rate R f 1.0199
Wage rate ω 2.3225
Pareto exponent ζ 1.4532

6d highlight the dependence of the wealth share of the poorest 50% of agents as well as the top
1% on R f . Higher interest rates are associated with a lower wealth share held by the bottom
50% and a higher share held by the top 1%, but notice that the dependence of the bottom 50%
wealth share on R f is much weaker. Table 9 presents the wealth shares in the model and in
the data (Survey of Consumer Finances).17 The model qualitatively replicates two important
features of the data: the poorest 50% of households holds little wealth (11%) while the top 1%
accounts for a large share of (33%).

Table 9: Wealth shares (%).

Groups Model Data Pareto

[0, 50) 11.01 1.79 19.44
[50, 90) 35.83 25.09 31.79
[90, 99) 20.01 38.17 24.98
[99, 100] 33.14 34.95 23.79

The last column of Table 9 presents the wealth shares associated with a Pareto distribution
with the same Pareto exponent as in the model.18 The Pareto distribution generates a bottom
50% wealth share nearly twice as high as in the model (19.44% versus 11.01%). One drawback
of analytical models that imply a “pure-Pareto” wealth distribution is that they do not allow
for negative wealth levels, and therefore cannot match the low wealth share of the bottom 50%
of agents. Figure 7a presents the CDF for the lower range of wealth levels. Notice that the
borrowing constraint binds for 6.9% of households. Figure 7b plots the complementary CDF
of the wealth distribution on exponential axis. As predicted by theory, the upper tail of the
distribution appears to converge to the theoretical Pareto slope.

4.5 Equilibrium effects of relaxing the borrowing constraint

We now revisit a well-known experiment which consists in relaxing the borrowing constraint.19

As noted earlier, the borrowing constraint binds for many agents, including investors. Presum-
ably, relaxing the borrowing constraint would increase aggregate investment. We increase the
borrowing limit tenfold, from one quarter of average earnings (w

¯
= −0.25ω, see Table 6) to

2.5 years of average annual earnings (w
¯
= −2.5ω). Figures 8a and 8b plot the policy functions

17We compute the wealth shares in the data using the Survey of Consumer Finances and average over the survey
years 2001, 2004, 2007, 2010, 2013, and 2016.

18The Pareto distribution with exponent ζ has a CDF given by F(x) = 1− (x/x
¯
)−ζ over [x

¯
, ∞). The top wealth

shares associated with the pure Pareto distribution do not depend on the minimum size x
¯
> 0.

19Cagetti and De Nardi (2006) is the first paper, to our knowledge, to conduct the experiment in an
heterogeneous-agent model with entrepreneurial income.
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Figure 7: Wealth distribution.

in the benchmark model and the counterfactual model. The direct effect of relaxing the bor-
rowing constraint is that it increases the levels of investment and consumption of poor agents
(those near the borrowing limit). However, the policy also has the perverse effect creating more
poverty. Figure 8c highlights the fact that, in a stationary equilibirum, more agents are debtors.
Accounting for the increasing share of debtors, the bottom 50% wealth share decreases starkly,
from 11.01% to 6.72% (see Table 10).

Table 10: Wealth shares (%).

Groups Benchmark Counterfactual

[0, 50) 11.01 6.72
[50, 90) 35.83 36.08
[90, 99) 20.01 21.35
[99, 100] 33.14 35.84

Another indirect effect of the policy is that precautionary savings decrease. While it is true
that the amount of capital supplied by investors increases, the decline in precautionary savings
dominates and translates in a leftward shift of the capital supply curve. As a result, the interest
rate increases and the aggregate capital stock decreases (see Table 11).

Table 11: Equilibrium objects.

Object Symbol Benchmark Counterfactual Change (%)

Aggregate capital K 32.3127 31.7990 -1.59
Risk-free rate R f 1.0199 1.0215 0.15
Wage rate ω 2.3225 2.3084 -0.61
Pareto exponent ζ 1.4532 1.4249 -1.95
Social welfare W 1.1452 1.0514 -8.19

The lower capital stock leads to lower wages, while the higher interest further increases
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Figure 8: Policy functions (for entrepreneurs) and the wealth distribution.

Note: The policy functions are presented only for the entrepreneur type (permanent component sπ = high-
entrepreneur) with average earnings (transitory component state sτ=average).

wealth inequality (lower ζ, see Table 11). We compute social welfare as

W =

(∫
vs(w)1−γ dΓ(s, w)

) 1
1−γ

, (4.22)

which is the certainty equivalent of the value function in the stationary equilibrium. Note that
W is in units of consumption because the Epstein-Zin utility (4.1) is also in units of consump-
tion. To compute (4.22) numerically, we use the correction term from (2.9) with ν = 1− γ to
extrapolate the term vs(w)1−γ off the grid. With lower wages and more inequality, welfare de-
clines. In fact, agents would be willing to forgo 8.19% of consumption at every date and state
to live in a world with a tight borrowing constraint!

5 Concluding remarks

This paper proposes a simple, systematic approach—Pareto extrapolation—to analyze and
solve heterogeneous-agent models with fat-tailed wealth distributions. Pareto noticed that
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wealth data displayed a striking empirical regularity.

Nous sommes tout de suite frappé du fait que les points ainsi déterminés, ont une
tendance très marqué à se disposer en ligne droite.

(We are instantly struck by the fact that the points determined this way have a very
marked tendency to be disposed in straight line.)

—Pareto (1897, pp. 304–305)

Our proposed method puts Pareto’s insight to work to tackle models of wealth inequality.
Our approach makes the solution algorithm more transparent, efficient, and accurate with zero
additional computational cost.
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A Asymptotic homogeneous problem

In this appendix we describe how to derive the asymptotic homogeneous problem in an ab-
stract dynamic programming setting. For the notation, we follow Ma and Stachurski (2018).
Let

• X be a set called the state space;

• A be a set called the action space;

• Γ : X � A be a nonempty correspondence called the feasible correspondence;

• g : X× A→ X be a function called the law of motion;

• V be a subset of all functions from X to R ∪ {−∞} called the set of candidate value func-
tions;

• Q : X× A× V → R∪ {−∞} be a map called the state-action aggregator.

Then we say that the value function v ∈ V satisfies the Bellman equation if

v(x) = max
a∈Γ(x)

Q(x, a, v(g(x, a))) (A.1)

for all x ∈ X.

Definition A.1 (Asymptotic homogeneity). We say that the dynamic programming problem is
asymptotically homogeneous if has the following properties:
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• X = X1 × X2, where R+ ⊂ X1 ⊂ R;

• Γ(x) = Γ1(x1, x2)× Γ2(x2), where x = (x1, x2) ∈ X1 × X2 and Rd
+ ⊂ Γ1(x1, x2) ⊂ Rd for

some d;

• g(x, a) = g1(x1, x2, a1, a2) × g2(x2, a2), where x = (x1, x2) ∈ X1 × X2 and (a1, a2) ∈
Γ1(x1, x2)× Γ2(x2);

• limλ→∞
1
λ Γ1(λx1, x2) = Γ̃1(x1, x2) exists for (x1, x2) ∈ X1 × X2;

• limλ→∞
1
λ g1(λx1, x2, λa1, a2) = g̃1(x1, x2, a1, a2) exists for (x1, x2) ∈ X1×X2 and (a1, a2) ∈

Γ1(x1, x2)× Γ2(x2);

• limλ→∞
1
λ Q(λx1, x2, λa1, a2, λv) = Q̃(x1, x2, a1, a2, v) exists.

Lemma A.2. Suppose that the dynamic programming problem is asymptotically homogeneous. Then

(i) Γ̃1 is homogeneous of degree 1 in x1: for any λ > 0 we have

Γ̃1(λx1, x2) = λΓ̃1(x1, x2).

(ii) g̃1 is homogeneous of degree 1 in (x1, a1): for any λ > 0 we have

g̃1(λx1, x2, λa1, a2) = λg̃1(x1, x2, a1, a2).

(iii) Q̃ is homogeneous of degree 1 in (x1, a1, v): for any λ > 0 we have

Q̃(λx1, x2, λa1, a2, λv) = λQ̃(x1, x2, a1, a2, v).

Proof. By the definition of Γ̃1, for any λ > 0 we have

Γ̃1(λx1, x2) = lim
λ′→∞

1
λ′

Γ1(λ
′λx1, x2)

= λ lim
λ′→∞

1
λ′λ

Γ1(λ
′λx1, x2) = λΓ̃1(x1, x2).

The proofs of the other claims are similar.

When the dynamic programming problem is asymptotically homogeneous, we define the
asymptotic problem as follows.

Definition A.3. Suppose that the dynamic programming problem is asymptotically homoge-
neous. Then the Bellman equation of the asymptotic problem corresponding to (A.1) is defined
by

v(x1, x2) = max
(a1,a2)∈Γ̃1(x1,x2)×Γ2(x2)

Q̃(x1, x2, a1, a2, v(g̃1(x1, x2, a1, a2), g2(x2, a2))). (A.2)

The following lemma shows that we can reduce the dimension of the asymptotic problem
by 1.
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Lemma A.4. Suppose that the dynamic programming problem is asymptotically homogeneous. Con-
sider the following “normalized” Bellman equation:

ṽ(x2) = max
(a1,a2)∈Γ̃1(1,x2)×Γ2(x2)

Q̃(1, x2, a1, a2, g̃1(1, x2, a1, a2)ṽ(g2(x2, a2))). (A.3)

If (A.3) has a solution ṽ(x2), then v(x1, x2) = x1ṽ(x2) is a solution to the asymptotic Bellman equa-
tion (A.2). Furthermore, letting ã = (ã1, ã2) be the policy function of the normalized Bellman equa-
tion (A.3), the policy function a = (a1, a2) of the asymptotic Bellman equation (A.2) is given by
a1(x1, x2) = x1 ã1(x2) and a2(x1, x2) = ã2(x2).

Proof. Immediate by multiplying both sides of (A.3) by x1 > 0 and using the homogeneity of
Γ̃1, g̃1, Q̃ established in Lemma A.2.

The following proposition shows that if a dynamic programming problem is asymptoti-
cally homogeneous, then the value function and policy functions are asymptotically linear.

Proposition A.5. Suppose that the dynamic programming problem is asymptotically homogeneous.
Suppose that the Bellman equation (A.1) has a solution v(x), and it can be computed by value function
iteration starting from v(x) ≡ 0. Then under some regularity conditions, the value function and policy
functions are asymptotically linear: we have

v(x1, x2) = x1ṽ(x2) + o(x1),

a1(x1, x2) = x1 ã1(x2) + o(x1),

a2(x1, x2) = ã2(x2) + o(x1)

as x1 → ∞, where ṽ(x2), ã1(x2), and ã2(x2) are defined as in the normalized Bellman equation (A.3).

Proof. Define the operator T : V → V by the right-hand side of (A.1). Let v(0) ≡ 0 and
v(k) = Tv(k−1) = Tk0. Let us show by induction that

lim
λ→∞

1
λ

v(k)(λx1, x2) = ṽ(k)(x1, x2)

exists. If k = 0, the claim is trivial since v(0) ≡ 0. Suppose the claim holds for some k− 1. Then
by Lemma A.2, we obtain

1
λ

v(k)(λx1, x2) =
1
λ
(Tv(k−1))(λx1, x2)

= max
(a1,a2)∈

1
λ Γ1(λx1,x2)×Γ2(x2)

Q
(

λx1, x2, λa1, a2, v(k−1)
(

λ
1
λ

g1(λx1, x2, λa1, a2), g2(x2, a2)

))
.

Using the asymptotic homogeneity of Γ1, g1, Q established in Lemma A.2, the asymptotic ho-
mogeneity of v(k−1), and assuming that we can interchange the limit and maximization (e.g.,
assuming enough conditions to apply the Maximum Theorem), it follows that v(k) is asymp-
totically homogeneous. Since by assumption v(k) → v as k → ∞ point-wise, assuming that
the limit of k → ∞ and λ → ∞ can be interchanged (which is the case if v(k) converges to
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v monotonically, which is often the case in particular applications), then v is asymptotically
homogeneous in the sense that limλ→∞

1
λ v(λx1, x2) exists.

Now that asymptotic homogeneity of v is established, from (A.1) we obtain

v(λx1, x2) = max
a∈Γ(λx1,x2)

Q(λx1, x2, a, v(g(λx1, x2, a))).

Dividing both sides by λ > 0 and letting λ → ∞, using the asymptotic homogeneity of Γ1, g1,
Q, and v, we obtain the asymptotic Bellman equation (A.2). Thus if in particular (A.3) has a
unique solution ṽ(x2), by Lemma A.4 it must be

lim
λ→∞

1
λ

v(λx1, x2) = x1ṽ(x2).

Consequently, setting x1 = 1 and λ = x1, we obtain v(x1, x2) = x1ṽ(x2) + o(x1). The proof for
the policy functions is similar.

B Proofs

B.1 Proof of results in Section 3

We use the following notations. Let β̃ = β(1− p) be the effective discount factor. For a vector
v = (v1, . . . , vS)

′, let v(α) = (vα
1 , . . . , vα

S)
′ be the vector of α-th powers and diag(v) the diagonal

matrix whose s-th diagonal element is vs.
The following proposition characterizes the solution to the capitalist’s optimal consumption-

savings problem.

Proposition B.1. Let z = (z1, . . . , zS)
′ be the vector of gross excess returns. A solution to the optimal

consumption-savings problem exists if and only if

β̃R1−γ
f ρ(diag(z(1−γ))P) < 1. (B.1)

Under this condition, the value function and optimal consumption rule are

Vs(w) = bs
w1−γ

1− γ
, (B.2a)

cs(w) = b−1/γ
s w, (B.2b)

where b = (b1, . . . , bS)
′ � 0 is the smallest solution to the system of nonlinear equations

bs =
(

1 + (β̃(zsR f )
1−γ E [bs′ | s])1/γ

)γ
, s = 1, . . . , S. (B.3)

Proof. Immediate from Toda (2018b, Proposition 1).

Let us simplify the equilibrium condition (3.3) by exploiting the linearity in Proposition
B.1. Using the budget constraint (3.2) and the optimal consumption rule (B.2b), the individual
wealth dynamics is

w′ = zsR f (1− b−1/γ
s )w =: Gsw.
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Letting Ws be the aggregate wealth held by agents in state s, by accounting we obtain

Ws′ = pπs′w0 + (1− p)
S

∑
s=1

pss′GsWs.

Letting π = (π1, . . . , πS)
′, G = (G1, . . . , GS)

′, and W = (W1, . . . , WS)
′, in matrix form this

becomes

W = pw0π + (1− p)P′(diag G)W ⇐⇒ W = pw0(I − (1− p)P′ diag G)−1π.

Let ms = b−1/γ
s ∈ (0, 1) be the marginal propensity to consume out of wealth in state s and

m = (m1, . . . , mS)
′. Then the vector of saving rates is given by 1−m, where 1 = (1, . . . , 1)′ is

the vector of ones. Using this, the aggregate capital supply is given by

K = (1−m)′W = pw0(1−m)′(I − (1− p)P′ diag G)−1π, (B.4)

assuming (1− p)ρ(P′ diag G) < 1. (If this inequality is violated, we just set K = ∞.) On the
other hand, by (3.1) the aggregate capital demand is

K =

(
R f − 1 + δ

Aα

) 1
α−1

. (B.5)

Equating (B.4) and (B.5), the market clearing condition (3.3) becomes

0 = f (R f ) := pw0(1−m)′(I − (1− p)P′ diag G)−1π −
(

R f − 1 + δ

Aα

) 1
α−1

. (B.6)

The following theorem shows that a stationary equilibrium exists and that the stationary
wealth distribution has a Pareto upper tail.

Theorem B.2. A stationary equilibrium exists if and only if there exists R
¯
> 1− δ such that

β̃R
¯

1−γρ(diag(z(1−γ))P) < 1 (B.7)

and f (R
¯
) < 0, where f is given by (B.6). The equilibrium is unique if γ < 1. If in addition pss > 0

and Gs > 1 for some s, then the stationary wealth distribution has a Pareto upper tail with exponent
ζ > 1 that satisfies

ρ(P diag G(ζ)) =
1

1− p
. (B.8)

Proof. The existence of equilibrium follows from a continuity argument similar to Toda (2018b,
Theorem 3), which we only sketch for space considerations. The condition (B.7) ensures that
(B.1) holds for R f > R

¯
sufficiently close to R

¯
. Then we can show that the individual optimiza-

tion problem has a solution and the aggregate wealth is finite for some range R f ∈ [R
¯

, R̄), and
that the aggregate wealth (as well as supply of capital) diverges to ∞ as R f ↑ R̄. Since f (R

¯
) < 0

by assumption and f (R̄) = ∞, by the intermediate value theorem there exists R f ∈ (R
¯

, R̄) that
satisfies the market clearing condition (B.6). Uniqueness of equilibrium when γ < 1 follows
by the exact same argument as in Toda (2018b, Theorem 3).
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The Pareto tail result follows from the general theorem in Beare and Toda (2017) and a
similar argument to Toda (2018b, Theorem 4).

Numerically solving for the equilibrium is straightforward. Given the guess of the inter-
est rate R f > R

¯
, solve for the fixed point b = (bs) using (B.3), and solve (B.6) to obtain the

equilibrium risk-free rate.

B.2 Proof of results in Section 4

Proof of Proposition 4.2. The maximization problem (4.12) is equivalent to

max
0≤θ≤θ̄s

1
1− γ

E
[
(zsjθ + 1− θ)1−γ

∣∣∣ s
]

.

Let f (θ) be the objective function of this problem. Since by assumption zS + ε1 < 1 and z1 <

· · · < zS, we have zs + ε1 < 1 for all s. Therefore θ̄s > 0 and

f ′(θ) = E
[
(zsjθ + 1− θ)−γ(zsj − 1)

∣∣ s
]
→ −∞

as θ ↑ θ̄s =
1

1−zs1
. Furthermore,

f ′′(θ) = −γ E
[
(zsjθ + 1− θ)−γ−1(zsj − 1)2

∣∣∣ s
]
< 0

for θ ∈ (0, θ̄s), so f is strictly concave. Therefore there exists a unique θ∗s that maximizes (4.12),
and hence ρs is well-defined.

Assume ε 6= 1. By the discussion in the text, the Bellman equation of the asymptotic prob-
lem is

vs(w) = max
0≤θ≤θ̄s
0≤c≤w

(
(1− β)c1−1/ε + β E

[
(vs′(R(θ)(w− c)))1−γ

∣∣∣ s
] 1−1/ε

1−γ

) 1
1−1/ε

,

where the upper bounds on c, θ ensure that w′ ≥ 0 and

R(θ) = Rsjθ + R f (1− θ) = R f (zsjθ + 1− θ)

is the gross portfolio return. By homogeneity, the value function must be of the form vs(w) =

bsw. Substituting into the Bellman equation, we obtain

bsw = max
0≤θ≤θ̄s
0≤c≤w

(
(1− β)c1−1/ε + β(w− c)1−1/ε E

[
(bs′R(θ))1−γ

∣∣∣ s
] 1−1/ε

1−γ

) 1
1−1/ε

.

Noting that R(θ) does not depend on s′ and j is independent of s′, using the definition of ρs in
(4.12), we can rewrite this as

bsw = max
0≤c≤w

(
(1− β)c1−1/ε + β(R f ρs)

1−1/ε(w− c)1−1/ε E
[
b1−γ

s′

∣∣∣ s
] 1−1/ε

1−γ

) 1
1−1/ε

.

45



For notational simplicity let κs = R f ρs E
[
b1−γ

s′

∣∣∣ s
] 1

1−γ
. Then the above problem becomes equiv-

alent to
max

c

1
1− 1/ε

(
(1− β)c1−1/ε + βκ1−1/ε

s (w− c)1−1/ε
)

.

Clearly this is a strictly concave function in c. Taking the first-order condition and solving for
c, we obtain

c =
(1− β)ε

(1− β)ε + βεκε−1
s

w.

Substituting into the Bellman equation, after some algebra we obtain

bs =

(
(1− β)ε + βε(R f ρs)

ε−1 E
[
b1−γ

s′

∣∣∣ s
] ε−1

1−γ

) 1
ε−1

,

which is (4.14). The optimal consumption rule then simplifies to c = (1 − β)εb1−ε
s and we

obtain the optimal investment rule using θ = I
w−c .

To complete the proof it remains to show that the system of nonlinear equations (4.14) has
a solution. For this purpose let us write σ = 1−γ

ε−1 and xs = b1−γ
s . Then we can rewrite (4.14) as

xs =
(
(1− β)ε + (βεσ(R f ρs)

1−γ E [xs′ | s])1/σ
)σ

,

which is equivalent to
x = ((1− β)ε + (Kx)1/σ)σ

for x = (x1, . . . , xS)
′ and K = βεσR1−γ

f diag(ρ1−γ
1 , . . . , ρ

1−γ
S )P. Since this equation is identical

to Equation (12) in Borovička and Stachurski (2017), by their Theorem 2.1, a necessary and
sufficient condition for the existence of a unique fixed point is ρ(K)1/σ < 1, which is equivalent
to (4.13).

Finally we briefly comment on the case ε = 1. Although this case requires a separate
treatment, it turns out that the equations are valid by taking the limit ε → 1. To show (4.14),
define g(ε) = log((1− β)ε + βεκε−1) for κ > 0. Then as ε→ 1 we obtain

log((1− β)ε + βεκε−1)
1

ε−1 =
g(ε)
ε− 1

=
g(ε)− g(1)

ε− 1
→ g′(1).

But since

g′(ε) =
(1− β)ε log(1− β) + βεκε−1 log(βκ)

(1− β)ε + βεκε−1 → (1− β) log(1− β) + β log(βκ)

as ε→ 1, it follows that

((1− β)ε + βεκε−1)
1

ε−1 → (1− β)1−β(βκ)β,

which explains (4.14) for ε = 1. The existence and uniqueness of a positive solution can be
proved by taking the logarithm of (4.14) and applying a contraction mapping argument to
x = log b.
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Proof of Lemma 4.3. By Proposition 4.2 and the budget constraint of the asymptotic problem,
we obtain the the law of motion

w′ = (1− (1− β)εb1−ε
s )R f (zsjθ

∗
s + 1− θ∗s )w.

Taking the expectation conditional on s and using the definition of Gs in (4.16), we obtain
E [w′ | s] = Gsw. By the same derivation as (B.4), a necessary condition for aggregate wealth to
be finite is ρ(P′ diag G) < 1. Since diag G is diagonal, we obtain

ρ(P diag G) = ρ((diag G)′P′) = ρ((diag G)P′) = ρ(P′ diag G) < 1.

Proof of Lemma 4.4. Since by assumption GsJ > 1 for some s, we have Ms(z) → ∞ as z → ∞
for this s. Since by assumption pss > 0 for all s, it follows that ρ(PD(z))→ ∞ as z→ ∞. Since
D(1) = diag G, by (4.17) we obtain ρ(PD(1)) = ρ(P diag G) < 1. By the intermediate value
theorem, there exists ζ > 1 such that ρ(PD(ζ)) = 1. Uniqueness follows from the convexity of
ρ(PD(z)) established in Beare and Toda (2017). The Pareto tail result follows from (2.5) with
p = 0.

C Constructing the exponential grid

Suppose we would like to construct an N-point exponential grid on a given interval (a, b).
This problem is nontrivial because a, b could be negative and we cannot take the logarithm of
negative numbers. A natural idea to deal with such a case is as follows.

Constructing the exponential grid.

1. Choose a shift parameter s > −a.

2. Construct an N-point evenly-spaced grid on (log(a + s), log(b + s)).

3. Take the exponential.

4. Subtract s.

The remaining question is how to choose the shift parameter s. Suppose we would like
to specify the median grid point as c ∈ (a, b). Since the median of the evenly-spaced grid on
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(log(a + s), log(b + s)) is 1
2 (log(a + s) + log(b + s)), we need to take s > −a such that

c = exp
(

1
2
(log(a + s) + log(b + s))

)
− s

⇐⇒ c + s =
√
(a + s)(b + s)

⇐⇒ (c + s)2 = (a + s)(b + s)

⇐⇒ c2 + 2cs + s2 = ab + (a + b)s + s2

⇐⇒ s =
c2 − ab

a + b− 2c
.

Note that in this case

s + a =
c2 − ab

a + b− 2c
+ a =

(c− a)2

a + b− 2c
,

so s + a is positive if and only if c < a+b
2 . Therefore, for any c ∈

(
a, a+b

2

)
, it is possible to

construct such a grid.
The remaining question is how to choose c, but we can use information from the problem

we want to solve. Note that by construction, half the grid points will lie on the interval (a, c).
Therefore we should choose the number c such that c is a “typical” value for the state variable
(e.g., initial capital, aggregate capital, etc.).

D Simulating the Aiyagari model

In this appendix we assess the accuracy of the simulation method using the Aiyagari model
in Section 3. We conduct simulations by recursively computing the wealth of I agents over
T periods using the semi-analytical solution for the consumption policies and the risk-free
rate. We initialize the wealth distribution at T = 0 by setting w = 1 for all agents. For every
simulation, we compute the cross-sectional mean of the wealth distribution K̂ in the terminal
period T, which corresponds to the aggregate capital K in the model.20 Given that K̂ is a ran-
dom variable, we compute the relative error for B = 10,000 independent simulations and take
the average to obtain the “mean relative error” defined by 1

B ∑B
b=1

∣∣∣K̂b/K− 1
∣∣∣, where K is the

true aggregate capital and K̂b is the numerical aggregate capital from simulation b. Finally, we
compute a measure of the dispersion of results across simulations defined by

∣∣∣K̂p95/K̂p5 − 1
∣∣∣,

where K̂p5, K̂p95 denote the 5th and 5th percentiles of K̂ across simulations. Table 12 shows the
results for different combinations of sample size I and simulation length T.

A few remarks are in order. First, the simulation method performs poorly on average and
the results are very dispersed across simulations. Second, increasing the number of agents I
helps reduce both the mean relative error and the dispersion. The gains in accuracy associated
with increasing I by an order of magnitude tend to be small, consistently with the fact that
the sample mean of a fat-tailed distribution converges very slowly to the population mean.
In fact, in our model the Pareto exponent is ζ = 1.28, and the relative errors for sample sizes
I = 104, 106 in Table 12, which are about 11% and 7% respectively, are about the same order

20Since there is a unit continuum of agents in the model, the average wealth is equal to the aggregate wealth.

48



Table 12: Solution accuracy of the simulation method in the Aiyagari model.

T I Relative error (%) Dispersion (%) Time (sec)

1,000

103 21.93 92.97 0.07
104 10.97 47.99 0.38
105 6.70 27.53 3.13
106 6.69 16.33 41.23

10,000

103 23.76 96.68 0.39
104 20.42 50.07 3.76
105 9.69 27.47 31.43
106 6.64 16.07 414.30

Note: T: simulation length in model-years; I: number of simulated agents; Relative error: 1
B ∑B

b=1

∣∣∣K̂b/K− 1
∣∣∣,

where K̂b is the aggregate capital in simulation b and K is the true value from the analytical solution; Dispersion:∣∣∣K̂p95/K̂p5 − 1
∣∣∣, where K̂p5, K̂p95 are the 5th and 95th percentiles of aggregate capital across 1000 simulations; Time:

computing time of 10,000 simulations in minutes.

of magnitude as the error order 11.9% and 4.1% in the column for ζ = 1.3 in Table 1. Third,
increasing the simulation length beyond T = 1,000 does not seem to improve accuracy, sug-
gesting that the simulated wealth distribution has already converged after 1,000 periods.

The last column of Table 12 reports the computing time (without parallelization) associated
with producing a single simulation using a machine equipped with an Intel Xeon E3-1245

3.5GHz processor and 16GB of memory. While increasing the sample size I by a factor of
ten is associated with small accuracy gains, it implies a tenfold increase in the computing
time. Given the inaccuracy and the large dispersion of results across simulations, we conclude
that the simulation method is not a viable option for solving models with fat-tailed wealth
distributions.

E Algorithm for Merton-Bewley-Aiyagari model

E.1 Euler and asset pricing equations

First, we derive the Euler and asset pricing equations. Noting that zsj is strictly increasing in
j, the borrowing constraint (4.5) can bind only in state j = 1. Therefore the Bellman equation
(4.6) is equivalent to

1
1− 1/ε

vs(w)1−1/ε = max
c,I≥0

1
1− 1/ε

(
(1− β)c1−1/ε + β E

[
vs′(w′)1−γ

∣∣∣ s
] 1−1/ε

1−γ

)
,

R f (w + (1− τh)ωhs + I(zs1 − 1)− c) ≥ w
¯

,

I ≥ 0,

where w′ is as in (4.5). Let Ls(c, I, w) be the Lagrangian and λs(w), µs(w) be the corresponding
Lagrange multipliers for the borrowing constraint and the nonnegativity constraint on invest-
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ment:

Ls(c, I, w) =
1

1− 1/ε

(
(1− β)c1−1/ε + β E

[
vs′(w′)1−γ

∣∣∣ s
] 1−1/ε

1−γ

)
+ λs(w)

(
R f (w + (1− τh)ωhs + I(zs1 − 1)− c)− w

¯
)
+ µs(w)I.

The first-order condition for consumption is given by

(1− β)cs(w)−1/ε = βR f E
[
vs′(w′)1−γ

∣∣∣ s
] γ−1/ε

1−γ
E
[
vs′(w′)−γv′s′(w

′)
∣∣ s
]
+ λs(w)R f . (E.1)

Differentiating both sides of the Bellman equation by w, it follows from the Envelope Theorem
that

vs(w)−1/εv′s(w) = βR f E
[
vs′(w′)1−γ

∣∣∣ s
] γ−1/ε

1−γ
E
[
vs′(w′)−γv′s′(w

′)
∣∣ s
]
+ λs(w)R f . (E.2)

By (E.1) and (E.2), we obtain the following expression for the derivative of the value function

v′s(w) = (1− β)

(
cs(w)

vs(w)

)−1/ε

. (E.3)

Substituting (E.3) into (E.1), we obtain the consumption Euler equation

cs(w)−1/ε = βR f E

( vs′(w′)

E [vs′(w′)1−γ | s]
1

1−γ

)1/ε−γ

cs′(w′)−1/ε

∣∣∣∣∣∣ s

+
λs(w)R f

1− β
. (E.4)

The first-order condition for investment is given by

βR f E
[
vs′(w′)1−γ

∣∣∣ s
] γ−1/ε

1−γ
E
[
vs′(w′)−γv′s′(w

′)(zsj − 1)
∣∣ s
]

+ λs(w)R f (zs1 − 1) + µs(w) = 0. (E.5)

Using the expression for v′s(w) from (E.3) and rearranging, we obtain the following asset pric-
ing equation

E

( vs′(w′)

E [vs′(w′)1−γ | s]
1

1−γ

)1/ε−γ

cs′(w′)−1/ε(zsj − 1)

∣∣∣∣∣∣ s


= −

λs(w)(zs1 − 1) + µs(w)/R f

β(1− β)
. (E.6)

E.2 Policy function and value function iteration

First, we choose an exponential grid as described in Appendix C and replacing the bottom half
grid points with an evenly-spaced grid. The grid has 50 points and we set the truncation point
to 1000 times the typial scale of the model (steady-state capital stock in the representative-agent
model with the same parametrization). The strategy is start with guesses for the value func-
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tion vold
s (w) and policy functions cold

s (w), Iold
s (w) and update by doing the following steps for

each individual state (s, w). Equipped with the asymptotic solution to the individual problem
{c̄s, Īs, v̄s}S

s=1, we choose the following initial guesses

cs(w) = c̄s(w− w
¯
), Is(w) = Īs(w− w

¯
), vs(w) = Īs(w− w

¯
).

Then, we iterate over steps (1), (2), and (3) until convergence.

1. Consumption decision: First, use the old decision rules cold
s (w), Iold

s (w) to construct next
period’s wealth w′sj(w) and the upper bound on consumption cub

s (w):

w′sj(w) = R f

(
w + (1− τh)ωhs + Iold

s (w)(zsj − 1)− cold
s (w)

)
,

cub
s (w) = w + (1− τh)ωhs − w

¯
/R f .

Then, update the consumption using the Euler equation (E.4) as if the borrowing con-
straint was slack.

c∗s (w) =

βR f E


 vold

s′ (w′sj(w))

E
[
vold

s′ (w′sj(w))1−γ
∣∣∣ s
] 1

1−γ


1/ε−γ

cold
s′ (w′sj(w))−1/ε

∣∣∣∣∣∣∣∣∣ s



−ε

.

Finally, impose the upper bound on consumption so that cnew
s (w) = min

{
c∗s (w), cub

s (w)
}

and compute the Lagrange multiplier

λnew
s (w) =

1− β

R f

(
cnew

s (w)−1/ε − c∗s (w)−1/ε
)

.

2. Investment decision: This step applies only to types s such that E
[
zsj
∣∣ s
]
> 1, for other

types set Is(w) = 0.

Use the new consumption rule cnew
s (w) to construct an upper bound on investment

Iub
s (w) =

w + (1− τh)ωhs − cnew
s (w)− w

¯
/R f

1− zs1
.

Construct a grid of feasible choices for investment over the range [0, Iub
s (w)]. Using

cnew
s (w), compute next period’s wealth for every choice of I

w′sj(w, I) = R f
(
w + (1− τh)ωhs + I(zsj − 1)− cnew

s (w)
)

.

Finally, to solve for the optimal investment, conjecture that investment is interior and
find the root I∗ that solves the asset pricing equation (E.6) with µs(w) = 0,

E


 vold

s′ (w′)

E
[
vold

s′ (w′)1−γ
∣∣ s
] 1

1−γ

1/ε−γ

cnew
s′ (w′)−1/ε(zsj − 1)

∣∣∣∣∣∣∣ s

 = −λs(w)new(zs1 − 1)
β(1− β)
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and set Is(w) = I∗. If a root does not exist and the left-hand side is everywhere positive,
set Is(w) = Iub

s (w). If a root does not exist and the left-hand side is everywhere negative,
set Is(w) = 0.

3. Value function: Construct next period’s wealth using the new policy functions

w′sj(w) = R f
(
w + (1− τh)ωhs + Inew

s (w)(zsj − 1)− cnew
s (w)

)
and update the value function

vnew
s (w) =


(
(1− β)cnew

s (w)1−1/ε + β E
[
vold

s′ (w′sj(w))1−γ
∣∣∣ s
] 1−1/ε

1−γ

) 1
1−1/ε

, (ε 6= 1)

cnew
s (w)1−β

(
E
[
vold

s′ (w′sj(w))1−γ
∣∣∣ s
] 1

1−γ

)β

. (ε = 1)
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