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Abstract

A Benchmarking System for Mobile Ad Hoc Network Routing Protocols

by

Daniel Hiranandani

Network simulations are heavily used in the networking community to evaluate the

performance of computer networks and their protocols. Simulations are often cho-

sen over alternatives such as live experiments due to limited resources in terms of

scalability, as well as reproducibility of the experiments. Many of the routing proto-

cols designed for Mobile Ad Hoc Networks (MANETs) are evaluated solely on their

performance calculated by these simulations, but the simulation environments the

routing protocols are exposed to are often limited in scope. Only certain aspects of

the routing protocols are tested, so the protocols are only understood in terms of

the fabricated scenarios that they are subjected to.

We first investigate the current best practices in simulation-based multi-hop wireless

ad-hoc network (MANET) protocol evaluation to examine how wide-spread this

problem is in the networking community. We extend a prior characterization of

the settings and parameters used in MANET simulations by studying the papers

published in one of the premier mobile networking conferences between 2006 and

2010. We find that there are still several configuration pitfalls which many papers

fall victim to, which in turn damages the integrity of the results as well as any

research aimed at reproducing and extending these results. We then describe the

simulation “design space” of MANET routing in terms of its basic dimensions and

corresponding parameters. We then discuss the benchmark infrastructure that was

created to provide an easy to use solution for testing these protocols in a wide range of

scenarios. The following chapter looks extensively at the realistic scenarios provided

with the benchmark that act as sample scenarios to promote modeling simulations

after real-world situations, and to show the flexibility in adding new scenarios. We

also propose four “auxiliary” metrics to increase simulation integrity. Next, we show

results generated by the benchmarking tool and provide our concluding thoughts.
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1 Introduction

Network simulations are extensively used in the design and evaluation of computer

networks and their protocols. There are many reasons why network practitioners

and researchers turn to simulations either as an alternative– or complement to actual

“live” experiments. Some of the main reasons for the popularity of network simula-

tors are ease of design space exploration, experiment reproducibility, and scalability.

This reliance on network simulators makes it critical that simulation scenarios accu-

rately and adequately reflect the real environments and conditions under which the

network systems being studied will operate.

Unfortunately, as pointed out by some previous surveys on the topic [4][15][38][39],

this is often not the case. Not only that, but in a survey we conducted of the papers

published in the ACM MobiHoc conferences between 2006 and 2010, we found that

most of the papers that used simulations as their experimental platform do not

fully disclose the settings and parameters used[20]. This lack of full disclosure calls

into question the quality and reproducibility of the experiments: not only it is not

possible for a third-party to reliably achieve the same results but also it questions

the validity of the conclusions that are based on the simulation results. As research

communities thrive on extending the work of others, the lack of full knowledge of

the experimental methodology used by previous efforts is a serious inhibiting factor.

Even worse, we fear that the researchers themselves do not know what parameters

they are using. Relying on default values in a simulator will likely produce different

results between simulator versions, and will certainly produce different results when

comparing different simulators. Furthermore, these parameter values may not reflect

the actual environment and conditions under which the network will be operating.

Additionally, quite often the designers of the protocols are the ones designing the

tests by which their protocols are evaluated. Consequently, there tends to be a bias

where the developer designs the experiments that will highlight the positive features

of their protocols. So it is not always the case that the tests thoroughly expose the

protocol to the full spectrum of operating conditions.

At this point, it is interesting to look at how some other disciplines perform experi-
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mental evaluations. Benchmarking, i.e., running a set of standard tests for relative

performance assessment is widely adopted in computer architecture, VLSI, compil-

ers, and databases, to name a few. We thus contend that similar practice should be

adopted within the networking community. The overarching goal of this effort is thus

to promote benchmarking as the standard best practice when designing and study-

ing the performance of computer networks and their protocols. As a starting point,

we focus on routing protocols for wireless multi-hop ad hoc networks (MANETs).

MANETs refer to infrastructure-less networks where there is no functional distinc-

tion between hosts and routers: all nodes can originate, sink, as well as forward

traffic. MANET routing protocols reflect the wide variety of MANETs which can

take on many forms ranging from static, dense, and homogeneous networks to highly

mobile, sparse, and even connectivity-challenged networks.

In this thesis, we introduce a benchmarking infrastructure which: 1) makes available

reliable, reproducible, and rigorous experimental scenarios, 2) enables viewing and

re-using as baseline performance results of other protocols without having to recre-

ate simulation scenarios to reproduce them, and 3) facilitates generating relative

performance results for new protocols.

2 Related Work

A few efforts have focused on studying the validity of simulation-based protocol

evaluation. However, as will become clear in Section 3, the community as a whole

has not been following the recommendations provided by previous work.

For example, the work presented in [23] reported important statistics for the

simulation-based papers accepted to the ACM MobiHoc conference up to 2006. This

paper was a very important milestone as it brought to light the current best prac-

tices in simulation-based evaluation of MANET protocols. Our work leverages on

this effort and goes a step further: it shows that current practices in simulation-

based MANET protocol evaluation are practically unchanged; it then describes the

design space of MANET routing protocols in terms of its fundamental parameters

as the basis for the evaluation guidelines for these protocols.
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In [24], two key auxiliary metrics to provide feedback on the effectiveness of the

scenario being used were introduced - average shortest path hop count and average

network partitioning. The proposed metrics are periodically measured over the

duration of the simulation. Between these two auxiliary metrics and a third one

recently introduced by [27], the average neighbor count, a researcher can identify if

their simulation scenario has too few or too large of average hop count distances,

too little connectivity which leads to network partitioning, and too dense or too

sparse of a network. These auxiliary metrics do provide excellent information about

a scenario; in this paper, we propose five additional metrics that capture important

information about the simulation scenario. These metrics are described in Section 4.

The use of simple models is proposed in [38] which surveyed the papers published

in the ACM MobiHoc 2008. They found that 59% of the papers did not run mean-

ingful comparative studies: they either did not compare against “truly competing

solution(s)” or did not compare their solution(s) to any other protocol. We ar-

gue that we can eliminate this problem with our future work aimed at creating a

publicly-available standardized set of routing protocol benchmarks.

The work in [29] reports a survey similar to [23] in which they studied 280 papers

on simulations of peer-to-peer systems and found that 71 papers did not even state

which simulator was used.

Five principles are presented in [21] which reinforces the importance of having repeat-

able, rigorous, complete, statistically and empirically valid simulations. It stresses

the need for researchers to include all parameters and configurations used in their

experiments.

In [11], the implementation differences of IEEE 802.11 was studied by comparing

two different simulators as well as the differences in 802.11 within multiple ns-2

versions. This study finds that the results between simulators are quite different

(although they also find that the difference is minimal when the ns-2 802.11 MAC

is ported into OMNeT++).

The work described is [1] also finds in 2006 that very little has changed in the

MANET community in terms of simulation-based evaluation methodology. Almost
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90% of papers do not even specify the simulator version, and over half do not specify

the number of simulation runs. These omissions make accurately reproducing and

re-using previous results near impossible.

The continuum proposed in [7] aims to identify and classify types of mobile ad hoc

networks. They focus on node speed and node density for classification.

In the area of CPU benchmarking, the Standard Performance Evaluation Corpo-

ration (SPEC) [9] has a standardized suite of tests that evaluate the performance

of a processor. This suite of tests is comprised of many smaller tests using various

real-world applications including compression, compiling, discrete event simulation,

and speech recognition. When new processors are vetted against previous proces-

sors, these SPEC tests are run on the processor which produces a single numeric

value that can be compared to the other processors to determine a hierarchy of rank.

We do not feel that a single value is telling enough to describe a routing protocol’s

performance, however similar to [16], the idea of running a battery of standard tests

on different routing protocols and having measurable as well as comparable metrics

is the basis of our benchmark.

There have been numerous projects and studies advocating the use of realistic mo-

bility models and traces [19][13] [22][32] [2]. In our work we go a step further and

introduce a benchmarking system that promotes not only the use of realistic simula-

tion scenarios that mimic real applications, but also enables reusing and reproducing

results as baseline for comparison among new and existing protocols.

Other MANET routing protocol benchmarks have been explored previously [26],

but they do not provide an infrastructure that allows for the sharing and re-use of

simulation scenarios and results.

3 Current MANET Simulation Best-Practices

In order to characterize the current state-of-the-art in evaluating MANET protocols,

we conducted a survey of the full papers accepted into the ACM Symposium on

Mobile Ad Hoc Networking and Computing (MobiHoc) for the years 2006 through

2010. We chose to study MobiHoc because of the prior surveys which identified the
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common problems in papers accepted into previous editions of the same conference.

We also focused on MobiHoc as it is regarded as a highly selective and prestigious

conference in the MANET community. We consider the results of this survey to be

a “best practices” survey in that they represent the configurations used by some of

the best papers published in the MANET community. Although we were able to

find 12 of the 25 papers submitted to the most recent MobiHoc 2011, we chose to

omit all of the MobiHoc 2011 papers from our survey to preserve completeness of

each year’s worth of papers.

In addition to the MobiHoc survey, we extended the survey to include 82 papers

which simulated routing protocols from a variety of conferences to get a broader

idea of what the “average” MANET routing protocol simulation scenario looks like.

Besides broadening the universe of papers surveyed, we extended the survey outside

of MobiHoc for a number of other reasons, including: fewer routing protocol papers

have been published in MobiHoc in the recent years compared to the previous study;

few papers actually specify their configurations and parameters out of the routing

papers published in recent MobiHoc years (which further demonstrates the issue at

hand).

3.1 MobiHoc Survey

Out of the 159 MobiHoc papers we reviewed, while we noticed that simulation is still

an often-used tool to evaluate protocol performance (105 papers or 66.0% used sim-

ulations), only 47 out of the 105 simulation-based MobiHoc papers specified which

simulator was used (44.8%). Comparing the popularity of individual simulators used

in these published papers to a survey of the 2000-2005 MobiHoc papers that used

simulation-based evaluations [23], we found that Network Simulator 2 (ns-2) tied

with custom simulators (13 of the 47 simulated papers for each, or 27.7% each).

This is quite different from the previous study which ranked ns-2 at 43.8% and

self-developed simulators at 27.3%. Matlab, however, had the largest increase in

declared popularity moving from only 3.8% proclaimed-usage in the previous study

to 21.3% in our survey. Figure 1 shows the per-simulator usage breakdown.
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Figure 1: Breakdown of simulators used in MobiHoc papers from 2006-2010.

Some of the more startling results show that out of the 25 papers which identify

the mobility model used, 8 papers (32%) use the Random Waypoint Mobility Model

which has been shown to exhibit undesirable behavior and thus produce unreliable

results [41]. Additionally, of the 15 papers which identify how source and destination

pairs were chosen to be the source and sink of a flow, random selection was the

most popular at 86.6% which has two major issues. The first is that there is no

guarantee on the minimum number of hops for the path between the source and

the destination; thus, the source and destination pairs can potentially be next to

each other and traffic between them does not require any routing. Secondly, the

nodes that are chosen might produce traffic flows that do not overlap. Overlapping

flows stress the network’s ability to handle multiple flows in terms of queueing and

processing power, so scenarios with zero concurrent flows could produce artificially

optimistic results.

We also noticed that the papers surveyed tend to run a single scenario multiple

times. While we certainly encourage such practice to reduce the effect of outlying

results, we need to address the problem of using the same Pseudo Random Number

Generator’s (PNRG) seed. It was noticed that in ns-2 which uses a fixed Pseudo-

Random Number Generator (PRNG) seed of 12345, re-running simulations without

ever changing the seed will produce identical results [23]. Nevertheless, this problem

is still quite prevalent today. To quantify the gravity of this issue, of the 39 papers
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that declared running more than one simulation run, only 5 papers (12.8%) addressed

changing the PNRG seed for each run.

Figure 2: Measuring MobiHoc 2006-2010 simulation scenario environment area in
terms of the number of transmission range hops across the area’s diagonal.

As a measure of how arbitrary topologies are chosen, we measured the longest dis-

tance in an environment (the diagonal of the rectangular environments) in terms of

a node’s transmission range. This distance spans the longest point-to-point distance

in the environment, and roughly shows the maximum possible diameter of the net-

work. Figure 2 shows that the values range from as little as 0.35 hops all the way

up to 141 hops.

In order to better characterize the quality of scenarios used, we also calculated one

of our proposed auxiliary metrics, the Average Node Density of the network which

is described in more detail in Section 7, for the papers that listed the Environment

Dimensions, Number of Nodes, and Node Transmission Range. The results are

shown in Table 3 sorted by density, and they show a very wide range of values

ranging from 400 nodes per cell down to 0.025 nodes per cell.

A fairly common occurrence was for papers to declare that they were unable to

provide details on the simulation configurations due to the “constrained space” of

the paper. We realize that this is an understandable concern, however it is not

acceptable. It is, however, perfectly acceptable to include a URL that links to the

research group’s or individual’s website that contains information about the simula-

tions. Taking this one step further, we also encourage including contact information

on the website to give others a way to obtain the code used in the simulations.
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As a fitting example, while we lack the space in this paper to provide the full results

of the MobiHoc survey, we show a snapshot of the results in Table 1, Table 2, and

Table 3. We also invite the readers to visit http://inrg.cse.ucsc.edu/ to view

the more detailed version of these statistics.

Table 1: MobiHoc 2006-2010 Simulation Survey

Totals Percentage Description

105 of 159 66.0% Used simulation for protocol evaluations

47 of 105 44.8% Specified which simulator was used

13 of 47 27.7% Used ns-2 as their simulator

3 of 47 6.4% Used Qualnet as their simulator

13 of 47 27.7% Used a Custom simulator

3 of 47 6.4% Used JIST/SWANS as their simulator

10 of 47 21.3% Used Matlab as their simulator

1 of 47 2.1% Used Opnet as their simulator

2 of 47 4.3% Used QNS as their simulator

1 of 47 4.3% Used TOSSIM as their simulator

1 of 47 2.1% Used Silhouette as their simulator

5 of 105 5.8% Stated the simulator version

25 of 105 23.8% Used mobility

8 of 25 32.0% Used the Random Waypoint Mobility Model

3 of 25 12.0% Used the Random Walk Mobility Model

2 of 25 8.0% Used the Brownian Motion Model

1 of 25 4.0% Used the Random Direction Mobility Model

4 of 25 16.0% Used other mobility models

7 of 25 28.0% Used Mobility Traces

1 of 7 14.3% Used the UMass DieselNet Trace

2 of 7 28.6% Used the MIT Reality Trace

1 of 7 14.3% Used the Intel Labs Trace

Continued on next page
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Totals Percentage Description

1 of 7 14.3% Used the Infocom DTN Trace

1 of 7 14.3% Used the Haggle Traces

2 of 7 28.6% Used other (unnamed) traces

34 of 105 32.4% Declared node distribution methods

14 of 34 41.2% Used Random Distribution

10 of 34 29.4% Used Uniform Distribution

2 of 34 5.9% Used Perturbed Grid Distribution

5 of 34 14.7% Used Poisson Distribution

2 of 34 5.9% Used Clusters

1 of 34 2.9% Used Power-law Distribution

9 of 105 8.6% Stated Packet Rate Distribution

7 of 9 77.8% Used CBR Flows

2 of 9 22.2% Used VBR Flows

15 of 105 14.3% Stated Source-Destination Pair Selection

13 of 15 86.7% Used Random Selection

2 of 15 13.3% Used Fixed Selection

51 of 105 48.6% Stated the Environment Dimensions

37 of 105 35.2% Stated the Radio Transmission Range

66 of 105 62.9% Stated the Number of Nodes

38 of 105 36.2% Stated the Number of Simulation Runs

6 of 105 5.7% Used multiple PNRG seeds

7 of 105 6.7% Accounts for Steady-State (Traffic, Mobility, or both)

66 of 105 62.9% Stated Metrics collected

16 of 66 24.2% Measured Delivery Ratio

19 of 66 28.9% Measured Delay

4 of 66 6.1% Measured Overhead

12 of 66 18.2% Measured Throughput

5 of 66 7.6% Measured Average Hop Count

Continued on next page
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Totals Percentage Description

5 of 66 7.6% Measured Average Node Degree

4 of 66 6.1% Measured Energy Consumption

1 of 66 1.5% Measured Network Diameter

Table 2: MobiHoc 2006-2010 Simulation Parameter Values Survey
Min Average Max Standard Deviation Description

5 1,027.11 10,000 1,027.11 Number of Sim. Runs
1 138,371 10,000,000 1,095,000 Num. of Nodes

1m 1,035.91m 10,000m 1,682.10m Environment Width
1m 1,259.49m 20,000m 2,852.32m Environment Height
1:1 1.31:1 15:1 1.96 Env. Aspect Ratio (H:W)

0.20m 152.91m 600.00m 174.32m Node Tx Range

3.2 Extended Survey

In this extended survey, we noticed that a few patterns emerged in the values of

parameters chosen, and we list them in Table 4. We found that the following is

an appropriate “average simulation” in the sense that these were the most-often

occurring values of parameters in our study.

We can see from Table 4 that the average scenario randomly places nodes in the

environment, randomly moves them, and then randomly selects which nodes will

communicate with each other. We do believe in adding randomness to simulations

to introduce variance, but we feel that randomizing all of these aspects will make

the scenario overly synthetic, and thus far from reality.
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Table 3: MobiHoc 2006-2010 Avg Densities
#Nodes Dimensions Tx Range Avg Density

10000 1500m x 1500m 150m 400.000
20 300m x 300m 600m 320.000

1000 500m x 500m 120m 230.400
100 1000m x 1000m 600m 144.000
300 500m x 500m 100m 48.000
512 4000m x 4000m 600m 46.080
160 100m x 100m 20m 25.600
50 100m x 100m 32m 20.480
20 500m x 500m 250m 20.000
250 300m x 300m 40m 17.778
100 1250m x 1250m 250m 16.000
1000 4000m x 4000m 250m 15.625
150 600m x 600m 88m 12.907
3000 610m x 610m 20m 12.900
50 1000m x 1000m 250m 12.500
80 600m x 600m 100m 8.889
50 1m x 1m 0.20m 8.000
54 100m x 100m 18m 6.998

64000 1000m x 1000m 5m 6.400
500 200m x 200m 6m 1.800
100 100m x 100m 3m 0.360
100 5000m x 5000m 150m 0.360
10 4000m x 4000m 100m 0.025

Table 4: Extended Simulation Survey “Average Scenario”
Value Parameter

ns-2 Simulator Used
900 seconds Simulation Duration

1000m x 1000m, 1500m x 300m Env. Dimensions
50 or 100 Number of Nodes

250m Node Transmission Range
802.11 MAC Protocol Used

Random Initial Node Distribution
Random Waypoint Node Mobility Model

512 Bytes Packet Size
4 Packets per second Packet Send Rate

Random S-D Pair Selection
20 Number of Traffic Flows

4 Simulation Design Space and Guidelines

In this section, we lay out the basis for specifying a set of guidelines to standardize

the evaluation of MANET routing protocols. Such guidelines will enable not only
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accurate and unbiased performance assessment, but also sharing of tools and results.

We start by identifying the main performance “dimensions” of MANET routing,

namely: topology, traffic, and mobility. We have found that many of the values

used in simulation studies are largely synthetic, i.e., they are not consistent with

real-world scenarios. Since the values of these parameters largely depend on the

driving application(s), we provide some example real-world situations along with

logical ranges of values that could be used when simulating them.

4.1 Topology

The topology used by simulation experiments describes physically the environment

where the simulation takes place. It typically includes: width, height, terrain, chan-

nel characteristics (e.g., path loss, fading, etc.), number of nodes, the nodes’ trans-

mission ranges, and the method for determining where to place the nodes (node

distribution/placement).

These parameters are often modified individually to produce “new” simulation sce-

narios. However, some parameters may have a “collective” effect. This is the case,

for example, of number of nodes, size of the area, and transmission range, all of

which affect the density of the network being simulated, which, in turn, can have

significant impact on the performance of MANET routing.

Examples have shown how easy it is to create two scenarios that are effectively

measuring the same things when changing the environment size, average node speed,

and transmission range, and how important it is to identify the environment size and

node speed in terms of the transmission range of the node [23]. We propose that this

should be taken one step further to include the number of nodes in these measures

as well. Since the environment size, node speed, and transmission range effectively

describe the node density of a scenario, it is logical to see that the number of nodes

plays a significant role in the density as well. When designing a scenario, careful

thought should be put into these four parameters because they are not independent

of each other - they all affect the network density.
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4.2 Traffic

Modeling traffic includes parameters such as when nodes start and stop sending

data, the number of traffic flows, the selection process for determining source and

destination nodes, and the packet rate distribution. While values assigned to these

parameters should reflect the driving application(s), there are a few guidelines that

should be followed when selecting values for these parameters.

As pointed out in Section 3, the most common method for choosing traffic source-

destination pairs is random selection. Therefore, it is important to note some of

the adverse effects this methodology can introduce. For example, selecting source-

destination pairs at random may cause, as side-effect, the number of hops in the

path to be abnormally small or large. It may also mean that no node might ever

have to route for more than one flow at a time. However, it is necessary to subject

network protocols in general, and routing in particular to heavier as well as non-

uniform traffic loads. Therefore, other traffic source-destination selection policies in

addition to uniform selection need to be employed. We also propose an additional

auxiliary metric that will measure the average number of concurrent flows in the

nodes along the routed paths. We recognize that this auxiliary metric will provide

a coarse-grain analysis of the problem, however it will address the issue of not even

knowing whether scenarios contain any overlapping flows at all.

4.3 Mobility

Mobility models, like topology and traffic, are very application dependent, and while

some mobility models are more popular than others, they are not necessarily the best

models to use. Take for example Random Waypoint Mobility: it is still the most

used mobility model, but it does not produce realistic movement for applications

such as human walks [27]. Therefore, using mobility models such as Self-similar

Least Action Walk (SLAW) would be preferred instead. Additionally, there are

traces such as MIT Reality [12], UMass DieselNet [17], and others available through

CRAWDAD [8] which can provide realistic node mobility.
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5 Benchmark Infrastructure

The foundation of this benchmark relies on evaluating the performance of routing

protocols by exposing them to many different types of scenarios. Taking the entire

parameter design space into consideration, which we discuss in [20], we initiated

this benchmark with a select few sample scenarios that exemplify different facets of

the design space. It is far too common to get a one-sided perspective of a routing

protocol’s performance by only subjecting it to one, or several similar scenarios, so

this infrastructure allows us to paint a clearer picture of a protocol’s response to a

wide variety of environments.

There were several goals that we needed to meet in the creation of this benchmark

infrastructure. First and foremost since it relies on having many scenarios stress-

ing different aspects of a protocol, it must be easy to add new scenarios. Secondly

and just as important as the first it must be easy to run the simulations as well

as to gather metrics. Our third objective was to be able to directly compare re-

sults between different routing protocols which also brought about a fourth goal of

eliminating the need for researchers to implement other researchers’ previously cre-

ated scenario environments. Lastly, to easily facilitate the distribution of the new

scenarios and their results.

The prototype version of this infrastructure was built inside of the Network Simulator

3 (ns-3) simulator, but there is no reason that it could not be implemented in any

other simulator. Due to the differences inherent in different simulators, however, we

foresee direct comparisons as only being possible within the same simulator due to

varying implementations of protocols and environmental models.

This benchmark contains several example scenarios (Smart Energy Grid, MASE

Seismic Monitoring, Campus DTN, and SF Taxi VANET), but these scenarios are

intended to act as reference points – not as an exhaustive performance evaluation

suite. The purpose of this work is to facilitate the ease of adding new benchmark

scenarios so that researchers can add their own scenarios so that the entire parameter

design space can eventually be tested for each protocol.

We provide a full download of the source code which can be found at
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http://inrg.cse.ucsc.edu/.

5.1 Code Structure

The structure of this benchmark is broken up into several pieces: a run script,

scenario-common code, scenario-specific code, scenario-specific scripts, and process-

ing scripts.

The run script, also known as the Main Benchmark Script, is what invokes the

benchmark. This script is responsible for calling all other scripts to set parameters,

build scenarios, run scenarios, calculate results, and for generating plots.

The Main Benchmark Script first calls the scenario-specific scripts which iterates

through any dynamic parameters (parameters that are desired to change between

runs of the simulation such as traffic rate) and calls the ns-3 build/run system. ns-

3 is built for that scenario using its scenario-specific code along with the current

dynamic parameters. Since there are many parameters and algorithms that are

shared between scenarios, a scenario-common code file is used to reduce the amount

of duplicate code.

The scenario-common code contains code that is needed by all scenarios. This pri-

marily includes code for setting up and initializing ns-3 in terms of the simulator

itself, common MAC/PHY parameters, source-destination pair selection algorithms,

as well as metrics and auxiliary metrics calculating functions. This file also con-

tains the main function which in turn calls the functions that set scenario-specific

parameters specified in the scenario-specific code files.

The scenario-specific code files contain functions that set parameters for a specific

scenario such as the number of nodes, number of sources, environment dimensions,

node transmission range, etc. They also contain mobility model/trace information

as well as settings for the traffic. These functions and parameters need to be set for

each scenario, but since the values will be different between scenarios, they need to

be stored in files that are only intended to be used by that particular scenario.

After ns-3 has finished running a simulation, the scenario-specific script calls a pro-

cessing script which renames files according to their dynamic parameters, stores
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them into folders organized by the scenario name and PNRG seed, runs a prelimi-

nary metrics-gathering script, and removes files that are no longer needed.

The preliminary metrics-gathering script processes the FlowMonitor file that is gen-

erated by ns-3 and it produces results such as Throughput, Delivery Ratio, Delay,

and more. These statistics are stored in a file that is uniquely named by the dynamic

parameter combination, and is processed again after all simulations have been run.

All of the statistics files are processed after ns-3 concludes its simulations because

this allows us to perform an analysis on all of the results at once. The statistics

post-processing script finds all of the statistics files related to a scenario’s dynamic

parameter combination, and for each PNRG seed that was used, averages the results

as well as record the min/max values for each metric. These values are output into

plot files which are processed by a plotting script to produce visual graphs of the

averages of the data as well as error bars to indicate the variance across simulation

runs. These plot files are created by starting with preset “base files”. These base

files, one for each metric, contain information such as the title of the graph and

axis labels and are copied into the plot directory when the statistics post-processing

script is first run. The plot files are then appended with the averaged statistics as

they are calculated, and an error bars file is simultaneously maintained which holds

information for creating the error bars on the plots using the min/max data. After

the statistics post-processing script has added the averaged values for each scenario,

the entire error bars file is appended to the plot file which is then read by the plotting

script.

The final plotting script [3] is built on top of gnuplot and was used in this benchmark

because it allows for easy plotting of clusters. The goal of this benchmark is to

compare the performance of routing protocols, and this script produces exactly that

- graphs where the scenarios are clustered so that the routing protocols can be

compared side-by-side.
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5.2 FlowMonitor

FlowMonitor is a module in ns-3 that is used to collect commonly used performance

metrics [5]. The implementation of this benchmark in ns-3 uses FlowMonitor ex-

tensively to compute its metrics. FlowMonitor captures information about “flows”,

which we usually take to mean layer 4 end-to-end connections. FlowMonitor is less

exclusive in its definition of a flow, and while it usually takes on the layer 4 end-to-

end meaning, it can also represent other types of “flows” such as layer 2 hop-by-hop

flows.

This became a challenge over the course of the project because FlowMonitor was

counting both end-to-end and hop-by-hop flows in its output file. The scripts in this

benchmark initially did not distinguish between the two types of flows, so many of

the metrics showed very strange results. There were many more hop-by-hop flows,

the number of packets sent in those flows far outnumbered the number of packets

sent in the end-to-end flows, so the results were heavily skewed. In order to overcome

this issue, the benchmark scripts were modified to construct a list of “relevant flows”

before processing the data in the FlowMonitor file by discriminating based on the

destination port of the flows.

In ns-3, when traffic sinks are declared, a port is specified for that node to receive

traffic on. FlowMonitor was showing in its output file that the end-to-end flows were

indeed using the same port as was specified in ns-3, but the hop-by-hop flows used

an entirely different port. Since the use of different ports is what distinguishes a

“relevant flow” from a non-relevant one, the FlowMonitor output file is first scanned

to remember the IDs of the flows that are relevant. Once this list has been con-

structed, the rest of the data in the FlowMonitor output file is processed while only

counting the statistics measured for those relevant flows.

5.3 Running Simulations

The process that this benchmark system uses is shown in Figure 3. Running the

benchmark is performed by executing the Main Benchmark Script which holds a

list of pseudo-random number generator seed values to use, a list of the names
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of the routing protocols implemented in the simulator, automatically finds all of

the scenarios to run, and calls the scenario-specific scripts which contain dynamic

parameters that are iterated through for successive simulation runs such as packet

size and traffic rate.

New parameters can be added either as static parameters (ones that will stay con-

stant for each time the benchmark is run), or as dynamic parameters (ones that

require the simulation to run for each new dynamic parameter combination).

Since static parameters are contained within the scenario-specific file which contains

code to set the scenario-specific parameters, the process to add new static parameters

is the same as adding new parameters to any C++ file.

Dynamic parameters hook into the ns-3 command-line argument system, so only a

few things need to be modified to add new dynamic parameters. First, the parameter

should be added to the manet-routing-benchmark.cc file which holds code common

to all scenario files including metric and auxiliary metric functions. The parameter

needs to be added to this file with the cmd.AddValue() function which is run on an

instance of CommandLine to let ns-3 know that is it a valid command-line argument.

Next, the dynamic parameter should be added in the scenario’s shell script. If the

dynamic parameter needs to take on different values for each run, then it should be

added in a loop such that the ns-3 build/run system is called for each value of the

parameter.

As an example, with packet sizes of 512 and 1024Bytes, and traffic rates of 16384bps

and 32768bps, there would be four combinations of packet sizes and traffic rates: 512-

16384, 512-32768, 1024-16384, and 1024-32768. Each of these packet size/traffic rate

combinations would be run 10 times for each scenario, once for each seed specified,

in order to produce reliable results.

There are 10 seeds stored in the Main Benchmark Script so that each scenario is

run 10 times for each combination of dynamic parameters. We do not use randomly

generated seeds for the sake of reproducibility - running the benchmark multiple

times should and will produce the same results as prior runs.

This script calls the ns-3 build/run system which links the scenario-specific param-
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eters and setup code with the common parameters and metric-producing code. The

dynamic parameters are passed to the ns-3 run system through command-line argu-

ments, and the scenario is run. There are several files that are generated in running

the simulation such as the Average Node Connectivity, Average Node Density, and

FlowMonitor files, and these files are moved to the respective output directory for

that scenario after the simulation has finished running. Files generated by this

benchmark are named accordingly to indicate the scenario, routing protocol, packet

size, and traffic rate used. The process is then repeated until all dynamic parameter

combinations have been evaluated. Lastly, the raw output files are run through a

metrics processing script which produces human-readable results.

The benchmark will automatically run any simulations that have not previously

been run in order to reduce processing time. It will also run through the scenarios

using all of the routing protocols that are specified in the main benchmark script.

5.4 Gathering Metrics

Some metrics are generated directly by the benchmark itself and are output into their

own files (Average Node Connectivity and Average Node Density), while others are

calculated in post-processing by a script. This script analyzes the FlowMonitor file

that is created by ns-3, and running this script outputs the Average Number of

Concurrent Flows, Number of Dropped Packets, a breakdown of the reason codes

for those dropped packets, the Total Delivery Ratio, Total Average Throughput,

and Total Average Delay.

These statistics are stored in a separate file which is read by an additional statistics

aggregation script. The reason these statistics are stored separately is because this

allows the benchmark to evaluate all of the scenarios for all of the routing protocols

before going back and computing the results for each individual scenario. This

aggregation script reads all of the statistics files for a scenario with a particular

packet size and traffic rate combination and averages the values over the different

runs of that scenario. In other words, for each PNRG seed that was used in running

a scenario, this script will average the metrics together to produce files which are
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Figure 3: The order of events that occur in this benchmark system.
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able to be plotted automatically.

5.5 Adding New Scenarios

New scenarios can be created using the sample scenarios as guides, and all that need

to be modified are: the environment, traffic, and mobility parameters. Scenario files

also require a supporting shell script which allows for parameters to be specified that

should change on each run of the scenario, such as packet size. Mobility models and

mobility traces are supported, and all files associated with the scenario (scenario file,

scenario script, and mobility trace) should be placed in the same directory with the

rest of the example scenarios so that the main benchmark script can automatically

find them.

This benchmark has support for selecting random Source-Destination pairs with

the guarantee that the destination will not be the same node as the source, along

with manually specifying your own Source-Destination pairs. The random algorithm

selects numSource nodes to act as sources, and then randomly chooses numSinks

sink nodes for each source node. For the reason that a sink node cannot be a source

node, the most number of sinks that can be chosen for a source node is numNodes−1.

After a new scenario has been added (the file containing ns-3 code which sets the

static parameters, the shell script which includes the dynamic parameters, as well

as any additional files such as a mobility trace), only the wscript file in the scenario

directory needs to be modified to evaluate the scenario. This file contains information

about which files and modules the scenario is dependent on in terms of compiling and

linking, so a new entry will need to be added for each new scenario. After wscript

has been updated, the Main Benchmark Script will find the new scenario the next

time the benchmark is run, and will automatically test each routing protocol against

it.

5.6 Adding New Routing Protocols

There are only two places in this benchmark that reference the routing protocol -

in the main benchmark script which specifies the name of the protocol, and in the
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core benchmark code that sets up and configures the routing protocol through the

routing protocol helper. All that is required to add a new routing protocol is to add

the name of the routing protocol to the Main Benchmark Script as a “supported

protocol”, and then to add the routing protocol helper to the SetupRoutingProtocol

function inside of the core benchmark code. This function maps the name of the

routing protocol, which is passed in as a command line argument, to the routing

protocol helper, so it is necessary that these names match. Once these two updates

are made, the routing protocol will automatically be run against all of the existing

scenarios the next time the benchmark script is called.

5.7 Sharing Scenarios and Results

Because this infrastructure is built into the examples that are provided in the stan-

dard distribution of ns-3, it will be very easy to share new scenarios that are added

to the benchmark. Code that is added to the distribution, including these new

scenarios, must be peer reviewed and checked into the ns-3 codebase where they

will be stored with the existing set of benchmark test scenarios. Sharing results is

something that can also be accomplished in the same way that new scenarios are

shared, or in an effort to save memory, they can be omitted from the codebase and

require the user to run the simulations for those scenarios. Due to the design of this

benchmark system, the benchmark can be run by any researcher who downloads it

and will produce the same results as if they were included with the ns-3 distribution.

6 Example Scenarios

We provide four example scenarios - two static and two mobile - in this section with

the intent of showing that it is possible to create scenarios that are applicable to

real-world situations. Instead of arbitrarily choosing parameter values, as have been

shown in the previous surveys [20], we urge the importance of evaluating protocols

with meaningful simulations. Our previous work described the parameter design

space in which parameters are selected from to create scenarios, and we chose these

four scenarios to represent different areas within the design space. These scenarios
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alone are in no way meant to be a comprehensive evaluation of a routing protocol,

but they will be a part of the comprehensive test as new scenarios that stress different

aspects of a protocol are added to the benchmark.

A full listing of the parameters chosen can be found at

http://inrg.cse.ucsc.edu/.

6.1 Static Scenarios

Static scenarios typically give benefit to proactive routing protocols, because the

positions of the nodes will not change over time. This allows for a higher amount of

traffic to be used early on in the simulation to determine the best possible routes that

can be used for the duration of the simulation, provided all nodes stay connected.

6.1.1 Smart Energy Grid

The first scenario, whose parameters are shown in Table 5, is a section consisting of

four city blocks (2x2) equipped with smart energy meters that are able to wirelessly

communicate energy usage data back to a central data collector unit [18]. The

density of the environment will depend on how many houses or apartment units

are built on a city block, but we can estimate 15 housing units per acre [6], and

we can estimate a medium-sized city block as 125m x 125m [37] which gives us

approximately 60 housing units per city block. The energy data sent back to the

hub is quite small at 512-1024 Bytes for commands and meter registers [25], and it is

also fairly infrequent seeing as the meters would not need to update more than a few

times per hour. Since multiple meters are capable of sending data at the same time,

the possibility of concurrent flows increases for the nodes closer to the central data

collector unit. Since there is a central unit acting as a data sink, the destination

node is always fixed, but the source nodes can be chosen at an estimated one every

hour.

This scenario tests a protocol’s ability to determine multi-hop routes in a very dense

network. Since the amount of data transferred is quite low, but done by many nodes,

we expect to see a significant amount of signaling packets being sent in this scenario.
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If a routing protocol is excessive in how it handles its network overhead, then it will

perform poorly in this test.

Table 5: Parameters Selected for Smart Energy Grid Scenario
Value Parameter

3600s Simulation Duration
250m x 250m Environment Dimensions

240 Number of Nodes
240 Number of Sources
4 Number of Destinations

All Sources, Fixed Sinks Source-Dest Pair Selection
Fixed Initial Node Distribution
N/A Node Mobility Model
25m Node Transmission Range

512-1024 Bytes Packet Size
5 Packets per Hour Per Node Packet Send Rate

6.1.2 Earthquake Monitoring

This scenario, as illustrated in Table 6, is modeled after the Middle America Subduc-

tion Experiment (MASE) [31][36]. MASE is a sensor network that monitors seismic

activity in Mexico, and reports the data back to the collaborating research labs for

processing. This network consists of 100 nodes spanning 550km from Acapulco,

Mexico to Tampico, Mexico, each of which is equipped with an 802.11 radio [30].

Looking at a map of the locations of the nodes, we can estimate that the width

of this environment is approximately 50km since the nodes are laid across a fairly

straight line. We were unable to find specific data regarding the traffic these nodes

send, but we are able to estimate the values based on reports of 20-40MB of band-

width per node per day [30] with an estimated 5 minutes of transmit time per hour

when in low power mode [10].

This scenario is similar to the Smart Energy Grid scenario in that it is has static

nodes, however it is an extreme situation where all of the flows are concurrent and

overlapping. Each of the source nodes sends its data to a single sink node at the end

of the line of nodes, so the nth node’s traffic flows through n-1 nodes. This scenario
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will also favor proactive protocols since the positions will remain static throughout

the duration of the simulation.

Table 6: Parameters Selected for MASE Seismic Monitoring Scenario
Value Parameter

900s Simulation Duration
50km x 550km Environment Dimensions

100 Number of Nodes
100 Number of Sources
1 Number of Destinations

All Sources, Single Fixed Sink Source-Dest Pair Selection
Fixed Initial Node Distribution
N/A Node Mobility Model

6500m Node Transmission Range
512-1024 Bytes Packet Size

8 Packets Per Second Per Node Packet Send Rate

6.2 Mobile Scenarios

Unlike static scenarios, mobile scenarios expose weaknesses in proactive routing pro-

tocols because often times the routes that proactive protocols find become stale and

obsolete very quickly. Reactive routing protocols, on the other hand, will determine

a route as data needs to be sent, so they are much more flexible in terms of adapting

to these changing environments.

6.2.1 College Campus DTN

This scenario uses the CRAWDAD KAIST mobility trace that were collected by

recording the movement of students on the KAIST college campus [34]. The mobility

trace is a collection of position recordings for 61 nodes over the course of over 22 hours

and in a 3900m x 8700m area. Due to this being a mobility trace monitoring real

people, not all of the 61 nodes were active over the course of the entire simulation, so

we used a snapshot of the trace that represented the time with the highest amount of

node movement. To select this section of time, we created a script to first discretize

time into buckets, then count the number of movements made by unique nodes,
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and then select the sequence of buckets with the highest number of movements for

unique nodes. This limited the scope of the trace to a section of one hour in length

which is sufficient for this study because we intend to evaluate how routing protocols

operate in Disruption Tolerant Networks (DTNs), not specifically to gather results

about the entirety of this mobility trace.

Since this scenario is modeling communication between students on a college campus,

we set the traffic parameters, which are shown in Table 7, to describe each node

sending data to every other node - such as in an emergency type of situation. We

equip the nodes with a transmission range of up to 200m which reflects the maximum

transmission range of Bluetooth [28]. We configure the nodes to send messages that

are 160Bytes, which is approximately the size of a GSM SMS text message [14].

Table 7: Parameters Selected for Campus DTN Scenario
Value Parameter

3600s Simulation Duration
1000m x 1000m Environment Dimensions

19 Number of Nodes
19 Number of Sources
18 Number of Destinations

All Sources, All Sinks Source-Dest Pair Selection
Fixed Initial Node Distribution

Mobility Trace Node Mobility Model
250m Node Transmission Range

160 Bytes Packet Size
2 Packets Per Minute Per Node Packet Send Rate

6.2.2 San Francisco Taxi

This scenario uses the CRAWDAD mobility traces which captured the positions of

San Francisco taxis while they were operating [33]. The full trace contains coordi-

nates of 536 nodes spanning a 3600km x 4200km area over 575 hours. This amount

of mobility data not only is significantly more data than we need for this test, but we

also suspect at least a few of the coordinates were stray positions that are intended

to be filtered out since the size of the entire is many times larger than the San Fran-

cisco peninsula, as shown in Figure 4. To restrict the trace data, we targeted nodes
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in just the San Francisco peninsula, as shown in Figure 5, which resulted in a 9500m

x 6230m area. We also used a similar process like was done with the KAIST trace

to reduce the amount of the trace to 900 seconds from the full 575 hours, and this

limited the number of active nodes in the area to 283. The period of 900s that was

selected was a sequence of time that had a large amount of unique node movement

so as to keep the number of active nodes high.

The traffic generation parameters are based on an experiment modeling the VANET

traffic in downtown Malaga, Spain [40]. The number of Source-Destination pairs

chosen were half the number of the nodes used, with CBR traffic ranging from

33Kbps to 1Mbps data rates and 512Byte packets. The transmission range was

chosen as a stable value based on the results in [35].

Table 8: Parameters Selected for San Francisco Taxi VANET Scenario
Value Parameter

900s Simulation Duration
9500m x 6230m Environment Dimensions

283 Number of Nodes
283 Number of Sources
10 Number of Destinations

Random Sources, Random Fixed Sinks Source-Dest Pair Selection
Fixed Initial Node Distribution

Mobility Trace Node Mobility Model
750m Node Transmission Range

512 Bytes Packet Size
33, 66, 100, 333, 666, 1000Kbps Per Node Packet Send Rate

7 Metrics

7.1 Metrics Collected

We make a distinction between metrics and auxiliary metrics. We view metrics as

being used to evaluate the performance of a protocol whereas auxiliary metrics are

used to evaluate the effectiveness of a simulation scenario. There is a danger in some

of the auxiliary metrics because there are similar metrics that are more common to
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Figure 4: Maximum area of coordinates found in San Francisco Taxi VANET trace
files.

Figure 5: Area used in San Francisco Taxi VANET scenario.
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Figure 6: Percentage of papers found in MobiHoc 2006-2010 that used the indicated
metrics.

use (such as average hop count), but they don’t provide as valuable of information

(compared to average shortest path hop count).

In our extended survey of MANET routing protocol papers, we found that there

were several de facto metrics for evaluating the performance of a protocol [20].

These metrics are shown is Figure 6, and include Delivery Ratio (number of packets

received divided by the number of packets sent), Average Delay (Average over all

received packets’ arrival time minus departure time), Throughput (Total number

of bytes sent divided by the total amount of time data was being sent), Routing

Overhead (The number of routing packets sent per data packet sent), and Energy

Consumption, while the most common auxiliary metric was Average Node Degree

(Average Number of Node Neighbors). Some metrics were combined for comparisons

because there are several variations of the metrics that can alternatively be used

(such as throughput can be alternatively measured as goodput - the total number

of bytes received divided by the amount of time data was being sent).

Several auxiliary metrics have been proposed such as the Average Shortest Path Hop

Count and Average Network Partitioning which measure the average shortest path

number of hops to any destination from any source, and the average percentage of

nodes that are reachable by any source to determine the connectivity of the net-

work [24]. Since both of these auxiliary metrics measure information about potential
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paths for data (not necessarily ones that are traveled by sent data), they must be

measured at small intervals of time over the life of the simulation as opposed to

measured based on the packets sent over the duration of the simulation.

We propose that there are five more important auxiliary metrics that should be ac-

counted for in determining the effectiveness of a simulation scenario: Average Node

Density, the Average Number of Concurrent Flows, the Number of Unroutable Pack-

ets, the Total Average Connectivity, and the Average Source-Destination Distance

in Transmission Range Hops.

7.1.1 Average Node Density

Average Node Density is a coarse measure of how dense or sparse a network is.

In order to calculate the Average Node Density of a network, we assume a grid

distribution of the nodes across the environment, and we also approximate a node’s

transmission area as a square with sides of length 2∗Tr where Tr is the Transmission

Range of the node. We first divide the environment area (width ∗ height) into cells

of the same size as the node’s transmission area, and then we divide the number

of nodes by the number of cells which gives us the number of nodes per cell. This

auxiliary metric is very easy to calculate, and can give valuable insight into the

scenario long before the scenario is simulated. It is important to note that since

the density of the network will change over time in a mobile network, so in order

to more accurately calculate the density of a dynamic network, measurements are

taken periodically throughout the simulation to capture a sequence of instantaneous

node densities.

Our implementation of the average node density auxiliary metric also produces a

visual node density map. This map displays the environment discretized into cells

of size 2 ∗ Tr in varying intensities of color based on the percentage of nodes that

occupied the cells. A higher intensity cell indicates that there were many nodes

populating that cell for a significant period of time over the course of the simulation.

An example of the density map is shown in Figure 7.
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7.1.2 Average Number of Concurrent Flows

The Average Number of Concurrent Flows is a measure of traffic flows that overlap in

time. This metric will allow researchers to design simulations with higher numbers of

concurrent flows to not only ensure that the network experiences higher congestion

which will in turn demonstrate the worst-case performance of a protocol, it will

also expose synthetic scenarios. Nodes routing multiple flows simultaneously will

experience a higher level of stress at all layers: contention and collisions at the

PHY/MAC layers, queueing in the routing layer, and QoS in the application. Real-

world situations tend to have at least a few nodes in which flows converge upon

such as fixed data sinks in smart energy meter networks [18] or emergency response

situations where local clusters communicate internally before forwarding data to

upstream clusters, so the lack of simulating flows converging upon certain points in

the network will lead to unrealistic results.

Our implementation of the average number of concurrent flows uses the FlowMonitor

class which is distributed with ns-3. FlowMonitor records information about traffic

flowing between particular source and destination nodes including the first and last

packet sent/receive times, the total amount of delay, the total amount of jitter, total

number of packets sent/received, number of lost packets, and reasons for packets

being lost. To determine the average number of concurrent flows, we first determine

the length of time of a flow based on the first and last packets sent for that flow.

Next, we construct an array that is the length of the amount of time that traffic is

flowing in the simulation, and increment the counter in each cells of the array for

all cells that fall between the time that the first packet is sent in the flow, and the

last packet received in the flow. We then take this array which shows us how many

flows are active at any point in time, and reduce it to a single average value.

We also considered implementing the related, and more powerful auxiliary metric,

Average Number of Overlapping Flows. This metric gives insight into the number

of concurrent flows, as well as detailing how the flows interact with each other. It

is entirely possible to have a high number of concurrent flows in a network where

none of the flows overlap, so the network would not be as stressed as it would
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first appear. Counting the number of overlapping flows, however, would provide

information regarding how many flows were being routed by each intermediate node

in the path. Nodes having to simultaneously route for many flows would experience

a higher load, and would thus produce more meaningful results when trying to stress

the network. The drawbacks in implementing this auxiliary metric lie in needing to

expose the path a packet will take to determine which nodes are routing for that

flow.

Since paths are determined by the routing protocol, and those paths can change due

to mobility, network load, available energy on the node, etc., this metric would need

to keep a mapping between a flow and the path(s) it takes at each instance of time

that the network is probed. Since some paths are pre-determined, it might be neces-

sary to look inside the routing tables as packets are being generated which reduces

the ability to calculate this metric without requiring specific code for each routing

protocol. A better approach would be to have nodes record packet sequence num-

bers when they are sent or received so that the path can be determined and mapped

back to the flow that the packets belong to in post-processing. The drawback of

this approach is that is requires a significant amount of memory and post-processing

power, so we leave this metric to the future work as an improvement upon the

Average Number of Concurrent Flows.

7.1.3 Number of Unroutable Packets

The Number of Unroutable Packets is a measure of the packets dropped due to the

routing protocol which includes no route existing between the source and destination

nodes, and the TTL being exceeded on a packet. While Delivery Ratio includes one

aspect of this auxiliary metric since it counts the number of packets that were able

to be delivered, the packets that were not able to be delivered can be due to effects

of the PHY, MAC, or routing layers - they are all grouped together to count towards

dropped packets. In evaluating a routing protocol, it is important to know how many

packets were dropped due to the physical and MAC layers, however those dropped

packets should not be attributed to the routing protocol.
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In this benchmark, we again used the the FlowMonitor class which is distributed

with ns-3 to count the number of unroutable packets. While it currently already

exists in ns-3, we still advocate the use of this auxiliary metric and would like to see

it implemented in the other network simulators as well. FlowMonitor categorizes

dropped packets under several labels - No Route, TTL Expire, Bad Checksum,

Queue Overflow, Interface Down, Route Error, Fragment Timeout - so to construct

the Number of Unroutable Packets, we combine the No Route, TTL Expire, and

Route Error error codes, where Route Errors are generated by AODV indicating

that a link is no longer valid.

To complete focus on the packets dropped due to the routing protocol, we inves-

tigated the implementation of an Ideal MAC. This MAC layer would guarantee

delivery of all packets sent so that only the routing protocol would be responsible

for dropping packets. While this solution provides a clearer picture of the routing

protocol, it does move away from the effort of producing realistic simulations.

7.1.4 Total Average Connectivity

In addition to the above proposed auxiliary metrics, we also implemented a measure

of the Total Average Connectivity of the network which is the inverse implementa-

tion of the Average Network Partitioning proposed in [24]. This metric is calculated

by first constructing a one-hop neighborhood matrix for each node based on their

current positions and transmission ranges, and then running the Floyd-Warshall al-

gorithm to determine multi-hop paths. These matrices are generated periodically

over the course of the simulation, and then aggregated when the simulation ter-

minates to calculate the total average connectivity based on how many how many

instances of time node S had any path to node D. Currently this implementation

reduces the number of hops gathered at each instance of time into a binary counter

of how many instances of time there was any length of a path to the destination,

but it could easily be adapted to calculate the average minimum hop count based

on transmission ranges.
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7.1.5 Average Number of Source-Destination Distances in Tx Range

Hops

The Average Number of Source-Destination Distance in Transmission Range Hops

is a measure of the physical distance between source and destination nodes, which

in turn determines the minimum number of hops a routing protocol could utilize to

send data between the nodes. This metric takes the difference between the two nodes

and divides it by the node’s transmission range, Tr, to determine the line-of-sight

minimum number of hops.

8 Results

In order to quantify the value in this benchmark system, we ran the routing protocols

that are built into ns-3 (AODV, OLSR, and DSDV) against our sample scenarios

and collected the metrics that we described in the previous section. The results and

analysis are in the sections that follow.

Two of the auxiliary metrics produced results that are very similar across all three

protocols tested, because they measure scenario features as opposed to the rout-

ing protocol. The measure of connectivity as shown in Figure 13 shows that the

connectedness of a scenario does not change when testing the different protocols.

Variation comes into play with random mobility models such as Random Waypoint,

which can be seen in the slight variation of connectivity in the Average scenario.

The other scenarios use static placement or mobility traces, so node positions in

those scenarios are identical for each protocol that is tested.

The other auxiliary metric that produced nearly identical results across all runs

within a scenario is the Average Source-Destination Distance in Tx Range Hops.

This auxiliary metric can be seen in Figure 16. The reason it is nearly identical

within each scenario is because it relies on three things - which nodes are randomly

selected as sources/sinks, their positions with respect to time, and the transmission

range of the nodes. Since the transmission range of a node does not change within a

scenario, and each PNRG seed used is tested against each routing protocol so that
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the same source-destination pairs are used, it comes down to the node mobility. As

discussed above, the only scenario in this benchmark example that uses a random

mobility model is the Average scenario, so that is why there is a slight variation

in the average distance between source and destination nodes. The other scenarios

either do not move the nodes, or they move them in identical ways for each run due

to the mobility trace, so the distances result in the same values within a scenario.

8.1 Average Scenario

As a comparison, we also took the most commonly used parameters that we found

in conducting a survey of the current best practices, and used them to construct

an “Average Scenario” in order to see how a completely synthetic scenario would

perform when compared directly to these realistic environments. The parameters

used in this Average Scenario are shown in Table 9.

This scenario has a maximum of 20 possible concurrent flows, which all three of the

protocols are able to maintain as shown in Figure 12. The connectivity shown

in Figure13 is also approximately the same for each of the protocols, although

it is low at 12-13%. The low connectivity results in low delivery ratios in Fig-

ure{refdeliveryRatioResults, however we can see that OLSR outperforms AODV

and DSDV by about 20% and 25% respectively. While at first glance we see that

this is an odd result, looking at throughput in Figure 17, we can see that OLSR

sends significantly fewer data packets than AODV or DSDV. We can also see in

Figure 14 that for those packets that are sent, the delay is much less than AODV

or DSDV which allows them to be sent with higher success.

With respect to the total average node density which can be seen in Figure 7, the

average scenario shows a fairly well distributed occupancy of the cells over the dura-

tion of the simulation which we attribute to the Random Waypoint mobility model.

While at first glance this seems desirable, it does not reflect realistic movement.

A positive aspect of this scenario can be seen in the average source-destination

distance in Tx range hops. The average scenario produces an average of 3.56 hops

between source and destination nodes which means that the routing protocol will
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Figure 7: Average Scenario Node Density Map

need to produce effective multi-hop routes.

We can also see in Figure 19 that out of the packets dropped, OLSR produces a

higher number of unroutable packets which we attribute to stale routes in a mobile

environment.

Table 9: Parameters Selected for Synthetic Average Scenario
Average Scenario

Value Parameter

900s Simulation Duration
1000m x 1000m Environment Dimensions

100 Number of Nodes
20 Number of Sources
20 Number of Destinations

Random Sources, Random Fixed Sinks Source-Dest Pair Selection
Random Initial Node Distribution

Random Waypoint Node Mobility Model
125m Node Transmission Range

512 Bytes Packet Size
4 Packets per Second Per Node Packet Send Rate
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Figure 8: Earthquake Monitoring Density Map

8.2 MASE Seismic Monitoring

We can see very clearly from the connectivity results shown in Figure 13 that this sce-

nario constructs a network with 100% connectivity. The delivery ratios in Figure 15

indicate that all three protocols deliver close to 100% of the packets sent which is

expected for such a well connected scenario. The average number of concurrent flows

(Figure 12) is approximately 95 flows for each of the protocols which also falls in line

with the characteristics of this scenario. We can see that AODV suffers slightly in

packet delay (Figure 14) compared to the table-driven protocols which we attribute

to it generating routes on demand as opposed to proactively maintaining the routes.

Figure 17 shows that while OLSR and DSDV have similar data throughput rates,

AODV performs worse which we attribute to the higher delays.

Given that this scenario is static and defined to place the nodes linearly, it is not

surprising to see that the density map shown in Figure 8 depicts exactly that. It

does, however, put into perspective the number of hops packets are traveling to get

to the single destination for all of the traffic flows. Also, Figure 19 shows that none

of the protocols produce a noticeable number of unroutable packets which indicates

that drops in this scenario are not at the fault of the routing protocol.

8.3 Energy Grid

This scenario also being static, we expected somewhat similar results to the MASE

Seismic Monitoring scenario. We notice similar trends due to their static node

placement and high connectivity (although this scenario falls to 81% connectivity

compared to the MASE scenario’s 100% connectivity). An indication that there

is a difference between the two scenarios can be seen by looking at the delivery

ratio. We can see across all protocols that fewer packets are successfully delivered

(Figure 15) which we attribute to the difference in connectivity. This scenario also

produces similar numbers of concurrent flows in the three protocols (Figure 12) with
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Figure 9: Smart Energy Grid Node Density Map

DSDV maintainng a slightly higher number of flows. We can see in Figure 14 that,

similar to the MASE Seismic scenario, AODV has a higher delay than OLSR and

DSDV which negatively impacts the throughput. Again, we attribute this to AODV

generating routes on-demand compared to the proactive OLSR and DSDV protocol.

Looking at throughput, we notice that this scenario has a very low throughput

overall (Figure 17) but this due to the traffic model which sends few data packets

infrequently.

The density map for this scenario shown in Figure 8 is quite symmetric which is

expected given that this static scenario purposefully has nodes placed in a grid.

Also, we can see in Figure 19 that there are a very small number of unroutable

packets generated by AODV and OLSR, but the number is quite insignificant. This

follows our expectation that that drops in this scenario are not due to the routing

protocol, but rather due to queue overflows or lower layer interference.

8.4 Campus DTN

This scenario shows a surprising delivery ratio highly in favor of OLSR (Figure 15)

which is unexpected due to the mobility trace used. We can see in the same figure

that AODV and DSDV have approximately the same delivery ratio at around 17%.
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While the throughput is very low for all of the protocols due to the traffic model

used sending low numbers of very small data packets (Figure 17), we can see in the

throughput that OLSR transmits far fewer data packets than both AODV and DSDV

(Figure 17). We attribute this to being a byproduct of the number of concurrent

flows that the protocols are able to maintain, because we can see in Figure 12 that

OLSR is only able to achieve approximatley 50 flows while AODV and DSDV are

able to maintain approximatley 340 each.

Each measured flow contains only the data that is sent end-to-end, so we attribute

the discrepancy in the number of flows that OLSR achieves to be a byproduct of

the routing overhead that is generated by the protocol. Since a flow is defined by

the data packets that are sent–a flow only exists if it has had at least one successful

end-to-end data transmission–we believe that the flows that don’t exist in OLSR are

due to their inability to send at least one successful data packet end-to-end. With

the nodes in this scenario being mobile, route updates are more frequent for OLSR

which attempts to proactively maintain a table of routes which puts a higher strain

on the network with the routing overhead required. We can see in Figure 18 that

OLSR loads the network heavily with overhead packets which looks to prevent the

unsuccessful flows from sending any end-to-end data packets which in turn reduces

the number of concurrent flows as well as the delivery ratio.

Lastly, Figure 14 shows that OLSR has a much smaller delay than AODV or DSDV.

The few packets that are sent by OLSR are able to be successfully delivered because

it is only maintaining a fraction of the number of flows that AODV and DSDV are

achieving, and they are able to reach their destinations very quickly which reduces

the likelihood of the route breaking during a transmission. The combination of these

events are what lead to a deceivingly high delivery ratio.

The density map for this scenario (Figure 10) reveals that although this network

is quite disconnected as it, on average, has a few clusters that are separated from

each other, it does have several hotspots where the nodes congregate. This keeps

the connectivity at a non-existent level.

We can see a measurable number of unroutable packets in this scenario in Figure 19
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Figure 10: Campus DTN Node Density Map

which we attribute to the highly mobile environment which frequently breaks links.

The figure shows that the table-driven protocols incur a slightly higher number of

unroutable packets compared to the on-demand AODV.

8.5 San Francisco Taxi VANET

This scenario shows similar characteristics in the delivery ratio (Figure 15) to the

Campus DTN scenario. It shows a surprisingly high delivery ratio for OLSR for

having very low connectivity whereas AODV and DSDV show delivery ratio trends

that are consistent the low connectivity. We caution the take-away of this single

metric, however, because we see again in Figure 17 that OLSR sends significantly

fewer packets than AODV and DSDV, it achieves a much lower delay for the packets

that are sent (Figure 14), and these are because it only maintains a fraction of the

number of concurrent flows that AODV and DSDV are supporting (Figure 12). This

looks to be, again, due to the routing overhead shown in Figure 18 which indicates

that OLSR is sending a significant amount more of overhead packets than AODV

and DSDV. The influx of overhead packets puts a much higher strain on the network

which limits the amount of data that the protocol is able to send, thus resulting in

fewer concurrent flows.
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Figure 11: SF Taxi VANET Node Density Map

Figure 12: Average Number of Concurrent Flows results

The density map in Figure 11 indicates a fairly sparse network with a few hotspots

of connectedness where higher number of nodes are more active.

This scenario also performs similarly to the Campus DTN scenario in terms of un-

routable packets (Figure 19). Since this scenario is also highly mobile, we expect

a number of the drops to be due to routing protocols generating stale or broken

paths. We see again that the table-driven protocols show a slightly higher number

of unroutable packets compared to AODV which generates its routes on-demand.

8.6 Validation of the Benchmark

In order to validate the correctness of the results produced by this benchmark, sev-

eral comparisons were made. Ideally, we wanted to take an existing paper with

well-known results and show that this benchmark produces the same trends. Un-

fortunately, it is extremely difficult to reproduce the results from someone else’s

scenario based on the information they provide in a paper or even with an extended
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Figure 13: Total Average Connectivity results

Figure 14: Total Average Delay results

Figure 15: Delivery Ratio results

Figure 16: Average Source-Destination Distance results
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Figure 17: Average Throughput results

Figure 18: Routing Overhead Ratio results

Figure 19: Unroutable Packets Ratio results
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parameter selection on a website. There are a number of reasons for this, but a

few common ones are that parameters used are forgotten or unknown, differences

between simulators or even simulator versions produce different results, and metrics

can be defined in different ways. One of the purposes of this benchmark is to provide

a way for researchers to reproduce others’ results since it is currently very difficult

if not impossible.

Taking a different approach, pieces of the benchmark were tested in various ways. For

example, as a preliminary test of the benchmark, we ran the manet-routing-compare

example in ns-3 to produce results for an arbitrary simulation. We then implemented

the same scenario in the benchmark and found the results to be very similar. A snip-

pet of the results are shown in Table 10 which shows that the benchmark produces

runs the simulations as intended by the simulator.

Table 10: Comparison of ns-3 example to benchmark with AODV
Metric Benchmark manet-routing-compare

Avg Throughput 2948.93bps 2938.92bps
Avg Goodput 2045.38bps 1985.97bps
Delivery Ratio 0.6169 0.5939

Avg Delay 22.45ms 28.33ms
Unroutable Packets Ratio 0.0887 0.0738

Total Dropped Packets 5689 5970
Avg Concurrent Flows 9.0194 9.5335

Next, the processing of the FlowMonitor file was checked against another exam-

ple provided with ns-3 - the flowmon-parse-results.py script. We simulated

flowmon-parse-results.py which is a separate FlowMonitor example scenario and

ran the output file through the flowmon-parse-results.py script as well as through

the metrics processing script in the benchmark, and the results were identical.

Lastly, a scenario was implemented that was introduced in the FlowMonitor pa-

per [5]. This scenario consists of rows of nodes connected by links with alternating

capacities of 100kbps and 50kbps. Each node sends traffic to the node two hops

away so that all of the traffic for the flow must travel over both the 100kbps link as
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well as the 50kbps link. This results in an expected output of 50% packet loss. The

results are shown in Figure 11.

Table 11: Comparison of FlowMonitor theoretical test implemented in the bench-
mark

Metric Benchmark Flowmon Measured Expected Value

Avg Throughput 105476.87bps 99646.06bps 99631.00bps
Avg Goodput 50869.62bps 49832.11bps 49815.50bps
Delivery Ratio 0.4830 0.4978 0.5000

Avg Delay 8.2326s 8.8005s 8.8020s

9 Conclusions

As intuitive as it seems, it is extremely important to document the settings of an

environment for any scientific test, and this is no different for MANET routing pro-

tocol simulations. There have been several studies showing the differences between

protocol implementations between simulators, so simply relying on default values in

a simulator can produce wildly different results when comparing one simulator to

another. While it has been known for many years that the problem of not being

able to accurately reproduce or compare routing protocol simulations has existed.

It has also been known that researchers typically use completely synthetic scenarios

with no real-world basis when evaluating their protocols. We believe that we are

the first to produce a viable solution aimed at solving both of these problems. We

have examined the de facto metrics that are collected to evaluate routing protocols

as well as proposed several new auxiliary metrics which will aid in the design of new

scenarios. We have implemented a prototype version of this benchmark in ns-3, and

we have released the source code to this project in hopes that the community will

adopt this method for producing reliable, reproducible, and distributable evaluations

of their protocols.
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