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ABSTRACT 

Genome-wide identification of chromatin organization and structure has been generally 

probed by measuring accessibility of the underlying DNA to nucleases or methyltransferases. 

These methods either only observe the positioning of a single nucleosome or rely on large 

enzymes to modify or cleave the DNA. We developed adduct sequencing (Add-seq), a method 

to probe chromatin accessibility by treating chromatin with the small molecule angelicin, which 

preferentially intercalates into DNA not bound to core nucleosomes. We show that Nanopore 

sequencing of the angelicin-modified DNA is possible and allows visualization and analysis of 

long single molecules with distinct chromatin structure. The angelicin modification can be 

detected from the Nanopore current signal data using a neural network model trained on 

unmodified and modified chromatin-free DNA. Applying Add-seq to Saccharomyces 

cerevisiae nuclei, we identified expected patterns of accessibility around annotated gene loci in 

yeast. We also identify individual clusters of single molecule reads displaying different 

chromatin structure at specific yeast loci, which demonstrates heterogeneity in the chromatin 

structure of the yeast population. Thus, using Add-seq, we are able to profile DNA accessibility 

in the yeast genome across long molecules. 

INTRODUCTION 

DNA in all eukaryotic cells is packaged into nucleosomes. This nucleoprotein complex together 

with DNA binding proteins and RNA comprises chromatin. The dynamic and variable nature of 

chromatin regulates all DNA-centric processes and plays a vital role in cell growth, 

differentiation, and development. Nucleosomes are composed of approximately 147bp (~ 1.7 

turns) of DNA wrapped around a central histone protein octamer. Arrays of nucleosomes 

separated by ~20-90 bp of linker DNA appear as beads on a string in electron micrographs (1). 

Nucleosomes block access of DNA binding factors to the underlying DNA and impede 

transcription, replication, DNA repair and recombination machineries (2). The distribution of 

nucleosomes across the genome is not uniform and varies significantly between open and 

closed chromatin. There is also considerable heterogeneity in nucleosome distribution at 

different gene loci in open chromatin and also within each gene (3). This chromatin structure 

varies with growth conditions, differentiation, and development (4). Thus, knowledge of the 

dynamic chromatin landscape can yield important insights into development, disease, and drug 

response. 

Assays to determine nucleosome distribution at specific gene loci were developed soon after 

the discovery of the nucleosome (5). The original assays probed for accessibility of chromatin 

to DNA endonucleases that mostly cleave linker DNA (6, 7). These were subsequently adapted 

to genome-wide nucleosome distribution studies using short-read Illumina sequencing leading 

to MNase-seq (8), DNAse-seq (9), and ATAC-seq (10) among others. While nucleosome 
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distribution profiles from short-read data have been vital to our understanding of chromatin 

structure and function, they only provide an aggregate view of nucleosome distribution across 

all cells in the population. A granular view of the heterogeneity in nucleosome spacing in 

individual cells is lacking in these data. Also absent is a view of coordination of nucleosome 

organization across long genomic distances. short-read data also suffer from biases introduced 

by PCR amplification, read mapping, and DNA fragmentation (11). 

A more recent advancement in sequencing was the development of long-read nanopore 

sequencing technology, where an electrical current is passed across a biological pore 

embedded in a lipid bilayer. As single-stranded DNA is channeled through the pore by a motor 

protein, the electrical current undergoes shifts based on the sequence of the six bases of DNA 

(k-mer) present in the pore at any given time (12). Recent advances in nanopore sequencing 

technology where electrical shifts generated by modified DNA bases can also be detected have 

led to the development of single molecule long-read assays to map chromatin accessibility 

using DNA methyltransferases (MTase) (13). These long-read sequencing approaches allow for 

the detection of modified DNA without the bias of PCR amplification and can also detect 

endogenous DNA modifications such as 6mA and 5mC (14–17). Data from these methods have 

yielded novel insights into single-cell nucleosome distribution in the genome and gene 

regulation. 

Despite the promise of MTase assays to map nucleosome occupancy, they all rely on the 

ability of the MTase, a bulky protein with an average atomic mass of 38kD, to access linker 

DNA (the short spans of DNA between individual nucleosomes). To overcome the issue of 

labeling short linker regions, we have developed a method to map accessible chromatin using 

the small molecule, angelicin, which has an atomic mass of 186. Angelicin is a furocoumarin, a 

class of molecule that covalently binds DNA pyrimidine bases when exposed to UV-A light. 

The most widely used furocoumarin in structural DNA analysis is the DNA crosslinking agent 

psoralen (18). Unlike the crosslinked di-adducts generated by psoralen, angelicin is thought to 

form only monoadducts within a single strand of DNA, i.e. it is linked to one DNA strand alone 

(19, 20). Angelicin was also shown to intercalate with a sequence preference of 5’-TA > 5’AT >> 

5’TG > 5’GT bases (21). The use of a monoadduct to modify DNA allows us to generate single 

stranded DNA required for nanopore sequencing and avoids damaging the high molecular 

weight DNA needed for long-read sequencing. Here we report a method called Add-seq, for 

adduct sequencing, that utilizes angelicin to map chromatin accessilbilty using nanopore 

sequencing. We show that intercalation of angelicin causes a detectable shift in the nanopore 

current signal and have developed a neural network approach to predict chromatin structure 

from this signal data. We show that angelicin modification data recapitulates known patterns of 

chromatin structure and identifies heterogenous single-molecule chromatin profiles and 

regulatory patterns at a single locus. 
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MATERIAL AND METHODS 

Yeast strains and culture 

 The Saccharomyces cerevisiae!"#$%&'!(")*!+,-.%/01%!1&"23))!1&"23)4!/56732!/5673))7!

8%')3)99!6$%2:4;!+<7**=!>5$&?%#&?5;!@%"!6"5>!&'!#1&"!"#6>(A!=5//"!@5$5!B$C@'!&'!DEF!+)G!

(5%"#!5H#$%8#I!7G!050#C'5I!7G!>5H#$C"5;!%#!29J=A 

Yeast nuclei isolation 

 Yeast nuclei isolation was carried out as described previously (22). 

Angelicin modification of yeast and genomic DNA extraction 

Yeast chromatin was modified with angelicin using purified nuclei. One aliquot of nuclei (from 

~5 X 10^8  cells) was resuspended in 0.4 mL of angelicin modification buffer (10mM Tris-HCl, 

10mM NaCl, 0.1mM EDTA, pH 7.4). The nuclei suspension was divided into 2 wells of a 6-well 

cell culture plate and placed on ice. 10 uL of a 2mg/ml angelicin stock (500uM) (SIGMA-

A0956) were added to each of the wells. Angelicin is photolytic, and care should be taken to 

ensure samples incubating with angelicin are kept away from direct UV-light before and after 

crosslinking. The plate was swirled a few times to mix the angelicin and incubated in the dark 

on ice for 5 minutes. While ensuring the culture plate remained nested in ice, the plate was 

exposed to 365nm UVA light (Stratagene UV Stratalinker 2400, power 5.0) for 5 minutes 

followed by a 5-minute incubation in ice. This UV exposure process was repeated for a total of 

7 times. Contents of both wells were pooled into a fresh low-adhesion tube (EPPENDORF-

022431021) and both wells were washed with 100 uL of ice-cold angelicin modification buffer 

and added to the same low-adhesion tube to maximize nuclei retrieval. High molecular weight 

DNA was purified using the NEB Monarch HMW DNA Extraction kit for tissue (T3060L). The 

use of wide-bore pipette tips when working directly with long DNA massively improves the 

length of the purified library. Positive and negative control data for the neural network training 

were generated from purified high molecular weight DNA that was incubated with or without 

500uM angelicin respectively followed by UV treatment as described above. 

Oxford nanopore sequencing 

3-4 micrograms of DNA were used to prepare genomic libraries for sequencing with Oxford 

Nanopore Technologies (ONT) SQK-LSK110 kits for use with R9.4.1 (FLO-MIN106) flowcells. ~1.5 

micrograms of the library were loaded onto flowcells, and all library sequencing was 
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undertaken on a MinION for 24 hours each with MUX scanning every 6 hours to extend the life 

of the flow cell.   

Basecalling and pre-processing sequencing data 

The data was basecalled with guppy v4.4.0  and the reads aligned to the sacCer3 genome with 

minimap2 v2.26 (23, 24). Secondary and supplementary reads were then filtered and aligned 

reads were sorted and indexed with samtools v1.13. Nanopolish eventalign v0.14.0 was run to 

align signals to the kmers (25). 

Quantification of angelicin modification 

To assay the extent of angelicin modification, we selected the restriction endonuclease BciVI as 

its recognition sequence harbors a central ‘AT’ motif that becomes unrecognizable in the 

presence of an angelicin modification.  Plasmid vector pBluescript SK+ 

(https://www.addgene.org/vector-database/1951/) was modified with 0, 100, and 500 uM 

angelicin prior to digestion with BciVI (NEB). 2.5 micrograms of DNA modified at each angelicin 

concentration were cut with either 4 or 8 units of restriction enzyme.  Digests were analyzed on 

a 4150 TapeStation (Agilent) using a D5000 Screentape . 

Alkaline agarose gel electrophoresis 

Agarose gel electrophoresis was performed on pBlueScript DNA modified with 0, 100, and 

500 uM angelicin and digested with Not1 according to (32).  DNA was visualized and 

documented on a BioRad ChemiDoc XRS imager after ethidium bromide staining and 

destaining. 

Identification of kmer signal distribution peaks and informative kmers 

We took the mean signal value for each kmer (6-mer) in each read in the eventalign file and 

aggregated it by kmer. We then rounded to the nearest integer and generated normalized 

histograms representing the signal distribution in each kmer. We then used 

scipy.signal.find_peaks to identify kmers with a secondary peak in the positive control sample, 

which we considered to be an informative kmer to indicate modification. We also identified 

peaks in the negative control sample and found that no kmers had more than one peak in that 

sample (Supplementary File 1). Using these kmers, we then generated a sequence logo using 

kplogo (26) (http://kplogo.wi.mit.edu/). 

Scoring modification probability based on signal distributions 

We generated precalculated modification probability scores given any informative kmer and 

any mean signal value (rounded to the nearest int) associated with that kmer. We did this by 

calculating the probability of any signal value belonging to the positive control distribution 
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relative to the negative control distribution first by identifying whether the signal is closer to the 

secondary angelicin peak in the positive control data and then calculating the probability at that 

signal value of belonging to the positive control distribution relative to the negative control (pos 

probability / (pos probability + neg probability)). All kmers closer to the standard distribution 

were given a modification probability of 0. 

Aggregate analysis of transcription start sites (TSS) and transcription termination sites (TTS) 

using informative kmers 

We took the eventalign data from yeast chromatin DNA and scored the modification 

probability of each informative kmer. We then aggregated those scores across reads for each 

genomic position and saved those in a .wig file. Next, we loaded all annotated TSS and TTS 

positions in the yeast genome (27). We went through the modification .wig file and aggregated 

all sites in relation to nearby TSS or TTS positions and plotted the average modification 

probability at each position. 

Identification of missing kmers 

To identify missing kmers, we first ran nanocompore eventalign_collapse (v1.0.4) (28) on our 

eventalign files for the negative and positive controls. We then went through the nanocompore 

collapse files and identified positions that were covered by aligned bases on either side within 

a read but do not have current signals assigned to them. We then aggregated these positions 

by kmers and compared the fraction of missing kmers to total kmers covered by aligned reads 

between the negative and positive controls. 

Training and validation of a neural network model 

We developed a computational method NEMO (a NEural network model for mapping 

MOdifications in nanopore Long-read) designed for training and predicting angelicin 

modification sites. NEMO incorporates a PyTorch (v2.0.1+cu118) implementation of the Residual 

Network classifier tailored for analysis of one-dimensional signal data (29). We divided each 

positive and negative control dataset into training and validation subsets. Specifically, 80% of 

reads were allocated to the training dataset, while the remaining 20% were reserved for 

validation. Positive control data were labeled with prediction probabilities of 1.0 and negative 

control data were labeled with prediction probabilities of 0.0. The model was trained with an 

input size of 400, a batch size of 256 and 1000 batches per epoch. Input signals of length 400 

are represented as a one-dimensional array [1, 2, 3, 4, 5, ..., 400]. For every data point, a single 

signal shift was applied to capture the sequential nature of nanopore signals (e.g., [2, 3, 4, 5, 

6, ..., 401]). Gradient descent was computed using binary cross entropy loss after each step and 

model parameters were updated using the Adam optimizer (30). Following each epoch, model 

performance was validated with batch size of 256 and for 100 batches. After 500 epochs, the 
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model with highest validation accuracy was saved as the optimal model for subsequent 

analyses. 

Neural network prediction in chromatin sequencing data 

The model trained on control data was used for predicting angelicin modifications in chromatin 

sequencing data. Given a 75 base pair sequence, NEMO fetches corresponding signals , which 

theoretically matches 400 signals, and predicts angelicin modification in underlying bases. A 

sliding window of 75bp traverses across each individual read with a step size of 20 base pairs. 

This ensures neighboring predictions share information with 55 base pair overlap. Single-

molecule modification scores were recorded for every 20 base pairs across the genome. 

Aggregated scores were calculated by averaging prediction scores across the reads. NEMO 

reports both single molecule scores and aggregated scores as final outputs. 

Single molecule clustering and visualisation 
In NEMO, we implemented a matplotlib v3.6.2 based genome track visualizer to plot 

specific regions. Reads mapped to the CLN2 gene promoter region chrXVI:66400-

67480, NUP170 gene promoter region chrII:74300-75800 and ZDS2 gene promoter region 

chrXIII:51100-52600 are clustered and visualized using NEMO with following methods. 

Reads covering a minimum of 50% of the regions were used to construct a modification 

probability matrix. Missing values in the matrix were imputed with scikit-learn v1.1.2 

simpleImputer function under ‘most_frequent’ strategy. The matrix was then input to the 

scikit-learn v1.1.2 K Means clustering algorithm, where reads are clustered based on their 

modification profiles. Clustering was performed with random centroid initializations and 

the cluster ids are collected after 300 iterations. Clustering numbers were decided based 

on previously reported numbers of clusters in literature (CLN2) or scikit-learn 

silhouette_score function (NUP170 and ZDS2). Single molecules were colored based on 

their predicted angelicin modification scores. Modification scores were then binarized with 

threshold 0.55, and aggregated scores for each cluster were calculated by averaging 

binarized scores across the reads within each cluster. 

 

RESULTS 

Angelicin modification and sequencing of DNA 

In order to obtain angelicin-modified DNA, we isolated yeast nuclei, preserving the chromatin 

structure, and incubated these with 500 uM angelicin (Figure 1A). We then exposed the nuclei 

with angelicin to UV-A (365nm) for seven rounds of 5 minutes each, allowing the nuclei to cool 
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on ice between rounds. The time and rounds of UV-A exposure were previously optimized (3) 

for mapping nucleosomes by psoralen crosslinking to ensure high levels of covalent 

modification of DNA and minimize damage (Supplementary Figure 1). Following angelicin 

treatment of the nuclei, we extracted high-molecular-weight DNA to obtain single DNA 

molecules with a mean length of ~40 kb.  We also extracted chromatin-free DNA from yeast 

nuclei and either treated it with only UV as our negative control or with UV + 100uM or 500uM 

angelicin as a positive control.  We sequenced each sample DNA on an ONT minION (R9.4.1) 

flow cell, basecalled reads with Guppy v4.4.0, and aligned the current signal from the pore to 

the assigned genetic bases and genomic positions with eventalign. 

 While the modified DNA was successfully sequenced, we noticed that flow cells 

sequencing angelicin-modified DNA had significantly lower throughput and the pores became 

inactive significantly faster than flow cells sequencing unmodified DNA (Supplementary Figure 

2A-B). Given that our preliminary structural analysis showed thiamine bases modified by 

angelicin could fit through a nanopore (data not shown), as well as the fact that we were able 

to sequence some angelicin-modified DNA, it was unlikely that angelicin intercalation was 

blocking the pores. Although previous work has shown that angelicin should form covalent 

bonds with a single thymine base on one DNA strand, without forming covalent bonds 

between the two strands of DNA (19, 20), molecules with structures similar to angelicin such as 

psoralen do cause crosslinking between DNA strands. To assess whether angelicin induces 

DNA crosslinking, we analyzed the mobility of angelicin-treated DNA samples in a denaturing 

alkaline agarose gel. This technique separates uncrosslinked single strands from cross-linked 

double strands based on their mobility (Supplementary Figure 2C). We found that angelicin 

treatment did cause a small fraction of the DNA to form interstrand crosslinks, which we 

hypothesized was causing the pore blockages. However, despite this reduced throughput, we 

were able to sequence and align 68,608 reads from the positive control sample modified with 

500uM angelicin (Supplementary Table 1). 

Identification of angelicin modification from Nanopore current signal 

 Using the aligned current signal data from the positive and negative control samples, 

we compared the distribution of current signal values for 6 base-pair long kmers with and 

without the intercalation motif for angelicin (5’-TA). Kmers without 5’-TA had no shift in current 

signal values between the positive and negative control (Figure 1B), while a subset of kmers 

with TA had a secondary peak of different current signal values in the positive control (Figure 

1D). However, most TA-containing kmers did not have any shift in the signal distribution 

between the negative and positive control (Figure 1C). Given previous work showing other 

modifications shifting current signals (14, 17) and that this shift was only observed in TA 
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containing k-mers where the modification was possible, we concluded that this secondary 

distribution was due to angelicin-modified DNA.  

To systematically distinguish angelicin-specific signal peaks of modified kmers from 

unmodified kmer signals, we identified distinct peaks in the signal distributions. Only 58/4096 

(1.4%) percent of all kmers had this distinct signal shift. We then selected only kmers with 2 

peaks in the positive control as informative. We then generated a sequence logo for these 

kmers, which showed a very strong preference for the known 5’-TA angelicin intercalation site 

as the first two bases of the kmer (Figure 1E). We were surprised not to observe signal shifts in 

kmers with TA at other positions. 

We also observed that near a 5’-TA motif where we expect angelicin modification to occur, we 

instead observed positions with no signal mapped to the kmer (Supplementary Figure 3). These 

skipped kmers are positions where Guppy and Nanopolish eventalign could not assign kmers 

to the current signal in the read. The angelicin modification likely caused a shift in the electrical 

current that does not match the expected signal distribution of any known kmer, so the kmer is 

skipped by the software. 36% of all TA-containing kmers had >10% missing signal in the 500uM 

angelicin positive control sample. Modification probability cannot be assigned to these skipped 

kmers due to the lack of mappable signal to the sequence. Despite this sparseness of usable 

data, we modeled the probability of any signal value in an informative kmer belonging to the 

angelicin-specific peak in the signal distribution. In order to identify whether our data agrees 

with chromatin structure predictions from orthogonal methods, we used this model to predict 

the probability of angelicin modification at each informative kmer in the nanopore sequencing 

data from nuclei with intact chromatin treated with 500uM angelicin. 

 The region around a transcription start site (TSS) of a transcriptionally active gene 

typically shows a characteristic chromatin accessibility signal. Upstream of the TSS, the DNA is 

generally accessible allowing for transcription factors and RNA polymerases to bind. 

Downstream, within the gene body, nucleosomes are packed close to each other, so overall 

DNA accessibility is lower, and a regular pattern of positioned nucleosomes interspersed with 

accessible linker regions is expected. Furthermore, the first nucleosome is expected to be the 

most well-positioned, with subsequent downstream nucleosomes being less well positioned 

(31). Near the transcription termination site (TTS), there is also a known pattern of accessibility 

just downstream of the TTS (31). To see if angelicin-treated nuclei reflect this pattern, we 

averaged the modification scores for a 1000 bp window around every transcription start and 

end site in yeast (Supplementary Figure 4). From this metagene plot, we found that the scores 

roughly approximated the expected pattern around the TSS and TTS (27) with a peak of higher 

modification upstream and downstream of the TSS and TTS respectively. The dip in the NDR 

modification peak 5’ of the TSS possibly reflects the lack of informative kmers in this region.  
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Identification of angelicin modification using a neural network model 

 Due to the low fraction of informative kmers and the missing kmers problem, the 

probability distribution model is only able to predict modification probability for 1.6% of 

genomic positions in the yeast genome. Given the difficulty in detecting modification at the 

single-nucleotide resolution, we hypothesized that chromatin accessibility could more easily 

be detected using machine learning to observe subtle changes in nanopore current signal 

across a larger window of bases. To be able to map single-molecule chromatin accessibility at 

nucleosome resolution, we developed NEMO (a NEural network model for mapping 

MOdifications in nanopore Long-read). To infer angelicin-modified regions, we trained a one 

dimensional residual neural network (ResNet1D) model directly from windows of consecutive 

nanopore signals(Figure 2A, Supplementary Figure 5) (32). ResNet1D has previously been used 

for monitoring electrocardiogram (ECG) signal data in intensive care units. Considering the 

analogous nature of electrical current measured by electrocardiograms and ONT flow cells, we 

think ResNet1D is ideal for learning signal changes caused by nucleic acid modifications. Since 

we were interested in being able to identify the presence or absence of nucleosomes, we 

picked a 400 signal measurement window, as that corresponds to approximately 75 bp or half 

of a nucleosome (Supplementary Figure 6). Our positive and negative control data were used 

to train and validate the classification ability of the neural network model. Our model was able 

to distinguish signal currents from positive and negative control data with an area under the 

receiver operating curve (AUC) of 0.82 in the validation dataset (Figure 2B, C). This represents a 

relatively high true positive rate and low false positive rate.  

We then applied the model to predict accessible regions in nuclei-derived chromatin 

sequencing data. Individual reads are scanned using a 75 bp sliding window with a 20bp step 

size. Prediction scores are assigned to the first 20 bp within every 75 bp window by averaging 

overlapping windows (Figure 2D). After aggregating the neural network modification scores 

across all TSS and TTS, we observe the expected patterns of increased accessibility before the 

TSS and after the TTS. We observe the highest modification peak of angelicin immediately 

upstream of the TSS (Figure 2E) reflecting the canonical nucleosome depleted region (31) albeit 

with a broader angelicin modified peak than that observed with micrococcal nuclease. This is 

followed by a periodicity of angelicin modification roughly every ~150bp similar to the MNase-

seq pattern of cleavage within the nucleosome linkers (27). The metagene plot of angelicin 

modification at the TTS (Figure 2F) shows high modification immediately following the TTS 

corresponding to the dual peaks observed in the MNase-seq plot. 

Due to the higher density of modification calls in the neural network derived data, we also 

looked at individual loci. The CLN2 cyclin regulates progression of the yeast cell cycle and 

transcription of the CLN2 gene is also regulated in a cell cycle dependent manner (33). The 
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CLN2 promoter is a well-studied cell cycle regulated promoter that has a large nucleosome 

depleted region (NDR) upstream of the TATA box (34). Nucleosome depletion at the upstream 

NDR is achieved through the binding of cell cycle-specific and general transcription factors, 

and a chromatin remodeler complex (35). After k-means clustering of the predicted 

modification scores at this locus, we observe three clusters with distinct patterns of 

accessibility corresponding to a closed promoter with an open upstream NDR (C2), a partially 

closed promoter with a partially open upstream NDR presumably bound by some of the 

various factors (C0),  and a fully open promoter with both nucleosomes displaced and a 

partially closed upstream NDR (C1) (Figure 3A). Alternative accessibility states at the CLN2 

promoter have been previously reported by (17), but we observe a more granular view of 

accessibility states that associates more closely with the known regulation of this promoter. 

The various CLN2 promoter states that we can discern from our Add-seq approach 

demonstrate the usage of small molecules to study chromatin accessibility.  

With our Add-seq single-reads, we are also able to observe the heterogeneity in nucleosome 

positions within a cell population that is mostly obscured in short-read data. The NUP170 

(YBL079W) TSS has been previously identified as having unique nucleosome positions using 

MNase-seq (36). In agreement with their finding, the NUP170 C1 cluster in our data has a well-

positioned nucleosome at the promoter followed by a uniquely positioned +1 nucleosome and 

fairly uniquely positioned +2  and +3 nucleosomes. Furthermore, we find a greater diversity of 

nucleosome positions within the gene between cells as well as a generally closed promoter in 

the second (C0) NUP170 cluster (Figure 3B). The ZDS2 (YML109W) gene has been identified as 

having overlapping nucleosome positions in the TSS using MNase-seq (36), which we were 

able to further resolve using Add-seq. As previously observed, there are two well positioned 

nucleosomes at the TSS for ZDS2 in the C1 cluster and we find some overlap in nucleosome 

positions at the promoter of this gene. The C0 ZDS2 cluster on the other hand, reveals a mostly 

open promoter with a well-positioned +1 nucleosome (Figure 3C). These observations highlight 

the diverse positions nucleosomes occupy within a cell population and support the utility of 

Add-seq in analyzing chromatin structure. 

DISCUSSION 

We have established that angelicin can covalently bind to thymine bases in single strands of 

DNA and that those strands can be sequenced on nanopores. We have also shown that 

angelicin-modified kmers have a distinct current signal compared to unmodified kmers. We 

have developed a neural network-based method for estimating the probability of angelicin 

modification on segment of DNA. These methods allowed us to detect both the chromatin 

accessibility on a genome-wide level as well as at the single-molecule level at specific loci.  
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The biggest challenge we have faced is the sparseness of data likely due to a combination of 

incomplete angelicin modification of accessible modifiable sites, blockage of the pores 

presumably due to DNA cross-linking, and the reduced ability of the base calling software to 

consistently assign DNA sequence to modified kmers. Some of the incomplete angelicin 

modification may be because at any AT/TA context, angelicin can only covalently bond with a 

thymine in one strand of the DNA. As a result, we fail to sequence the strand containing the 

modification half the time with standard nanopore sequencing. This means that even in our 

positive control, we do not have any guarantee that all modifiable sites will be modified. This is 

a non-trivial problem especially for the neural network-based model, as machine learning 

models depend highly on good-quality training data. Other groups have used synthetic DNA 

with modified bases at known sites to train similar models. However, we were unable to find 

any available protocols or companies able to synthesize DNA with angelicin modifications. 

Future work may utilize the newly developed nanopore duplex sequencing to sequence both 

strands of DNA (37, 38), increasing the probability of sequencing the modified kmer at each 

modifiable position. However, at the moment, this method is not high throughput enough to 

generate sufficient training data (37, 38). 

 Although previous work has shown that the chemistry of angelicin should not allow for 

the formation of crosslinks (19, 20), unlike the angelicin analog psoralen that only forms 

interstrand crosslinks (3), we observed a small fraction of angelicin treated DNA contained 

interstrand crosslinks. This result combined with the more rapid decay of flow cell pores on 

samples with angelicin treatment leads us to hypothesize that the interstrand crosslinks in the 

DNA cannot pass through the pores, thus clogging them and reducing the throughput of the 

flow cell. One way to alleviate this issue would be to incubate DNA at elevated temperature 

and basic pH to break interstrand crosslinks. Base treatment has been successfully used before 

to break DNA crosslinks formed by psoralen (39) but the adapter protein required to ratchet 

the DNA through the nanopore during sequencing will not withstand such harsh treatment thus 

precluding this option. Other options include modeling angelicin itself as well as altered 

structures of angelicin or other furocoumarin derivatives to determine how they traverse the 

nanopore and utilizing this information to synthesize and test alternative small molecules that 

can be used as probes for visualizing the chromatin landscape (40, 41).  

 Despite these challenges, our current protocol still allows us to detect both genome-

wide and single locus chromatin accessibility. There are also other benefits to using this small 

molecule as opposed to methylation enzymes or other approaches. Compared to enzyme-

based approaches, angelicin modification is significantly cheaper per unit of DNA- $0.09 per 

ug of DNA for angelicin compared to $4.30 per ug of DNA for the commercial EcoGII 

methyltransferase. Angelicin is also an exogenous modification that does not naturally exist in 

cells. Other approaches use GpC methyltransferases to label genomes that also have 
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endogenous CpG modification, which results in the exclusion of methylation data in a GCG 

context due to ambiguity between native methylation and exogenous modification (14). 

Angelicin is also a membrane permeable molecule, which can facilitate chromatin accessibility 

probing without isolating nuclei (19), which has been previously shown to affect chromatin 

structure accessibility (42). Removing the step of nuclei isolation can make accessibility probing 

more amenable to small tissue samples or other single-cell analysis. Furthermore, DNA 

polymerase is unable to polymerize through an angelicin modified template (data not shown); 

therefore, this technique of detecting accessibility will unlikely work with other long-read 

sequencing methods like Pacific Biosciences (PacBio) (15). While there are still optimizations 

that could be made to the angelicin modification protocol, we show that using nanopore 

sequencing on angelicin-modified chromatin is a novel method for probing chromatin.  

DATA AVAILABILITY 

Raw nanopore signal data are deposited at https://zenodo.org/records/10798988. Basecalled 

nanopore sequencing data and alignment files are available under BioProject: PRJNA1084879. 

Data and Codes for regenerating figures are at: 

https://github.com/baigal628/addseq_manuscript. Our computational model NEMO is 

available at https://github.com/baigal628/NEMO. Processed data is available in Supplementary 

File 1. 
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Figure 1: Add-seq: A method using angelicin modification to probe chromatin accessibility. 
(A) Schematic of the Add-seq method. Yeast nuclei were treated with 500uM angelicin, then exposed 
to multiple rounds of UV light to crosslink the angelicin with the DNA. The modified DNA was 
extracted and sequenced by nanopore sequencing. (Partly created with Biorender.com).
(B,C & D) Histograms of the nanopore current signal data aggregated across all reads aligning to a 
given kmer from yeast DNA that had been either treated with UV light only or angeilicin + UV for (B) 
an unmodifiable kmer GGCGCG, (C) a modifiable kmer CGTTAC with only a single peak and (D) 
modifiable kmer with two peaks TATATA. 
(E) Sequence logo for the 58 kmers with two distinct peaks.
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Figure 2. Angelicin modification scoring from a neural network model identifies expected 
patterns of chromatin accessibility around annotated gene loci:
(A) A schematic of the neural network model trained on the untreated and angelicin treated DNA raw 
nanopore current signal data (Created with Biorender.com). 
(B) Density of predicted scores for negative and positive control data. 
(C) Receiver operating characteristic (ROC) curve for the validation set of positive and negative 
control data. 
(D) A schematic showing how modification probability is predicted for overlapping windows of 75bp 
on each read and then averaged to get scores for 20bp windows for each read (Created with 
Biorender.com).  
(E & F) Aggregate modification probability predicted by NEMO (top) and MNase-seq (bottom) for 
4000 base pairs centered on every TSS (E) and TTS (F) in a subsample of the yeast genome.
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Figure 3. Single molecule analysis of chromatin structure using Add-seq: Single read 
angelicin modification clusters of individual gene loci. Each row is a single read covering the 
locus. Heatmap is probability of angelicin modification where 1 (yellow) is likely modified while 0 
(green) is unlikely unmodified. The reads have been separated into clusters using k-means 
clustering on the modification scores.
(A) The CLN2 promoter (Chr XVI: 66,400–67,480). Dark gray ovals in the schematic represent 
the +1 nucleosome while the light gray ovals represent nucleosomes that are displaced by factor 
binding. The narrow vertical bars, ovals and hexagons represent transcription factor binding sites.
(B) the NUP170 TSS (ChrII: 74,300-75,800). Dark gray ovals in the schematic represent 
well-positioned nucleosomes and the light gray overlaid ovals represent overlapping nucleosome 
positions.
(C) the ZDS2 TSS (Chr XIII: 51,1000-52,600). Dark gray ovals in the schematic represent unique 
nucleosomes and the light gray overlaid ovals represent overlapping nucleosome positions.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.585815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.585815
http://creativecommons.org/licenses/by/4.0/


A B

Supplementary Figure 1. Quality of Angelicin modification of DNA: 
(A) TapeStation results for 500uM angelicin treated DNA after treatment with short read 
eliminator (SRE). SRE was not used in sequencing because it did not improve the result. 
B Result of BciV1 digest on 500uM angelicin sample (lane B1) and 0uM angelicin sample 
(lane C1). BciV1 cuts at TA sites and fails to cut when angelicin modification is present at 
these sites. 
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Supplementary Figure 2. DNA crosslinking due to angelicin modification leads to 
reduced throughput of flow cells: (A+B) The histograms show percent activity of 
nanopores during a sequencing run with A Unmodified DNA, X axis has a maximum value of 
72 hours  and B DNA modified with 500uM angelicin, X axis has a maximum value of ~3 
hours. (C) Denaturing alkaline agarose gel electrophoresis of linearized plasmid BlueScript 
(pBS) modified with varying concentrations of angelicin (0uM to 500uM). A majority of the 
DNA migrated as single stranded DNA (lower band) however, a small amount of double 
stranded DNA (upper band) was observed in lanes with angelicin modified DNA. A portion of 
the 500uM* angelicin treated DNA was lost during processing. 
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Supplementary Figure 3. Missing kmer analysis: Points are kmers covered by reads but with 
no signal aligned to them in the negative vs positive (500uM angelicin) control samples.
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Supplementary Figure 4. Aggregate accessibility prediction using statistical model on only 
informative kmers: A TSS and B TTS aggregate scoring for statistical prediction of kmer 
modification for yeast DNA with chromatin and angelicin modification. Statistical prediction was 
performed only for the 58 informative kmers.
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Supplementary Figure 5. Expanded schematic of neural network process. Created with 
Biorender.com
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Supplementary Figure 6. Histograms of signals associated with a 75bp window: (A) 
Number of signal scores per 75bp window (B) Number of signal scores per 75bp window after 
eliminating 6-mers with > 10 scores assigned to them (indicates DNA pausing, causes outliers)
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SAMPLE Number 
of Raw 
Reads

Total raw 
bases 

% 
Aligned 
reads

Aligned bases 
excluding 

mismatches

Fraction 
of 

aligned 
+ 

matched 
bases

Average 
coverag

e

Average 
base 

quality

N50 
Length 

(kb)

Negative 
Ctrl

76,833 351,075,059 95.5% 320,253,441 91.2% 27.6X 22.4 16.2

Positive 
Ctrl

100uM

51,309 199,635,317 92.4% 170,192,907 85.2% 15.1X 20.0 10.6

Positive 
Ctrl 

500uM

121,848 377,864,115 89.0% 292,057,136 77.3% 26.6X 18.3 6.76

Chromatin
500 uM 

108,470 815,894,534 92.2% 713,990,306 87.5% 62.8X 21.1 13.4

Supplementary Table 1. Sequencing and alignment statistics for Nanopore sequencing of all 
samples
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