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Abstract We show how to extract Cardy’s Formula for a general class of domains given
the requisite interior analyticity statement. This is accomplished by a careful study of the
interplay between discretization schemes and extraction of limiting boundary values. Of par-
ticular importance to the companion work (Binder et al. in J. Stat. Phys., 2010) we establish
these results for slit domains and for the critical percolation models introduced in Chayes
and Lei (Rev. Math. Phys. 19:511–565, 2007).

Keywords Universality · Conformal invariance · Percolation · Cardy’s formula

1 Introduction

In this note we wish to establish the validity of Cardy’s Formula for crossing probabilities of
certain 2D critical percolation models in a general (finite) domain � ⊂ C (i.e., an open sim-
ply connected subset of C). In this introduction we will not be overly concerned with model
specifics, as the key point of this work is to clarify certain notions concerning discretization
and extraction of appropriate boundary values. While these issues have been addressed to
various extents in e.g., [4–6, 14, 15, 17], and may seem quite self-evident—at least for nice
(i.e., Jordan) domains, a complete and unified treatment for general domains appears to be
absent. Moreover, aside from æsthetic appeal, the generality that appears here is certainly
needed for the approach of proving convergence to SLE6 outlined in [16] (see also [17])
and carried out in [3]. Our efforts will culminate in the establishment of Theorem 5.8 and
Corollary 5.11 (which is stated in [3] as Lemma 2.6).
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Since it is our intention that this note be self-contained, let us first review the
methodology—introduced in [15] and adapted to the models in [7] (see also [3], Sect. 4.1)—
by which Cardy’s Formula can be extracted. At the level of the continuum we are interested
in a domain � ⊂ C which is a conformal triangle with boundary components {A, B, C} and
marked prime ends (boundary points) {a, b, c}—all in counterclockwise order—which rep-
resent the intersection of neighboring components. At the level of the lattice, at spacing ε,
we consider an approximate domain �ε , in which the percolation process occurs and which
tends—in some sense—to � as ε → 0. At the ε-scale, the competing (dual) percolative
forces will be denoted by “yellow” and “blue”.

Let z be an interior point (e.g., a vertex) in �ε . We define the discrete crossing probability
function uB

ε (z) to be probability that there is a blue path connecting A and B, separating z

from C , with similar definitions for vB
ε (z) and wB

ε (z) along with yellow versions of these
functions. For these objects, standard arguments show that subsequential limits exist; two
seminal ingredients are required: First, they converge to harmonic functions with a particular
conjugacy relation between them in the interior and second they satisfy certain (“obvious”)
boundary values. With these ingredients in hand it can be shown that the limiting functions
are the so called Carleson–Cardy functions. E.g.,

lim
ε→0

uY
ε = u,

and similarly for the v’s and w’s where, e.g., according to [2], the functions u,v,w are such
that

F := u + e2πi/3v + e−2πi/3w

is the unique conformal map from � to the equilateral triangle formed by the vertices 1,
e±2πi/3. This is equivalent to Cardy’s Formula.

We carry out the above scheme in its entirety for a general class of domains and their
discrete approximations which is suitable for our uses in [3], Lemma 2.6/Corollary 5.11.

Remark The appropriate discrete conjugacy relations for the uε, vε and wε have only been
established for the 2D triangular site models in [15] and the extension introduced in [7].
However, since the RSW estimates are purportedly universal and actually hold for any rea-
sonable critical 2D percolation model, in principle we always have limiting functions u,v,w

with some boundary values. Hence most of the content of the present work should apply.
However, certain provisos and clarifications will be required; see Remark 5.6.

In the ensuing arguments we will have occasion to make use of the uniformization map
ϕ : D → � (where D denotes the unit disk) provided by the Riemann Mapping Theorem.
Here we will take ϕ to be normalized so that ϕ(0) = z0 ∈ � for some fixed point z0 well
in the interior of � and ϕ′(0) > 0. We will also identify points on ∂D with boundary prime
ends of ∂�, via the Prime End Theorem. We refer the reader to e.g., [13] for such issues.
Finally, the reader may wish to keep in mind that the reason for addressing most of the
issues herein is for application to the case where the curves/slits under consideration are
percolation interfaces/explorer paths; for discussions on this topic we refer the reader to [3].

2 The Carathéodory Minimum

We start by reviewing a standard notion of domain convergence, namely, Carathéodory con-
vergence, mainly to phrase it in terms of more elementary conditions which are more conve-
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nient for our purposes. The reader can find similar conditions/discussions in e.g., Sect. 1.4
of [13].

Our general situation concerns a sequence of domains (�n) which converge in some
sense to the limiting � along with functions (un, vn,wn) converging to a harmonic triple
(u, v,w) satisfying the appropriate conjugacy relations. As a minimal starting point let us
consider the following pointwise (geo)metric conditions for domain convergence:

(iI) If z ∈ �, then z ∈ �n for all n sufficiently large.
(iII) If zn ∈ �c

n, then all subsequential limits of (zn) must lie in �c .
(e) For all z ∈ �c (including, especially ∂�) there exists some sequence znk

∈ �c
nk

such
that znk

→ z.

Conditions (iI) and (iII) ensure that limiting values of u, v and w in (the interior of)
� can be retrieved and are defined by values of un inside �n whereas condition (e) implies
that �n’s don’t converge to a domain strictly larger than �, so that the boundary values of
u on ∂� might actually correspond to (the limit of) boundary values of un on �n. Indeed,
these preliminary conditions turn out to be equivalent to Carathéodory convergence (see
e.g., [10]; although in our context we will actually not have occasion to use convergence of
the relevant uniformization maps). More precisely, first we have the following result, whose
proof is elementary (and we include for completeness):

Proposition 2.1 Consider domains �n,� ⊂ C all containing some point z0. Then the fol-
lowing are equivalent:

1. If K is compact and K ⊂ �, then K ⊂ �n for all but finitely many �n.
2. (iI) For all z ∈ �, z ∈ �n for all but finitely many �n.

(iII) If zn ∈ �c
n, then all subsequential limits of (zn) must lie in �c .

3. If z ∈ �, and δ < d(z, ∂�), then Bδ(z) ⊂ �n, for all but finitely many �n.

Proof (1) ⇒ (2) To see (iI) suppose z ∈ � and d(z, ∂�) > δ, then Bδ(z) ⊂ � and is com-
pact and hence we have Bδ(z) ⊂ �n for all n sufficiently large and hence z ∈ �n for all n

sufficiently large; conversely, To see (iII), suppose zn → z with zn ∈ �c
n and suppose towards

a contradiction that z ∈ �. Then again arguing as before, Bδ(z) ⊂ �n for n sufficiently large,
but then zn ∈ Bδ(z) also for n even larger, which implies that these zn ∈ �n, a contradiction.

(2) ⇒ (3) Again suppose d(z, ∂�) > δ so that Bδ(z) ⊂ �. If it is not the case that
Bδ(z) ⊂ �n for n sufficiently large, then we can find a sequence zn ∈ Bδ(z) ∩ �c

n. Since
Bδ(z) is compact, there exists a subsequential limit point znk

→ z∗, but then by (iII), z∗ /∈ �,
contradicting Bδ(z) ⊂ �.

(3) ⇒ (1) Let K ⊂ � be compact. We can cover K by K ⊂ ⋃
x∈K Bδx (x), with δx <

d(x, ∂�). By the assumed compactness, there is a finite subcover K ⊂ ⋃k

i=1 Bδxi
(xi). By (3),

for 1 ≤ i ≤ k, there exists Ni such that Bδxi
(xi) ⊂ �n for all n ≥ Ni , and hence it is the case

that K ⊂ �m for all m > max{N1,N2, . . . ,Nk}. �

Now the notion of kernel convergence requires, in addition (specifically to condition (1)
in the above proposition) that � is the largest (simply connected) domain satisfying the
above conditions. The addition of condition (e) indeed corresponds to maximality; argu-
ments similar to those just presented easily lead to the following (whose proof is elementary
and is also included for completeness):

Proposition 2.2 The conditions (iI), (iII), (e) are equivalent to �n converging to � in the
sense of kernel convergence.



394 I. Binder et al.

Proof In light of the above discussion, it is sufficient to show that the condition (e) is equiv-
alent to the maximality condition on � required by kernel convergence.

⇒ Suppose � is not maximal and hence � � �′ where �′ satisfies (iI) and (iII). It must
be the case then there is a point z ∈ ∂� ∩ �′. By condition (e) there exists znk

→ z with
znk

∈ �c
nk

, but condition (iII) for �′ implies that z ∈ (�′)c , a contradiction.
⇐ Conversely, suppose � is maximal and assume towards a contradiction that � does

not satisfy (e), so that there exists some point z ∈ �c and some δ > 0 such that Bδ(z) ⊂ �n

for all n sufficiently large. By the maximality of �, it must be the case that Bη(z) ⊂ � for
any η < δ, which implies in particular that z ∈ �, a contradiction. �

It is noted that in the present setting of bounded, simply connected domains, kernel con-
vergence is, by the theorem of Carathéodory, equivalent to convergence uniformly on com-
pact sets of the corresponding uniformization maps (see e.g., [10], Theorem 3.1). The latter
notion is known as Carathéodory convergence and we will use this terminology throughout.

As is perhaps already clear, Carathéodory convergence alone is insufficient for our pur-
poses: Since the functions u,v,w must acquire prescribed boundary values on separate
pieces of ∂�, it is manifest that (some notion of) separate convergence of the corresponding
pieces of the boundary in ∂�n will be required. Special attention is needed for the cases of
domains with slits—which are of seminal importance when we consider the problem of con-
vergence to SLEκ . The situation is in fact rather subtle: Note that in both Fig. 1 and Fig. 3,
we have that �ε Carathéodory converges to �, but whereas the situation in Fig. 1 disrupts
establishment of the proper boundary value, the situation in Fig. 3 is perfectly acceptable
(see Remarks 3.2 and 4.3).

3 Interior Approximations

We will begin by considering the interior approximations, where �ε ⊂ � for all ε. For
earlier considerations along these lines, see [9] and [11]. Here, the crucial advantage is that
all the �ε’s can be viewed under a single uniformization map; this allows for relatively
simple resolutions of various concerns of a geometric/topological nature. Moreover, this
appears to be the simplest setting for the purposes of establishing Cardy’s Formula in a fixed
(static) domain, i.e., where � is fixed for once and for all and we are free to generated �ε in
any fashion. (See especially Example 3.3 below.) In particular, for circumstances where the
fixed domain problem is all that is of interest, the reader is invited to skip Sect. 4 altogether.
We start with:

Definition 3.1 (Interior Approximations) We call (�•
ε) an interior approximation to � if:

(I) The domains �•
ε consist of one or more (graph) connected components (the latter

case is an artificial effect of the lattice spacing being not fine enough). Each component is
bounded by a closed polygonal path, and the union of all such polygonal paths we identify
as the boundary ∂�•

ε . In particular, ∂�•
ε consists exclusively of polygonal edges each of

which is a portion of the border of an element in (�•
ε)

c .
(II) The boundary ∂�•

ε is divided disjoint segments, denoted by Aε, Bε, . . . in (rough)
correspondence with the (finitely many) boundary components A, B, . . . of the actual do-
main �. In case �ε is a single component, these are joined at vertices aε, bε, . . . corre-
sponding to the appropriate marked prime ends. In the multi-component case, if necessary,
a similar procedure may be implemented, implying the possible existence of several aε’s etc.
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When required, the aε, bε, . . . , etc., will be the one corresponding to the “principal” compo-
nent of �ε , namely, the component which contains the point z0, which, we recall, served to
normalize the uniformization map. Here it is tacitly assumed that ε is small enough so that
this component has a representative of each type.

Further, we require the following:

(i) It is always the case that �•
ε ∪ ∂�•

ε ⊂ �. That is, �•
ε is in fact a strictly inner approxima-

tion.

This property ensures that indeed all of �ε can be viewed under the (single) conformal
map ϕ : D → � in the ensuing arguments.

(ii) Each z ∈ � lies in �•
ε for all ε sufficiently small.

It can be seen that conditions (i) and (ii) imply that for any z ∈ ∂A, there exists some
sequence zε → z with zε ∈ Aε , and similarly for B, etc.

(iii) Given any sequence (zε) with zε ∈ Aε for all ε, any subsequential limit must lie in A.
Moreover, this must be true in the stronger sense that for any subsequential limit
ϕ−1(zεn) → ζ ∈ ∂D then ζ ∈ ϕ−1(A). Similarly for B, etc.

In particular, any subsequential limit of the (aε)’s will converge to a point in a, and
similarly for b, etc.

Remark 3.2

• To avoid confusion, by the above method, an interior approximation to any slit domain—
no matter how smooth the slit—necessarily consist of at least a small cavity of a few
lattice spacings. It is noted that the explorer process itself produces just such a cavity.

• It is easy to check that interior approximations satisfy conditions (iI), (iII), (e).
• Condition (iii) is indeed used to ensure that the limiting boundary values are unambiguous

and correspond to the desired result (see Lemma 5.2). A simple scenario where careless
approximation leads to the wrong boundary value is illustrated in Fig. 1.

• Note that even though for convenience we have assumed in (iii) that zε ∈ Cε and have
used the uniformization map ϕ, what is sufficient is that if zk → z ∈ C , then for all but
finitely many k, zk should be close to Cε , in some appropriate sense. Indeed, we shall have
occasion to formulate such a definition later, for the statement of Lemma 4.4.

Example 3.3 An example of an interior approximation is what we will call the canonical
approximation, constructed as follows. To be definitive, consider a tiling problem with fi-
nitely many types of tiles. We formally define the scale ε to be the maximum diameter of

Fig. 1 Violation of condition (ii)
in Definition 3.1, which would
lead to incorrect (limiting)
boundary values
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any tile. As usual, we may regard all of C as having been tiled—“Cε”. The domain �ε is
defined as precisely those tiles in Cε which are entirely (including their boundary) in �.
Clearly then this construction satisfies (i); condition (ii) is also satisfied: if z ∈ � is such that
d(z, ∂�) > ε0, then z ∈ �ε for all ε < ε0.

At this stage ∂�ε is just one or more closed polygonal paths. The boundary component
types are determined as follows: For the marked points, e.g., a, consider the neighborhood
Qδ(a) defined as follows: Let cε denote a sequence of crosscuts of ϕ−1(a) with the property
that ϕ(cε) contains a δ neighborhood of a with δ/ε → ∞ and δ(ε) → 0; Qδ(a) is then the set
bounded by ϕ(cε) and the relevant portion of ∂�. It is clear, for ε small, that “outside” these
neighborhoods, the assignment of boundary component type is unambiguous. Here we say a
boundary segment is “outside” Qδ(a) etc., if all tiles (intersecting �) touching the segment
in question lie in the complement of Qδ(a). Indeed, each segment of ∂�ε belongs to a tile
that intersects the boundary. For a fixed element of ∂�ε satisfying the above definition of
“outside”, some of the external tile is in � and therefore under ϕ−1, the image of this portion
of the tile joins up with ∂D; furthermore, it joins with a unique boundary component image
due to the size of the obstruction provided by Qδ(a). Finally, inside these neighborhoods
Qδ(a), etc., all that must be specified are the points aε , etc., which as discussed above, may
have multiple designations (due to the possibility of multiple components for �ε). The rest
of the boundary is then assigned accordingly.

Finally, let us establish (iii):

Claim 3.4 The canonical approximation satisfies (iii).

Proof Let zε ∈ Aε with some subsequential limit z. It is clear that z /∈ � since all z ∈ � are
a finite distance from the boundary while d(zε, ∂�) ≤ ε by construction. Moreover, z ∈ A
since d(zε, A) is (generally less than ε but certainly) no larger than δ(ε). It remains to show
the stronger statement that any subsequential limit of ϕ−1(zε) is in ϕ−1(A). If ζε = ϕ−1(zε)

converges to the image of a marked (end)point in ϕ−1(A) there is nothing to prove. Thus
we may assume that for any κ , eventually ζε is outside the κ-neighborhood of the marked
(end)points, which we temporarily denote by α1, α2 ∈ ϕ−1(A). Now let η < κ be such that
the η neighborhood of ∂D \ [Bκ(α1) ∪ Bκ(α2)] consist of two disjoint components, one
containing all of the rest of ϕ−1(A) and the other associated with ϕ−1(∂� \ A). Finally
consider the neighborhood

Mη := Nη(A) ∩ ϕ[Nη(ϕ
−1(A)],

where Nη(·) denotes the Euclidean η neighborhood of (·) in the appropriate relative topol-
ogy. Since it is agreed that zε stays outside ϕ(Bκ(α1) ∪ Bκ(α2)) it is clear that, for all ε

sufficiently small, zε ∈ Mη and therefore ζε ∈ Nη(ϕ
−1(A)) \ [Bκ(α1) ∪ Bκ(α2)] and not in

the complementary η band described above. It follows that the limit must be in ϕ−1(A). �

4 Sup-Approximations

Unfortunately, for various purposes, e.g., certain proofs of convergence to SLE6, we will
need slightly more generality than the internal approximations as provided in Definition 3.1.
Specifically, a situation may arise where we have domains �n (given, e.g., stochastically)
which are converging, in some sense, to �. One must then contemplate an ε-approximate



On Convergence to SLE6 II: Discrete Approximations and Extraction 397

Fig. 2 Masking and intermixing of boundary values

for these �n’s—and hence �—and extract some (diagonal) subsequence. However it soon
becomes clear that interior approximations will in general be insufficient: Explicitly, it may
be the case that (�n)εm is not an interior approximation to �, no matter how small εm is.
These circumstances can and will readily occur in the pertinent case of slit domains.

Eventually, we will resolve this problem and indeed obtain such a “diagonal” discretiza-
tion statement (see Proposition 5.10) by studying more general discretization schemes which
are commensurate with the nature in which �n converges to �. Here, informally, we will
describe the two additional properties which are essential in our more general context:

• Actual sup-norm convergence of separate sides of the slits (which in the discrete approx-
imations may well be separate curves): This is to prevent the masking of one boundary
value by another near the joining of boundaries.

• The well-organization property: This is to prevent confusion of boundary values that
could be caused by intermingling (crisscrossing) of the two curves approximating the
opposite sides of the slit.

Scenarios in violation of these properties are depicted in Fig. 2.

Remark 4.1 If γ1 and γ2 are two curves, then as usual the sup distance between them is
given as

dist(γ1, γ2) = inf
ϕ1,ϕ2

sup
t

|γ1(ϕ1(t)) − γ2(ϕ2(t))|.

For certain purposes, it is pertinent to consider weighting the sup-norms of portions of the
curves in accord with the particular crosscut in which the portion resides. We will denote the
associated distance by Dist; see [3], Sect. 3.2 for the definition and discussions. However,
our ensuing arguments will not be sensitive as to whether we are using the original sup-norm
or the weighted version and thus we will continue to use the sup-norm.

Definition 4.2 (Sup-approximations) Suppose ∂� can be further divided (perhaps by other
marked boundary points) with the boundary between these points described by Jordan arcs
or, more generally, Löwner curves. We shall label the new points J1, J2, etc., and between
certain pairs, e.g., Jk & Jk+1 will be a Löwner curve denoted by [Jk, Jk+1]. The marked
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prime ends a, b, . . . may serve as an endpoint of (some of) these segments, but it is under-
stood that they do not reside inside these arcs.

Some of this curve (often enough all of it) will be part of the boundary ∂�. (On the other
hand, it can be envisioned that a portion of this curve lives in a “swallowed” region and is
part of �c .) At the discrete level, we recall that ∂�ε is automatically a union of closed self-
avoiding curves. It will be supposed that �ε has corresponding J ε

1 , J ε
2 , . . . and the relevant

portion of the curve between the relevant J -pair converges in sup-norm to the corresponding
portions in ∂�—or �c , as the case may be—at rate η(ε).

We assume that all of this transpires in such a way that the following property, which we
call well-organized, holds: For any curve of interest [J ε

k , J ε
k+1], pick points p and p′ on this

arc. Consider δ-neighborhoods around p and p′ and consider the portion of the arc joining
these neighborhoods (last exit from neighborhood around p to first entrance to neighborhood
around p′), which we label L . Let P be any path connecting the boundaries of these
neighborhoods to one another in the complement of all of ∂�ε . Then the relevant portions
of ∂Bδ(p), ∂Bδ(p

′), P and L clearly form a Jordan domain, whose interior we denote
by O. Let O′ ⊂ O denote the connected component of P in O \ ∂�ε . Then, ∂O′ ∩ ∂�ε is
monochrome, i.e., it cannot intersect both [J ε

k , J ε
k+1] and [J ε


 , J ε

+1] for k �= 
. While this may

sound overly complicated, what we have in mind is actually a simple topological criterion,
c.f., Remark 4.3.

The rest of the domain and boundary is approximated by interior approximation. Thus,
for those Jk’s which divide arc-portions of ∂� from “other”, we require commensurability at
the joining points. In particular, in order that the interior approximation be implementable,
it is clear that we must require J ε

k ∈ �.

Remark 4.3

• While at first glance it is difficult to imagine that ∂O′ is anything except, say L , what
we have in mind is when L and a neighboring curve are some approximation to a two-
sided slit. A crisscrossing approximation can very well lead to incorrect limiting boundary
values—or none at all. The well-organized property does not permit the sides of the ap-
proximation to crisscross one another. Alternatively, this is a simple topological criterion
which can be rephrased as follows: Under the uniformization map (in fact any homeomor-
phism onto a Jordan domain would do) the image of each of these J -pieces occupies a
single contiguous piece of the boundary. This sort of monochromicity property is required
for well-behaved convergence of relevant boundary conditions which we shall need later.
It is clear that this well-organized property is satisfied by the trace of any discrete perco-
lation explorer process.

• Sup-approximations satisfy conditions (iI), (iII), (e).
• The added difficulty here is that since the approximation is no longer interior, we can no

longer determine the “topological situation” by looking under a single conformal map.
E.g., for a point close to the boundary, we can no longer determine which boundary piece
it is “really” close to. This is exemplified by the case of a slit domain: If, say, part of
C is one side of a two-sided slit γ , then points close to γ on one side (corresponding
to C ) will have small u value which tends to 0 whereas points close to γ on the other
side (corresponding to say B) will tend to non-trivial boundary values. In the case of
interior approximation all such ambiguities were resolved by looking under the conformal
map ϕ−1.

• It is worth noting that the important case in point where the boundary consist of an original
� with a (Löwner) slit—which might be two sided—falls into the setting under consid-
eration. In particular, we will have occasion to consider cases where we have γn → γ in
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Fig. 3 A case where the limiting
domains does not contain a
component present in
approximating domains. Due to
frequent self-touching, such
(limiting) domains are in fact
typical of SLE6

the sup-norm with γn being discrete explorer paths. In this case to check condition (iII),
we observe that if γn → γ in sup-norm and zn ∈ γn and zn → z, then z ∈ γ and hence
certainly in the complement of the domain of interest � \ I(γ ) (i.e., � delete γ together
with components “swallowed” by γ ). For an illustration see Fig. 3. These circumstances
may be readily approximated by a hybrid of sup- and canonical approximations and, as is
not hard to see, satisfy the condition of commensurability.

The main addition is the following lemma which serves the role of condition (iii) in
Definition 3.1 to ensure unambiguous retrieval of boundary values (see Lemma 5.3). That
is, if w ∈ � is close to C in the “homotopical sense” that any short walk from w which
hits ∂� must hit the C portion of ∂� then w is close to Cn by the same criterion. A precise
statement of this intuitive notion is, unfortunately, much more involved.

Lemma 4.4 (Homotopical Consistency) Consider a domain � with marked boundary
prime ends a, b ∈ ∂�. Let us focus on boundary C with end points a and b which we con-
sider to be the bottom of the boundary. (Note that C may consist of Jordan arcs together with
arbitrary parts—if double-sided slits are involved, such that not both sides belong to C , then
the corresponding arc(s) must be connected all the way up to b and/or a). Let us denote the
sup-approximation to � by �n and the portion of the boundary approximating C by Cn.

Suppose we have a point w which is more than � away from a and b and δ� away from C
with � � δ�, such that ϑ = ϕ−1(w) is close to ϕ−1(C). Then there exists η > 0 with η � δ�

such that if dist(Cn, C) < η (here dist denotes e.g., the sup-norm distance where appropriate,
and otherwise the Hausdorff distance) then there exists some path P from (some point in)
ϕ−1(B�(a)) to (some point in) ϕ−1(B�(b)) (we denote this by ϕ−1(B�(a)) � ϕ−1(B�(b)))
such that in the sup-approximation �n, w is in the bottom component of �n\ϕ(P∪B�(a)∪
B�(b)) and further, any walk from w in the bottom component which hits ∂�n must hit Cn.

Proof For clarity, we divide the proof into four parts.



400 I. Binder et al.

Fig. 4 The domain Vn , etc

1. We let η � � � 1 and consider, under the uniformization map, the set

B := D \ [ϕ−1(B�(a)) ∪ ϕ−1(B�(b))].
Let us now draw a path P ′ : ∂ϕ−1(B�(a)) � ∂ϕ−1(B�(b)) which defines top and bot-
tom components in B with ϑ in the bottom component, and hence also the bottom com-
ponent of ϕ(B) \ ϕ(P ′). Further, P := ϕ(P ′) is some finite distance δ � η > 0 away
from w. (In essence, δ will now play the role of δ� in the statement of the lemma.)

2. We now look at the domain

Vn = �n \ [B�(a) ∪ B�(b) ∪ P].
We claim that for n sufficiently large, all of the above is well-defined: Indeed, P is a
compact set in � and hence for n sufficiently large, is contained in �n, by Proposition 2.1.
Of course, �n itself may have many components; we are focusing on the principal com-
ponent. Even so, with the above setup, Vn may also have many components, e.g., near
the boundaries of B�(a) and B�(b) (see Fig. 4).

However, we claim that it has the analogue of a top and bottom component: Indeed, it
is clear that “large” compact sets in B well away form the boundaries continue to lie in
large connected components of Vn. More quantitatively, while at the scale �, ∂�n may
create various components by entering and re-entering B�(a) and B�(b), since Cn and
C are η-close (say in the Hausdorff distance), if we shrink these neighborhood balls to
scale � − 2η, then such components merge into (the) two principal components, leaving
only η-scale small components in the vicinity of the neighborhood balls.

Finally, we claim that w is in the bottom component of Vn. First, since Bδ(w) must
all be in the same component of Vn, w cannot be in a small η-scale component. The
argument can be finished by any number of means. For example we may choose to re-
gard P as two-sided; the component of w is determined by which side of P it may be
connected to. For future reference, let Q′ ⊂ D denote a simple path (staying well away
from ∂B) connecting ϑ to P ′ and Q the image of Q′ under ϕ. Then, again, by Propo-
sition 2.1, for all n sufficiently large, the entirety of Q is found in �n and the appropriate
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component—bottom—for w is determined for once and all. The relevant domains, etc.,
are illustrated in Fig. 4.

3. It is clear that w is close to Cn. We further claim that it is not obstructed from Cn by other
portions of ∂�n, as may be the worry when a portion of C is (one side of) a two-sided
slit. We need to divide into a few cases. First if the only portion of C which is close to q is
approximated interiorly, then by an investigation of the situation under the uniformization
map, it is clear that no obstruction is possible. So now we suppose that w is close to some
Jordan arc J := [Jk, Jk+1]. If J is one-sided, then there is no problem, since then w

is not close in anyway to any other portion of the boundary except near the endpoints,
which we may assume, by shrinking relevant scales if necessary, that w is far away from.

4. We are down to the main issue where J is a two-sided slit, which is being sup-norm
approximated by Jn. Since at least one of the end points must be a or b, let us assume
without loss of generality that Jk = a. We will need to do some refurbishing, starting
with the neighborhood balls around a (and b, if necessary). Let q be a point on J
near a. It is manifestly the case that q has two images under ϕ−1—which are near ϕ−1(a);
consider a crosscut between these two images; the image of this crosscut under ϕ then
defines the relevant neighborhood, which we will denote by e.g., B(a). We note that
(i) by construction, B(a) has the property that J enters exactly once and terminates
at a, and (ii) being slightly more careful if necessary to ensure the relevant crosscut is
contained in ϕ−1(B�(a)), we can also ensure that B(a) ⊂ B�(a)). Here we will consider
η � dist(a, ∂B(a)), so that in particular, e.g., an ∈ B(a).

Now let us return attention to �n. We will now refurbish P so that it directly joins an to
bn and avoids all of ∂�n; we will call the resultant path Pr . We claim that it is possible to
draw such a Pr by suitably extending P, under the above stipulations concerning B(a),
B(b), and η. Focusing attention on B(a), if this were not possible, then it must have been the
case that a portion of Jn or a portion of ∂�n \ Jn which is approximating the other side
of J , is obstructing. This scenario implies an inner domain inside B(a) surrounding the
tip an with boundary e.g., Jn. Since η � dist(a, ∂B(a)), this violates sup-norm η close-
ness. (Here it appears that the sup-norm closeness property is crucial. For an illustration see
Fig. 5.)

Having achieved all this, it is again clear that the principal component of �n is di-
vided into two disjoint Jordan domains. Indeed by the fact that the approximation is well-
organized, there are two circuits—both using Pr , passing through an and bn, such that one
(which again is the bottom one) contains Cn and the other contains (the principal component
of) �n \ Cn, with no possibility of mixing via crisscrossing. Since Pr is an extension of P,
it is clear from the closing argument of (3) that w is in the bottom component and hence
must be closed to Cn without obstruction from any portion of ∂�n \ Cn. �

5 Verification of Boundary Values for u,v,w

We are now in a position to verify boundary values for u,v,w using RSW estimates. Let
us begin with a more detailed recapitulation/clarification of how we take the scaling limit
of uε, vε,wε (see [15] and [7]). Consider some exhaustion Kn ↗ �, with Kn compact. The
RSW estimates imply equi-continuity, and hence we have u(n)

εk
→ u(n) uniformly on Kn and,

at least for the models in [15] and [7],

F (n) := u(n) + e2πi/3v(n) + e−2πi/3w(n)
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Fig. 5 Failure to continue P to
Pr inside B(a)

is analytic there with

u(n) + v(n) + w(n) = const.

We may take (ε
(n+1)
k ) ⊂ (ε

(n)
k ) as a subsequence which implies that

u(n+1)
εk

→ u(n+1)

etc., so that F (n+1) is analytic in Kn+1 with values agreeing with the old F (n) in Kn. The
diagonal sequence (u(n)

εn
) converges uniformly on compact sets to some u; together with

similar statements for v and w, we obtain that the limiting F is analytic on �. In the sequel
for simplicity we will drop the (n) superscripts and just write e.g., uε → u.

We begin with a lemma which provides us with the RSW technology which is necessary
for establishing boundary values.

Lemma 5.1 Let � and ϕ be as described. The pre-image of ∂� under ϕ is divided into
a finite number of disjoint (connected) closed arcs the intersection of any adjacent pair of
which is the corresponding (pre-image of the) prime end. Then for z ∈ ∂� \ {a, b, c, . . . },
we identify z with a single ϕ−1(z) := ζ and similarly identify its corresponding boundary
component.

(I) There exists an infinite sequence of (“square”) neighborhoods (S
) centered at z such
that S
 ∩� �= ∅ for all 
 and S
+1 is strictly contained in S
 with ∂S
 containing portions
of the boundary component containing z and

(II) In each S
 \ S
+1, there is a “yellow” circuit and/or a “blue” circuit which separates
z from all other boundary components with probability that is uniformly positive as
ε → 0 (provided that ε is sufficiently small depending on 
). By separation it is meant
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that in the pre-image in D, ζ , is separated from all other boundary components along
any path in D whose image under ϕ tends to z.

Finally, for z ∈ {a, b, c, . . . }, a similar statement holds, except for the fact that here the
relevant circuits separate z from all other boundary points and boundary components to
which z does not belong.

Proof Let z ∈ ∂� and let ζ = ϕ−1(z) denote its corresponding pre-image. First suppose
z /∈ {a, b, c, . . . } so that ζ is some finite distance from the corresponding points on ∂D. Then
consider a sufficiently small crosscut � of D surrounding ζ (a finite distance away from ζ )
whose end points on ∂D, denoted α and β , are such that α and β are in the (“interior” of
the) boundary component of ζ . We also denote by Q the image of the interior of the region
bounded by � and the relevant portion of ∂D; we note that z ∈ ∂Q. Let S0 ⊂ C be a small
square centered at z whose intersection with � lies entirely inside Q. Then by construction,
∂(S0 ∩�) can contain at most boundary pieces from the boundary component of z. Now the
sequence (Sn) will be constructed similarly, with the stipulation that the linear scale of S
+1

is reduced by half from that of S
.
By standard RSW estimates for the percolation problem in all of C, there is a blue and/or

yellow Harris ring inside each annulus S
 \ S
+1 with probability uniformly bounded from
below for ε sufficiently small. Now consider any path P in D which originates at ζ and
ends outside ϕ−1(Q) such that the image of the path originates at z. Such a path stays in �

and therefore must intersect the said circuit.
Identical arguments hold for z ∈ {a, b, c, . . . } except for the fact that the original crosscut

will now originate and end on two distinct boundary components. �

It is noted that in the presence of a circuit in S
 \ S
+1, the above separation argument
also applies to points in ∂(Sm ∩ Q) if m ≥ 
 + 1.

Lemma 5.2 (Establishment of Boundary Values for Interior Approximations) Let � and ϕ

be as described. We recall that uB
ε (z) is the probability at the ε level that there is a blue

crossing from Aε to Bε , separating z from Cε , and let u denote the limiting function. Then
u = 0 on C in the sense that if zk → z ∈ C in such a way that ϕ−1(zk) = ζk → ζ ∈ ϕ−1(C),
then limk→∞ u(zk) = 0. Similarly, in the vicinity of the point c, u tends to one. Analogous
statements hold for vB

ε and wB
ε and for the yellow versions of these functions.

Proof Suppose a yellow Harris circuit has occurred in S
 \S
+1 and let zk → z as described.
Then, in the language of the proof of Lemma 5.1, for k sufficiently large zk ∈ Q ∩ Sm for
some m = m(k) tending to ∞ as k → ∞. For ε sufficiently small, it follows from (iii) in
Definition 3.1 that Aε and Bε are disjoint from (Sm ∩ Q ∩ �•

ε) and since �•
ε is an inte-

rior approximation, the relevant portion of the circuit evidently joins with ∂Cε to separate
∂Sm ∩ Q ∩ �•

ε from c, as for z as discussed near the end of the proof of Lemma 5.1. This
separation would preclude the crossing event corresponding to uB

ε (zk) since—as is clear if
we look on the unit disc via the conformal map ϕ−1—the latter necessitates (two) blue con-
nections between the relevant portions of ∂Sm and other boundaries. Now consider k with
m(k) very large; then for all ε sufficiently small, the probability of at least one yellow circuit
is, uniformly (in ε), close to some p(m) where p(m) → 1 as m → ∞. It therefore follows
that u(zk) ≤ 1 − p(m(k)) → 0 as zk → z. Finally, boundary value of c follows the same
argument: Here the blue Harris ring events accomplish the required connection between Aε

and Bε . Arguments for other functions/boundaries are identical. �
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Lemma 5.3 (Establishment of Boundary Values for Sup-approximations) Let � and ϕ be
as described. We recall that uB

ε (z) is the probability at the ε level that there is a blue cross-
ing from Aε to Bε , separating z from Cε , and let u denote the limiting function. Then u = 0
on C in the sense that if zk → z ∈ C in such a way that ϕ−1(zk) = ζk → ζ ∈ ϕ−1(C), then
limε→0 uB

ε (zk) → 0. Similarly, in the vicinity of the point c, u tends to one. Analogous state-
ments hold for vB

ε and wB
ε .

Proof We recall that we have three boundary pieces A, B, C in counterclockwise order,
where we assume without loss of generality that C is on the bottom. We also label the
relevant marked prime ends a, b, c, in counterclockwise order, such that e.g., c is opposite
to C . Thus if we draw a path P between aε and bε inside �ε , and zk ∈ �ε is inside the
region formed by P and Cε then to prevent events which contribute to uB

ε , it is sufficient
to seal zk off from cε by a yellow Harris ring together with the bottom boundary Cε . This is
precisely the setting of Lemma 4.4 (with w = zk) and so we conclude that for k sufficiently
large, for ε sufficiently small depending on k, in order to prevent events contributing to uB

ε ,
it is indeed sufficient to seal zk off with a yellow Harris ring.

We are now in a position to invoke Lemma 5.1. The proof follows closely as in the last
part of the proof of Lemma 5.2 except for one difference: For k sufficiently large, zk ∈ Sm for
some m = m(k) which increases as k increases; however, in the case of sup-approximation,
it is no longer quite so automatic that arbitrarily small Harris rings will hit the boundary
Cε . However, given ε, we have that Cε is at most a distance η(ε) from C , and thus, for fixed
ε0, there is some M(ε0) such that m(k) ↗ M(ε0) as k → ∞ (and M(ε0) → ∞ as ε0 → 0).
So we still have that uniformly for all ε ≤ ε0, Uε(z) ≤ 1 − p(M(ε0)), where p(M(ε0)) as
before denotes the probability of at least one yellow Harris ring in the annulus S1 \ SM(ε0),
and tends to 1 as M(ε0) tends to infinity. �

Remark 5.4 Our arguments in fact show that the function u is continuous up to the boundary:
Given any sequence zk → z ∈ C , we have that given any κ > 0, for k sufficiently large,
|u(n)

εn
(zk)| < κ , uniformly in n, for n sufficiently large (or ε sufficiently small) and hence

u(zk) < κ (c.f., the end of the proof of Theorem 5.5). We have similar statements for v and
w on the corresponding boundaries.

To check that F is indeed the appropriate conformal map and thereby uniquely determine
it and retrieve Cardy’s Formula, we follow the arguments in [2]. We remark that while there
exists certain literature on discrete complex analysis (see e.g., [11] and [8] and references
therein) our situation is less straightforward since e.g., none of the functions uN, vN,wN are
actually discrete harmonic. Moreover, due to the fact that we are considering general do-
mains (versus Jordan domains) and ∂� may not be so well-behaved, to obtain conformality
requires some extra work. In any case, we will now amalgamate all ingredients to prove the
following result:

Theorem 5.5 For the models described in [7] (which includes the triangular site problem
studied in [15]), consider the function F = u + e2πi/3v + e−2πi/3w, where u,v,w are the
limits of uε, vε,wε . Then F is the unique conformal map between � and the equilateral
triangle T with vertices at 1, e2πi/3, e−2πi/3.

Proof We claim that the following seven conditions hold:

1. F is nonconstant and analytic in �,
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2. u,v,w (and hence F ) can be continued (continuously) to ∂�,
3. u + v + w is a constant,
4. u(c) = 1, with similar statements for v and w at a and b,
5. u ≡ 0 on C with similar statements for v and w on A and B,
6. F ◦ ϕ maps ∂D bijectively onto ∂T,
7. (F ◦ ϕ)(D) ∩ (F ◦ ϕ)(∂D) = ∅;

from which the proposition follows immediately. Indeed, from conditions 7 and 6, F ◦ ϕ :
D → T is a conformal map (this follows directly from e.g., Theorem 4.3 in [12]). But clearly,
conditions 5, 4, 3 imply that F maps � into T, and further, conditions 2 and 1 imply that
F maps � onto T (this follows from e.g., Theorem 4.1 in [12]). Altogether, conformality of
F itself now follows: It is enough to show that F ′ never vanishes, but this follows from the
fact that 0 �= (F ◦ ϕ)′(z) = F ′(ϕ(z))ϕ′(z).

We now turn to the task of verifying conditions 1–7. It follows from [7, 15], and [2] that
F is analytic and that u + v + w is constant. On this basis, the real part of F is proportional
to u plus a constant and it is seen from Lemma 5.2 (or Lemma 5.3) that u is not constant,
i.e., it is close to 1 near c and close to 0 near C . We have conditions 1 and 3. Conditions 2,
4, 5 follow from Lemma 5.2 (or Lemma 5.3) and Remark 5.4.

To demonstrate condition 7, let us write Re(F ) = (3/2)u − 1/2. Then if we show that
u �= 0 in �, then we have demonstrated that F(�) does not intersect F(C). The latter follows
since once z ∈ �, we can construct a tube of bounded conformal modulus connecting A
to B going underneath z, and within this tube, by standard percolation arguments which
go back to [1], we can construct a monochrome path separating z from C . Condition 6
follows in a similar spirit: E.g., on the A boundary, if z �= q , but |z − q| � 1, then by the
argument of Lemma 5.1, u(z) is close to u(q) (since both can be surrounded by many annuli
in which e.g., a blue circuit occurs). Similar arguments for v and w and other boundaries
directly imply continuity of all functions on all boundaries of �. Moreover, this implies,
e.g., u ◦ ϕ−1(A) is continuous on the relevant portion of the circle starting (at ϕ−1(c)) with
the value 1 and ending (at ϕ−1(b)) with the value 0 and thus achieving all values in [0,1].
Similarly statements hold for the other functions on the other boundaries. Condition 6 now
follows directly. �

Remark 5.6 It is worth noting that while using only arguments involving RSW bounds,
we have determined that (1) the u,v,w’s can be continued to the boundary and (2) partial
boundary values, e.g., u ≡ 0 on C , sufficient determination of boundary values requires addi-
tional ingredients. In particular, we also needed that e.g., v + w ≡ 1 on C ; this would follow
from u + v + w ≡ 1 which at present seems only to be derivable from analyticity consider-
ations. Duality implies e.g., vB

ε + wY
ε ≡ 1 on C , but we cannot go any further without color

symmetry as in the site percolation on the triangular lattice case [15] or some (asymptotic)
color symmetry restoration as was established for the models in [7].

Definition 5.7 Let us define, as in [3], Cε(�ε, aε, bε, cε, dε) to be the crossing probability
of the rectangle (�ε, aε, bε, cε, dε) with percolation also taking place at the ε-scale.

Next consider the (unique) conformal map which takes (�,a, b, c, d) to (H,1 −
x,1,∞,0), where, clearly, 0 < x < 1 and x = x(�,a, b, c, d). Then we denote by
C0(�,a, b, c, d) the function

∫ x

0 (s(1 − s))−2/3 ds
∫ 1

0 (s(1 − s))−2/3 ds
, (1)

i.e., Cardy’s Formula.
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Let us recall/observe that C0(�,a, b, c, d) is equal to e.g., u(d) with d ∈ A (see Sect. 1).
We now have

Theorem 5.8 For the models described in [7] with the assumption M(∂�) < 2 (which in-
cludes the triangular site problem studied in [15], where the assumption on ∂� is unneces-
sary) Cardy’s Formula can be established via an interior or sup-approximation, i.e.,

Cε(�ε, aε, bε, cε, dε) → C0(�,a, b, c, d)

if (�ε) is an interior or sup-approximation to �.

Proof For the site percolation model, this follows from [2, 7, 15], and Theorem 5.5. For the
model described in [7], the interior analyticity statement in sufficient generality is verified
in [3], Sect. 4.4. �

Finally, let us single out the cases that will be used in the proof of the Main Theorem
in [3].

Corollary 5.9 Consider the models described in [7] (which includes the triangular site
problem studied in [15]) on a bounded domain � with boundary Minkowski dimension less
than two (if necessary) and two marked boundary points a and c. Suppose we have X

ε
[0,t] →

X[0,t] in the Dist norm where X
ε
[0,t] is the trace of a discrete Exploration Process starting at

a and aiming towards c, stopped at some time t , then

Cε(�ε \ X
ε
[0,t],X

ε
t , bε, cε, dε) → C0(� \ X[0,t],Xt , b, c, d).

Further, it is possible to extract a slightly stronger statement which will be used in the
proof of the Main Theorem in [3]. For the sake of [3] we will state these results in the Dist
norm (c.f., Remark 4.1). For purposes of clarity, we first state a lemma:

Proposition 5.10 Let us denote the type of (slit) domain under consideration by �γ and
abbreviate, by abuse of notation, e.g., Cε((�

γ )ε) := Cε(�ε \ γε([0, t]), γε(t), bε, cε, dε) (but
here, γ could stand for other boundary pieces as detailed in Definition 4.2). Then for any
sequence γn → γ in the Dist norm and any sequence (εm) converging to zero,

lim
n,m→∞Cεm

[
(�γn)εm

] = C0(�
γ ),

regardless of how n and m tend to infinity. Here all approximations are sup-approximations.

Proof From Lemma 5.3 we have that e.g., if γ (n)
εm

→ γn is any sup-approximation, then
Cεm [(�γn)εm ] → C0(�

γn). The result follows by noting that γ (n)
εm

is also a sup-approximation
to γ as both m,n → ∞. We emphasize that the reason for such robustness of Lemma 5.3 is
because the proof is completely insensitive to how γε converges to γ as ε → 0. All that is
needed is that γε is sufficiently close to γ and ε is sufficiently small, which is inevitable if ε

is tending to zero and γε is tending to γ . �

Corollary 5.11 Consider the models described in [7] (which includes the triangular site
problem studied in [15]) on a bounded domain � with boundary Minkowski dimension less
than two (if necessary) and two marked boundary points a and c. Consider Ca,c,�, the set
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of Löwner curves which begin at a, are aiming towards c but have not yet entered the �

neighborhood of c for some � > 0. Suppose we have γε → γ e.g., in the Dist norm, then

Cε(�ε \ γε([0, t]), γε(t), bε, cε, dε) → C0(� \ γ ([0, t]), γ (t), b, c, d)

pointwise equicontinuously in the sense that

∀κ > 0, ∀γ ∈ Ca,c,�, ∃δ(γ ) > 0, ∃εγ ,

such that

∀γ ′ ∈ Bδ(γ )(γ ), ∀ε ≤ εγ ,

|Cε(�ε \ γε([0, t]), γε(t), bε, cε, dε)

− Cε(�ε \ γ ′
ε([0, t]), γ ′

ε(t), bε, cε, dε)| < κ.

(2)

Here Bδ(γ ) denotes the Dist neighborhood of γ .

Proof This is immediate from Proposition 5.10. Negation of the conclusion in the state-
ment means that there exists a sequence γn → γ and εn → 0 such that |Cεn((�

γn)εn) −
Cε((�

γ )εn)| > κ > 0 for all εn, which clearly contradicts the fact that both of these objects
converge to the limit C0(�

γ ). �

Remark 5.12 We remark that (2) holds even if “ε = 0” and thus implies continuity of
Cardy’s Formula in the “Dist norm”. However, we note that Lemma 5.3, being merely a
limiting statement, would be highly inadequate if one had in mind some uniformity of the
convergence or uniformity of the continuity.
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