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Learning Signals of Adverse Drug-Drug Interactions from the Unstructured 
Text of Electronic Health Records  

Srinivasan V Iyer, Paea LePendu, Rave Harpaz, Anna Bauer-Mehren, Nigam H Shah 
Stanford University, Stanford, CA 

Abstract 
Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of 
death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for 
learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). 
We demonstrate a fast, annotation-based approach, which uses standard odds ratios for identifying signals of DDIs 
from the textual portion of EHRs directly and which, to our knowledge, is the first effort of its kind. We developed a 
gold standard of 1,120 DDIs spanning 14 adverse events and 1,164 drugs. Our evaluations on this gold standard 
using millions of clinical notes from the Stanford Hospital confirm that identifying DDI signals from clinical text is 
feasible (AUROC=81.5%). We conclude that the text in EHRs contain valuable information for learning DDI 
signals and has enormous utility in drug surveillance and clinical decision support. 

Introduction 
More than 400,000 preventable adverse drug reactions occur every year1, each costing over $3500 with an increased 
hospital stay of over 3 days2, so their discovery and prevention would address one of the leading causes of death in 
the US. We are also witnessing a rise in polypharmacy, which is the use of multiple concomitant drugs to treat 
medical conditions, with many people taking 3 or more drugs. In fact, one study estimates that 29.4% of elderly 
patients3 are on 6 or more drugs. Drug interactions that lead to adverse reactions are a potentially avoidable4 
consequence of this practice, accounting for more than 30% of all drug reactions5; and their early detection is vital6.  
New drugs are usually tested for interactions with existing drugs before market approval using in-vivo and in-vitro 
methods7. However, owing to the sheer number of ways by which drugs can interact8, it is infeasible and expensive 
to test for every kind of interaction. Also, many drug interactions manifest after a certain period of exposure and it 
takes several exposures for rare drug interactions to occur9. Therefore, post marketing surveillance is necessary to 
detect unanticipated interactions that occur when the drug is in use in the general population. The US Food and Drug 
Administration (FDA) enables such surveillance by the active monitoring of spontaneous reporting systems (SRS) 
such as Adverse Event Reporting System (AERS) and similarly, the World Health Organization’s VigiBase. There 
have been several studies10-13 that have successfully inferred drug interactions from these sources, overcoming 
problems of reporting biases14 and duplicate reporting15.  
Electronic health records (EHRs) complement these existing SRSs, providing a source of observational data without 
the same biases. Initiatives like the Observational Medical Outcomes Partnership (OMOP) in the US and the 
Exploring and Understanding Adverse Drug Reactions (EU-ADR) project in Europe are focusing on building EHR 
based surveillance systems. These projects mainly utilize the structured diagnosis and prescription data of the EHRs 
for identifying single drug adverse reactions. Most efforts aimed at finding drug interactions use reported sources for 
signal detection and use EHRs as a means of validation. For instance, Tatonetti et. al.10 found 171 new drug 
interactions from AERS and used the EHRs at Stanford to validate them. Another study by Duke et. al.16 mined 
MEDLINE abstracts for hypothesis generation and validated the signals on EHRs.  
However, in addition to structured data, EHRs contain rich information in the unstructured notes and reports taken 
by doctors, nurses and other practitioners. By ignoring the unstructured text, we could be missing a substantial 
portion of adverse events17. Many studies18 have shown that coded information like ICD-9 are inadequate to 
accurately build patient cohorts and there is a considerable advantage19 in using the unstructured clinical text of 
EHRs. We argue that such an advantage would also extend to drug safety signal detection. Indeed, there is already 
some work20,21 demonstrating the discovery of the adverse event profiles for single drugs using unstructured notes.  
Therefore, given increasing adoption and access to medical records for research, we expect efforts to shift more 
toward directly mining EHRs for signal generation with an increased attention on the use of unstructured data22. In 
this paper, we apply data mining methods on the textual portion of EHRs to learn signals of drug-drug interactions. 
To our knowledge, this is the first study of its kind. 

Methods 

Preparation of Gold Standard 
In order to ensure reliability, we limit our study to 1,164 drug ingredients common to three sources: the UMLS 
RxNORM ontology (4,993 ingredients), DrugBank23 (6,711 drugs) and the Anatomical Therapeutic Chemical 
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Classification (ATC) ontology (4,406 drugs). We use known interactions from DrugBank and the Medi-Span® Drug 
Therapy Monitoring System™ (Wolters Kluwer Health, Indianapolis, IN) as positive interactions in our gold 
standard. Each of these databases provides a textual monograph describing the interaction. The short monographs 
follow a basic template, so we use regular expressions to extract and manually validate drug-drug-event relations 
that indicate known interactions. Our set of positive interactions consists of 591 different drug ingredients and 14 
distinct events. For estimating false discovery, we simulate negative examples by generating random drug-drug-
event tuples, and removing any known interactions according to DrugBank, Medi-Span or Drugs.com24. We also 
remove pairs for which the adverse event is an indication (from Medi-Span, DrugBank, Drugs.com, UMLS and 
SIDER25) for either drug individually. 

Annotation of Electronic Health Records 

We use the Stanford Translational Research Integrated Database Environment (STRIDE) dataset comprising 
9,078,736 textual notes corresponding to 1,044,979 patients. There are 565,898 patients (53% female) in STRIDE, 
with at least one drug or event from our selection mentioned in their records. 857 out of the 1,164 drugs actually 
appeared at least once in our dataset.  

 
Figure 1. The Annotator Workflow – The annotator program uses a lexicon derived from biomedical ontologies and transforms 
clinical notes into a set of patient timelines with markers for the drug and disease mentions. 
 
As described in our previous work26, we define drug and event concepts as sets of terms derived from biomedical 
ontologies. For drugs, we include trade names and other forms of the drug from the RxNORM ontology. To improve 
our precision, we remove terms that occur in common English usage27, followed by manual curation. The average 
size of the set of terms used to identify a drug is 8.3 terms. We then use a fast text annotator to tag clinical notes 
with these concepts and order them by the note’s timestamp, thus forming a set of patient timelines. The tool also 
takes into account negation and family history contextual cues to reduce false attribution of concepts. We focus our 
study on 14 adverse events based on existing literature (a list published by Trifiro et al28), their presence in our gold 
standard, their prevalence in STRIDE and our ability to successfully detect their presence from EHRs. 

Identification of DDI signals 

In traditional drug safety surveillance with single drugs, odds ratios 
(OR) are computed using a 2-by-2 contingency table to detect signals 
[Figure 2]. For our method, the exposed group represents patients who 
have taken both drugs and the comparison group represents patients 
who have taken at most one drug. Based on the ordering of the drug and 
event mentions, we classify each patient into one of the cells of the 
contingency table [Figure 3]. Any drugs that appear after the first 
occurrence of the event are ignored.   
We use the ratio of the odds of getting the adverse event in the exposed 
group and in the comparison groups as a measure of the strength of the interaction. 
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Figure 2. 2x2 contingency table for a  
drug-drug-event association 
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We calculate 95% confidence intervals for the odds 
ratio and signal an interaction if the lower bound of 
the confidence interval is greater than a threshold, 
which is picked using ROC curves depending on the 
desired sensitivity and specificity. Similar to 
approaches used in SRSs29 to reduce the effect of 
confounding, we use propensity score matching 
(PSM) to match at most 10 control patients for every 
case patient, and then generate an adjusted OR. In 
addition to matching on average age at the time of 
exposure, gender, and race, we also match on note 
count, drug count and disease count, which serve as a 
proxy for the overall health of the patient22. 

Results 
Prevalence of known interactions 
DrugBank contains 10,906 distinct drug 
interactions, of which 7,400 corresponded 
to our list of drugs. Similarly, of 40,475 
drug interactions from Medi-Span, 15,621 
corresponded to our list of drugs. Together, 
these formed a set of 19,356 interactions, 
which resulted in 6,845 distinct drug-drug-
event tuples constituting the positive 
examples in our gold standard. We 
calculated ORs, using STRIDE data, for 
560 true examples with sufficient support, 
and also for an equal number (560) of 
random negative examples [see Methods]. 
We calculated the prevalence of each event 
among patients on drug combinations 
representing true interactions from the 2x2 
contingency table [see Table 1]. This gold 
standard of 1,120 interactions, together 
with the prevalence information for the 560 
true interactions forms a unique resource that can be used to test the performance of other methods for mining DDIs 
and to prioritize known interactions [see Discussion].  
Evaluation 
Using an odds ratio [see Methods] as a measure of interaction, and taking the lower bound of the 95% confidence 
interval to account for variance, we obtained a sensitivity of 37.86% at a specificity of 86.79% and a positive 
predictive value (PPV) of 74.13%. We found that the performance of the method was below average for Acute 
Renal Failure, Nephrotoxicity, Hypokalemia and Hyperglycemia [see Discussion]. On removing these events, and 
following adjustment by PSM, our specificity improved to 96.56% with a PPV of 91.71% (threshold=1.5)[see Table 
2]. Figure 4 shows a Receiver Operator Characteristic (ROC) curve showing all possible values of sensitivity and 
specificity that can be achieved by varying the cutoff threshold. Overall performance suggests that the unstructured 
text contains relevant data for drug interaction detection, achieving 81.5% area under the ROC curve for signaling 
known DDIs. 

Discussion 

The importance of the early identification of DDIs is paramount and most of the existing methods use SRS 
databases to learn interactions, and use coded information present in EHRs for validation and prioritization. We 
have shown that it is possible to detect signals of DDIs directly from the unstructured text of EHRs using text 
mining methods and odds ratios. Since our methods are easy to implement and run rapidly, we could deploy them as 
an active monitoring tool for detecting unknown interactions for new and existing drugs, thus serving as an 
important step forward for Phase IV surveillance of drugs and meaningful use of EHRs. 

 
Figure 3. Assignment of patients to various cells in the 2x2 
contingency table. The portion of the timeline after the first 
occurrence of the event is ignored. D=drug, E=event. 

 Table 1. The drug combinations with the highest event prevalence (Prev. = 
a/(a+b)) in STRIDE, for each event.  
Adverse	
  Event	
  (#Patients)	
   Drug1	
   Drug2	
   a	
   b	
   Prev.	
  

	
  	
  (%)	
  
Parkinsonian	
  Symptoms	
  (3541)	
   levodopa	
   lorazepam	
   176	
   235	
   42.82	
  
Cardiac	
  Arrhythmias	
  (88555)	
   potassium	
  chloride	
   lisinopril	
   1091	
   1615	
   40.32	
  
Neutropenia	
  (14322)	
   paclitaxel	
   trastuzumab	
   140	
   567	
   19.8	
  
Bradycardia	
  (22906)	
   amiodarone	
   metoprolol	
   796	
   3671	
   17.82	
  
Hypoglycemia	
  (11150)	
   glipizide	
   lisinopril	
   367	
   2160	
   14.52	
  
Acute	
  Renal	
  Failure	
  (32197)	
   hydrochlorothiazide	
   ibuprofen	
   884	
   8375	
   9.55	
  
Hyperkalemia	
  (4973)	
   potassium	
  chloride	
   spironolactone	
   349	
   3471	
   9.14	
  
Hyperglycemia	
  (19189)	
   prednisone	
   salmeterol	
   379	
   4612	
   7.59	
  
Nephrotoxicity	
  (1460)	
   fluconazole	
   tacrolimus	
   85	
   1208	
   6.57	
  
Pancytopenia	
  (8718)	
   mercaptopurine	
   azathioprine	
   15	
   278	
   5.12	
  
Hypokalemia	
  (8405)	
   prednisone	
   salmeterol	
   222	
   4982	
   4.27	
  
Serotonin	
  Syndrome	
  (674)	
   tramadol	
   duloxetine	
   57	
   1301	
   4.2	
  
QT	
  prolongation	
  (1260)	
   amiodarone	
   ciprofloxacin	
   46	
   2487	
   1.82	
  
Rhabdomyolysis	
  (1378)	
   ciprofloxacin	
   simvastatin	
   50	
   5184	
   0.96	
  

 
  Table 2. Performance at selected values of the threshold 

Threshold TP TN FP FN Sensitivity(%) Specificity(%) PPV(%) 
1.5 177 450 16 289 37.98 96.56 91.71 
1.3 205 442 24 261 43.99 94.85 89.52 
1.0 244 423 43 222 52.36 90.77 85.02 
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Unlike SRS systems, EHRs have good longitudinal coverage of 
patient history, a larger number of measured covariates and are 
less affected by reporting and publicity biases and thus, can 
provide a more accurate measure of the prevalence of a 
particular drug interaction in the real world. Augmenting 
existing drug interaction databases with this prevalence 
information30 would in itself be a major step forward in 
prioritizing interaction alerts in Computerized Physician Order 
Entry (CPOE) systems; where at present 49% to 96% of all 
alerts are overridden31 owing to alert fatigue. Furthermore, this 
prevalence information could help choose between drugs used 
in combination therapy. For example, a study found that use of 
Tacrolimus with statin therapy is safer than use of Cyclosporine 
A and reduces the risk of rhabdomyolysis32. 
We tested our method on a gold standard comprising known 
drug interactions as positive examples, and randomly generated 
interactions as negative examples. Most interaction studies33,34 
use similar techniques to build a gold standard and this aids in 
comparison of results. Indeed, some events did not perform 
well in this setting, and this could be due in part to the gold 
standard or to the methods themselves. The databases from which the known interactions are derived are not 
exhaustive and this may introduce certain biases. In future work, we propose to make a distinction between 
interactions where the event is unrelated to the drugs, and interactions in which either of the drugs is already known 
to be associated with the event. It is possible that these simple methods work for some kinds of interactions and 
more sophisticated methods are required for others.  
Our work has several limitations. Since our workflow relies on text annotation methods to recognize concepts, its 
performance depends on the accuracy of concept recognition in EHRs. In this study, we use frequency based 
methods35 and manual curation to remove ambiguous terms corresponding to concepts, at the risk of reducing our 
sensitivity. However, we have found that some concepts are hard to detect in EHRs even after such filtering. 
Another limitation of the current method is that it fails to identify DDIs that are dependent on the dosage of the 
drugs in question.  Resolving these issues requires more advanced natural language processing methods36, which 
proportionally increases the computation time required. Also, we do not put a restriction on the time window in 
which drugs interact and drug exposures spaced far away in time may cause several false associations. Lastly, our 
current methods may suffer from confounding by other variables, which we aim to resolve in future work by 
adjusting for confounding by co-morbidities and co-prescriptions. 

Conclusion 

In this paper, we demonstrate the feasibility of using the textual portion of EHRs for learning signals of DDIs and to 
estimate the prevalence of existing interactions. In the process, we created a gold standard of DDIs that may be 
useful for detailed characterization of future methods. Owing to the use of simple and fast text mining methods, we 
are able to learn DDI signals on a database containing millions of text notes without the use of extensive computing 
infrastructure. To the best of our knowledge, this is the first study to use the textual notes from a clinical data 
warehouse to generate hypotheses about drug interactions and examine the prevalence of DDIs. 
Acknowledgements: The authors acknowledge support from the NIH grant U54 HG004028 for the National Center 
for Biomedical Ontology. 
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