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Abstract 

 

The Regulation of CD8+ T Cell Fate by Transcription Factor Binding and Chromatin 

Accessibility 

 

by 

 

James John Kaminski 

 

Doctor of Philosophy in Computational Biology 

 

University of California, Berkeley 

 

Professor Nir Yosef, Chair 

 

CD8+ T cells fight viral infections and other intracellular pathogens by identifying and 

destroying infected cells. CD8+ T cells, like all cells, take on different cell states which 

determine their behavior. This dissertation examines how epigenetic mechanisms such as 

chromatin accessibility and transcription factor binding regulate transcription, and 

consequently CD8+ T cell state. The particular CD8+ T cell states that I examine in this 

dissertation are: Naive (quiescent cells), Effector (cells actively fighting infection), 

Memory (cells that remain after infection is cleared, ready to fight recurrence of same 

infection), and Exhausted (cells with weakened cytotoxic function due to prolonged 

encounter with a particular antigen).  

 

Chapter One introduces CD8+ T cells, regulation of transcription, and some of the high-

throughput sequencing assays used later in the text to study CD8+ T cells. Chapter Two 

describes some of the computational tools I developed to process and infer useful 

information from high-throughput sequencing data. Chapter Three presents evidence that 

the chromatin of Exhausted CD8+ T cells differs from that of normal T cells, and 

demonstrates that these differences have functional consequences by validating an 

exhaustion-specific enhancer for PD-1, an important immunotherapy target. Chapter Four 

presents evidence that Batf and Irf4 work together to remodel chromatin and affect the 

binding of key CD8+ T cell transcription factors during the transition from naive to 

effector cell state. 
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Chapter 1 - Introduction 
 

1.1 CD8+ T cells  
 
The immune system employs a remarkable array of mechanisms to protect an organism 
from infection. Mechanisms which are highly specific are classified as belonging to the 
adaptive immune system, and those which are more general belong to the innate 
immune system. B cells, for example, produce antibodies that bind tightly to a particular 
pathogen or its product, and much less effectively to other substances, and so belong to 
the adaptive immune system.  
 
CD8+ T cells are part of the adaptive immune system and target viral infections, other 
intracellular pathogens, and cancerous cells. T cells fend off these pathogenic cells by 
secreting proteins which interfere with viral replication such as interferon-gamma 
(Murphy 2011) and by inducing targeted cells to undergo apoptosis. The highly specific 
nature of a T cell derives from the T cell receptor (TCR), which recognizes particular 
antigens - substances that trigger an immune response (a viral protein, for example) - by 
binding tightly to one type of antigen and weakly to other molecules. Infected cells 
enable this recognition by posting portions of viral proteins on their surface in MHC 
Class I molecules. CD8+ T cells with TCR’s specific to that antigen will bind tightly to this 
combination of MHC Class I molecule and viral protein, secrete perforin to create a hole 
in the membrane of the infected cell, and then release granzymes which direct the 
targeted cell to undergo apoptosis. 
 
CD8+ T cells, like all cells, take on different cell states which determine their behavior. 
For example, a “naive” CD8+ T cell (which has not been primed by an antigen-presenting 
cell for effector function) will fail to destroy an infected cell upon encounter. The central 
aim of this dissertation is to understand how epigenetic mechanisms such as 
chromatin accessibility and transcription factor binding regulate transcription, and 
consequently CD8+ T cell state. The particular CD8+ T cell states that I examine in this 
dissertation are: Naive (quiescent cells), Effector (cells actively fighting infection), 
Memory (cells that remain after infection is cleared, ready to fight recurrence of same 
infection), and Exhausted (cells with weakened cytotoxic function due to prolonged 
encounter with a particular antigen). Cells in each of these states feature particular 
patterns of gene expression which direct their function. I briefly review these states and 
their functional consequences below. 
 
Lymphoid progenitor cells originate in the bone marrow and then proceed to the 
thymus where they can develop into T cells (among other possible fates). At the end of 
this process, CD8+ T cells with a functional CD8 protein and TCR will then migrate 
throughout the body. At this stage, the cells are Naive, and must receive additional 
signals to engage their cytotoxic capabilities. A dendritic cell or other antigen-presenting 
cell activates T cells by presenting the cognate antigen to the T cell along with co-
stimulatory signals. Activated T cells are Effector T cells, which divide rapidly, secrete 

https://paperpile.com/c/RYIZpI/5SaZ
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the cytokines TNF-alpha and IFN-gamma (N. Zhang and Bevan 2011) , and destroy 
infected cells with perforin and granzymes. After an infection is cleared, a subpopulation 
of T cells will remain behind as Memory cells, which can quickly combat a recurrence of 
their target pathogen. In cases where the infection is not cleared, CD8+ T cells can 
become Exhausted, display weakened capability to combat infection, and will 
themselves undergo apoptosis. 
 
1.2 Transcription Factors Bind to Enhancers to Regulate Gene Expression and Cell Fate 
 
Each of the T cell states described above exhibit different functions despite being the 
same type of cell.  Thinking about this phenomenon in a wider context, we know that 
(with some small exceptions), every cell in an organism shares an identical genetic code, 
yet this same collection of cells varies dramatically in appearance, function, and 
behavior. How is this possible? How can a rod cell in the retina selectively produce 
rhodopsin, a protein for sensing different wavelengths of light, while an effector CD8+ T 
cell selectively produces perforin for boring a hole in an infected cell? 
 
The answer is that individual cells have mechanisms for selectively choosing which 
genes are transcribed and the rate at which they are transcribed - a set of mechanisms 
we call “regulation of transcription”. In order to understand how T cells alter their 
transcriptional program to switch from one fate to another, I studied two particular 
regulatory mechanisms: 1) the opening and closing of chromatin (DNA and the proteins 
attached it), and 2) the binding of transcription factors to enhancers. 
 
DNA is quite long relative to the dimensions of eukaryotic cells (two meters in length, 
compared to the roughly 6 to 7 um diameter of a typical human lymphocyte1), and is 
able to fit inside the nucleus only by intricate folding and packing. The lowest level of 
organization is the nucleosome - where 147bp on DNA are tightly wrapped around 
octamers of histone proteins. The nucleosomes themselves can be tightly packed 
together and condensed. The importance of this with respect to transcription is that 
DNA which is tightly packaged into dense units of nucleosomes (heterochromatin) is less 
accessible to the RNA Pol II machinery, and consequently will not be transcribed or will 
only be transcribed at low levels. In contrast, stretches of DNA with few nucleosomes 
(euchromatin) are more open and easier for the RNA Polymerase machinery to bind to 
and transcribe. Proteins called chromatin remodelers can bind to DNA, modify the 
attachment of histone tails to DNA, and consequently open/close regions of DNA. We 
are able to measure the accessibility of particular regions of DNA with the ATAC-Seq 
protocol (Buenrostro et al. 2013), which I discuss in more detail later.  
 

                                                
1 This value was calculated assuming a roughly spherical lymphocyte with a volume of 130 um3. 
This number was obtained was from the Bionumbers Database (Milo et al. 2010) [BNID: 111439], 
which rounded an estimate of from (Schmid-Schönbein, Shih, and Chien 1980).  

https://paperpile.com/c/RYIZpI/yyir
https://paperpile.com/c/RYIZpI/1ZYY
https://paperpile.com/c/RYIZpI/3BRW
https://paperpile.com/c/RYIZpI/9XCQ
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The RNA polymerase may encounter regions of DNA by chance and transcribe them at a 
low or “basal” level, but additional mechanisms are required to transcribe mRNA at the 
degree necessary for cells to carry out their state-specific functions. Proteins called 
transcription factors (TFs) bind to the DNA and carry out numerous regulatory functions 
such as recruiting Pol II to a promoter of a particular gene, recruiting other factors which 
recruit Pol II, recruiting the chromatin remodeling machinery, linking the promoter of a 
key gene to an enhancer far away on the genome, and other actions to 
increase/decrease transcription of a particular gene. We identify where proteins are 
bound on the genome using the ChIP-Seq protocol (Johnson et al. 2007), and also 
through TF footprinting of ATAC-Seq data. (The latter method attempts to identify 
where a TF is bound based on the particular pattern of the protocol’s Tn5 transposase 
binding and cutting around it.) 
 
In addition to chromatin accessibility and TF binding, many other mechanisms regulate 
the distribution of mRNA and proteins produced by the cell. Pol II pausing for example, 
can also affect the rate of transcription, and post-transcriptional mechanisms such as 
alternative splicing affect the final distribution of proteins produced by a cell in a given 
state. These are outside the scope of this dissertation, but are important to keep in 
mind. 
 
1.3 High-throughput Sequencing Methods Are Well-Suited for Studying Regulation of 

Transcription 
 
To identify possible enhancers, we search for regions of DNA that are accessible in a 
particular cell type. For this, we use ATAC-Seq, which uses a Tn5 transposase to 
fragment the genome and prepare it for sequencing. Areas of the genome which are 
more accessible will be cut by the transposase at higher rates, and consequently there 
will be more fragments mapping to those regions in the sequencing data. Users can 
align the data to the reference genome for their organism, and then use “peak calling” 
methods such as MACS2 (Y. Zhang et al. 2008) to identify regions with particularly high 
pileups of fragments. 
 
The ChIP-Seq protocol is used to identify where particular transcription factors are 
bound to the genome. The protocol consists of taking a large population of cells, 
treating them with formaldehyde so all of their proteins stay bound to the DNA, 
fragmenting the DNA with a method such as sonication, and then using a probe to 
retrieve fragments bound with the protein of interest. (This can be done with antibodies 
conjugated to a magnetic bead, for example.)  As with ATAC-Seq, users can map these 
reads to the genome and call peaks to identify regions likely bound by their protein of 
interest. Researchers typically compare their data with a control sample with no 
antibody treatment, to exclude regions that tend to turn up in sequencing experiments 
due to bias. 
 

https://paperpile.com/c/RYIZpI/b4zm
https://paperpile.com/c/RYIZpI/ENQy
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Once we know where the enhancers are, and what proteins are bound to them, we are 
curious to know which genes they are regulating. One might be tempted to assume they 
are regulating the nearest gene, but as recent reviews of enhancers note (Vernimmen D 
2015) (Levine, Cattoglio, and Tjian 2014),  there are cases of enhancers regulating a gene 
over a million base pairs away. Using chromatin conformation methods like HiChIP 
(Mumbach et al. 2016), we can identify long-range contacts on the genome and 
interactions between enhancers and promoters of associated genes. Also, we can use 
CRISPR-Cas9 (Jinek et al. 2012) to mutate and disable enhancers (Canver et al. 2015) and 
then measure expression of their putative target genes.  
 

1.4 What are computational biologists good for? 
 

The contributions of the “wetlab” scientists are abundantly clear - without them, there 
would be no data, and they are the experts in molecular biology. Their careful hands are 
the ones that actually carry out all of the high-throughput experiments described above. 
[I have been fortunate to take a lab course at Berkeley, and also assist once with 
retrieving T cells, sorting them, and extracting RNA - so I have some sense of the 
tremendous skill and work ethic possessed by my colleagues.] 
 
A reader of this dissertation may fairly ask, “Well… what do they need you for?”, and I 
can hopefully justify myself. Computational biologists have training in statistics, and we 
use this knowledge to assist in the planning of experiments so there is sufficient power 
to test a particular hypothesis, identify the appropriate method / statistical test for 
research questions that emerge during a project, and develop new methods when they 
are needed. Computational biologists also have training in computer science, and 
develop new algorithms to efficiently process large amounts of sequencing data in 
parallel, automate time-consuming tasks, and infer useful information from 
heterogeneous and complex datasets from multiple experiments. And finally, and most 
importantly, we also have training in biology, and use that knowledge to conceive and 
test hypotheses for our research projects and make real scientific contributions 
alongside our collaborators. My training at Berkeley has prepared me well in all three 
areas, and my teaching and collaborative experience taught me how to clearly explain 
ideas in one field to practitioners in one of the other two. In the next chapter, I present 
some of the computational methods I have developed, and discuss their application to 
scientific questions in the subsequent chapters. 
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Chapter 2 - New Tools for Computational Biologists 
 

2.1 The Main Challenge for a Systems Biologist: Huge and Heterogeneous Data 
 
We are fortunate to live in an era when many functional genomics questions can be 
answered with high throughput sequencing experiments. This is typically done in a two-
step process. First, a researcher applies an experimental technique to isolate particular 
segments of the genome such as those bound to a protein of interest (ChIP-Seq), or 
open/accessible (DNase-Seq, ATAC-Seq), or bound to a distal part of the genome (Hi-C 
methods). Next, these genomic fragments are sequenced and mapped to the genome, 
and the researcher can infer from the location and amount of reads an answer to the 
functional question. 
 
At first glance, it seems like an easy task to analyze high-throughput data, since in each 
case we align reads to a reference genome (or transcriptome for RNA-Seq). After 
alignment, though, the course of analysis diverges rapidly depending on the particular 
protocol and research question. ATAC-Seq reads must be shifted an appropriate number 
of basepairs to account for the location of the Tn5 transposase, aligned ChIP-Seq reads 
must be compared to the distribution of reads in a control sample to separate true 
binding from noise, and Hi-ChIP output needs to be binned into sections on the genome 
before interactions can be identified. Additional computational methods such as 
identifying transcription factor footprints for hundreds of motifs, or differential 
expression analysis of different pathways introduce further complexity. 
 
When a research project involves one type of *Seq data and the data are received all at 
once, this is manageable without any additional tools. However, in the course of a 
typical systems biology project, a computational biologist will receive data from several 
different kinds of *Seq experiments, in a set of batches across time, and often the 
computational biologist is working on other projects simultaneously. In order to 
effectively meet these challenges, I developed SeqTools, an object-oriented system for 
managing scientific projects with high-throughput data, SeqReports, a set of analysis 
tools for differential accessibility / differential expression, and Overlaps3 for identifying 
enrichment of particular genomic features in a set of loci. 
 

2.2 SeqTools: An Object-Oriented System for *Seq Datasets. 
 
Peter Van Roy defines a programming paradigm as “an approach to programming a 
computer based on a mathematical theory or a coherent set of principles” (Van Roy, 
2009). The object-oriented programming (OOP) paradigm emphasizes organization: the 
programmer designs objects (data structures) to best encapsulate the complex data 
he/she is working with and then designs functions to act on these objects. That 
description is too abstract to be useful, but will become clearer when we look at some 
concrete examples. 
 

https://paperpile.com/c/RYIZpI/lZ0P
https://paperpile.com/c/RYIZpI/lZ0P
https://paperpile.com/c/RYIZpI/lZ0P
https://paperpile.com/c/RYIZpI/lZ0P
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As noted in the last section, all of our experiments involve reads mapped to the 
genome. Whether it is ATAC-Seq, ChIP-Seq, or RNA-Seq, all of these involve getting a set 
of fastq files from the sequencer, aligning it to the genome, and then carrying out set of 
methods on it. We can take advantage of that generality, and consider each of these 
sequencing datasets members of a class, a class I call “SeqData”. We can think of all the 
attributes that a particular instance/object of SeqData might have, such as “single or 
paired end”, “raw fastq files”, “reference genome”, “aligned output file”,etc. and make 
sure that the SeqData object has a slot for each of these values. With all of this 
information organized in one object, we can easily access attributes of the dataset by 
typing in something like: 
 

sdSample1.experiment_type 

sdSample1.rawFastq1_file_one 

 
We can also think of things we would like to do with that particular instance of SeqData, 
like align it to the genome. Since all SeqData objects have the same structure, we can 
write an alignment function that looks in the object and retrieves all of the information 
it needs. Thus, instead of many lines of code specifying what to do, we can just write 
one: 
 
 Align_And_CheckQuality(sdSample1) 

 
The advantage of all this is that, in exchange for a great deal of initial effort in carefully 
designing the objects and functions, we can very easily apply functions like 
“Align_And_CheckQuality” to these objects without having to waste time coding all the 
specific details like the location of the reference genome, etc. This also standardizes the 
output from these functions, and makes it much easier to operate on them 
systematically. 
 
I have also integrated this system with Python doit (http://pydoit.org/) , an automation 
tool designed by Eduardo Schettino. Doit allows users to specify a project as a series of 
tasks where the output of one is the input to another. (Say, “Alignment_To_Genome” → 
“Call Peaks”) If a user has a complicated ten step process, and he/she wants to make a 
change at step five, the package knows to only run the steps downstream of that (steps 
six to ten), and not waste time on anything upstream. Furthermore, if say, new ATAC-
Seq samples are added and the user has already aligned the last batch, the doit tool will 
see that the output already exists for the old samples and will not rerun the pipeline on 
them. 
 

2.3 SeqReports and Chromatin Viewer 
 
One of the challenges in a typical systems biology project is simply organizing all of the 
output from routine analyses such as checking the quality of a given batch of samples or 
finding differentially expressed genes. These results are often wind up dispersed in a 
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collection of slide decks, pdfs, and emails, making it difficult to track down results in the 
future. To combat this tendency, I have created a web-based view of the quality 
information on our ChIP-Seq and ATAC-Seq data using “Shiny”, and also have written 
our differential expression / differential peak reports as knitr html reports for 
collaborators. 
 
Shiny (“Web Application Framework for R [R Package Shiny Version 1.0.5]” n.d.) is a 
package for the R programming language that makes it easy to build interactive 
websites. Using the SeqTools package, I systematically assemble various quality control 
metrics on our ATAC-Seq and ChIP-Seq results into tables of results that can be loaded in 
Shiny and plotted with R. Since SeqTools automatically updates these tables every time 
it aligns new data, I merely have to restart Shiny to get an updated version of the viewer 
that plots all of our samples from beginning to end. The bars for individual samples are 
also colored by batch. This makes it easy to quickly compare a new set of results to 
previous ones, switch through many different metrics of quality, and thus identify 
problematic samples. 
 
In addition to Shiny, I also use the knitr package (Xie 2015) to produce reports that 
combine text and plots from a differential ATAC-seq / RNA-seq analysis into a single 
html report. Included with the report are descriptions of the motivation and mechanics 
for different results we plot (such as how the Euclidean distance for a heatmap is 
calculated, and how PCA works), to help explain the methods I used. For analysis of 
differential results in ATAC-Seq, I also incorporate analysis from “Genomic Regions 
Enrichment of Annotations Tool” (GREAT) (McLean et al. 2010) , which maps regulatory 
regions to their putative targets. The knitr program will upload these peaks to GREAT’s 
API and also prepare peaks for viewing in the Integrated Genomic Viewer (IGV). 
 

2.4 Overlaps3 
 
After alignment and peak-calling of ATAC-Seq or ChIP-Seq data, we have a set of loci on 
the genome and want to know if there is any evidence that the loci are associated with 
regulatory functions. There are several pieces of evidence we can consider for a 
particular set of loci, such as their distance to transcription start sites (TSS’s), overlap 
with known collections of regulatory regions, and enrichment for evolutionarily 
conserved regions and other features. To systematically check for enrichment with 
these features, I wrote the Overlaps3 package for R. 
 
Overlaps3 can run in two ways: 1) to check a set of loci on the genome for enrichment 
of features relative to the full genome, or 2) to compare a “foreground set” of loci for 
enrichment of features relative to a “background set” of loci. To clarify the differences 
between the two methods, imagine you have performed ATAC-Seq on T cells in two 
different conditions. You may want to take the union of all peaks, and run it through 
method #1 to confirm that you are finding features associated with T cells in general 
(say, motifs of key TFs, T cell pathways in GREAT, etc.) You then may want to drill down 

https://paperpile.com/c/RYIZpI/sjr2
https://paperpile.com/c/RYIZpI/u4sF
https://paperpile.com/c/RYIZpI/t12R
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to peaks that are differentially closed/open between the two conditions and try to 
identify what is particularly enriched in them compared to your other peaks. If you run 
this narrow set of loci through method #1, you will get many hits for T cell pathways, 
most of which overlap with your previous results. However, if you use method #2 with 
the differential peaks as the foreground and all T cell peaks as the background, you will 
limit your results to those that distinguish the differential peaks, and these will provide a 
better understanding of their particular function. 
 
For method #2, we measure enrichment for an annotation as the percent of loci in the 
foreground set that overlap a feature of interest, divided by the percent of loci in the 
background set that overlap the same feature. In the example above, if 35% of the 
foreground loci had a hit for a given motif, and 10% of the background regions also had 
a hit, the enrichment score would be 3.5 . We use a hypergeometric test to assess the 
significance of these results. 
 
For method #1, we want to know how enriched the loci are for particular features 
relative to a set of loci of the same size randomly chosen from the genome. We use the 
regioneR package (Gel et al. 2016) to randomly draw regions of the same size as our loci 
from the genome, count how many of these loci overlap features of interest, and repeat 
this hundreds of times to get an estimate from the genome. For method #1, if 30 % of 
our loci overlapped “Feature A”, and the average overlap for 500 random draws of 
regions the same size was 10% for “Feature A”, the enrichment score would be 3.0 . We 
use the mean and standard deviation of these enrichment scores of these draws to 
parameterize a normal distribution, which is used to compute a p value for our 
enrichment score. 
 
The Overlaps3 package provides four kinds of output: 1) Enrichment score for motifs 
and genomic annotations, 2) Enrichment score for disease SNPs obtained from the 
package “gwascat” Carey V (2018) [mm10 loci are mapped to hg38 using the liftOver 
package from UCSC and Bioconductor], 3) GREAT results (McLean et al. 2010), and 4) 
Enrichment for proximity to lists of user-supplied genes. (The peak-to-gene mapping is 
performed by GREAT.)  
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Chapter 3 - The Epigenetic Landscape of T Cell Exhaustion 
 

3.1 Introduction 
 

My first research project on the regulation of CD8+ T Cell fate began by analyzing ATAC-
Seq data from Naive, Effector, Memory, and Exhausted T Cells. I used the SeqTools 
infrastructure, Chromatin Viewer, and an early version of the Overlaps3 database 
(“OverlapsDB”) to process and analyze the data. My co-authors and I were able to find 
chromatin accessible regions (ChAR’s) that were specific to the exhausted conditions, 
and also validated one of them as an enhancer for PD-1, an important cell surface 
protein that is upregulated during T Cell exhaustion and is a target of immunotherapy. 

 
This paper was the work of many people, and I am reprinting it here as it was published 
in Science in 2016 (Sen et al. 2016).  The authors on the paper are: 
 
Debattama R. Sen1,2,*, James Kaminski3,*, R. Anthony Barnitz1, Makoto Kurachi4,5, Ulrike 
Gerdemann1, Kathleen B. Yates1, Hsiao-Wei Tsao1, Jernej Godec1,2, Martin W. LaFleur1,2, 
Flavian D. Brown1,2, Pierre Tonnerre6, Raymond T. Chung6, Damien C. Tully7, Todd M. 
Allen7, Nicole Frahm8, Georg M. Lauer6, E. John Wherry4,5, Nir Yosef3,7,9,†,‡, W. Nicholas 
Haining1,10,11,†,‡ 

 

1 Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, 
USA. 
2 Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA. 
3 Center for Computational Biology, University of California, Berkeley, Berkeley, CA 
94720, USA. 
4 Institute of Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA. 
5 Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA. 
6 Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard 
Medical School, Boston, MA 02115, USA. 
7 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of 
Technology, and Harvard University, Boston, MA 02139, USA. 
8 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 
Seattle, WA 98109, USA. 
9 Department of Electrical Engineering and Computer Science, University of California, 
Berkeley, Berkeley, CA 94720, USA. 
10 Division of Pediatric Hematology and Oncology, Children’s Hospital, Boston, MA 
02115, USA. 
11 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 
02142, USA. 
↵‡Corresponding author. Email: niryosef@berkeley.edu (N.Y.); 
nicholas_haining@dfci.harvard.edu (W.N.H.) 
↵* These authors contributed equally to this work. 
↵† These authors contributed equally to this work. 
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3.2 Abstract 

 
Exhausted T cells in cancer and chronic viral infection express distinctive patterns of 
genes, including sustained expression of programmed cell death protein 1 (PD-1). 
However, the regulation of gene expression in exhausted T cells is poorly understood. 
Here, we define the accessible chromatin landscape in exhausted CD8+ T cells and show 
that it is distinct from functional memory CD8+ T cells. Exhausted CD8+ T cells in 
humans and a mouse model of chronic viral infection acquire a state-specific epigenetic 
landscape organized into functional modules of enhancers. Genome editing shows that 
PD-1 expression is regulated in part by an exhaustion-specific enhancer that contains 
essential RAR, T-bet, and Sox3 motifs. Functional enhancer maps may offer targets for 
genome editing that alter gene expression preferentially in exhausted CD8+ T cells. 
 

3.3 The Epigenetic Landscape of T Cell Exhaustion 
 
T cell exhaustion—an acquired state of T cell dysfunction—is a hallmark of cancer and 
chronic viral infection (1, 2), and clinical trials of checkpoint blockade, which aim to 
reverse T cell exhaustion in cancer, have proven strikingly effective (3, 4). Chimeric 
antigen receptor (CAR)–T cell therapy has also proven highly effective for hematologic 
malignancies (5), but the development of exhaustion in T cells engineered to treat solid 
tumors remains a substantial barrier to its broader use (6). The identification of 
mechanisms that regulate exhausted T cells is therefore a major goal in cancer 
immunotherapy. 
 
To identify regulatory regions in the genome of exhausted CD8+ T cells, we used an 
assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-
seq) (7) to demarcate areas of accessible chromatin in mouse antigen-specific CD8+ T 
cells differentiating in response to lymphocytic choriomeningitis virus (LCMV) infection 
(fig. S1A and table S1). Acute LCMV infection elicits highly functional effector CD8+ T 
cells, whereas chronic LCMV infection gives rise to exhausted CD8+ T cells (1–3, 8, 9). 
Analysis of high-quality ATAC-seq profiles (fig. S1, B to H) from naïve CD8+ T cells and 
those at day 8 and day 27 postinfection (p.i.) (d8 and d27, respectively) revealed that 
naïve CD8+ T cells underwent large-scale remodeling (Fig. 1A and fig. S2A) during 
differentiation [as detected by DESeq2, with a false discovery rate (FDR) < 0.05]. The 
majority (71%) (fig. S2A) of chromatin-accessible regions (ChARs) either emerged (e.g., 
those at the Ifng locus) or disappeared (e.g., Ccr7) (Fig. 1A) as naïve CD8+ T cells 
underwent differentiation. The gain and loss of ChARs were not balanced; a much larger 
fraction of regions emerged at d8 p.i. and persisted or emerged only at d27 than were 
either transiently detected at d8 p.i. or lost from naïve cells (Fig. 1B). Thus, 
differentiation from a naïve CD8+ T cell state is associated with a net increase, rather 
than decrease, in chromatin accessibility (fig. S2B). 
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Genes adjacent to ChARs in each state-specific module included many with known 
functions in the corresponding T cell state. For example, module d, active in mouse T 
cells experiencing chronic LCMV infection on d8 and d27 p.i., contained ChARs adjacent 
to the inhibitory receptors Pdcd1 and Havcr2 (which encodes Tim3) and the 
transcription factor Batf, all genes that are up-regulated in exhausted CD8+ T cells (Fig. 
2B) (1, 8). Moreover, the functional classes of genes in each module were distinct on the 
basis of pathway enrichment (Fig. 2C and table S2). Thus, ChARs that distinguish naïve, 
effector, memory, and exhausted CD8+ T cells are organized into state-specific modules 
that positively regulate functionally distinct programs of genes. 
 
We next sought to test whether regulatory regions specific to exhausted cells could 
regulate genes differentially expressed in exhausted CD8+ T cells. Persistent expression 
of PD-1 is a cardinal feature of exhausted CD8+ T cells, but PD-1 is also transiently 
expressed by effector CD8+ T cells during acute LCMV infection (3, 8). We identified nine 
ChARs within 45 kb of the Pdcd1 gene locus (Fig. 3A) and found several that correspond 
to previously described regions with enhancer activity (–1.5 kb and –3.7 kb) (Fig. 3A) 
(10); these were present in both acute and chronic infection. We also identified an 
additional region (–23.8 kb) that only showed appreciable chromatin accessibility in 
exhausted CD8+ T cells at d8 and d27 p.i. from chronic infection (Fig. 3A). 
 
We hypothesized that this ChAR might function as an enhancer of PD-1 that is required 
for persistent, high levels of expression in exhausted CD8+ T cells. Analysis of chromatin 
accessibility at this region in previously published deoxyribonuclease I–hypersensitive 
site–mapping (11) or ATAC-seq data (12) showed that it was not active in other types of 
hematopoietic cells, except the murine T cell line EL4 and regulatory CD4+ T cells, both 
of which can constitutively express high levels of PD-1 (10, 13) (Fig. 3A and fig. S4A). We 
cloned a 781–base pair (bp) fragment corresponding to this region into a reporter 
construct and found that it induced a 10- to 12-fold increase in reporter gene 
expression, confirming that it could function as an enhancer (fig. S4B). 
 
We then tested whether the –23.8 kb enhancer was necessary for high-level PD-1 
expression. We used the CRISPR-Cas9 nuclease to delete a 1.2-kb fragment at that 
position in EL4 cells, which have both sustained high-level PD-1 expression and open 
chromatin at that enhancer site (14, 15) (fig. S4, C to G). In Cas9-expressing EL4 cells 
transduced with a pair of single-guide RNAs (sgRNAs) flanking the enhancer, cells with 
the lowest PD-1 expression had the highest amount of the enhancer deletion (Fig. 3B). 
We confirmed this finding in single-cell clones and found that the expression of PD-1 in 
clones with a biallelic deletion of the target ChAR was significantly lower (P > 0.0002, 
Mann-Whitney U test) than expression in nondeleted clones (fig. S4, H to J). Deletion of 
this region resulted in decreased but not abrogated PD-1, suggesting that additional 
regulatory regions in EL4 cells are also involved in regulating PD-1 expression (Fig. 3C). 
Among all genes within 1.5 Mb of the Pdcd1 locus, only PD-1 mRNA expression was 
significantly decreased by deletion of the –23.8 kb ChAR (fig. S3K). This suggests that the 
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–23.8 kb ChAR present in exhausted, but not functional, CD8+ T cells serves as an 
enhancer that is required to maintain high levels of PD-1 expression. 
 
We next sought to identify the functional contribution of specific sequences within 
enhancer regions to the regulation of PD-1 expression. We used Cas9-mediated in situ 
saturation mutagenesis and designed all possible sgRNAs within the –23.8 kb enhancer 
and eight other regulatory sequences near the Pdcd1 locus (15, 16) (Fig. 3A). We 
transduced Cas9-expressing EL4 cells with a pool of 1754 enhancer-targeting sgRNAs, 
117 sgRNAs targeting the Pdcd1 exons as positive controls, and 200 nontargeting 
sgRNAs as negative controls (fig. S5, A and B). We sorted transduced EL4s into 
populations on the basis of high or low PD-1 expression and quantified the abundance 
of individual sgRNAs (fig. S5C). 
 
In comparison with nontargeting sgRNAs, which were equivalently distributed between 
PD-1–high and PD-1–low fractions, sgRNAs targeting Pdcd1 exons were highly enriched 
in the PD-1–low fraction as expected (Fig. 3D and fig. S5, D and E). sgRNAs targeting 
eight of the nine regulatory regions were also significantly enriched in the PD-1–low 
fraction to varying degrees (P < 0.00001 to P < 0.01, see supplementary methods), 
suggesting that critical sequences affecting PD-1 expression are densely represented 
within each of the eight regulatory regions. However, sgRNAs in the –35.6 kb ChAR had 
no significant effect on PD-1 expression, consistent with prior observations that this 
region falls outside the CCCTC-binding factor (CTCF)–mediated boundaries of the Pdcd1 
locus (10). 
 
We focused on sgRNAs inducing cleavage in the –23.8 kb enhancer (fig. S5F) and found a 
strong correlation between the predicted activity in a pooled setting (PD-1 high:low 
ratio >1 SD below mean) and their effect on PD-1 mean fluorescence intensity in 
individual cell lines (P = 0.0041) (fig. S5, G and H). Inspection of the predicted cleavage-
site locations revealed three critical regions of the enhancer in which cleavage markedly 
affected PD-1 expression (Fig. 3E, gray shading). 
 
We next asked whether these critical regions in the –23.8 kb enhancer were associated 
with distinct patterns of transcription factor (TF) binding in exhausted CD8+ T cells in 
vivo. We identified TF footprints (17) using ATAC-seq cut sites from CD8+ T cells 
experiencing chronic infection, which allowed us to infer TF binding within the –23.8 kb 
enhancer (Fig. 3E; fig. S6, A to D; fig. S7A; and tables S3 to S6). We found that cleavage 
sites of sgRNAs that reduced PD-1 expression in EL4 cells were significantly enriched in 
TF footprints found in exhausted CD8+ cells in vivo (P = 8.63 × 104, hypergeometric 
test). The three TF footprints with greatest sensitivity to disruption corresponded to 
motifs for Sox3, T-bet (encoded by Tbx21), and retinoic acid receptor (RAR) in exhausted 
CD8+ T cells in vivo (Fig. 3F and fig. S7B). Indeed, comparison of genome-wide TF 
footprinting between chronic and acute infection at d27 to identify TF motifs that 
showed significantly differential inferred binding (Fig. 3G, fig. S7C, and tables S3 and S5) 
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confirmed that Rara binding was significantly enriched in exhausted CD8+ T cells (FDR = 
3.14 × 10−13) compared with their functional counterparts. 
 
To test whether T cell exhaustion is also associated with a distinct epigenetic state in 
human exhausted CD8+ T cells, we analyzed global patterns of chromatin accessibility in 
tetramer+ CD8+ T cells from four subjects with chronic progressive HIV-1 who were not 
on therapy (Fig. 4, A and B; fig. S8, A and B; and table S7). We successfully mapped 80 to 
85% of ChARs identified in the mouse model to their human orthologous regions (Fig. 
4A, colored blocks, and fig. S8C) (18, 19) and found them to be enriched for disease-
associated single-nucleotide polymorphisms (SNPs) (probabilistic identification of causal 
SNPs, P < 2.77 × 10−8; hypergeometric test) (fig. S8D) (20) and, in particular, immune-
related National Human Genome Research Institute genome-wide association study 
SNPs (P < 3.70 × 10−3) (fig. S8, E to G). This enrichment strongly suggested that mapped 
regions corresponded to functional regulatory regions within the immune system. 
Regions at the Pdcd1 locus were not among those mapped from the mouse model, as 
previously observed (10), which limited our ability to detect an ortholog to the –23.8 kb 
enhancer observed in the mouse model. 
 
Human naïve CD8+ T cells from the majority of donors showed greater chromatin 
accessibility in naïve-specific regions defined in the mouse than in memory- or 
exhaustion-specific regions. In the healthy donor, CMV-specific tetramer+ CD8+ T cells, 
and effector memory cells were enriched for memory-specific regions (Mann-Whitney U 
test, P = 0.01 to P < 0.0001) (Fig. 4C and fig. S8H). In contrast, HIV-specific tetramer+ 
cells from three out of the four subjects showed significantly greater chromatin 
accessibility in exhaustion-specific regions (Mann-Whitney U test, P = 0.05 to P < 0.001) 
than in memory-specific regions. 
 
Finally, we confirmed these findings in a subject with chronic hepatitis C virus (HCV) 
infection in whom CD8+ T cell responses to two epitopes of HCV could be detected (Fig. 
4D). Sequencing of the HCV genome in this subject revealed that, unlike the C63B 
epitope, the 174D epitope had undergone extensive viral escape, and no wild-type viral 
sequence could be detected (Fig. 4E). We found that the C63B tetramer+ cells had a 
phenotype consistent with exhaustion and showed significantly greater chromatin 
accessibility at exhaustion-specific regions (Mann-Whitney U test, P = 0.01) than 
memory regions (Fig. 4F). In contrast, 174D tetramer+ cells, which were specific for the 
escape mutant epitope, lacked exhaustion-specific surface markers and showed greater 
chromatin accessibility in memory-specific regions, as did influenza-specific CD8+ T cells 
(Mann-Whitney U test, P = 0.04) (Fig. 4F). Thus, the state-specific pattern of chromatin 
accessibility found in mouse exhausted CD8+ T cells is conserved in human exhausted 
CD8+ T cells. 
 
We find that CD8+ T cell exhaustion occurs with a broad remodeling of the enhancer 
landscape and TF binding. This suggests that exhausted CD8+ T cells occupy a 
differentiation state distinct from functional memory CD8+ T cells. Identifying the 
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plasticity of this state and whether or how it could be reverted becomes a critical 
question for immunotherapy applications. Our data also suggest that mapping state-
specific enhancers in exhausted T cells could enable more precise genome editing for 
adoptive T cell therapy. Genome editing of CAR-T cells to make them resistant to 
exhaustion is an appealing concept and has led to recent studies investigating the 
deletion of the PD-1 gene locus (21, 22). Editing exhaustion-specific enhancers (15) may 
provide a more “tunable” and state-specific approach to modulate T cell function than 
deleting coding regions of genes. Functional maps of enhancers specific to exhausted 
CD8+ T cells may therefore provide a crucial step toward the rational engineering of T 
cells for therapeutic use. 
 

3.4 Acknowledgements 
 
The authors thank members of the Yosef and Haining laboratories for their input, the 
research subjects for their participation, and J. Doench and the entire Genetic 
Perturbation Platform at the Broad Institute for their advice on Cas9-mediated 
screening technology. The authors are grateful for input from the Cancer Center for 
Genome Discovery. The data reported in this manuscript are tabulated in the main 
paper and in the supplementary materials. Genome-wide data generated in this study 
can be accessed via GEO accession no. GSE87646. This research was supported by 
AI115712, AI091493, and AI082630 to W.N.H. from the NIH; by the BRAIN Initiative 
grants MH105979 and HG007910 from the NIH to N.Y.; and by 1R21AI078809-01 and 
UM1 AI068618 from the NIH to N.F. The authors declare no potential conflicts of 
interest. D.R.S., J.K., N.Y., E.J.W., and W.N.H. are inventors on a patent application (U.S. 
Patent Application no. 62/310,903) held and submitted by Dana-Farber Cancer Institute. 
 
 
  



17 
 

3.5 Figures 
 
Figure 1 - CD8+ T cell exhaustion is associated with extensive changes in accessible 
chromatin. 
 

 
 
 
(A) Representative ATAC-seq tracks at the Ccr7 and Ifng gene loci. (B) Developmental 
trajectory of new regions at each time point. (C) Overlap in ChARs between cell states. 
(D) Distribution of nondifferential (left) and differential (right) regions between acute 
and chronic CD8+ T cell states. TSS, transcription start site. (E) Correlation network of 
similarity between states measured by gene expression (left) and chromatin accessibility 
(right). Edge length corresponds to similarity (Spearman correlation).  
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Figure 2 - State-specific enhancers in CD8+ T cells form modules that map to 
functionally distinct classes of genes. 
 

 
 
 
(A) Heat map of peak intensity for all differentially accessible regions (rows) clustered by 
similarity across cell states (columns). Shown are normalized numbers of cut sites 
(supplementary methods), scaled linearly from row minimum (white) to maximum 
(purple). (B) Heat map showing row-normalized average mRNA expression of 
neighboring genes within each module in (A) in each cell state. Informative genes from 
each module are shown on right. (C) Heat map showing enrichment of Gene Ontology 
(GO) terms (rows) in each module (columns). P-values (hypergeometric test) presented 
as –log10.  
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Figure 3 - High-resolution functional mapping of an exhaustion-specific enhancer 
identifies minimal sequences that regulate PD-1. 
 

 
 
 
 
(A) ATAC-seq tracks from CD8+ T cells, EL4 cell line, and regulatory CD4+ T cells (12). 
Arrowheads indicate individual ChARs. (B) Cell sorting gates (top) and corresponding 
genomic polymerase chain reaction amplification for the PD-1 enhancer region (bottom) 
showing proportion of wild-type (WT) or deleted (Del) alleles in EL4 cells transfected 
with control (left) or double-cut sgRNAs (right). Representative data shown from two 
replicates. (C) PD-1 expression of EL4 WT (light gray) or representative enhancer-deleted 
(red) single-cell clone out of 46 clones. (D) Normalized enrichment of sgRNAs (gray 
symbols) within PD-1–high and PD-1–low populations at locations shown 
(supplementary methods). Control nontargeting sgRNAs are pseudo mapped with 5-bp 
spacing. Red symbols correspond to the 21 sgRNAs with the largest effect within the –
23.8 kb enhancer, for which isogenic cell lines were later produced. (E) Overlap of TF 
footprints and sgRNA activity within the –23.8 kb enhancer. TF footprints with binding 
probability >0.9 in chronic d27 are shown on top. Lines represent cut sites of top-scoring 
sgRNAs. Change in PD-1 mean fluorescence intensity (MFI) relative to control guide 
transfected populations for each sgRNA (red symbol, left axis); 10-bp running average of 
PD-1 MFI changes caused by sgRNA activity shown in black (right axis). (F) sgRNA cut 
sites within the SOX3, TBX21, and RAR motifs. (G) Log fold enrichment of predicted TF 
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footprints in acute d27 versus chronic d27 CD8+ T cells (x axis) (see supplementary 
methods) are plotted against the corresponding P-value (hypergeometric).  
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Figure 4 - Exhaustion-specific epigenetic profiles in the mouse are conserved in 
antigen-specific exhausted human T cells in HIV-1 infection. 
 

 
 
 
(A) Representative ATAC-seq tracks from naïve, HIV-1 tetramer+, and CMV tetramer+ 
samples at the IFNG gene locus (top). Orthologous regions from five mouse cell states at 
the IFNG locus, based on mapping of mouse ChARs to the human genome (colored 
blocks, bottom). (B) Schematic diagram of mouse and human comparative analysis. (C) 
Heat map of average chromatin accessibility at regions orthologous to mouse naïve, 
memory, and exhaustion enhancers in human samples indicated. Color scale as in Fig. 
2A. (D) PD-1 and CD39 expression measured by flow cytometry in HCV C63B tetramer+, 
HCV 174D tetramer+, and influenza (flu) matrix peptide (MP) tetramer+ populations from 
a single HCV-infected donor. (E) Viral sequences encoding C63B and 174D epitopes. (F) 
Heat map of average chromatin accessibility at regions orthologous to mouse naïve, 
memory, and exhaustion enhancers in human samples indicated from a single HCV-
infected donor.  
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3.7 Supplementary Information 
 
Supplementary information, additional details on the methods and supporting figures 
are reproduced below. Additional tables can be found at: 
http://science.sciencemag.org/content/suppl/2016/11/04/science.aae0491.DC1?_ga=2.
141521914.939072041.1533582113-83659740.1480874477 

Materials and Methods 

Mice 
Wild type C57/BL/6N (CD45.2+) and congenic B6.SJL-Ptprca Pepcb/BoyJ (CD45.1+) mice 
were obtained from the US National Cancer Institute. C57BL/6N P14 mice (LCMV-
specific T cell receptor transgenic) were bred in-house. Male mice were used at 
between 6 and 10 weeks of age. All animal experiments were done in accordance with 
the Animal Care and Use guidelines for the University of Pennsylvania. 
 
Infection and isolation of mouse lymphocytes 
LCMV strains were produced and titred as described (23, 24). Two cohorts of mice were 
infected by intraperitoneal injection of LCMV Armstrong (2 × 105 plaque-forming units) 
or intravenous injection of LCMV Clone 13 (4 × 106 plaque-forming units). All donor P14 
cells were prepared from naive spleen using CD8 negative selection (Miltenyi Biotec). To 
generate effector, memory and exhausted CD8+ T cells, approximately 1-2 x 103 P14 
cells were transferred into recipient mice, followed by LCMV infection one day later. 
Target effector/memory/exhausted P14 cells were harvested only from recipient 
spleens at d8 or d27 p.i. After enrichment using CD45.2 FITC Ab and anti-FITC microbes 
(Miltenyi), cells were stained and sorted by Aria II (BD). Naïve and 
effector/memory/exhausted CD8+ T (P14) cells were sorted by gating on CD8+ TCRVa2+ 
CD62L+ CD44lo and CD8+ TCRVa2+ CD45.2+ CD45.1- population, respectively. The 
following fluorochrome-conjugated antibodies from Biolegend were used for flow-
cytometry: anti–TCR Vα2 (B20.1), anti-CD8α (53-6.7), anti-CD44 (IM7), anti-CD45.1 
(A20), anti-CD45.2 (104), and anti-CD62L (MEL14). 
 
ATAC-seq 
We sorted 40-50,000 cells per biological replicate (Naïve, Acute d8, Acute d27, Chronic 
d8, Chronic d27 and EL4), which were then washed once in cold PBS and lysed in 50μL 
cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-
630). Lysed nuclei were incubated in Tn5 transposition reaction mix as described (7) and 
purified using MinElute Reaction Cleanup kit (Qiagen). ATAC-seq fragments from one set 
of replicates for Acute d8, Acute d27, Chronic d8 and Chronic d27, as well as both 
biological replicates for Naïve cells and EL4 cells, were size selected for fragments 
between 115 and 600 bp using Pippin Prep 2% Agarose Gel Cassettes and the Pippin 
Prep DNA Size Selection System (Sage Science). Post size-selection, ATAC libraries were 
amplified and Nextera sequencing primers ligated using Polymerase Chain Reaction 
(PCR). Finally, PCR primers were removed using Agencourt AMPure XP bead cleanup 

http://science.sciencemag.org/content/suppl/2016/11/04/science.aae0491.DC1?_ga=2.141521914.939072041.1533582113-83659740.1480874477
http://science.sciencemag.org/content/suppl/2016/11/04/science.aae0491.DC1?_ga=2.141521914.939072041.1533582113-83659740.1480874477
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(Beckman Coulter/Agencourt) and library quality was verified using a Tapestation 
machine. High quality ‘multiplexed’ DNA libraries were sequenced on the Illumina 
HiSeq2000.  
 
Quality control of ATAC-Seq data and alignment to the genome 
We used the FASTQC pipeline (Babraham Bioinformatics) on our reads, and aligned 
them to the reference genome (mm9) with bowtie version 1.1.1 (25), retaining only 
reads that mapped to a unique position in the genome [“–m 1”]. We marked duplicate 
reads in the bam files using PICARD and checked for contamination of primer 
sequences.  
 
Identification of peaks in ATAC-Seq data 
After alignment of the reads to the reference genome, reads aligned to the positive 
strand were moved +4 bp, and reads aligning the negative strand were moved -5bp (7). 
For each of our five replicate pairs, we merged the two replicates using samtools, and 
then called peaks using MACS2 version 2.1.0, setting the FDR to 0.001 with the 
“nomodel” option and default mouse genome size. To generate our final universe of 
peaks, we took the union of all of these peaks while merging overlapping regions. 
 
Identification of differential activity in peaks 
We extracted the shifted ATAC-Seq cut sites from our data and counted the number 
that fell into each peak region. We then used DESeq2 (26) to identify the differential 
abundance of cut sites between the peaks and performed all pairwise comparisons of 
the five conditions and considered those with a FDR below 0.05 to be differential. The 
data presented in the ATAC-seq heat maps (Figures 2A, 4C), scatterplot (Fig S1C), and 
PCA (Fig S1D) is the number of cutsites in each peak region scaled according to the 
DESeq2 scaling factor. 
 
Enrichment of genomic features in ATAC-Seq peaks 
For each sample, we investigated the set of peaks calculated by MACS2 for enrichment 
of genomic features relative to their coverage in the mouse genome. For each genomic 
feature, we calculated the fold enrichment as [Overlap of Genomic Feature with ATAC-
Seq Peak Regions / Total Size of Peak Regions ] / [Overlap of Genomic Feature with 
Mouse Genome / Effective Size of Mouse Genome ], with all sizes expressed in base 
pairs.  
 
We set the effective size of the mouse genome to be 2,716,965,481 bp. P-values were 
calculated using a binomial test where n= Number of Peaks, x = Number of Peaks 
Overlapped by Annotation, p = (Overlap with Mouse Genome / Effective Size of the 
Mouse Genome). 
The genomic features we used include: (i) regulatory features annotations from the 
Ensemble database (27), (ii) regulatory features found by the ORegAnno database (28), 
(iii) conserved regions annotated by the multiz30way algorithm, here we consider 
regions with multiz30way score>0.7, (iv) repeat regions annotated by RepeatMasker 
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(http://www.repeatmasker.org), (v) putative promoter regions - taking 10 kb upstream 
and 1 kb downstream of transcripts annotated in RefSeq (29), (vi) gene body 
annotations in RefSeq; (vii) 3’ proximal regions (taking 1kb upstream and 5kb upstream 
to 3’ end); (viii) regions enriched in binding of BATF, IRF4, c-Jun, JunD, and JunB, along 
with histone marks H3K4me1, H3K4me3, H3K27ac, H3K36me3, and H3K27me3 
(Polycomb-repression), and additional annotations Poised Enhancer, Active Enhancer, 
Bivalent Promoter, Developmental Enhancer, and Init. Promoter in CD8+ T Cells (23). We 
also added the peaks we obtained in this study for two replicates of EL4 cells. These 
results are summarized in Table S1 and Figure S1G. 
 
Cluster and gene ontology analysis 
K-means clustering was applied using GENE-E (Broad Institute) to differential ChAR 
signal intensity across all five cell states. Optimum number of clusters was determined 
using the gap statistic in MATLAB. Association of ChARs to neighboring genes and 
enrichment of Gene Ontology (GO) terms within modules (using the entire genome as a 
background set) was determined using GREAT with default settings 
(http://bejerano.stanford.edu/great/public/html/). All significant GO terms are 
enumerated in table S2, while selected GO terms are presented as a heatmap in Fig 2D.  
 
CRISPR design 
sgRNA-specifying oligo sequences were chosen to maximize on-target efficiency based 
on publicly available on-line tools  
(http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design-v1). Single 
stranded sgRNA oligos (Integrated DNA Technologies) were annealed and ligated into 
PXPR003 as previously described (14). SgRNA plasmids were introduced into cell lines 
using lentiviral packaging or nucleofection. For lentivirus production, 293T cells were 
seeded in DMEM with 10% (vol/vol) FBS. Cells were transfected with sgRNA plasmids 

and the packaging plasmids 8.9 and VSV-g using TurboFect (ThermoFisher). Viral 
supernatants were collected 72 hours later. For nucleofection, EL4 cells were mixed with 
100ul of Nucleofector solution and 2ug of sgRNA plasmid. Cells were then transfected 
using Nucleofector Kit L (Lonza) and the C-09 program on the Amaxa Nucleofector I 
machine.  
 
Cell culture 
EL4 cells (ATCC) were cultured in RPMI with 10% (vol/vol) FBS, HEPES, 

Penicillin/Streptomycin and -mercaptoethanol (R10 media). Cas9 expressing cell lines 
were produced using PLX304 plasmid lentivirally packaged as described above. Cas9 
expressing cells were then transduced or transfected with sgRNA plasmids, selected for 
plasmid presence using puromycin, and used for all subsequent experiments 3-5 days 
post-selection. Single cell clones of bulk EL4s were made using limiting dilution. 
 
Reporter assays 
DNA sequences corresponding to the 781 bp core of the -23.8kb PD-1 enhancer (chr1: 
95971118 - 95971899, mm9), and the CMV promoter were cloned upstream of a TATA 

http://bejerano.stanford.edu/great/public/html/
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box minimal promoter driving GFP expression within a lentiviral construct. Plasmids 
were lentivirally packaged as described above. Viral supernatant was concentrated 100x 
by ultracentrifugation for 2 hours at 20,000xg. 
 
CD8+ T cells were isolated from naive spleens using CD8 negative selection MACS kit 
(Miltenyi Biotec) and cultured in R10 medium.  Naive cells were stimulated for 24 hours 
with  plate-bound anti-CD3 (4 µg/ml; 2C11; BD Pharmingen) and anti-CD28 (4 µg/ml; 
37.51; BD Pharmingen)  in the presence of  recombinant human IL-2 (100 U/ml, R&D 
Systems) for in vitro activation prior to transduction. In vitro activated T cells and EL4 
cells were transduced with concentrated virus by incubation with polybrene (5ug/ml) 
and spin infection (2000 RPM for 45 min at 37 °C). GFP expression was measured by 
flow cytometry 48-72 hours post transduction. 
 
Enhancer deletion 
The region -23.8kb from the Pdcd1 TSS was deleted using a pair of sgRNA targeting 
sequences flanking the region. EL4 cells transfected with -23.8kb-targeting sgRNAs or 
negative control sgRNAs (fig. S5A) were sorted on the basis of differing levels of PD-1 
expression and genomic PCR was used to detect deletion in sorted EL4s. Genomic DNA 
was isolated from bulk and clonal cell lines using 50ul QuickExtract DNA solution and 
incubated according to manufacturer instructions. PCR was performed on genomic DNA 
from each sample using the deletion screening primer pairs (fig. S5B), and run on a 1% 
agarose gel with EtBr. For clonal lines, biallelic deletion clones were defined as having 
PCR amplification of only the deletion band, while non-deleter clones amplified only the 
WT band. Deletion was verified by submitting the PCR amplification products for Sanger 
sequencing.  
 
RT-qPCR 
Clonal cells lines as well as control sgRNA receiving bulk populations were lysed in RLT 
and RNA was extracted using RNeasy Plus Mini kit (Qiagen). cDNA was generated using 
ImProm-II Reverse Transcriptase (Promega), and analyzed on a Viia 7 Quantitative PCR 
instrument using Taqman probes. 
 
In situ saturation mutagenesis 
All possible tiling sgRNAs as constrained by Cas9 –NGG protospacer adjacent motif 
presence within all nine PD-1 enhancers and all PD-1 exons were designed using publicly 
available online tools (http://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-
design). Non-targeting sgRNAs were designed by the Genomics Perturbation Platform at 
the Broad Institute. All sgRNA oligos were synthesized and cloned into the lentiGuide-
Puro vector backbone as previously described (14, 15). Plasmid libraries were lentivirally 
packaged as described above, and Cas9-expressing EL4s were transduced by incubation 
with polybrene (5ug/ml) and spin infection (2000 RPM for 45 min at 37 °C). Control 
transductions were done to ensure 1000x library coverage with a multiplicity of 
infection of approximately 0.3. Transduced cells were selected with puromycin for 72 
hours, and a sample was taken post-selection as the starting d0 representation of the 
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library. Cells were cultured throughout the experiment to ensure 1000x coverage of the 
library at all times. 
 
Library-transduced cells were stained with anti-PD-1 fluorescent antibodies and sorted 
into PD-1 high and PD-low populations (fig. S4C). Replicate sorts were done between 
d20-d50 post-selection, and genomic DNA was isolated from sorted populations using 
the Dneasy Blood and Tissue Kit (Qiagen). Bulk cells from d0 post-selection, input 
plasmid pools as well as sorted populations were sequenced as previously described (14, 
15). SgRNA abundance was quantified within each sample by normalizing reads to 
library sequencing depth. SgRNA enrichment in PD-1 high vs. PD-1 low populations were 
calculated as follows: 1) sgRNA abundance in each sample was log-transformed; 2) 
sgRNA abundance at d0 was subtracted from its abundance in each sample to account 
for initial variation in sgRNA representation; 3) any sgRNA that was not detected in at 
least one sorted sample was excluded from further analysis as a cellular dropout; 4) for 
each sorted sample (high and low analyzed separately), the abundance of enhancer- and 
exon-targeting sgRNAs were normalized calculating z-scores relative to the distribution 
of the control guides; 5) the normalized score for each sgRNA in the PD-1 low 
compartment was subtracted from the score in the PD-high compartment, to generate a 
normalized enrichment score for each sgRNA for each replicate; and 6) the enrichment 
score for each sgRNA was averaged across replicates. Enhancer- and exon-targeting 
sgRNA cleavage sites were mapped to the mouse genome (mm9), while control non-
targeting sgRNAs were pseudo-mapped with 5 bp spacing. 
 
Validation of individual sgRNAs 
32 sgRNAs that were enriched in the PD-1 low fraction within the -23.8kb enhancer 
were chosen for individual validation. Oligos representing each sgRNA (IDT) were cloned 
individually into Cas9 and sgRNA dual delivery construct. Plasmids were then 
nucleofected into EL4 cells as previously described to produce 32 isogenic cell lines. 
Each cell line was selected 18-36 hours post-nucleofection in puromycin, and cultured in 
R10 medium. Cells were stained for PD-1 expression or the corresponding isotype 
control. Geometric mean fluorescence intensity (MFI) of PD-1 expression in each cell 
line was normalized to the MFI of staining with isotype control.  
 
Identifying motifs in genome 
We used the PWM databases from Jolma 2013 , Chen 2008 (30), UniPROBE (mouse) 
(31), and JASPAR 2014 (core vertebrates) (32) available in the list of databases at 
http://meme-suite.org/db/motifs. We then called motifs in version 9 of the mouse 
genome using FIMO (33) and a threshold of 1x10-5. We began with a total of 1,446 
motifs and removed any that had zero hits, or more than 1.5 million hits.  
 
We then added evolutionary conservation and distance to TSS for each motif. We took 
the mean evolutionary conservation found in each motif, and used bedtools (34) 
“closest” function to find the nearest TSS for each motif. A file of TSS was created from 
the UCSC genome browser. 
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Inferring transcription factor footprints using Centipede 
We then used the program Centipede to infer the posterior probability of transcription 
factor binding at each motif instance. We passed the evolutionary conservation score, 
distance to TSS, and PWM score for each motif, along with the number of ATAC-Seq cuts 
found in every position in a 220 bp window surrounding the motif, on both strands 
separately. 
 
As an additional filtering step, we ran a separate instance of Centipede without 
conservation and regressed its posterior probability on evolutionary conservation, 
distance to TSS, and PWM score and removed those that did not have a strong, positive 
association with evolutionary conservation in at least one sample (P < 0.05 for one-sided 
Z value test of coefficient). To evaluate the accuracy of these predictions, we compared 
the results to available ChIP-seq data (Fig S6C-D). 
 
Identifying association of TF with  chronic vs. acute infection 
To test whether the binding locations predicted for a given TF are associated with T cell 
exhaustion, we conducted hypergeometric tests comparing the chronic vs. acute 
infection in each time point (Table S3). A TF was marked as differentially bound in a 
given condition if the TF was found more often than expected by chance in peaks that 
were active in that condition versus the other condition. To identify TF associated with 
the transition form the naïve state, repeated a similar analysis comparing naïve vs. day 8 
acute infection (Fig 7A).  
 
Ranking of TFs  
The normalized mRNA expression of each TF was obtained from previously published 
datasets (3, 8), and the absolute value of log fold change between Acute and Chronic 
infection was calculated at d7 and day 30. TFs were then associated with a 
hypergeometric P-value quantifying differential binding at d8 and d27 (as above; taking 
the most significant score across all motifs that correspond to that TF). Each TF was then 
ranked from most to least differential for these four annotations (taking the average 
rank), representing changes in gene expression and TF binding at d7-8 and d27-30. The 
final ranking for each TF was determined as the average of the four individual scores. 
The information in Tables 5-6 is provided for the top 100 TFs, plus addition of six TFs 
with known relevance to CD8+ T cell biology (JUND, RUNX3, JUNB, STAT5A-STAT5B, 
FOXP1, TCF7). 
 
Analysis of TF binding to regions  
Binding at a transcription factor motif within a region was inferred from Centipede using 
a posterior probability cutoff of 0.90 or greater. The binding genome-wide was inferred 
for each of 106 transcription factors motifs, which were determined by their ranking 
(top 100, as above; tables S3-6) and known relevance in CD8+ T cell biology (JUND, 
RUNX3, JUNB, STAT5A-STAT5B, FOXP1, TCF7). Those 106 TFs were further filtered to 50 



34 
 

based on their differential binding and known role in CD8+ T cell transcriptional 
regulation.  
 
We then looked at the binding at each TF motif instance of the 50 TFs in the acute and 
chronic state. Each binding event was classified as being present in acute only, chronic 
only, or both. This comparison between motif binding in acute or chronic infection was 
done at both d8 and d27. Thus at d8 and d27, we were able to calculate the percentage 
of binding events per TF motif that was unique to chronic infection, acute infection or 
shared. This partiality of TF binding in either acute or chronic infection only, as opposed 
to shared binding, was quantified as the percentage of all unique binding events seen in 
chronic infection at each time-point. Furthermore, each region containing at least one 
bound motif was associated with a target gene using GREAT. All target genes could then 
be defined as being upregulated, downregulated or unchanged by mRNA expression 
between acute and chronic infection at d7 and d30 (8). Thus, each binding event 
between a TF motif and a near target gene (defined using a more stringent probability 
cutoff of >0.95) was classified into those that targeted a gene upregulated in acute 
infection, upregulated in chronic infection or unchanged (table S3-6).  
 
Subjects 
Four HIV-infected participants in the Seattle Natural Progression cohort were selected 
for this study (35). Progressors were defined as having median viral loads >10,000 RNA 
copies/ml in the last year. All subjects were studied in chronic infection and were 
antiretroviral therapy naïve. 40-60 million PBMCs were obtained from each subject. The 
relevant institutional review boards approved all human subject protocols, and all 
subjects provided written informed consent before enrollment.  

 
A baseline sample was obtained for a single HCV-infected patient enrolled on a trial to 
evaluate the effect of successful antiviral therapy on innate and adaptive immune 
responses for genotype 1a hepatitis C virus infection (NCT02476617). The HCV subject 
was chronically infected with an HCV viral load of 828,000 IU/ml. Based on the 
expressed HLA class I alleles, we screened for virus-specific CD8 T cell responses using 
HLA class I multimers. We identified responses targeting HCV A*02:01 C63B 
CINGVCWTV, HCV A*24:01 174D VIAPAVQTNW and influenza A*02:01 MP GILGFVFTL. 
Multimer-binding CD8 T cells were isolated by FACS from PBMCs obtained through 
leukapheresis. The patient had consented to this Institutional Review Board approved 
study. 
 
PBMCs were obtained via density centrifugation from a normal volunteer and screened 
for a CMV tetramer+ T cell response. The relevant institutional review board approved 
the human subject protocol, and all subjects provided written informed consent before 
enrollment.  
 
Isolation of human lymphocyte populations for ATAC-seq 
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PBMCs were thawed rapidly in warm RPMI supplemented in 10% FBS. CD8+ T cells were 
enriched using MACS CD8 negative selection kit (Miltenyi Biotec). After enrichment, 
cells were stained and sorted on a FACSAria cell sorter (BD Biosciences); see fig. S7A for 
cell sorting strategy. The following fluorochrome-conjugated antibodies from Biolegend 
were used for flow-cytometry: anti–CD45RA (HI100), anti-CCR7 (G043H7), anti-2B4 
(C1.7), anti-CD3 (OKT3), anti-CD39 (A1), anti-PD-1 (EH12.2H7), and anti-CD8a (SK1). The 
following fluorochrome-conjugated multimers were used for flow-cytometry: HIV 
A*03:01 RLRPGGKKK, HIV A*02:01 SLYNTVATL, HIV B*08:01 GEIYKRWII, CMV A*02:01 
pp65-NLV NLVPMVATV, HCV A*02:01 C63B CINGVCWTV, HCV A*24:01 
174D VIAPAVQTNW, and influenza A*02:01 MP GILGFVFTL. A maximum of 70,000 cells 
were sorted PBS supplemented with 10% FBS and ATAC-seq libraries were generated as 
previously described. Due to limiting starting material, ATAC libraries were not size-
selected prior to multiplexed sequencing on the Illumina HiSeq2000. Post-sequencing 
quality control, alignment of human ATAC reads to the human genome (hg19), MACS2 
peak calling, and DESeq2 peak normalization was done as previously described. 
 
Mapping peaks to human genome and SNP analysis 
Orthologous mouse ChARs (mm10) were mapped to the human genome (hg19) as 
described (18). Since the mapping algorithm requires input regions in mm10, the UCSC 
liftover tool was applied to ChARs to transfer them onto mm10 from mm9. 
 
GWAS SNPs in the NHGRI catalog (https://www.ebi.ac.uk/gwas/) annotated as “immune 
system disease” was defined as being immune-related. Hypergeometric tests were 
performed quantifying the overlap of mapped enhancers with all GWAS SNPS, immune-
related SNPS as well as PICS SNPs. 
 
Comparative analysis of mouse and human data 
All mouse peaks identified across the 5 cell states (Naïve, Acute d8, Acute d27, Chronic 
d8, Chronic d27) were partitioned into 3 categories based on MACS2-called peaks: peaks 
identified uniquely in Naïve cells relative to Acute and Chronic d27 (mouse Naïve only), 
peaks identified uniquely in Acute d27 cells relative to Naive and Chronic d27 (mouse 
Memory only), and peaks identified uniquely in Chronic d27 cells relative to Naive and 
Acute d27 (mouse Exhaustion only). All mouse peaks not classified into one of those 3 
categories were excluded from further analysis. Orthologous mouse peaks within the 
three categories (Naïve, Memory, Exhaustion) were mapped to the human genome and 
filtered for overlap with at least one MACS2 human peak called independently across all 
human samples. Then, for each human sample, average chromatin accessibility was 
calculated separately for the 3 categories of mouse orthologous peaks (Naïve, Memory, 
Exhaustion). Average chromatin accessibility within each category was normalized to 
account for inherent differences in chromatin accessibility across the 3 classes of peaks. 
 
Amplification and deep sequencing of HCV epitopes 
For HCV epitopes 174D and C63B, amplicons surrounding these epitopes were 
generated using the following conditions. The reaction consisted of 2x First Strand 
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Buffer, sense (A2F: AAC GTT GCG ATC TGG AAG AC or A3F: GCT CTC ATG ACC GGC TTT 
AC) and antisense primers (A2R: GGA AGC GTG GTT GTC TCA AT or A3R: AGA GAT CTC 
CCG CTC ATC CT) at 0.4µM, and a Superscript III RT/Platinum Taq Mix (Invitrogen), with 
the following conditions: cDNA synthesis for 30 minutes at 50°C, followed by heat 
denaturation at 94°C for 2 minutes, the PCR amplification conditions were 40 x (94°C, 15 
s; 55°C, 30 s; 68°C 180 s), with a final extension at 68°C for 5 minutes. PCR amplicons 
were fragmented and barcoded using NexteraXT DNA Library Prep Kit, as per 
manufacturer’s protocol.  Samples were pooled and sequenced on an Illumina MiSeq 
platform, using a 2 x 250 bp V2 reagent kit. Paired-end reads obtained from Illumina 
MiSeq were assembled into a HCV consensus sequence using the VICUNA de novo 
assembler software and finished with V-FAT v1.0 (36). Reads were mapped back to this 
consensus using Mosaik v2.1.73, and intra-host variants called by V-Phaser v2.0 (36). All 
reads have been deposited to the NCBI Sequence Read Archive under accession number 
SRR3951347.  
 
 
Supplementary Tables 
Table S1. Chromatin accessible regions (ChARs). This table lists the 43,171 Chromatin 
Accessible Regions identified in CD8+ T Cells. Each row represents a ChAR and the 
columns contain the number of ATAC-Seq cuts, P-values and FDRs for differential 
abundance of cuts (calculated by DESeq2), overlap with transcription factor binding sites 
based on ChIP-seq, overlap with annotations for the mouse genome, and information on 
nearby genes. 
 
Table S2. Enrichment of GO terms in ChAR modules. This table lists all significantly 
enriched GO terms within the five, state-specific ChAR modules. Each row represents an 
individual GO term, and columns represent the significance of the enrichment 
(hypergeometric test, GREAT online tool) in each of 5 modules.  
 
Table S3. Enrichment of transcription factor binding in CD8+ T cell states in acute vs. 
chronic infection. This table examines the footprints inferred for each DNA binding 
motif (Centipede posterior binding score was over 0.90) and measures if the set of 
ATAC-seq peaks that coincides with these footprints is enriched for peaks upregulated in 
the Acute or Chronic condition.. Each row provides the results for a particular motif and 
the comparison “ChronicD8 vs. AcuteD8” or “ChronicD27 vs. AcuteD27”. Using the 
results from DESeq2, we partition the peaks that coincides with the footprint as 
upregulated in the Acute condition, upregulated in the Chronic condition, or neither. 
Fold Enrichment in the Acute case is defined as [(Acute Peaks with footprint / Total 
Acute Peaks) / (Total Peaks with footprint / All Peaks)], and the P-value is derived from 
the hypergeometric distribution as one minus the probability of the footprint coinciding 
with at least as many of the Acute peaks found in the data by chance. The Fold 
Enrichment and P-value are calculated similarly for the Chronic condition. 
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Table S4. Differential gene expression in CD8+ T cells from Acute and Chronic infection. 
This table provides changes in mRNA expression between Acute and Chronic conditions. 
Each row represents a single gene in the mouse genome, and the columns provide the 
log fold change in mRNA expression from CD8+ T cells between Acute vs. Chronic 
infection at d30 and d7 based on microarray data from (3, 8) 
 
Table S5. Ranking of transcription factors. This table lists the ranking of the TFs based 
on their differential expression (using microarray data in Table S4) and inferred 
differential binding (using footprint analysis from Table S3). Each row represents a 
transcription factor, and the columns provide the list of motifs used for ATAC-Seq 
footprinting, PD-1 enhancer, known gene, rank of the TF by absolute log fold change of 
expression for Acute vs. Chronic d30 and Acute vs. Chronic d8, and rank of the TF by 
hypergeometric test for differential binding in the comparisons Acute d8 vs. Chronic d8 
and Acute d27 vs. Chronic d27. The overall rank is taken as the mean value of the four 
comparisons in each row. 
 
Table S6. Region level binding of top TFs. This table shows inferred binding of top 
ranked TFs in each ChAR in each cell state. Each row represents one ChAR and each 
column represents the activity of a given TF in a given cell state. The value in each cell 
corresponds to the Centipede posterior probability of the binding of a specific TF in a 
specific cell state in a specific region, taking the maximum over all the corresponding 
motifs. 
 
Table S7. Patient characteristics and viral load information. This table summarizes the 
characteristics of all subjects who were profiled in this study, including gender, HLA 
allele and CD4+ T cell to CD8+ T cell ratio (when available). Viral load for HIV and HCV 
patients are reported as plasma RNA IU/ml. 
 
Supplementary Figure Legends 
Figure S1. Characteristics of chromatin accessible regions from mouse CD8+ T cells. 
(A) Schematic diagram of the experiment.  (B) Number of chromatin accessible regions 
per condition, partitioned into those overlapping transcriptional start sites (TSS), exons, 
introns and intergenic areas as indicated. (C) Scatterplot showing correlation in peak 
intensity between biological replicates for Naïve, Acute d8, Acute d27, Chronic d8 and 
Chronic d27 states. (D) Principal component analysis of biological replicates for Naïve, 
Acute d8, Acute d27, Chronic d8 and Chronic d27 states across all 43,171 ChARs. (E) 
ATAC-seq fragment sizes from all five cell states. (F) Distance to nearest TSS for all 
intergenic chromatin accessible regions (as percentage of total), for all five cell states. 
(G) Fold enrichment of regions annotated for evolutionary conservation, regulatory 
region status and histone marks within ATAC peaks, for all five cell states. (H) Combined 
ATAC signal across all TSSs (black), H3K27ac peaks (dark grey) and H3K27me3 (light 
grey). Histone mark peaks were determined from (23). 
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Figure S2. Differential chromatin accessible regions in CD8+ T cells from acute and 
chronic infection. (A) Fraction of constant and changing chromatin accessible 
regions. (B) Fraction of the genome covered by chromatin accessible regions over time, 
in naïve (grey symbol), CD8+ T cells and those following Acute (white symbols) or 
Chronic (black symbols) infection. (C) Number of shared and differential chromatin 
accessible regions in CD8+ T cells from acute and chronic infection at day 8 and day 27 
(FDR < 0.05 for differential) for combinations indicated by the grey/white symbols 
below. (D) Distance to nearest TSS for all intergenic regions that are non-differential 
(light grey) and differential (dark grey).  
 
Figure S3. Comparison of differential regions between states. (A) Graph showing the 
gap statistic using given number of K-means clusters, applied to the signal intensity of all 
differential regions across the five cell states. (B) Correlation between average gene 
expression and average chromatin accessibility for each module in each cell state. Letter 
symbols correspond to modules as indicated in Figure 4(A) and (B) in the main text. 
 
Figure S4. CRISPR/Cas9-mediated enhancer editing. (A) ATAC-seq tracks from CD8+ T 
cells, EL4 cell line and hematopoietic lineages indicated (12). Arrows indicate individual 
ChARs. (B) GFP reporter expression in EL4s (upper) and activated CD8+ T cells (lower) 
transduced with a negative control minimal promoter (left), CMV promoter construct 
(middle) and Pdcd1 -23.8 kb enhancer construct (right).  Averages of 3-4 replicates are 
shown in the bar graphs. (C) Schematic diagram of genome editing strategy. (D) CRISPR 
PD-1 targeting and non-targeting sgRNAs used in EL4 cells. (E) PCR primers used for 
screening genomic deletion and for Sanger sequencing. (F) Histogram of PD-1 
expression in EL4 cells transfected with control (light grey) or double-cut sgRNAs (red) 
targeting the -23.8kb region. (G) Gel showing PCR screening results using genomic DNA 
from control sgRNA, single enhancer sgRNA, and double enhancer sgRNA receiving EL4 
cells. (H) Gel showing PCR screening results using genomic DNA from 45 EL4 single cell 
clones receiving double enhancer targeting sgRNAs. (I) Expression of PD-1 in EL4 single-
cell clones that are WT (white bars) or Del (red) for the -23.8kb enhancer (P < 0.0002, 
Mann-Whitney rank-sum test for PD-1 expression). (J) Sequence at the enhancer for 
representative EL4 single cell clones. Clone numbers correspond to (E), arrows indicate 
expected cut sites from sgRNAs. (K) Relative mRNA expression in WT or Del clones (P < 
0.005, T-test). 
 
Figure S5. In situ saturation mutagenesis of the PD-1 enhancers. (A) Composition of 
sgRNAs within pooled screening library. (B) Distribution of gaps between adjacent 
sgRNA cut sites. (C) PD-1 distribution (left) in pooled sgRNA transduced EL4s (red) 
compared to control-transduced EL4s (grey). Gates indicate PD-1 high and low sorted 
fractions. Post-sort distribution of PD-1 in high and low sorted populations (right). (D) 
Correlation of sgRNA representation in plasmid pool vs. in post-transduction EL4s. (E) 
SgRNA enrichment scores within PD-1 high and low populations across 3 replicates. (F) 
Normalized enrichment of all sgRNAs (grey symbols) within PD-1 high and low 
populations in -23.8kb enhancer, with 10bp running average of sgRNA enrichment 
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(black). (G) Sequences for sgRNAs enriched in the PD-1 low fraction within the -23.8kb 
enhancer, which were chosen for individual validation. Relative positions from the start 
of the -23.8kb enhancer are shown on left. (H) Correlation between normalized 
enrichment score in main Figure 3(D) and PD-1 MFI of individually transfected EL4 cells, 
for top-scoring sgRNAs (PD-1 high:low ratio >1SD below mean) in the -23.8kb enhancer. 
 
Figure S6. Evaluation of transcription factor footprinting with ChIP-Seq data. (A) IGV 
tracks showing ATAC-seq peaks for Naïve, Acute d8, Acute d27, Chronic d8 and Chronic 
d27 cell states, as well as c-Jun, Batf and IRF4 ChIP tracks from in vitro activated CD8+ T 
cells, at Gzmb locus (23). (B) ATAC-seq profiles were analyzed to infer TF binding based 
on an attenuation of transposase cut sites over known TF motifs i.e. TF footprinting (17). 
Representative transcription factor (TF) footprints TFs are indicated. (C) TF footprinting 
was validated by plotting correlation of normalized ChIP-Seq reads and Centipede 
posterior probability for BATF and IRF4 across the full genome. (D) ROC plots of varying 
cutoff for Centipede posterior probability used to call presence/absence of IRF4 and 
BATF binding (ChIP-Seq peaks used as standard for identifying TF binding). These plots 
indicate high levels of sensitivity and specificity (AUC = 0.77 and 0.84).   
 
Figure S7. Transcription factor footprinting in chromatin accessible regions. (A) Log 
fold enrichment of predicted TF footprints in acute d8 v. naive CD8+ T cells (X-axis) are 
plotted against the corresponding P-value (hypergeometric). This analysis recovered 
motifs associated with known regulators of effector function including the AP-1 family 
TFs Batf, Jun, and Fos and the naïve T cell regulator Lef1 (23, 37). (B) Motifs for Sox3, 
RAR and TBX21 with footprints in the -23.8kb PD-1 enhancer (C) Network diagram 
showing inferred binding at TFs motifs (round nodes) in regions adjacent to genes 
(square nodes). Genes are partitioned by mRNA expression into those upregulated (left), 
downregulated (right) or unchanged (center) between acute and chronic infection, at 
day 7 (top) and day 27 (bottom) post infection. TF nodes are colored to indicate 
partiality of state-specific binding in chronic (red) or acute (green) infection. Edges 
colored to indicate relative fraction of state-specific binding events to the 3 classes of 
genes (upregulated in acute infection, chronic infection or unchanged). Edges denoting 
binding-events that are identified preferentially in chronic infection are in red, while 
those seen preferentially in acute infection are shown in green. 
 
Several features suggest that binding at these TF motifs is likely to play a role in 
regulating T cell exhaustion. First, bound motifs are observed more frequently at genes 
differentially expressed between CD8+ T cells in chronic vs. acute infection at d27 p.i. 
than in genes that were not differentially expressed (hypergeometric P = 9.85x10-3, 
differential gene expression FDR < 0.05). Second, many bound motifs recovered by our 
analysis correspond to TFs with known roles in exhaustion, including T-bet (9), Eomes 
(9), Batf (38), Blimp1 (39), Nfatc1 (40), Nr4a2 (41), Mafb (41). Third, other differential TF 
footprints suggest plausible, novel candidate regulators of T cell exhaustion, such as: 
Pou2f2 (also known as Oct-2) which interacts with AP-1 family TFs (42), and Foxp1, 
which regulates quiescence in naïve CD8+ T cells (43).  
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Figure S8. Characteristics of human CD8+ T cell chromatin accessible regions and 
mouse orthologous regions. (A) Cell sorting strategy for tetramer+, naïve and effector 
memory populations on a representative human sample. (B) Fold enrichment of regions 
annotated for published histone marks in human primary T cells, within ATAC peaks for 
all human samples. (C) Percentage of all peaks entirely/partially mapped to human 
genome (hg19), for naïve, acute d8, acute d27, chronic d8 and chronic d27 states. (D) 
Enrichment of PICS SNPs in mouse orthologous ChARs. Dotted line illustrates P = 0.05 
(hypergeometric test). (E) Enrichment of all NHGRI GWAS SNPs and (F) of immune 
system disease related SNPs. Dotted line illustrates P = 0.05 (hypergeometric 
test). (G) Heatmap showing fold enrichment of autoimmune diseases SNPs in 
orthologous regulatory regions relative to randomly selected regions; columns are 
hierarchically clustered. (H) Schematic diagram of mouse chromatin accessible region 
mapping to human genome.  Regions of chromatin accessibility are defined in the 
mouse genome (left panels).  Regions orthologous to the mouse regions are mapped to 
the human genome, and chromatin accessibility of the orthologous regions assessed in 
human T cell data (right panels).  
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Chapter 4 - Batf and Irf4 Regulate the Naive to Effector Trajectory 

 
4.1 Introduction  

 
In Chapter 3 of the dissertation, my co-authors and I presented evidence that chromatin 
accessibility changes between Naive, Effector, Memory, and Exhausted CD8+ T cells. 
Furthermore, we showed that the state-specific accessible regions are near genes with 
state-specific expression, and we validated a putative enhancer for PD-1 via 
CRISPR/Cas9 KO. 
 
In Chapter 4, Hsiao-Wei Tsao, W. Nicholas Haining, Nir Yosef, and I investigate the 
regulation of chromatin accessibility and its impact on gene expression and phenotype 
by analyzing ATAC-Seq, ChIP-Seq, and RNA-Seq for wildtype and Batf knockout CD8+ 
cells (Fig 1A). Batf, “Basic leucine zipper transcription factor, ATF-like”, regulates Th17 
differentiation by typically co-binding with Irf4, and is also required for differentiation of 
other immune cell types (Glasmacher et al. 2012).  (Kurachi et al. 2014) found that Batf 
is essential for differentiation of naive T cells to effector T cells, and that it 
simultaneously increases the expression of key effector TFs while reducing the 
expression of key effector products such as granzyme B. 
 
We find that Batf and Irf4 are essential for maintaining the regulatory landscape of 
effector T cells by altering the accessibility of the genome and the binding affinity of key 
transcription factors. We find evidence that T-bet and Runx3 are highly enriched for 
binding in regions regulated by Batf and Irf4, and that these TFs are involved in long 
range chromatin interactions. Transduction and expression of these four genes in 
fibroblasts upregulated the expression several genes with important functions in T cells 
including cytokine receptors (Il2rb and Il17ra), a transcription factor (Nfatc1),  a 
chemokine receptor (Ccr7), proteins in cytokine signaling pathways (Socs4 and Jak1) , 
cell surface receptors (such as Cd300a), and others. 
 

4.2  Knockout of BATF Downregulates Genes Critical for Effector Function 
 
The naive to effector trajectory is initiated by TCR signaling. To determine which groups 
of genes are expressed during TCR stimulation, we obtained time course RNA-Seq data 
from in vitro artificially stimulated CD8+ T Cells. We applied hierarchical clustering to the 
gene expression data (Fig 1B), and found the key effector TFs Batf, Irf4, and T-bet 
(Tbx21) were mapped to Cluster 1 along with genes encoding key effector products such 
as Ifng and Gzmb. Genes in this cluster increase in expression during stimulation and 
restimulation. Runx3, another key TF, was assigned to Cluster 4, which contain genes 
which rise in the days after stimulation, but fall during restimulation. 
 
To assess the impact of Batf knockout on gene expression, we obtained in vivo RNA-Seq 
data for WT and Batf KO P14 CD8+ T cells using a Cre-Lox system, and retrieved the cells 

https://paperpile.com/c/d9RV3F/PIXI
https://paperpile.com/c/d9RV3F/r90p
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three and four days after LCMV infection (Fig 1C). Genes characteristic of Cytotoxic 
CD8+ T Cells such as Ctla2 and Ctla4 (cytotoxic T lymphocyte associated proteins 2a and 
4 ) were downregulated in the Batf KO samples, and GO Enrichment analysis of genes 
that dropped more than twofold in expression between the WT and Batf KO samples 
revealed pathways relating to “T cell activation” and “regulation of leukocyte activation” 
(Fig 1C). Several genes were found in multiple pathways, such as Lyn (a protein tyrosine 
kinase), Cd24a, and Ctla4 (Fig1D).   
 
We obtained ATAC-Seq data from the same experimental setting as the in vivo Cre-Lox 
experiment and found several chromatin accessible regions (ChAR’s) that were 
differentially accessible between the WT and Batf KO conditions (Fig1E). We mapped 
these ChAR’s to putative target genes using GREAT (McLean et al. 2010) and then 
compared the average log2 fold change for Tn5 cuts in accessible regions to the log2 
fold change in expression value for the target genes, focusing on genes with the most 
ChAR’s mapped to them (Fig1F). Genes such as Maf (a bZIP transcription factor known 
to be expressed downstream of Batf and important for Tfh differentiation (Andris et al. 
2017), and Th17 differentiation (Tanaka et al. 2014) [synonym: c-Maf]) and Ctla4 (Fig1G) 
appear to have more differential chromatin regions nearby and higher gene expression 
in the WT vs Batf KO, while genes such as Cd47 and Tgfbr2 (part of the TGF-beta 
receptor) are upregulated in Batf KO condition. GREAT analysis of these differential 
peaks revealed an association between ChAR’s lost in the Batf KO condition and the GO 
Biological pathway  “negative regulation of T cell receptor signaling pathway”. Peaks 
gained in the Batf KO were associated with the pathway “positive regulation of T cell 
receptor signaling pathway”.  These results suggest that Batf regulates chromatin 
accessibility in regulatory regions that are key for processing the stimulation signal. 
 
We also obtained ChIP-Seq data for Batf in WT in vitro cells that were restimulated six 
days after their initial stimulation. We identified 20,780 bound loci (ChIP-Seq) peaks for 
Batf.  Batf binding overlapped with 3,666 of the 6,453 peaks that were differentially 
more open in the WT vs the Batf KO ATAC-Seq data. 3,486 of these 3,666 peaks were 
also bound by Irf4. GREAT analysis of the 20,780 Batf bound peaks (versus a background 
of 59,767 loci bound by Batf and other key regulatory factors) found enrichment for the 
pathways “T cell receptor signaling pathway” and “T cell receptor signaling pathway” 
(among others), and mapped Batf bound loci to genes such as the effector molecules 
Ifng and Il2, and transcription factors like Jun and various Nfat’s (Nuclear Factors of 
Activated T Cells).  These results suggest that Batf may regulate the transcription of key 
effector genes through both changes in chromatin accessibility, and by binding near key 
genes without altering the chromatin landscape. 
 
As mentioned earlier, the transcription factor Irf4 is also known to co-bind with Batf and 
regulate important T cell functions. We produced ChIP-Seq data for Irf4, also in vitro 
CD8+ T Cells restimulated at Day 6, and identified 36,785 peaks, which covered 88.9% of 
the Batf bound ChIP-Seq peaks. We also carried out the same analysis of changes in 
chromatin accessibility and gene expression in WT vs Irf4 KO CD8+ T cells (Fig 1J - 1M) as 

https://paperpile.com/c/d9RV3F/rjv0
https://paperpile.com/c/d9RV3F/rLKi
https://paperpile.com/c/d9RV3F/rLKi
https://paperpile.com/c/d9RV3F/bUoP
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we did for WT vs Batf KO CD8+ T cells. Genes lost in the Irf4 KO were enriched for GO 
pathways “regulation of leukocyte activation” and “regulation of leukocyte 
differentiation”. ChARs lost in the Irf4 KO condition were mapped by GREAT to the 
pathway “negative regulation of T cell receptor signaling pathway”. A comparison of the 
gene expression results (Fig 1N) and chromatin accessibility results (Fig 1O) for the WT 
vs Batf KO and WT vs Irf4 KO finds similar effects for many genes and loci. 3,423 genes 
were significant in either comparison, and their estimated log2 fold changes had a 
Spearman correlation of .707. With respect to differentially accessibility, 15,007 peaks 
were differential in either comparison and their estimated log2 fold changes has a 
Spearman correlation of .539. 
 
Several interesting immune-related genes display similar effects when either TF is 
knocked out. For example, the transcription factor Maf decreases in expression when 
either Batf or Irf4 is disabled, and Tlr7, a Toll-like receptor increases in expression when 
either Batf or Irf4 is removed. The similarity of Batf KO and Irf4 KO on the chromatin 
landscape and gene expression, and their high degree of co-binding, implies that the 
two transcription factors work together to regulate effector function.  
 

4.3 Critical CD8+ T Cell Transcription Factors Bind at Regions Regulated by BATF and 
IRF4 

 
To understand what transcription factors regulate the changes we observed in gene 
expression, we obtained ChIP-Seq for ten key T cell transcription factors from in vitro 
P14 CD8+ T cells stimulated with anti-CD3, anti-CD28 and IL-2, and restimulated six days 
later with PMA+Ionomycin in WT and Batf KO conditions (Fig 2A). We assessed the co-
binding of transcription factors (in the WT condition) by measuring the fold enrichment 
for binding (the percentage of “TF A” loci co-bound by “TF B”, divided by the percentage 
of all Day6 TF Peaks bound by TF B, a symmetric measure) (Fig 2B). The TFs Runx3 and T-
bet exhibited high levels of co-binding with one another, and also with Stat3 and Stat5. 
We also employed another measure of co-binding by assessing what percentage of a 
TF’s regions were co-bound by other TFs (Fig 2C). TFs such as JunD, which are bound to 
many loci, also co-bind many of the sites bound by the other key TFs. TFs which bind to 
far fewer loci, like T-bet and Runx3, are covered by many of the other TFs. We 
investigated co-binding relationships within the ChAR’s that are differentially closed in 
the BATF KO condition (Fig 2D), and find that T-bet and Runx3 are highly enriched. Many 
of the other TFs also show enrichment for binding in these loci, implying they may have 
some regulatory function. 
 
We then identified regions which were differentially bound by TFs between the WT and 
Batf KO conditions (Fig 2E). The transcription factors JunD, Stat5, and T-bet mainly lost 
binding, and the TFs Eomes, Fosl2, and Stat3 mainly gained binding. To investigate 
whether changes in binding were due to changes in chromatin accessibility or a co-
binding relationship with Batf, we compared the fold change in ATAC-Seq to the fold 
change for ChIP-Seq at bound loci. Transcription factors such as JunD, Stat5, Irf4, and T-
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bet generally lost both accessibility and binding in the regions where Batf is bound, 
whereas TFs such as Ets1 and Stat3 do not have a strong relationship between 
accessibility and co-binding in the regions where they are bound with Batf. This suggests 
that Batf may affect the binding of some transcription factors through accessibility, 
while impacting others by co-binding and altering their binding affinity. 
 

4.4 HiChIP Data Reveals Long Range Contacts Between Key Regulatory Regions 
 
We sought to understand whether Batf is associated with long range contacts between 
CD8+ T cell regulatory regions, and carried out the HiChIP protocol on CD8+ 
restimulated Day 6 T cells (Fig 3A, Fig3B) for Batf and Ctcf.  Fold enrichment analysis of 
the endpoints/anchors of HiChIP revealed higher enrichment for binding by our key 
transcription factors and differentially open/closed ChAR’s compared to Ctcf (Fig 3C). 
Furthermore, we see that fold enrichment increases with the minimum loop length, and 
we see that T-bet and Runx3 score particularly high on this measure.  
 
We assessed whether particular TFs and classes of differential ChAR’s are more likely to 
interact at long distances by examining the percentage of peaks for these individual 
features that are connected to other features at long distance loops (Fig 3D). Relative to 
the other transcription factors, Runx3 and T-bet come into contact with other TFs at 
higher rates. This is commensurate with research that suggests T-bet may be able to link 
distal regions of the genome  (Liu et al. 2016) . 
 

4.5 Forced Expression of Batf, Irf4, T-bet, and Runx3 Shifts Transcriptome of 
Fibroblasts to be More Similar to T Cells 

 
Our previous analyses showed that knockout of Batf and Irf4 causes substantial changes 
to gene expression and chromatin accessibility. Analysis of ChIP-Seq in these regulatory 
regions and in HiChIP data displayed high enrichment for Runx3 and T-bet. We 
hypothesized that these four transcription factors may play a crucial role in regulating 
CD8+ T cell function, and transfected and expressed them in fibroblast cells and used 
RNA-Seq and ATAC-Seq to investigate their impact on gene expression and chromatin 
accessibility. We tested all sixteen possible combinations of the four genes. 
 
RNA-Seq analysis of the differential genes (Fig 4A) finds increased expression of Il2rb, 
Ccr7, Il17ra, Nfatc1, Socs4, Jak1, and Cd300a (among other genes). Differential ATAC-
Seq peaks reveals opening of peaks near Il2rb, Ccr7, Il17ra, Nfatc1, Cd300a, and Jak1.  
Several of these genes fulfill important T cell functions, and include cytokine receptors 
(Il2rb and Il17ra), a transcription factor (Nfatc1), a chemokine receptor (Ccr7), proteins 
in cytokine signaling pathways (Socs4 and Jak1), and cell surface receptors (such as 
Cd300a). 
 
We also conducted HiChIP on fibroblast samples, adding Batf alone to one sample, and 
Batf, Irf4, T-bet, and Runx3 to a second sample. While both samples were less enriched 

https://paperpile.com/c/d9RV3F/lJbY
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for T cell regulatory regions than our HiChIP T cell samples, the fibroblasts with all four 
transcription factors are slightly more enriched than those with just Batf (Fig 4D). 
 
To assess whether the overall gene expression of the fibroblasts became more similar to 
T cells as our four key transcription factors were added, we created two “T Cell 
signatures” by comparing the expression of Naive T cells and Effector T cells to 
unmodified fibroblasts (Fig 5A and 5B). (The four TFs were excluded from the signatures 
so that their particular expression would not bias the results.) On both measures, the 
fibroblasts with transcription factors added generally scored higher on the T Cell 
signatures (Fig 5C), with fibroblasts expressing both Batf and Irf4 typically exhibiting the 
strongest T Cell scores. We computed the Shapley value for each TF (Fig 5D), a measure 
of the individual TF’s contribution to the increase/decrease in gene signature score, and 
found that Batf and Irf4 were the highest contributors.  
 
Interestingly, Runx3 has a negative Shapley Value, implying that the transcription factor 
is shifting the cells away from our three T Cell fates. Runx3 is known to upregulate the 
expression of cytotoxic molecules, and has also been shown to repress expression of 
genes that can direct cells towards other T Cell fates, like Tcf7 and Cxcr5 which lead 
towards the Follicular Helper T Cell fate  (Shan et al. 2017). Tcf7 and Cxcr5 receive a 
score of +1 in both T cell signatures, so perhaps some of the negative Shapley value is 
due to Runx3 repressing genes like these.  
 
We conducted a similar analysis using the chromatin accessibility data in place of the 
gene expression data (Figures 5E - 5H), and found that Irf4 had the greatest contribution 
to shifting the chromatin landscape to a more T cell-like state. Batf and T-bet had the 
next greatest contribution, followed by Runx3 which had a small positive effect, as 
opposed to the small negative effect displayed in the RNA-Seq results. As in the RNA-
Seq analysis, the samples expressing both Batf and Irf4 tend to be the most T cell-like 
(with the exception of the Batf+Irf4+Runx+Tbet- datapoint), suggesting that Batf and Irf4 
are both necessary to shift chromatin to a more T cell like state. 
 

4.6 Conclusions 
 
Our results show that Batf and Irf4 are essential for maintaining the regulatory 
landscape for effector function by remodeling chromatin and allowing key transcription 
factors to bind. We find that T-bet and Runx3 are particularly enriched in these regions. 
Both TFs are enriched for long-range contacts, commensurate with evidence in the 
literature that T-bet may be a chromatin linker. Furthermore, expression of these four 
transcription factors in fibroblasts upregulates the expression of several characteristic T 
cell genes.  
 
  

https://paperpile.com/c/d9RV3F/TEqt
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4.7 Methods 
 
Note: Dr. Hsiao-Wei Tsao, my colleague on the project who carried out the experiments, 
wrote the sections, In Vivo T Cell Preparation and In Vitro T Cell Preparation, and 
edited the sections Fibroblast Transfection and Preparation and Preparation of HiChIP 
Samples.  
 
In Vivo T Cell Preparation 
BATFf/f x CreERT2 x P14, IRF4f/f x CreERT2 x P14, CreERT2 x P14, and P14 control donor 
mice (with CD45.2+ congenic marker) were treated with 2 mg 4-OHT for 5 consecutive 
days.  Spleens were harvested 5 days after final 4-OHT.  P14 cells were enriched by CD8 
negative selection and analyzed prior to transfer. The enriched CD8+ T cells were then 
transferred to the CD45.1+ B6 recipient mice One day after the transfer, the recipient 
mice were infected with the lymphocytic choriomeningitis virus (LCMV) strain 
Armstrong. Three and four days post infection, the spleens were harvested, LCMV-
specific CD8+ T cells were sorted, and processed with the ATAC-Seq and RNA-Seq 
protocols. 
 
In Vitro T Cell Preparation 
 
CD8+ T cells were isolated from P14 B6 mice with CD8a+ T cell isolation kit (Milteny 
Biotec, 130-104-075) and stimulated at Day 1 with anti-Cd3e (BD, clone 145-2C11, 2 
ug/ml precoated) and 2 ug/ml anti-Cd28 (BD, clone 37.51) with complete RMPI medium 
supplemented with 100 U/ml recombinant human IL-2. Cells were expanded and 
cultured in vitro with complete RPMI and IL-2 for 6 days. Cells marked as “restimulated 
were stimulated again at Day 6 with 50 ng/ml PMA and 1 uM ionomycin for three hours. 
Cells were processed in the RNA-Seq protocol (NEBNext Ultra RNA Library Prep Kit, 
E7530 or NEBNext Ultra RNA Library Prep Kit, E7770) at Days 0 (Naive), 1, 2, 3, 4, 5, 6, 
and again at Day 6 after restimulation. Cells for ChIP-Seq were processed at Day6, with 
restimulation and fixed with 1% formaldehyde at 37 degree for 10 mins. Control 
samples without an antibody were also submitted in the the ChIP-Seq sequencing 
batches. 
 
Fibroblast Transduction and Preparation 
 
NIH 3T3 murine fibroblast cells were transduced with Doxocyline inducible lentivirus 
expressing Batf, Irf4, Runx3, and T-bet with hygromycin B, Blasticidin, Puromycin and 
GFP as selection markers, respectively. The transduced fibroblast cells were selected 
with proper antibiotics for more than a week and treated with 4 ug/ml doxycycline for 
additional 72 hours before harvested. All sixteen possible combinations of these TFs 
(including samples without any of the four TFs) were prepared for ATAC-Seq, and RNA-
Seq, and the Batf and Batf+Irf4+Tbet+Runx3 samples were prepared for HiChIP (fixed 
with 1% formaldehyde). For each combination of TFs prepared for ATAC-Seq and RNA-
Seq, two replicates received Doxocycline treatment, and two replicates did not. 
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Preparation of HiChIP Samples 
 
Ten million fixed cells were used for each HiChIP sample preparation. Two HiChIP 
samples from T Cells were prepared using Ctcf (Millipore, 07729) and Batf (Brookwood 
biomedical, PAB4003) as the targets according to the protocol described in (Mumbach 
et al. 2016). A fibroblast sample with Batf expressed, and a fibroblast sample with Batf, 
Irf4, T-bet, and Runx3 expressed were also processed according to the same protocol. 
 
Alignment of RNA-Seq  
 
All RNA-Seq reads were trimmed using Trimmomatic (Bolger, Lohse, and Usadel 2014) 
to remove primer and low-quality bases. Reads were then passed to FastQC 
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to check the quality of 
the trimmed reads. The single-end reads were then aligned to the 
Mus_musculus.GRCm38.82 transcriptome from Ensembl using RSEM (Li and Dewey 
2011)  with the parameters “--num-threads 4 --bowtie2 --sampling-for-bam --output-
genome-bam --sort-bam-by-coordinate --sort-bam-memory-per-thread 1G --estimate-
rspd --fragment-length-mean 200 --fragment-length-sd 80’.  
 
Analysis of Differential Gene Expression 
 
Differential expression was assessed using DESeq2 (Love, Huber, and Anders 2014) . 
Genes were considered differentially expressed if they had an adjusted pvalue <0.05. In 
models without an interaction term, “betaPrior” was set equal to TRUE, so that an 
expanded model matrix could be retrieved. In models with an interaction term, 
“betaPrior” was set to FALSE, to allow for use of the interaction term. 
 
Alignment of ATAC-Seq and Peak Calling 
 
All ATAC-Seq reads were trimmed using Trimmomatic (Bolger, Lohse, and Usadel 2014) 
to remove primer and low-quality bases. Reads were then passed to FastQC 
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to check the quality of 
the trimmed reads. The paired-end reads were then aligned to the mm10 reference 
genome using bowtie2 (Langmead and Salzberg 2012), allowing maximum insert sizes of 
2000 bp, with the “--no-mixed” and “--no-discordant” parameters added. Reads with a 
mapping quality (MAPQ) below 30 were removed. Duplicates were removed with 
PicardTools , and the reads mapping to the blacklist regions and mitochondrial DNA 
were also removed. Reads mapping to the positive strand were moved +4 bp, and reads 
mapping to the negative strand were moved -5bp following the procedure outlined in 
(Buenrostro et al. 2013) to account for the binding of the Tn5 transposase. 
 

https://paperpile.com/c/d9RV3F/xJrZ
https://paperpile.com/c/d9RV3F/xJrZ
https://paperpile.com/c/d9RV3F/FLbZ
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://paperpile.com/c/d9RV3F/GDS8
https://paperpile.com/c/d9RV3F/GDS8
https://paperpile.com/c/d9RV3F/bquq
https://paperpile.com/c/d9RV3F/FLbZ
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://paperpile.com/c/d9RV3F/JB6H
https://paperpile.com/c/d9RV3F/H8B2
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Peaks were called using macs2 on the aligned fragments (Zhang et al. 2008) with a 
qvalue cutoff of 0.05 and overlapping peaks among replicates were merged. A region 
was considered a valid peak if it had a qvalue below 0.05 in at least two replicates, and a 
qvalue below 0.001 in at least one of the replicates. 
 
Tests of Differential Accessibility in ChAR’s 
 
Differential accessibility was assessed using DESeq2 (Love, Huber, and Anders 2014) 
with a matrix of “peaks by samples” replacing the “genes by samples” matrix. Counts of 
Tn5 cuts were used instead of gene expression values. Peaks were considered 
differentially accessible if they had an adjusted pvalue <0.05. In models without an 
interaction term, “betaPrior” was set equal to TRUE, so that an expanded model matrix 
could be retrieved. In models with an interaction term, “betaPrior” was set to FALSE, to 
allow for use of the interaction term. 
 
Alignment of ChIP-Seq and Peak Calling 
 
All ChIP-Seq reads were trimmed using Trimmomatic (Bolger, Lohse, and Usadel 2014) 
to remove primer and low-quality bases. Reads were then passed to FastQC 
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to check the quality of 
the trimmed reads. These single-end reads were then aligned to the mm10 reference 
genome using bowtie2 (Langmead and Salzberg 2012), allowing maximum insert sizes of 
2000 bp, with the “--no-mixed” and “--no-discordant” parameters added. Reads with a 
mapping quality (MAPQ) below 30 were removed. Duplicates were removed with 
PicardTools , and the reads mapping to the blacklist regions and mitochondrial DNA 
were also removed.  
 
Each combination of transcription factor and condition had two replicates, with the 
exception of Runx3-WT, which had three replicates. ChIP-Seq peaks were called in each 
replicate, versus a control sample, using macs2 (Zhang et al. 2008) with a qvalue cutoff 
of 0.05 and overlapping peaks among replicates were merged. A region was considered 
a valid peak for a transcription factor if it had a qvalue below 0.05 in at least two 
replicates, and a qvalue below 0.001 in at least one of the replicates. 
 
Tests of Differential Binding 
 
Differential binding was assessed using the csaw package (Lun and Smyth 2016) in 
regions identified as being bound in either the WT or Batf Ko for the given transcription 
factor. Only log2 fold changes greater than one with a qvalue below 0.05 were 
considered differentially bound. 
 
 
 
 

https://paperpile.com/c/d9RV3F/OPzC
https://paperpile.com/c/d9RV3F/bquq
https://paperpile.com/c/d9RV3F/FLbZ
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://paperpile.com/c/d9RV3F/JB6H
https://paperpile.com/c/d9RV3F/OPzC
https://paperpile.com/c/d9RV3F/vqOW
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Alignment of HiChIP Data and Peak Calling 
 
HiChIP data were aligned using the HiCPro pipeline (Servant et al. 2015). Normalized 
counts were plotted using the HiCPLotter python package (Kadir Akdemir - 
https://github.com/kcakdemir/HiCPlotter ). 
 
The Hichipper package (Lareau and Aryee 2018) was used to identify loops in the HiChIP 
data. The package relies on the Mango package  (Phanstiel et al. 2015) to identify 
statistical significance of loops. 
 
  

https://paperpile.com/c/d9RV3F/DV5B
https://github.com/kcakdemir/HiCPlotter
https://paperpile.com/c/d9RV3F/iEQp
https://paperpile.com/c/d9RV3F/tnGm
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4.7 Figures 
 
Figure 1A - Gene Expression, Chromatin Accessibility, and Transcription Factor Binding 
Data for CD8+ T Cells 
 

 
Legend: The schematic above depicts the timepoint, experimental setting, and cell type 
for our initial data.  
* The cells for this sample were harvested at both Day3 and Day4. A Cre-Lox system was 
used to KO the gene of interest. 
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Figure 1B - Genes Display Distinct Patterns of Expression in Response to Stimulation 
 

 
Legend: Each row is a gene, each column is a timepoint, and the cell represents the 
average expression of a gene across three in vitro replicates for that timepoint. “Day6” 
cells were not stimulated again; “Day6-Restim” samples were restimulated with PMA 
and Ionomycin.  
 
DESeq2 was used to identify genes that change with respect to the 
timepoint/stimulation categories by applying a likelihood ratio test, and only genes with 
an adjusted pvalue <0.05 were used. Normalized gene expression values were obtained 
from DESeq2 for each replicate. The mean values of these replicates were row 
normalized, and clustered by Pearson correlation using the pheatmap R package.  
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1C - Knockout of Batf Changes Transcriptome of CD8+ T cells 
 

 
 
Legend: The volcano plot on the left indicates genes that were differentially expressed 
in the “WT Flox” (red) and “Batf cKO” (green) conditions. Blue genes were not 
differentially expressed. The barplot indicates the number of differentially expressed 
genes found in each condition. (Genes with an adjusted pvalue <0.05 are considered 
differentially expressed.) 
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1D - Genes Strongly Upregulated in the WT vs the Batf KO Condition are Enriched for 
Pathways Regulating T Cell Activation, Differentiation and Other Key Functions   
 

 
 
Legend: Top-scoring significant GO pathways by hypergeometric test (enrichGO in 
clusterProfiler package) for genes that were differentially upregulated at least twofold in 
the WT vs Batf KO test (n=156) . GO Pathways are categorized into Biological Process 
(BP), Cellular Component (CC), and Molecular Function (MF). “Gene ratio” represents 
the percentage of genes in the “differentially up” set that were also in the GO pathway. 
 
The GO enrichment test and plot were carried out with the “clusterProfiler” R package. 
(Yu et al 2012) 
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Fig 1E - Several Genes Lost in the Batf KO Condition are Shared Across Key Immune 
Pathways 
 

 
 
 
 
Legend: Each beige point represents one of the top ten networks (ranked by pvalue) 
that were strongly upregulated (fold change >=2) in the WT vs Batf KO condition.   
The GO enrichment test and plot were carried out with the “clusterProfiler” R package. 
(Yu et al 2012) Note: The “fold change” displayed here is the log2 Fold Change estimate 
from DESeq2.  
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Fig 1F - Knockout of Batf Results in Extensive Remodeling of Chromatin Landscape 
 

 
 
 
Legend:  The volcano plot on the left indicates regions on the genome that were 
differentially accessible in the “WT Flox” (red) or “Batf cKO” (green) conditions. Blue loci 
were not differentially accessible. The barplot indicates the number of differentially 
accessible regions found in each condition. (Regions with an adjusted pvalue <0.05 in 
the test are considered differentially accessible.) 
 
GREAT (McLean et al 2000) was used to map loci to genes they may regulate, and the 
closest gene for the most differential loci are displayed. 
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Fig 1G - Changes in Chromatin Accessibility and Expression of Nearby Genes Vary in 
Batf KO 
 

 
 
Legend: The X-axis represents the log2(Batf_KO/WT) ratio of ATAC-Seq Tn5 cuts, and 
the y-axis represents the log2(BatfKO/WT) ratio of gene expression for the 
corresponding gene. Multiple ChAR’s can map to one particular gene.  The log2 ratios 
were estimated by DESeq2.  
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Fig 1H - Several Key CD8+ T Cell Genes Show Remodeling of Nearby Chromatin in 
Addition to Changes in Gene Expression in Batf KO. 
 
 

 
 
Legend: Plot of genes that had both differential expression and multiple differential 
ChAR’s (Chromatin Accessible Regions) mapped to them by GREAT. The size of gene 
name represents the number of differential ChAR’s mapped to it.  
 
Genes with the most differential ChAR’s mapped to them were plotted, and the 
threshold was set to include at least 50. 
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Fig 1I - Chromatin Remodeled Near Ctla4 by Batf KO 
 
 

 
 
Legend: Plot of ATAC-Seq fragments from replicates for the WT (blue), Batf KO (red), 
and Irf4 KO (green) near Ctla4. Blue rectangles indicate regions where DESeq2 identified 
a differential increase in accessibility for the WT condition versus the Batf KO. 
 
The plot was created using Gviz (Hahne and Ivanek 2016). Fragment pileup was 
normalized by the number of mapped fragments in each replicate. 
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Figure 1J - Knockout of Irf4 Changes Transcriptome 
 

 
Legend: The volcano plot on the left indicates genes that were differentially expressed 
in the “WT Flox” (red) and “Irf4 cKO” (green) conditions. Blue genes were not 
differentially expressed. The barplot indicates the number of differentially expressed 
genes found in each condition. (Genes with an adjusted pvalue <0.05 are considered 
differentially expressed.) 
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Figure 1K  - GO Enrichment for Genes Upregulated in WT vs Irf4 KO 
 

Legend: Top-scoring significant GO pathways by hypergeometric test (enrichGO in 
clusterProfiler package) for genes that were differentially upregulated at least twofold in 
the WT vs Irf4 KO test (n=127).  All pathways belong to the Biological Process category. 
“Gene ratio” represents the percentage of genes in the “differentially up” set that were 
also in the GO pathway. 
 
The GO enrichment test and plot were carried out with the “clusterProfiler” R package. 
(Yu et al 2012) 
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Figure 1L  - Several Genes Lost in the Irf4 KO Condition are Shared Across Key Immune 
Pathways 
 

Legend: Each beige point represents one of the top ten GO enrichment categories 
(ranked by pvalue) that were strongly upregulated (fold change >=2) in the WT vs Irf4 
KO condition.  
 
The GO enrichment test and plot were carried out with the “clusterProfiler” R package. 
(Yu et al 2012) Note: “fold change” here is the log2 Fold Change estimate from DESeq2. 
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Figure 1M - Knockout of Irf4 Remodels Chromatin Landscape 
 

 
 
Legend:  The volcano plot on the left indicates regions on the genome that were 
differentially accessible in the “WT Flox” (red) or “Irf4 cKO” (green) conditions. Blue loci 
were not differentially accessible. The barplot indicates the number of differentially 
accessible regions found in each condition. (Regions with an adjusted pvalue <0.05 in 
the test are considered differentially accessible.) 
 
GREAT (McLean et al 2010) was used to map loci to genes they may regulate, and the 
closest gene for the most differential loci are displayed.  
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Figure 1N - Batf and Irf4 KO Display Similar Effects for Many Genes 
 

 
 
Legend: The plot above shows results for log2(KO/WT) gene expression estimated by 
DESeq2 for the BATFKO vs WT and IRF4KO vs WT samples from the Cre-Lox experiment.  
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Figure 1O - Batf and Irf4 KO Display Similar Effects for Many ChAR’s 
 

 
 
Legend: The plot above shows results for log2(KO/WT)  ATAC-Seq Tn5 counts estimated 
by DESeq2 for the BATFKO vs WT and IRF4KO vs WT samples from the Cre-Lox 
experiment.  
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Fig 2A - Total ChIP-Seq Peaks for Each Transcription Factor 
 

 
 
Legend: The plot above displays the count of peaks called.  
 
Each combination of transcription factor and condition had two replicates, with the 
exception of Runx3-WT, which had three replicates. ChIP-Seq peaks were called in each 
replicate, versus a control sample, using macs2 with a qvalue cutoff of 0.05 and 
overlapping peaks among replicates were merged. A region was considered a valid peak 
for a transcription factor if it had a qvalue below 0.05 in at least two replicates, and a 
qvalue below 0.001 in at least one of the replicates.     
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Fig 2B - Runx3 and Tbet are enriched for co-binding with other key transcription 
factors 
 

 
 
Legend: The above plot shows fold enrichment for binding of one transcription factor 
within the loci of another. Rows and columns were clustered using Euclidean distance in 
the pheatmap package. 
 
Fold enrichment (for TF A in TF B) = (Percent of TF A Peaks Co-Bound By TF B)/ (Percent 
of All Day6 WT ChIP-Seq Peaks Bound by TF B). 
 
Note: Runx3 fold enrichment for TBet binding is 20.7, and Runx3 fold enrichment for 
Stat3 was 8.5. These values were capped at 8 to avoid distorting the plot.  
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Figure 2C - Percent of Row TF Peaks Co-Bound by Column TF 
 

 
 
Legend: Each cell contains the percentage of row transcription factor peaks co-bound by 
the column transcription factor. Rows and columns were clustered using Euclidean 
distance in the pheatmap package.  
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Figure 2D - Fold enrichment of transcription factor binding within peaks that are less 
accessible when Batf is knocked out 
  

 
 
Legend: Peaks lost in the Batf KO were identified has having log2(KO/WT) significantly 
higher than 0, using DESeq2 (adjusted pvalue<0.05).  
 
The diagonal cells display fold enrichment for TF Binding in the “lost peaks” = (Percent of 
“TF A” Peaks lost in Batf KO) / (Pct of Day 6 WT ChIP Peaks lost in BATF KO).  
 
Cells on the off-diagonal contain fold enrichment for co-binding in the peaks lost in the 
Batf KO. This is calculated as [Percent of Loci Bound by TF’s A and B Lost in Batf KO / 
max(Pct of TF A Peaks Lost in Batf KO, Pct of TF B Peaks Lost in Batf KO)]. The heatmap 
was created with the pheatmap package. 
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Figure 2E - Count of Differentially Bound ChIP-Seq TFs for WT vs Batf KO 
 

 
 
 
Legend: The plot displays the count of peaks for each transcription factor identified as 
differentially bound in the WT or Batf KO samples. Differentially bound ChIP-Seq peaks 
were identified using the csaw package (Lun and Smyth 2016) . 
 
Differential analysis was only carried out on regions where a peak was identified as 
bound by a transcription factor in either the WT or Batf KO. Regions were considered 
differentially bound if csaw estimated a log2 fold change greater than one, and a qvalue 
<0.05. 
  

https://paperpile.com/c/d9RV3F/vqOW
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Figure 2F - Batf knockout affects transcription factors through changes in chromatin 
accessibility and co-binding affinity. 
 

 
 
 
Legend:  The universe for each plot consists of all loci that are either 1) differentially 
bound by the transcription factor in the ChIP data for WT vs Batf KO with a fold change 
greater than 2, or 2) are differentially accessible in the ATAC-Seq data.  
The y-axis displays the change in chromatin accessibility  log2(WT/BatfKO) and the x-axis 
displays the change in transcription factor binding log2(WT/BatfKO). Gold points are 
bound by Batf in the Day6 WT data. 
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Figure 3A - Count of HiChIP Loops by Minimum Loop Length 
  

 
 
Legend: This plot displays the count of HiChIP loops (long range chromatin interactions) 
identified when using different values for minimum loop length. 
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Figure 3B - HiChIP Data for T Cells, using Batf and Ctcf as the ChIP targets. 
 

Legend: The first row of plots illustrate the normalized counts of contacts from obtained 
from HiC-Pro for the Batf and Ctcf T Cell samples surrounding Gzmb on Chromosome 14. 
The final plot represents the log2 ratio of these normalized counts. To create these 
plots, the genome is binned into regions of 20 Kbp.  
 
The middle row displays the same data, along the diagonal of the heatmap. 
 
The bottom row displays bedgraph data for Batf binding from the 10ug Batf Day 6 ChIP 
WT sample.  
 
The plot was created using the HiC Plotter package for Python.    
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Figure 3C - HiChIP Loop Anchors are Enriched for Binding by Key Transcription Factors 
and Differentially Accessible ChAR’s. 
 

 
 
Legend: Each plot displays the fold enrichment of HiChIP loop anchors for differential 
ChAR’s and T Cell Transcription factors. The cutoff for minimum loop length varies along 
the x-axis.  
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Figure 3D - High percentages of Runx3 and Tbet Peaks Participate in Long Range 
Contacts with other Regulatory Features 
 

 
 
Legend: Each cell contains the percentage of peaks for a given feature that are 
connected by a HiChIP loop length of >= 1,000,000 bp to a column feature. The plot was 
created with the pheatmap package. 
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Figure 4A - Expression of Four Key CD8+ T Cell TFs in Fibroblasts Changes 
Transcriptome 
 

 
Legend: The volcano plot on the left indicates genes that were differentially expressed 
in the Fibroblast samples without transfection and Doxocycline treatment (red) and the 
fibroblast samples with transfection and Doxocyline treatment (green) conditions. Blue 
genes were not differentially expressed. The model used in DESeq2 was GeneExpression 
~ DoxTreatment + FourTF_Transfection + DoxTreatment * FourTF_Transfection, and the 
results above are with respect to the “DoxTreatment * FourTF_Transfection” coefficient. 
This model was used to control for effects that the Doxocycline treatment, or 
transfection without activation, may have on the fibroblasts. 
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The barplot indicates the number of differentially expressed genes found in each 
condition. (Genes with an adjusted pvalue <0.05 are considered differentially 
expressed.)  
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Figure 4B - Expression of Four Key CD8+ T cell TFs in Fibroblasts Remodels the 
Chromatin Landscape 
 

 
 
Legend: The volcano plot on the left indicates loci that were differentially expressed in 
the Fibroblast samples without transfection and Dox treatment (red) and the fibroblast 
samples with transfection and Dox treatment (green) conditions. Blue loci were not 
differentially expressed. The model used in DESeq2 was Tn5Cuts ~ DoxTreatment + 
FourTF_Transfection + DoxTreatment * FourTF_Transfection, and the results above are 
with respect to the “DoxTreatment * FourTF_Transfection” coefficient. This model was 
used to control for effects that the Doxocycline treatment, or transfection without 
activation, may have on the firboblasts. 
 
 
The barplot indicates the number of differentially expressed genes found in each 
condition. (Loci with an adjusted pvalue <0.05 are considered differentially expressed.) 
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Figure 4C - Enrichment for CD8+ T Cell Regulatory Features in HiChIP Anchors 
 

 
 
 
Legend: Each plot displays the fold enrichment of HiChIP loop anchors for differential 
ChAR’s and T Cell Transcription factors. The cutoff for minimum loop length varies along 
the x-axis. 
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Figure 5A - RNA-Seq Signature for Naive T Cells 
 

 
Legend: The volcano plot displays genes that were differentially upregulated in either in 
Naive T Cells (green) or fibroblasts (red). The top 1,000 genes in each condition where 
used to create the Naive T Cell signature. Genes upregulated in the Naive T Cell 
condition were given a value of +1, genes upregulated in the fibroblast condition were 
given a value of -1.  
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Figure 5B - RNA-Seq Signature for Effector T Cells 
 

 
Legend: The volcano plot displays genes that were differentially upregulated in either in 
Effector T Cells (green) or fibroblasts (red). The top 1,000 genes in each condition where 
used to create the Effector T Cell signature. Genes upregulated in the Effector T Cells 
condition were given a value of +1, genes upregulated in the fibroblast condition were 
given a value of -1.  
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Figure 5C: T Cell Scores for the Fibroblast Experiments (RNA) 
 
A) Naive T Cell Score 
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B) Effector T Cell Score 
 

 
 
 
Legend: Each point represents a fibroblast sample. Empty circles represent samples 
without Doxocycline treatment, solid circles represent Doxocycline treatment. Colors 
indicate which of the four TFs have been added to the sample. The x-axis represents the 
T cell signature score. The y-axis is random “jitter” to separate points and make the plot 
easier to interpret. 
 
  



91 
 

Figure 5D - Shapley Value for Each TF for the RNA-Seq T Cell Signatures 
 

 
Legend: Each color bar represents the Shapley value, a measure of a TF’s contribution to 
moving fibroblasts towards the given T cell signature.  
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Figure 5E - ATAC-Seq Signature for Naive T Cells 
 
 

 
Legend: The volcano plot displays peaks that were differentially open in either in Naive 
T cells (green) or fibroblasts (red). The top 1,000 peaks in each condition where used to 
create the Naive T cell signature. Genes upregulated in the Naive T cell condition were 
given a value of +1, genes upregulated in the fibroblast condition were given a value of -
1. 
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Figure 5F - ATAC-Seq Signature for Effector T Cells 
 

 
Legend: The volcano plot displays peaks that were differentially open in either in 
Effector T cell (green) or fibroblasts (red). The top 1,000 peaks in each condition where 
used to create the Effector T cell signature. Genes upregulated in the Effector T cell 
condition were given a value of +1, genes upregulated in the fibroblast condition were 
given a value of -1. 
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Figure 5G - T Cell Scores for the Fibroblast Experiments (ATAC) 
 
A) Naive T Cell Score 
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B) Effector T Cell Score

 
Legend: Each point represents a fibroblast sample. Empty circles represent samples 
without Doxocycline treatment, solid circles represent Doxocycline treatment. Colors 
indicate which of the four TFs have been added to the sample. The x-axis represents the 
T cell signature score. The y-axis is random “jitter” to separate points and make the plot 
easier to interpret. 
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Figure 5H - Shapley Value for Each TF for the ATAC-Seq T Cell Signatures 
 

 
 
Legend: Each color bar represents the Shapley value, a measure of a TF’s contribution to 
moving fibroblasts towards the given T cell signature. 
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