UC Irvine UC Irvine Previously Published Works

Title

Specific Heat of (U0.97Th0.03)Be13 under Pressure

Permalink

https://escholarship.org/uc/item/90f6c6rf

Journal

Japanese Journal of Applied Physics, 26(S3-2)

ISSN 0021-4922

Authors

Fisher, RA Lacy, SE Marcenat, C <u>et al.</u>

Publication Date

1987

DOI 10.7567/jjaps.26s3.1219

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Specific Heat of (U_{0.97}Th_{0.03})Be₁₃ under Pressure*

R. A. Fisher, S. E. Lacy, C. Marcenat, J. A. Olsen, N. E. Phillips, Z. Fisk[†] and J. L. Smith[†]

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U. S. A.; ^TLos Alamos National Laboratory, Los Alamos, NM 87545, U. S. A.

The specific heat, C, of $(U_{0.97}Th_{0.03})Be_{13}$ has been measured for $0.1 \leq T \leq 1K$ and $1.6 \leq P \leq 7.7$ kbar, and for $0.1 \leq T \leq 20K$ with P=0. For T>8K both the pure and Th substituted samples have essentially the same C. The peaks in C/T at 0.33 and 0.54K for P=0 are suppressed and shifted to lower T by pressure. Anomalies in C/T can be correlated to corresponding rapid changes in magnetic susceptibility, χ . Rapid suppression of the peaks and shift of T_c to lower values is in marked contrast to the behavior found for pure UBe₁₃ whose single peak amplitude decreases approximately linearly with P to about 60% at 9.3 kbar. The broad "shoulder" in C/T near 2K that is found for UBe₁₃, but not for any other heavy-fermion compound, HFC, is commpletely suppressed in the Th substituted sample.

Substitution of non-magnetic Th on U sites in $\rm UBe_{13},~(U_{1-x}\rm Th_x)Be_{13},~produces~unexpected~and~complex~behavior~in~the~superconducting~region$ below 1K. In addition to the anomalous nonmonotonic decrease of the superconducting transition temperature, T_c, with increasing Th content, there is the appearance of a second peak in C for 0.0175<x<0.04 which is not due to a second phase or inhomogeneities [1]. For this range of x, T_c is nearly constant at 0.6K. Substitution of other impurities for U and Be produces a monotonic decrease of $\mathrm{T}_{\mathrm{C}},$ with no special depression of ${\rm T}_{\rm C}$ associated with a magnetic moment on the impurity [2-4]. The unique effect of Th substitution on UBe_{13} over a limited range of x has been interpreted both as an antiferromagnetic transition [5] and as a transition between two anisotropic superconducting states [6]. Several attempts to confirm the presence of magnetic ordering in the $({\tt U}_{1-x}{\rm Th}_x){\tt Be}_{13}$ system have failed [7,8], while the effect on T_c of magnetic Gd substituted for U (x=0.03) supports the suggestion of two different superconducting phases [2].

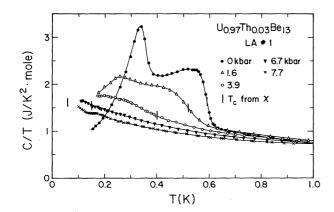


Fig. 1. C/T vs T for $(U_{0.97}Th_{0.03})Be_{13}$.

Measurements of the properties of materials as a function of pressure, P, provides an additional dimension in which to make comparisons with model calculations or theory. They also provide a straightforward basis for establishing correlations between superconductivity and magnetism without the complications of interpretation associated with measurements on a series of structurally and chemically different compounds. Measurements of the P-dependence of properties is a particularly fruitful approach for an HFC because the extreme pressure sensitivity of the 4f and 5f-electrons involved in the phenomena produces large effects at readily attainable pressures.

Recently χ of the $(U_{1-x}Th_x)Be_{13}$ system has been measured in the range $0 \le P \le 12$ kbar below 1K for $0 \le x \le 0.06$ [9]. Two distinct regions of superconductivity are present for P>9 kbar, which are separated by a range of x where superconductivity does not occur. Except for x=0.06, T_c , determined from changes in χ , decreases monotonically as P increases.

The $(U_{0.9697}Th_{0.0303})Be_{13}$ sample for the specific heat measurements weighed 1.673g and consisted of five right circular cylinders (approximately 6.4mm dia. x 2.4mm long) sparkcut from the center of an arc-melted, unannealed, polycrystalline "button" prepared as described previously [10]. They were placed in a pressure cell [11] and surrounded by AgCl to act as a pressure transmitting medium. A thin Sn plate on top of the sample stack and a Pb plate on the bottom served as superconducting manometers. The pressure gradient across the stack was > 15%. For all T and P in the range of the measurements, the heat capacity of the sample was >50% of the total.

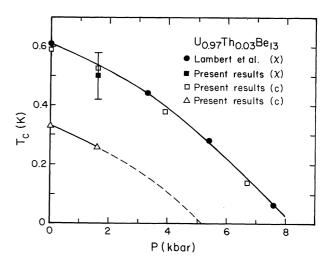


Fig. 2. T_c vs P for $(U_{0.97} Th_{0.03}) Be_{13}$ as determined from χ and C measurements.

Figure 1 is a plot of C/T vs T below 1K in the range 0≤P≤7.7 kbar. A vertical bar for a particular P in Fig. 1 indicates T at the midpoint of the rapid change in χ [9], and is interpreted as $T_{\rm c} {\scriptstyle \bullet} ~$ At P=O, C/T has a finite intercept at T=O, which in the case of UBe_{13} has been shown [12] to be sample dependent rather than an intrinsic property of this material. For 0.6<T<1K, C(P)/C(0) varies by a relatively small amount. Over some of this range C(P) increases with respect to C(0) for P<3.9 kbar, while at higher P, C(P) decreases over the entire range. The peaks in C/T at 0.33 and 0.54K for P=0 are strongly suppressed, broadened, and shifted to lower T for P>0. At 1.6 kbar the peaks are barely resolved at 0.26 and 0.43K. Only a single broad maximum is observed for P=3.9 kbar with an onset of the anomaly near 0.4K. For P=6.7 kbar only a very small anomaly remains, near 0.15K. At 7.7 kbar an apparently new feature develops -- a small maximum centered near 0.17K. This anomaly may be present at lower pressures but is obscured by the other anomalies, and it could be an impurity effect.

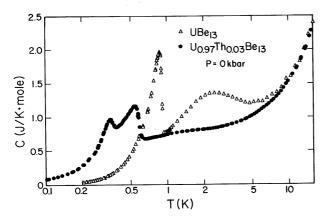


Fig. 3. C vs log T for UBe₁₃ and $(U_{0.97}Th_{0.03}Be_{13} \text{ at } P=0.$

Figure 2 is a plot of T_c vs P. Values of T_c from Ref. [9] are the midpoints of the changes in χ taken from Fig. 1 and are displayed as filled circles. From the C measurements, T_c is taken as the midpoint of the rise in C/T at the anomaly and is graphed as an open square. During the present measurements, χ was measured at 1.6 kbar. The T_c derived from it is shown as a filled square with the vertical bar indicating the transition width, and is comparable to other data [9]. A satisfactory correlation exists between $T^{}_{\phantom{C}}$ determined by χ and C. Variation of the temperature of the lower temperature peak with P is more difficult to define. Except for 0 and 1.6 kbar there is no obvious indication of an anomaly and for $P \ge 3.9$ kbar it is presumably below the range of T investigated, and/or obscured by broadening and superposition of the two anomalies. If the maximum of the lower peak in C/T is used to mark the second transition, it is represented by open triangles in Fig. 2. (The dashed curve is drawn parallel to the solid curve.) The average

 $\rm dT_{c}/\rm dP$ between 0 and 1 kbar is -40mK/kbar for both transitions. $\rm dT_{c}/\rm dP$ increases to -80mK/kbar at 4 kbar where it remains essentially constant to 8 kbar for the higher T transition. These rates of decrease of T_{c} with P are in contrast to the constant and lower rate of -24mK/kbar for UBe₁₃, and the 60% decrease in peak amplitude from 0 to 9.3 kbar.

In Fig. 3, C is plotted vs log T for both UBe₁₃ and $(U_{0.97}Th_{0.03})Be_{13}$. The broad maximum near 2K for UBe₁₃ has been completely suppressed by the Th substitution. Substitution of Th, Lu and Sc for U gave similar results in an earlier investigation [4]. This feature in C has been interpreted as due to development of coherence in a Kondo lattice [13]. Suppression of the anomaly by a non-magnetic impurity is consistent with this idea. Above ~ 8K, C for both the pure and substituted samples are essentially identical as found previously [4].

REFERENCES

*Work at Berkeley supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under Contract Number DE-AC03-76SF00098. Work at Los Alamos was supported by the U. S. Department of Energy.

- 1) H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, Phys. Rev. <u>B31</u>, 1651 (1985).
- J.L. Smith, Z. Fisk, J.O. Willis, H.R. Ott, S.E. Lambert, Y. Dalichaouch and M.B. Maple, J. Magn. Magn. Mat. <u>63-64</u>, 464 (1987).
- Z. Fisk, H.R. Ott and J.L. Smith, "Sixth Conference on Nonlinearities in Condensed Matter", Los Alamos, May 1986, to be published by Springer-Verlag.
- 4) H.R. Ott, H. Rudigier, E. Felder, Z. Fisk and J.L. Smith, Phys. Rev. B33, 126 (1986).
- 5) B. Batlogg, D. Bishop, B. Golding, C.M. Varma, Z. Fisk, J.L. Smith and H.R. Ott, Phys. Rev. Lett. <u>55</u>, 1319 (1985).
- R. Joynt, T.M. Rice and K. Ueda, Phys. Rev. Lett. <u>56</u>, 1412 (1986).
- Neutron scattering: H. Mook, private communication, quoted from Ref. [3].
- NMR: D.E. McLaughlin, C. Tien, W.G. Clark, M.D. Lan, Z. Fisk, J.L. Smith and H.R. Ott, Phys. Rev. Lett. <u>53</u>, 1833 (1984).
 S.E. Lambert, Y. Dalichaouch, M.B. Maple,
- S.E. Lambert, Y. Dalichaouch, M.B. Maple, J.L. Smith and Z. Fisk, Phys. Rev. Lett. <u>57</u>, 1623 (1986).
- J.L. Smith, Z. Fisk, J.O. Willis, A.L. Giorgi, R.B. Roof, H.R. Ott, H. Rudigier and E. Felder, Physica 135B, 3 (1985).
- 11) D.B. McWhan, J.P. Remeika, S.D. Bader, B.B. Triplett and N.E. Phillips, Phys. Rev. <u>B7</u>, 3079 (1973).
- 12) R.A. Fisher, S.E. Lacy, C. Marcenat, J.A. Olsen, N.E. Phillips, Z. Fisk, A.L. Giorgi, J.L. Smith and G.R. Stewart, "Fifth International Conference on Valence Fluctuations", Bangalore, India, Jan. 1987, to be published.
- H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, "Moment Formation in Solids", ed. W.J.L. Buyers, Plenum, NY (1984), p. 305.