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Highlights

•	 We provide the script for a simple, new and 
computationally feasible approach to deal with spatial 
autocorrelation using PCNM/MEM analyses for large 
datasets.

•	 We found the smallest necessary sample size to 
represent the total database of shark richness, 
simplifying eigenvector selection for spatial analyses.

•	 We performed variance partitioning analyses using 
a large dataset of shark diversity across more than 
9000 grid cells worldwide, using a common Notebook 
computer and within a feasible running time.

•	 By running 1000 replicates of the analyses for different 
sample sizes (50 to 4000 cells) and comparing the 
resulting distribution of estimated parameters, we 
showed that the patterns stabilize at around 1000 
cells in the system analysed, corresponding to about 
10% of the total dataset.

•	 Our new approach allows researchers to perform spatial 
analyses of large datasets in feasible time and with 
reduced computational efforts, achieving an accurate 
approximation of effects, testing, and searching for 
the stabilization of parameters of interest.

Abstract

Macroecological data are usually structured in space, so 
taking into account spatial autocorrelation in regression and 
correlation analyses is essential for a better understanding 
of patterns and processes. Many methods are available 
to deal with spatial autocorrelation, but there are some 
difficulties when one is dealing with huge geographical 
extents and fine-scale data. So, we propose a relatively 
simple and fast computer-intensive approach to deal 
with Principal Coordinate of Neighbor Matrices (PNCM)/
Moran’s Eigenvector Mapping (MEM) analyses for large 
datasets, using global richness pattern of sharks as a 
model. We performed a variance partitioning approach 
by regressing species richness against environmental 
variables and spatial eigenvectors derived from PCNM. 
Due to the large number of ocean grid cells (> 9000), we 
ran the analyses 1000 timesby randomly subsampling each 
time 50 to 4500 cells and compared the distribution of the 
variance partitioning components, as well as the slopes of 
the environmental variables. We also estimated Moran’s 
I coefficients for regression residuals to check if spatial 
eigenvectors took into account spatial autocorrelation. 
Comparing statistics of analyses with different sample 
sizes, we note that although the environmental component 
increases linearly, other components (unique space and 
shared) of the most important variables stabilize with 
about 1000 cells, whereas all other smaller effects tend to 
stabilize between 2500 and 3000 cells. Besides that, PCNM 
eigenvectors were able to control spatial autocorrelation 
very well. We showed that shark richness patterns are 
strongly and positively correlated with temperature range, 
according to the well-known pattern of distribution for 
the taxon, and strong negatively correlated with oxygen 
supplies, which are higher in polar zones where ice acts 
as a barrier to sharks. Our approach clearly shows that 
it is possible to perform a robust evaluation of global 
patterns of diversity using eigenvector approaches 
based on a resampling strategy and allows effective 
computation of the variance partitioning even when 
dealing with large datasets.

Keywords: Macroecology, PCNM, resample cells, richness patterns, sharks, spatial analyses, spatial autocorrelation
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Introduction
For some twenty years or so, macroecologists and 

biogeographers have increasingly recognized that it is 
important to take into account spatial autocorrelation 
when inferring ecological and evolutionary processes 
based on statistical analyses of geographical patterns 
in species richness and other similar patterns, such 
as those generated under ecogeographical rules 
(Lennon 2000, Diniz-Filho et al. 2003). In principle, spatial 
autocorrelation affects the Type I errors of regression 
and correlation analyses (Legendre 1993, Lichstein et al. 
2002). Still, many discussions have focused on how 
coefficients shift when applying spatial statistics to 
macroecological data due to collinearity, scale, and 
hierarchy problems (Lennon 2000, Diniz-Filho et al. 
2003, Beale et al. 2007, Kuhn 2007, Dormann 2007, 
Hawkins  et  al. 2007). Moreover, as processes are 
structured in space, quantifying and describing spatial 
autocorrelation in macroecology and ecology can be 
viewed as a new general approach to understanding 
such processes and not necessarily just a problem 
to be removed (Legendre 1993). Many methods are 
now available to deal with spatial autocorrelation 
(i.e., Dormann et al. 2007, Bini et al. 2009), which can 
be implemented in specialized software such as SAM 
(Rangel et al. 2006, 2010) and, more recently, in many 
R-packages (e.g., spdep, Bivand and Wong 2018; gstat, 
Pebesma 2004; nlme, Pinheiro et al. 2020; adespatial, 
Dray et al. 2020).

Yet, with the development of new GIS facilities 
and the possibility to quickly generate both fine grain 
species and environmental data at large geographical 
extents, spatial analyses may become a challenge. 
It is notoriously difficult to deal with sample sizes (n) 
of thousands of spatial units, especially if it involves 
(as it frequently does) eigenanalyses of spatial 
connectivity or distance matrices (W matrices with 
n x n dimensions;see Haining 2002, Griffith 2003). 
Although it is possible to use parallel processing and 
intensive computing techniques to deal with some of 
these problems, this solution is not always available, 
and, in any case, it may still take a long time to run 
(which is a constraint if, for example, distinct W matrices 
should be tested; Kissling and Carl 2008, Bauman et al. 
2018b). With some techniques such as Principal 
Coordinate of Neighbor Matrices (PNCMs;Borcard and 
Legendre 2002, Dray et al. 2006) and subsequently 
developed but related approaches such as Moran’s 
Eigenvector Mapping (MEMs; Dray  et  al. 2012), 
large matrices impose another additional challenge 
related to eigenvector selection to be used in the 
modeling (see Diniz-Filho and Bini 2005, Griffith and 
Peres-Neto 2006, Dray  et  al. 2012, Bauman  et  al. 
2018a,b). Both techniques involve reconstructing 
spatial patterns using distance matrices (Euclidian 
distances for PCNMs or other types of weighting 
matrices for MEMs) by creating spatial eigenvectors 
that are newly composed variables that describe 
the spatial relationship among localities or sampling 
units. Thus, if these new variables are incorporated 
into the modeling process, they will take into account 
any spatial autocorrelation in the analyses and will be 

sufficient, if appropriately fitted, to correct for inflated 
Type I errors in the other parameters of the model 
(see Borcard and Legendre 2002, Dray et al. 2006).

Here, we propose and evaluate a relatively fast and 
straightforward computer-intensive approach to deal 
with PCNM/MEM analyses for large datasets. The idea 
is simply to randomly sample the matrix thousands 
of times and evaluate the statistical distribution of 
parameters to be estimated. Although spatially-
structured resampling techniques have been used 
to deal with spatial autocorrelation by generating 
samples a given distance apart (eliminating the pseudo-
replication;e.g., Hawkins  et  al. 2007, Oliveira  et  al. 
2014), our goal here is a bit different. The problem to 
be solved is the difficulty of analyzing, using PCNM or 
MEM, a global data set with thousands of grid cells 
to estimate spatial and environmental components of 
richness patterns, and not to eliminate neighbor cells 
to avoid autocorrelation. As these methods work with 
eigenvectors from pairwise distance or connectivity 
matrices, the time and capacity for computation will 
increase more than exponentially with sample size (both 
because matrices will increase in size in a square scale 
and because of complexity in extracting eigenvalues 
iteratively). We tested our approach by analyzing global 
richness patterns of sharks and correlate them with 
environmental data.

Methods

Data
Primary data for our paper consist of range maps 

obtained from IUCN for a total of 469 species of sharks 
distributed worldwide (IUCN 2019), representing 
about 78% of the species of Neoselachii. Taxonomy was 
based on the GBIF Backbone Taxonomy1. The ranges 
were polygons, which were overlaid using a global 
grid with a total of 9212 cells with oceanic centroids 
(coastal cells with land centroids were removed from 
the dataset, so the proportion of land area in each 
cell depends on the shape of the coastal line), with 
approximately 2o of latitude/longitude, using the 
R-package LetsR (Vilela and Villalobos 2015).

Eight environmental variables were obtained from 
the Bio-Oracle (Tyberghein  et al. 2011) platform in 
the form of mean values and one variable in the form 
of range for the period between 2000 and 2014 and 
were also overlaid on the global grid. The variables 
used were mean temperature (oC), temperature range 
(oC), chlorophyll (mg.m-3), dissolved molecular oxygen 
(mol.m-3), sea ice concentration (fraction), pH, carbon 
phytoplankton biomass (umol.m-3), primary productivity 
(g.m-3.day-1), and salinity (PSS).

Statistical analyses
We analyzed the data using a variance partitioning 

approach (Borcard et al. 1992, Legendre and Legendre 2013) 
by regressing species richness against environmental 
variables and spatial eigenvectors derived from 
PCNM. However, due to the large number of grid cells 
(> 9000), we performed the analyses 1000 times, by 
random sampling each time a given number of cells. 
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We tested sample sizes of 50, 100, 250, 500, 750, 1000, 
1250, 1500, 1750, 2000, 2250, 2500, 3000, 3500, 4000, 
and 4500 cells in order to find the smallest necessary 
sample size to represent the shark richness patterns, 
and thus simplifying analyses and time spent on it. 
Then we compared the distribution of the variance 
partitioning components, as well as the effect sizes 
of the environmental variables. We computed the 
median effect size (i.e., t-value for each regression 
slope) and the proportion of simulations in which a 
significant (P < 0.05) regression slope for each sample 
size was found.

As richness is strongly skewed, we obtained the R2 for 
variance partitioning with the glm of R-package, with a 
Poisson link function, but the approach proposed here 
can be used with any modeling technique (indeed, a 
more standard partition using an OLS based on log-
transformed richness provide qualitatively similar results, 
although with a higher fraction for the environmental 
component). The particular type of model that better 
fits the data, in general, can be tested with a few 
preliminary tests (as we did with our dataset) or some 
diagnosis statistics (such as AIC-based comparisons 
between classes of models or statistics for residuals 
distributions) incorporated into the replications for 
“a posteriori” decisions.

Spatial eigenvectors derived from PCNMs were 
obtained using the pcnm function in the vegan R 
package (Oksanen  et  al. 2007) and selected, for 
computational simplicity, based on the correlation with 
the response variable (which is roughly equivalent to 
stepwise functions, as eigenvectors are independent;see 
Bauman et al. 2018a,b). In any case, we estimated 
Moran’s I coefficients (see Legendre and Legendre 2013) 
for regression residuals to check if spatial eigenvectors 
were enough to account for spatial autocorrelation 
and thus allow correct evaluation of Type I error of 
the slopes.

For the record, we analyzed the data in a Notebook 
computer with Intel I-5 processor and 8GB RAM.

Results
The richness pattern of sharks (Fig. 1) tracks the 

well-known pattern for the taxon, with high richness 
concentrated in the coastal zones and middle latitudes 

of both hemispheres. Besides that, the Indo-Pacific 
islands and tropical Oceania exhibit high richness as 
well (Tittensor et al. 2010, Lucifora et al. 2011, Worm 
and Tittensor 2018).

We provide detailed results for sample sizes 
equal to 100, 500, 1000, 2500, and 4500 cells, but 
detailed Tables with all results can be found in the 
Supplementary Material (Appendices S1 and S2). 
The variance partitioning for increasing sample sizes 
(Table  1) shows that the environmental effect (a), 
which starts with a relatively high median value of 
about 0.22 when only 100 cells are sampled, goes up 
to a median of 0.06 when 4500 cells were sampled. 
This reduction in the unique environmental component 
is not correlated with an increase in both shared (b) 
and unique geographical components (c) that tend to 
stabilize with smaller sample sizes (Fig. 2A).

However, although the unique environmental 
component in variance partitioning tends to increase 
linearly with sample size, the effect size of the most 
important environmental predictors in the full model 
(i.e., incorporating the selected spatial eigenvectors 
from PCNMs) was more or less stable across the 
sample sizes, above about 500 cells. As sample sizes 
increase, the median t-value of some variables tends 
to fluctuate, and the frequency of slopes with P < 
0.05 tends to slightly increase, stabilizing when n = 
2500 but not reaching values much higher than 80% 
of significant coefficients across simulations even 
with larger samples sizes. For the two variables with 
more important effects (i.e., temperature range and 
dissolved O2), on the other hand, even with sample sizes 
smaller than 1000, more than 95% of the coefficients 
are significant (Fig. 2B). So, we understand that an 
increase in the unique environmental component is 
most likely due to an accumulation of minor effects 
that do not necessarily help to explain global patterns.

Just as a general reference, if we consider the 
stabilization of the main drivers and of the unique 
spatial component and its overlap with environmental 
variables, it is possible to see that, on average, 
the full model explains ca. 70% of the variation 
in species richness (CI 95% limits equal to 67.1% 
and 76.5%;Fig. 3A) and that environmental variables 
alone explains about 10% of this variation (CI 95% 
limits equal to 6.5% and 14.8%;Fig. 3B), without spatial 

Fig 1. Richness patterns obtained by overlaying range maps of 469 shark species worldwide on a global grid with 9212 
cells. Color scale indicates number of species.
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autocorrelation in model residuals. The effect sizes 
of GLMs reveal that temperature range followed by 
dissolved O2 are clearly the most important drivers of 
shark richness (Table 2).

The number of spatial eigenvectors from PCNMs 
selected for analyses increased approximately 

Table 1. Median values of the components a, b, and c for variance partitioning, modeling shark richness with a GLM as 
a function of environmental variables and spatial eigenvectors, and their 95% lower and upper limits, based on 1000 
samples with variable number of cells (n), ranging from 100 to 4500. The three components refer to environmental, 
shared, and spatial effects, respectively. The analyses were based on data for 469 species and a full dataset global grid 
comprising 9212 cells.

n a b c
100 0.215 0.306 0.159

(0.081 - 0.393) (0.122 - 0.497) (0.018 - 0.350)
500 0.128 0.339 0.237

(0.074 - 0.188) (0.260 - 0.423) (0.157 - 0.320)
1000 0.101 0.35 0.267

(0.066 - 0.148) (0.288 - 0.413) (0.206 - 0.330)
2500 0.072 0.355 0.346

(0.048- 0.098) (0.306- 0.405) (0.293- 0.398)
4500 0.065 0.341 0.408

(0.041- 0.089) (0.295- 0.394) (0.359- 0.453)

Fig 2. A) Tendency lines of variance partitioning components; 
median values for different samples sizes showing unique 
environmental (a), shared (b), and unique geographical (c) 
effects on shark richness worldwide. The analyses were 
based on data for 469 species and a full dataset global 
grid comprising 9212 cells. B) Tendency line of significance 
proportion of environmental variables on shark richness 
worldwide for different sample sizes, stabilizing between 
2500 and 3000 cells. The analyses were based on data for 469 
species and a full dataset global grid comprising 9212 cells.

Fig 3. A) Distribution of total pseudo-R2 of glm explaining 
shark species richness as a function of 9 environmental 
variables and spatial eigenvectors, for a total of 1000 random 
samples of 1000 grid cells, and, B) variance partitioning of 
the effects of the two sets of variables, with median values 
and 95% CI limits for the 1000 samples. The analyses were 
based on data for 469 species and a full dataset global grid 
comprising 9212 cells.
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exponentially with increasing sample sizes, to 
account for more complex spatial patterns involved 
(Appendix S3). Even so, Moran’s I values suggest that, 
in all cases, spatial eigenvectors were enough to take 
autocorrelation into account, with upper 95% limits of 
the confidence intervals never reaching values higher 
than 0.1 (and this upper limit also decreases with 
increasing sample size). The analyses took from a few 
seconds (when n = 50) to about three days (n = 4500) 
to run (Appendix S3) using the script available in the 
supplementary material (Appendix S4).

Discussion
Our approach clearly shows that it is possible to 

perform a consistent evaluation of global patterns 
of diversity using eigenvector approaches based on 
a resampling strategy. All statistics tend to shift with 
increasing sample sizes (i.e., number of cells), but 
in our example, the main effects associated with 
temperature range and dissolved O2 tend to stabilize 
between 500 and 1000 cells. Our simple approach 
allows a straightforward computation of the variance 
partitioning and would be easily repeated several 
times, if necessary (i.e., testing different W-matrices 
or performing richness deconstruction). The analyses 
with 2500 cells took approximately twelve hours in 
a notebook with Intel I-5 processor, which is quite 
feasible (although the time for processing all 9,000 cells 
would increase more than exponentially and would in 
fact not be possible on this same machine). Although 
using more powerful computers would result in faster 
computation and allow us to deal with large sample 
sizes (and even with the full dataset), showing that 
sampling the full dataset would provide similar results 
is still interesting. It can be very useful to researchers 
with limited computational resources at their disposal 
in many places across the world. In addition, it allows 
more complex analyses and many more tests, including 
the complex process of eigenvector selection for 
multiple W-matrices, in feasible computer times.

In practice, it is important to highlight in advance 
that we are discussing the stability of PCNM and 
variance partitioning for a particular dataset regarding 
patterns of shark diversity worldwide. We are not 
stating, for example, that results of a global analysis 
with about 9,000 cells will stabilize when sampling 5% 
of the dataset. This will actually depend on the relative 
magnitude of the drivers. Thus, when applying the 
approach proposed here to a new dataset, it is 
important to perform some iterative and quick tests 
searching for the stabilization of the results, which will 
also depend on the computer capabilities available 
to each researcher. For instance, a nice alternative 
would be to check for mean effect sizes using a small 
number of replications for increasingly samples sizes 
and when a stable effect size is achieved, increase 
the replications to better evaluate the frequency of 
significant results.

Also, contrary to other studies that undertook 
spatially-structured sampling (i.e., considering only 
cells that are situated a given geographic distance 
apart) to heuristically understand autocorrelation 

effects on the analyses (i.e., Hawkins  et  al. 2007) 
or take them into account (in species distribution 
modeling; Oliveira et al. 2014), our goal is to reduce 
computational load. As in any variance partitioning 
approach, we also want to evaluate the magnitude of 
spatial effects on the response variable, both shared 
or independent of environmental variables.

In the context of the framework proposed here,, it 
is possible to assess the uncertainty of environmental 
variables due to spatial structure in data, so for example, 
with 500 cells, we can see that the 95% confidence 
interval ranges from 7.4% to 18.8%, clearly different 
from zero. Moreover, the effect sizes for individual 
predictors were also relatively stable, and the ones with 
the highest effects in our model are the temperature 
range and dissolved O2 (Table 2). The median of the 
effect size (i.e., t-value) and the proportion of significant 
slopes seem to be a suitable way to synthesize the 
results across the replications. We understand that 
the median of the parameters would estimate these 
effect sizes adequately.

Of course, other strategies to reduce sample size and 
allow a more straightforward computation of spatial 
and environmental effects would be possible, such as 
separating data for biogeographical region or any other 
characteristic (i.e., coastal versus deep-sea cells). Also, 
another simple idea is to increase cell size so analysis 
of the overall dataset is viable, but this involves a more 
complex discussion (so we’re assuming that cell size 
was adequately defined “a priori” given data type 
and resolution both in diversity and environmental 
predictors). Anyway, assuming that processes are 
similar across regions, a pooled estimate of factors 
would allow a similar interpretation in terms of global 
diversity patterns. Even so, in this case, it would be 
necessary to decide first if a global set of eigenvectors 
would be extracted from a very large global W-matrix 
(a potential problem, especially if different W matrices 
should be considered) and then incorporated into 
“regional” variance partitioning. It would be possible 
to extract the eigenvectors for each region, but in 
this case, it may be difficult in principle to directly 
compare the spatial component of these partitions 
(although if autocorrelation is correctly taken into 
account by PCNM, as evaluated by residuals Moran’s 
I, coefficients of the explanatory variables would be 
comparable). This seems to be in some way analogous 
to the problem of selecting eigenvectors in PCNMs 
and MEMs independently or not of the environmental 
variables (i.e., Safi and Pettorelli 2010).

We recognize that if patterns in different regions 
are driven by different processes, regional analyses 
may not be entirely informative about global spatial 
patterns. In this case, rather than doing separate 
PCNMs for each region it would be more interesting 
to use Geographically Weighted Regression (GWR; 
Fotheringham  et  al. 2002) or the new related 
approach of Geographically Weighted Path Analysis 
(GWpath; Barreto et al. 2019) to model local effects 
and evaluate non-stationarity patterns in data (and 
GWR is computationally much simpler than PCNM for 
handling large datasets). GWR and related approaches 
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solve the problem of regionalization by exploring the 
effects of environmental variation in a continuous 
way, mapping the coefficients of regressions or path 
analysis for all cells in the grid, but for each one there 
is a vector of weights based on the spatial distances 
from the focal cell to all other cells. Although these 
analyses are undoubtedly interesting and reveal more 
complex patterns, the goals of such approaches would 
be different, focused on local or regional effects, and 
not in a global analysis of richness patterns. Also, 
such analyses would not allow the evaluation of the 
relative impact of spatial structure and its overlap with 
environmental effects, which may potentially reveal 
other spatially-structured unknown variables driving 
patterns in species richness (although in principle the 
coefficients of the environmental variables would be, on 
average, accurate in respect to spatial autocorrelation, 
despite that they will vary in space).

Although our goal in this paper is just to show the 
application of a simple approach to undertake variance 
partitioning in a large dataset, it is opportune to realize 
that it reveals that richness patterns in sharks at a global 
scale are explained by variables with well-known effects, 
such as temperature range and dissolved O2. Higher 
temperature ranges are found mostly in temperate 
zones of oceans associated with convergence richer 
areas in resources attracting predators like sharks 
(Hyrenbach et al. 2000). Although top predators with 
big body size such as sharks need high levels of oxygen 
for metabolism and have been associated with areas of 
higher oxygen supplies (as pointed out by Blank et al. 
2002), our results showed a strong negative relation 
between richness and dissolved oxygen because the 
biggest supply of dissolved oxygen in oceans are found 
in polar zones, where the ice acts as a physical and 
even physiological barrier.

In summary, our approach allows feasible spatial 
analyses with large datasets without taking into account 
biases due to autocorrelation but rather to incorporate 
spatial structure in the data (as in the variance partitioning 
approach), with the advantage of allowing a better 
evaluation of the distribution of parameters, their 
correlation structure, and uncertainty. In our study case, 
as sample sizes around 1000 cells provide an accurate 
approximation of effects, it is feasible to use the approach 
proposed here to explore more complex spatial structures 
or different deconstruction of richness patterns.
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