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Abstract 

The factors affecting search guidance to categorical targets 
are largely unknown.  We asked how visual similarity 
relationships between random-category distractors and two 
target classes, teddy bears and butterflies, affects search 
guidance.  Experiment 1 used a web-based task to collect 
visual similarity rankings between these target classes and 
random objects, from which we created search displays 
having either high-similarity distractors, low-similarity 
distractors, or “mixed” displays with high, medium, and low-
similarity distractors.  Subjects made faster manual responses 
and fixated fewer distractors on low-similarity displays 
compared to high.  On mixed trials, first fixations were more 
frequent on high-similarity distractors (bear=49%; 
butterfly=58%) than low-similarity distractors (bear=9%; 
butterfly=12%). Experiment 2 used the same high/low/mixed 
conditions, but now these conditions were created using 
similarity estimates from a computer-vision model that ranked 
objects in terms of color, texture, and shape similarity.  The 
same patterns were found, suggesting that categorical search 
is indeed guided by visual similarity. 

Keywords: Visual search; eye movements; categorical 
guidance; visual similarity; object class detection 

Introduction 
You have probably had the experience of searching for your 
car in a parking lot and finding several other vehicles of the 
same color or model before finally finding your car.  This is 
an example of visual similarity affecting search; the 
presence of these target-similar distractors made it harder to 
find the actual target of your search.  
Such visual similarity effects have been extensively 

studied in the context of search, with the main finding from 
this effort being that search is slower when distractors are 
similar to the target (e.g., Duncan & Humphreys, 1989; 
Treisman, 1991). Models of search have also relied 
extensively on these visual similarity relationships (e.g., 
Pomplun, 2006; Treisman & Sato, 1990; Wolfe, 1994; 
Zelinsky, 2008).  Despite their many differences, all of these 
models posit a very similar process for how similarity 
relationships are computed and used; the target and scene 
are represented by visual features (color, orientation, etc.), 
which are compared to generate a signal used to guide 
search to the target and to target-like distractors in a display.  
In general, the more similar an object is to the target, the 
more likely that object will be fixated.   
All of these models, however, assume knowledge of the 

target’s specific appearance in the creation of this guidance 
signal.  This assumption is problematic, as it is often 
violated in the real world.  Descriptions of search targets are 

often incomplete and lacking in visual detail; exact 
knowledge of a target’s appearance is an artificial situation 
that typically exists only in the laboratory.  Particularly 
interesting are cases in which a target is defined 
categorically, as from a text label or an instruction (i.e., no 
picture preview of the target).  Given the high degree of 
variability inherent in most categories of common objects, 
search under these conditions would have few visual 
features of the target that could be confidently compared to 
a scene to generate a guidance signal.  Indeed, a debate 
exists over whether categorical search is guided at all, with 
some labs finding that it is (Schmidt & Zelinsky, 2009; 
Yang & Zelinsky, 2009) and others suggesting that it is not 
(e.g., Castelhano et al., 2008; Wolfe et al., 2004).   
The present study enters this debate on the existence of 

categorical guidance, focusing it on the relationship between 
target-distractor visual similarity and guidance to 
categorically-defined realistic targets.  Guidance from a 
pictorial preview is known to decrease with increasing 
visual similarity between a target and distractors; does this 
same relationship hold for categorically-defined targets?  
Given that the representation of categorical targets is largely 
unknown, it may be the case that target descriptions are 
dominated by non-visual features, such as semantic or 
functional properties of the target category.  If this is the 
case, guidance to the target may be weak or even 
nonexistent, potentially explaining the discrepant findings. 
To the extent that categorical search does use non-visual 
features, effects of target-distractor visual similarity would 
therefore not be expected.  However, if target categories are 
represented visually, one might expect the same target-
distractor similarity relationships demonstrated for target-
specific search to extend to categorical search.   
It is unclear how best to manipulate visual similarity in 

the context of categorical search.  Traditional methods of 
manipulating target-distractor similarity by varying only a 
single target feature are clearly suboptimal, as realistic 
objects are composed of many features and it is impossible 
to know a priori which are the most important.  This 
problem is compounded by the categorical nature of the 
task; the relevance of a particular target feature would 
almost certainly depend on the specific category of 
distractor to which it is compared. It is not even known how 
best to derive specific target features for such a comparison; 
should an average be obtained from many target exemplars 
or should features be extracted from a particular exemplar 
that is representative of the target class?   
In light of the difficulties associated with directly 

manipulating the specific features underlying visual 
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similarity, we opted for a more holistic approach—to use 
ratings of visual similarity obtained from subjects.  
Specifically, we obtained ratings from Zhang et al. (2008), 
who used a web experiment to collect visual similarity 
estimates between random objects and categorical targets 
for the purpose of comparing these estimates to the behavior 
of a computational model of object class detection.  Subjects 
were randomly assigned to either a butterfly target class or a 
teddy bear target class, and their task was to rate real-world 
objects (from the Hemera collection) to these target 
categories.  They did this by rank-ordering groups of five 
objects; each trial showed five random objects, and the 
subjects’ task was to give each a 1-5 ranking, where “1” 
indicated low target similarity and 5 indicated high target 
similarity (objects given the 2-4 rankings and objects with 
low inter-subject ranking agreement were considered 
medium similarity).  There were 142 subjects, yielding a 
total of 71,000 butterfly and teddy bear similarity estimates 
for 2,000 different objects.  Importantly, subjects were 
instructed to use only visual similarity and to disregard 
categorical or associative relationships between the objects 
and the target category when making their judgments.  
Consult Zhang et al. (2008) for additional details regarding 
this web-based collection of visual similarity estimates. 
Using these estimates of visual similarity, Experiment 1 

asked whether the visual similarity relationships known to 
affect search for specific targets also extends to categorical 
search. Previous arguments for the existence of categorical 
search guidance relied on evidence showing the preferential 
direction of initial saccades to targets (Schmidt & Zelinsky, 
2009; Yang & Zelinsky, 2009).  Although there is good 
reason to believe that these initial saccades are dominated 
by visual features, and occur too early in search to be 
influenced by semantic relationships between targets and 
distractors, it is still possible that the preferential fixation of 
categorical targets might have been influenced by non-
visual factors.  More compelling would be a demonstrated 
relationship between categorical guidance and a 
manipulation of target-distractor visual similarity; providing 
this evidence was the primary goal of this experiment.   
We were also interested in determining whether explicit 

visual similarity judgments are predictive of effects of 
target-distractor visual similarity on categorical search.  
Search guidance is a largely implicit process, and as 
discussed can be expressed in even the first search saccade 
(Chen & Zelinsky, 2006); the task of assigning rankings to 
objects in a web experiment is comparatively slow and far 
more explicit.  Do these two tasks use fundamentally 
different sources of information, or can visual similarity 
estimates obtained from explicit judgments be useful in 
describing guidance during search? Answering this question 
was a secondary goal of this experiment. 
If categorical search is guided by target-distractor visual 

similarity, and if this relationship can be captured by 
explicit similarity judgments, we would expect a relatively 
high proportion of initial saccades to high-similarity 
distractors, and relatively few initial saccades to low-

similarity distractors.  However, if categorical guidance is 
mediated by non-visual factors, or if the visual similarity 
estimates obtained from an explicit task cannot be extended 
to search, we would expect no effect of our similarity 
manipulations on guidance or manual search efficiency.   

Experiment 1 

Method 
Participants Twenty-four students from Stony Brook 
University participated in exchange for course credit.  All 
subjects reported normal or corrected to normal vision.   
 
Stimuli and Apparatus Targets and distractors were 
selected from the objects used by Zhang et al. (2008).  The 
target categories were teddy bears, obtained from Cockrill 
(2001), and butterflies, obtained from the Hemera 
collection.  The distractors were also Hemera objects.  Each 
object was sized to subtend ~2.8º of visual angle.   
Gaze position was recorded using an SR Research 

EyeLink® II eye tracking system.  This eye tracker is video-
based and has a sampling rate of 500 Hz and a spatial 
resolution of ~0.2º.  Target present/absent search decisions 
were made using a GamePad controller connected to a USB 
port.  Head position and viewing distance were fixed at 72 
cm from the screen with a chin rest.  Trials were displayed 
on a flat-screen monitor at a resolution of 1024 × 768 pixels 
(subtending 28º × 21º) and a refresh rate of 85 Hz. 
 

Design and procedure   Half of the subjects searched for a 
teddy bear target, the other half searched for a butterfly 
target.  This search was categorical; subjects were not 
shown a specific bear or butterfly target preview prior to 
each search trial.  Rather, subjects were told the target 
category at the start of the experiment.  They were also 
shown examples of the target category, none of which were 
used as actual targets in the experimental trials.  
Each trial began with the subject fixating a central dot and 

pressing a button on the controller to initiate the search 
display. The search display consisted of six evenly-spaced 
objects arranged on an imaginary circle with a radius of 300 
pixels (8.4º) relative to the center of the screen.  On target 
present trials (50%), one object was either a bear or a 
butterfly, depending on the condition, and the other five 
objects were randomly selected distractors.  On target absent 
trials (50%), distractors were selected based on the 
similarity rankings from the Zhang et al. (2008) web task.   
There were three target absent conditions: high-similarity 

trials (all distractors were similar to the target category), 
low-similarity trials (all distractors were dissimilar to the 
target category),  and “mixed” trials, where two distracters 
were selected from the high-similarity category,  two from 
the low-similarity category, and two from the medium 
similarity category (see Figure 1).  The high and low 
similarity conditions were included to determine whether 
visual similarity affects search accuracy and manual 
reaction times (RTs).  The mixed condition allowed us to 
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directly examine which distracters were preferentially 
fixated (i.e., search guidance) as a function of target-
distractor similarity.   
Target presence/absence and similarity condition were 

within-subjects variables, and both were randomly inter-
leaved throughout the experiment.  Subjects were asked to 
make their present/absent judgments as quickly as possible 
while maintaining accuracy. Accuracy feedback was 
provided following each response. 

Results and Discussion 
As only the target absent trials contained the similarity 
manipulation, analyses were restricted to these data.   
Errors were less than 6% in all conditions, and were 

excluded from all subsequent analyses.  This low false 
positive rate means that subjects were not confusing the 
high-similarity distractors for targets (e.g., a stuffed bunny 
distractor was not recognized as a teddy bear).   
RTs were longest in the high-similarity condition and 

shortest in the low-similarity condition, with the mixed 
condition yielding intermediate RTs (Table 1). These 
differences were significant for both butterfly targets 
(F(2,22) = 46.87, p < .001) and for bear targets (F(2,22) = 
53.85, p < .001).  The number of distractors fixated during 
search also differed between the similarity conditions, and 
this again occurred for both butterfly (F(2,22) = 30.41, p < 
.001) and bear targets (F(2,22) = 59.55, p < .001).  
Distractors were fixated most frequently on the high-
similarity trials (3.16±0.23 for bears; 2.50±0.36 for 
butterflies), followed by the medium-similarity trials 
(2.53±0.24 for bears; 1.83±0.31 for butterflies), and finally 
the low-similarity trials (1.51±0.23 for bears; 1.29±0.26 for 
butterflies); as distractor similarity to the target increased, 
so did the number of fixations on these distractors.  All of 
these patterns are consistent with the suggestion that visual 
similarity rankings are predictive of search efficiency. 
One of the most conservative measures of search 

guidance is the first fixated object—the object looked at 
first following search display onset. Consistent with the RT 
analyses we found that distractor similarity to the target 
determined which objects were fixated first on mixed 
condition trials (Figure 2A).  High-similarity distractors 
were more often fixated first compared to medium-
similarity distractors, which were more often fixated first 
compared to low-similarity distractors, and this pattern was 
found for both butterflies (F(2,22) = 10.13, p < .01) and for 
bears (F(2,22) = 30.15, p < .001).   
Two conclusions follow from our data.  First, categorical 

search guidance is affected by target-distractor visual 
similarity.  As the visual similarity between a distractor and 
a target category increases, search efficiency decreases.  
This decreased efficiency is due to distractors becoming 
more distracting, as evidenced by an increase in the number 
of first fixations on the high similarity distractors.  More 
generally, this finding adds to the growing body of evidence 
suggesting that categorical search is indeed guided (Schmidt 
& Zelinsky, 2009; Yang & Zelinsky, 2009), a question that 

A   B                            C 

 
Figure 1:  Objects from a typical mixed trial.  (A) low-
similarity, (B) medium-similarity, and (C) high-similarity 
distractors, as ranked to the teddy bear target category.   
 
had been the topic of debate (Castelhano et al., 2008, and 
Wolfe et al., 2004).  Not only is categorical search guided, it 
is guided by matching visual features to a visual 
representation of the target category.  
The second conclusion following from our data is that 

explicit visual similarity rankings from a web task are 
highly predictive of categorical search.  Given the dramatic 
differences between these tasks, this finding is surprising.  
Judgments in the web task were highly deliberative. In 
piloting, a subject was observed agonizing over whether a 
wooden box or a backpack was visually more similar to a 
teddy bear.  These highly explicit similarity judgments can 
be contrasted with the largely implicit visual similarity 
computations that drove search guidance.  Whereas the web-
based judgments could be measured in seconds, effects of 
similarity on search guidance appeared almost immediately, 
at least within the first 199 ms following search display 
onset (the average latency of initial saccades in this 
experiment).  Our data suggest a common thread between 
these two processes.  Regardless of whether a visual 
similarity relationship has to be completed in time for an 
initial eye movement, or the opportunity exists to deliberate 
on this relationship for an extended period, the same 
features seem to be represented and compared.   
 

Table 1: Manual RTs by similarity condition, in seconds 
 

 Experiment 1 Experiment 2 
 Butterfly Bear Butterfly Bear      
High 1.17 (.06) 1.48 (.14) 1.59 (.13) 1.24 (.15) 
Medium 0.97 (.06) 1.15 (.11) 1.25 (.10) 1.07 (.15) 
Low 0.82 (.05) 0.84 (.08) 0.92 (.09) 0.74 (.09)  
Note. Values in parentheses indicate one standard error. 

Experiment 2 
Were subjects from Experiment 1 confining their similarity 
judgments to purely visual dimensions? The fact that this 
was the instructed task does not guarantee that non-visual 
factors were not creeping into the similarity judgments, 
raising the possibility that these factors, and not visual 
similarity, were responsible for the observed categorical 
guidance.  Experiment 2 addressed this possibility.   
It is unclear how best to separate visual from non-visual 

factors in estimates of similarity.  Even when stimuli are 
oriented bars with no compelling semantic properties, 
semantic features might still influence perceptual decisions 
(Wolfe et al., 1992). The task of separating these factors  
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           A                                                                           B

 
 Target-distractor similarity  Target-distractor similarity 

Figure 2:  Percentage of mixed condition trials in which the first object fixated had a low, medium, or high target-distractor 
similarity for (A) Experiment 1 and (B) Experiment 2.  Error bars show one standard error.  Dashed lines indicate chance.

using purely behavioral methods is even more daunting in 
the present study, as our stimuli are realistic objects having 
an untold number of visual and semantic dimensions.   
In Experiment 2 we take a different approach to this 

problem—turning to the computer vision literature to obtain 
similarity estimates.  Recent years have seen considerable 
success in the development of automated methods for the 
detection of object categories in realistic scenes, a task with 
obvious relevance to categorical visual search.  At the core 
of these methods is the computation of visual similarity 
relationships between visual images and features extracted 
from a target class.  These similarity relationships are 
potentially useful for our current purpose, as they provide 
estimates of purely visual similarity between distractors and 
a categorically-defined target, free from any contamination 
by semantic properties.  Whereas the similarity estimates 
used in Experiment 1 may have been based on some mix of 
visual and non-visual information, the similarity estimates 
obtained from a computer vision method are 
incontrovertibly exclusively visual.   
To obtain these purely visual similarity estimates we used 

the computer vision method described in Zhang et al. 
(2008).  We chose this method for two reasons.  First, it 
works by having multiple visual features contribute flexibly 
to target classification (see also Zhang et al., 2005). 
Specifically, it combines state-of-the-art color histogram 
features (Swain & Ballard, 1991), texture features (the Scale 
Invariant Feature Transform, or SIFT; Lowe, 2004), and 
global shape context  features (Belongie et al., 2002) with a 
well-studied machine learning technique (AdaBoost; Freund 
& Schapire, 1997) to create classifiers having features 
tailored for the detection of specific target categories.  The 
advantage of this method over other automated object 
classification techniques is that similarity estimates can be 
based on the contribution of multiple features, not just one. 
Our second reason for choosing the Zhang et al. (2008) 

model is that it has already been successfully applied to the 

identical target and distractor objects used in the present 
study.  Specifically, it successfully classified the high- 
similarity and low-similarity objects from the above-
described web task, regardless of whether the target 
category was a teddy bear or a butterfly.  This makes the 
Zhang et al. model an obvious choice for our goal of 
collecting computer-vision-based similarity estimates; not 
only was this model able to learn classifiers to discriminate 
our target categories from random objects, these classifiers 
were also shown to be partially successful in capturing 
human visual similarity relationships between these random 
objects and the bear and butterfly target classes.1     
To the extent that the Zhang et al. model is successful in 

capturing human visual similarity relationships, and to the 
extent that these similarity estimates extend to a search task 
(as we found in the previous experiment), then displays 
constructed of high-similarity or low-similarity distractors, 
as rated by the model, should produce the same patterns of 
guidance found in Experiment 1. Initial saccades should be 
preferentially guided to high-similarity distractors, and 
preferentially guided away from low-similarity distractors, 
with guidance to medium similarity distractors falling 
between these two levels.  Replicating these patterns in the 
context of new search displays, assembled using the purely 
visual similarity estimates from a computer vision model, 
would offer converging evidence for our claim that visual 
similarity affects categorical search.  Of course failing to 
replicate these patterns would weaken this claim, and would 
raise concerns that the evidence for guidance reported in 

                                                           
1 Note that this agreement to human behavior does not mean that 

the features and learning method used by this model accurately 
describes how humans arrive at their visual similarity estimates.  
Making this correspondence is a goal to which we aspire, but one 
that we believe is still out of reach.  However, this modest level of 
agreement does suggest that the model’s multi-feature approach 
has the potential to generate visual similarity estimates having 
behavioral significance, which makes it relatively unique with 
respect to purely automated computational approaches. 
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Experiment 1 might have been due to semantic, associative, 
or other non-visual sources of information.   

Method 
Participants  Twenty-four Stony Brook University students 
participated in exchange for course credit, none of whom 
participated in Experiment 1.  All subjects reported normal 
or corrected to normal vision.  Half searched for a teddy 
bear target, the other half searched for a butterfly target.   
 
Stimuli and Apparatus  Experiment 2 was conducted using 
the same equipment as in Experiment 1.  The stimuli were 
also objects selected from the same image set, although the 
new selection criteria (described below) required the 
potential placement of these objects into different 
conditions.  The search displays were therefore different, 
but were assembled from the same set of objects.  
 
Design and procedure   Experiments 1 and 2 had the same 
conditions and followed the same procedure, with the only 
difference being the distractor composition of target absent 
trials; distractors were now selected based on visual 
similarity estimates obtained from the Zhang et al. (2008) 
model rather than from similarity rankings from the web 
task.  To derive these similarity estimates we again trained 
an AdaBoost-based classifier for each target class using 
color, shape, and texture features, then evaluated these same 
features for the distractors to compute target-distractor 
similarity.  This resulted in the creation of two rank ordered 
lists, one indicating visual similarity to teddy bears and the 
other to butterflies.   High-similarity trials for each target 
category were then constructed from distractors ranked in 
the top third of each list, and low-similarity trials were 
constructed from distractors ranked in the bottom third.  
Mixed trials consisted of high-similarity distractors from the 
top third, low-similarity distractors from the bottom third 
and medium-similarity distractors from the middle third. 

Results and Discussion 
Errors were less than 3% in all conditions and were again 
excluded from subsequent analyses.  These infrequent errors 
were likely just motor confusions rather than cases of 
confusing teddy bears or butterflies with random objects.   
If categorical search is affected by the visual similarity 

between our target categories and random distractors, and if 
the Zhang et al. (2008) model is able to capture these 
relationships, then RTs should be the slowest on high-
similarity trials, faster on mixed trials, and the fastest on 
low-similarity trials.  These predictions were confirmed 
(Table 1).  Search efficiency varied with target-distractor 
visual similarity for both teddy bears (F(2,22) = 35.84, p< 
.001) and butterflies (F(2,22) = 60.95, p < .001); post-hoc t-
tests with Bonferroni correction showed slower RTs in the 
high-similarity condition relative to the mixed condition 
(t(11) = 5.77, p < .01 for teddy bears and t(11) = 6.50, p < 
.01 for butterflies) and faster RTs in the low-similarity 

condition relative to the mixed condition (t(11) = 5.15, p < 
.01 for teddy bears and t(11) = 6.22, p < .01 for butterflies).   
Analysis of the number of distractors fixated during 

search revealed the same patterns.  Fixated distractors varied 
with visual similarity for both butterfly targets (F(2,22) = 
74.55, p < .001) and bear targets (F(2,22) = 93.55, p < .001).  
More distractors were fixated on high-similarity trials 
(2.42±0.20 for bears; 3.66±0.24 for butterflies) compared to 
either mixed trials (2.10±0.17 for bears; 2.88±0.23 for 
butterflies) or low-similarity trials (1.01±0.19 for bears; 
1.94±0.24 for butterflies).   
The availability of high-, medium-, and low-similarity 

distractors in mixed condition displays again enabled us to 
look for direct oculomotor evidence for categorical search 
guidance.  Analyses of these trials showed a relationship 
between visual similarity and the probability of first fixation 
on an object (F(2,22) = 19.42, p < .001 for butterflies;  
F(2,22) = 36.60, p < .001 for bears – see Figure2B).  
Moreover, first fixations on high-similarity distractors were 
well above chance (t(11) = 5.89, p < .01 for bears; t(11) = 
10.01, p < .01 for butterflies), and first fixations on low-
similarity distractors were well below chance (t(11) = 25.47, 
p< .01 for bears; t(11) = 8.32 for butterflies), indicating that 
initial saccades were guided towards target-similar 
distractors and away from target-dissimilar distractors. 
We also analyzed initial saccade latencies to see whether 

these patterns could be attributed to speed-accuracy 
tradeoffs, but none were found; initial saccade latencies did 
not reliably differ between the similarity conditions for 
either butterfly (F(2,22) = 1.29, p = 0.30) or bear targets 
(F(2,22) = 0.76, p = 0.48).  The observed effects of visual 
similarity reflect actual changes in search guidance. 
The conclusion from this experiment is clear.  While the 

results of Experiment 1 could have been confounded by the 
unintentional inclusion of non-visual features in the 
behavioral similarity rankings, the same cannot be said for 
the similarity estimates used in Experiment 2.  Even when 
estimates reflected purely visual features, target-distractor 
similarity still predicted categorical search performance.  
This strongly suggests that categorical guidance not only 
exists, but that it may operate in much the same way as 
search guidance from a pictorial target preview.  The visual 
features used to represent a categorical target may be 
different and come from a different source (learned and 
recalled from memory rather than extracted from a target 
preview), but the underlying process of comparing these 
visual features to the search scene and using this signal to 
guide search may be the same.  A goal of future work will 
be to determine what these categorical features are for a 
variety of real-world target classes.  The present work 
constrains this goal by requiring that these features capture 
target-distractor visual similarity relationships.   

Conclusions 
Previous research had suggested that search is unguided to 
categorical targets (e.g., Castelhano et al., 2008; Wolfe et 
al., 2004).  In light of recent evidence, this suggestion 
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should be revisited.  Multiple studies have now shown 
guidance in the very first saccades made to categorical 
targets (Schmidt & Zelinsky, 2009; Yang & Zelinsky, 
2009).  The present work extends this finding to non-target 
objects from categories that are visually similar to the target 
class.  Specifically, in the absence of a target our subjects 
preferentially directed their initial saccades to distractors 
that were target-similar, and away from distractors that were 
target-dissimilar (mixed condition; Figure 2). This pattern, 
when combined with the patterns of manual search 
efficiency found in the high-similarity and low-similarity 
distractor conditions (Table 1), provides strong converging 
evidence for categorical search guidance in our task.  The 
fact that these results were obtained despite the highly non-
obvious similarity relationships between random objects and 
teddy bears / butterflies, makes the clear expression of 
guidance reported here all the more striking.  
We can also conclude that these effects of similarity on 

categorical search guidance are visual, and can be well 
described by explicit similarity estimates regardless of 
whether these estimates were obtained from behavioral 
rankings using a web task (Experiment 1) or generated by a 
computer vision model of object category detection 
(Experiment 2).  This too is a striking finding.  The lengthy 
deliberations that accompanied the behavioral judgments, 
and certainly the simplistic visual features underlying the 
model’s estimates, might have easily resulted in no success 
whatsoever in predicting categorical search behavior.  The 
fact that these radically different methods both successfully 
predicted patterns of search guidance is informative, 
suggesting that the computation of visual similarity is not 
only a core cognitive operation, but one that is remarkably 
stable across method.  We speculate that visual similarity is 
computed early and automatically during perception, and 
once derived is used to mediate a variety of perceptual (e.g., 
search guidance) and cognitive (similarity judgments) 
behaviors.  To the extent that this is true, it bodes well for 
the diversity of researchers in cognitive psychology, human-
computer interaction, and vision science, all attempting to 
better understand human visual similarity relationships.  
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