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The Impact of Complete and Selective Feedback in Static and Dynamic Multiple-

Cue Judgment Tasks 
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Abstract 

It is widely accepted that feedback is critical to guide the 
learning process and to make effective decisions. However, 
ideal feedback is relatively rare in our daily environments. 
Two multiple-cue judgment experiments examined whether 
biased and incomplete feedback leads to less accurate learning 
than comprehensive feedback. Experiment 1 found that 
participants given selective feedback produce equivalently 
accurate predictions, learned equally rapidly, and exhibited 
equivalent task structure knowledge to those given full 
feedback. Experiment 2 showed that selective feedback led to 
more accurate outcome predictions and task structure 
knowledge in a dynamic task environment. These results are 
problematic for error-based models of learning. 
 

Keywords: Learning, decision making, dynamic 
environment, prediction error 

Introduction 

The importance of feedback in learning can scarcely be 

overstated. Feedback can be seen in many aspects of our 

lives: at work (audits, trial and error approach, quality 

control), while shopping (customer service evaluations), at 

home (reward/punishment of children) and, of course, in 

educational settings (exam marks, final grades).  

Consequently, most formal learning theories suggest that 

appropriate feedback is necessary for learning (excluding 

models of unsupervised learning). For example, error-based 

models of associative learning (e.g. Rescorla & Wagner, 

1972; Mackintosh, 1975), error-based models of 

categorization (e.g. Nosofsky, 1986; Kruschke, 1992), 

connectionist learning models based upon the delta-rule 

(Rumelhart & McClelland, 1986) and Bayesian models of 

learning/reasoning (for a review, see Oaksford & Chater, 

2008) all suggest that learning only occurs when feedback is 

received. (We will hereafter cumulatively refer to these 

models as error-based models). By extension, these error-

based models suggest that optimal learning is achieved 

when accurate, unbiased feedback is delivered as often as 

possible. 

Selective Feedback 

Unfortunately, optimal feedback conditions like these are 

rare outside of the laboratory (e.g. Hogarth, 2005). To 

illustrate, suppose your friend Susan wants to learn how to 

make good investments in the stock market. To do this, she 

picks 10 companies that she thinks will be profitable, 

invests in them and monitors the share prices of these 

companies over the following 6 months. However, she 

probably will not monitor the share prices of 10 companies 

that she did not invest in. Thus, the feedback that Susan 

receives will be both incomplete and biased. It is incomplete 

because she received feedback on only a portion of the 

relevant learning opportunities, and it is biased because the 

companies about which she received feedback were 

systematically related; they were the companies that she 

predicted to be profitable. What impact would this biased, 

selective feedback have upon Susan’s learning? According 

to the aforementioned learning models it ought to be 

detrimental to her learning, relative to a scenario in which 

she was provided with balanced, comprehensive feedback. 

 Elwin, Juslin, Olsson & Enkvist (2007; see also 

Henriksson, Elwin & Juslin, 2008) examined this question 

using an experiment based on the prior example. On each 

trial participants were shown how well a particular company 

scored on four performance indices (e.g. market share, 

turnover; hereafter referred to as cues), which were each 

scored between 0 and 10. Participants were asked to predict 

how many percentage points profit (or loss) that company 

would make in the following year. Importantly the feedback 

provided differed between participants. After generating 

their predictions, the full feedback group was always told 

how much profit each company made. In contrast, the 

selective feedback group was only told about the 

profitability of companies that they predicted would be 

profitable. At test, the two groups did not differ in their 

abilities to predict the profit made by each company (if 

anything, a non-significant advantage was seen for those 

given selective feedback). That is, the extra feedback given 

to the full feedback group did not improve performance over 

those given selective feedback. This lack of a difference 

does not appear to be due to a ceiling or floor effect, as the 

mean prediction accuracy at test ranged from 0.75 – 0.9. At 

first glance, this result does not seem to be supportive of the 

standard, error-based view of learning. 

However, there are alternative explanations of this result 

which are consistent with error-based learning. The 

selective group in the Elwin et al. (2007) study were given 

twice as many training trials as those in the full feedback 

group. This was done in order to equate the number of trials 

in which feedback was provided between the groups. 

However, it meant that from an error-based learning view, 

both groups experienced an equivalent number of learning 

opportunities (trials in which feedback was provided) 

making it less surprising that the groups performed 

equivalently at test.  
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Further, it is not clear to what extent participants in either 

group understood the task structure, such as the cue-

weightings and the base-rate of profitability. It is possible 

that participants in the full feedback group had a richer 

understanding of the task structure but, for some reason, this 

understanding was not translated into more accurate 

prediction performance. In support of this suggestion, the 

full feedback group predicted profit at a rate that was closer 

to the objective base-rate of profitability (0.5) than the 

selective feedback group. Finally, Elwin et al. only reported 

prediction accuracy for the test trials. The benefit of full 

feedback may best be seen in the training phase (for 

example, the full feedback group may learn more rapidly). 

Experiment 1 

Experiment 1 was conducted to examine these alternative 

explanations of Elwin et al.’s data, and to seek a replication 

of their main findings. Four changes were made to Elwin et 

al.’s experiment in order to address these alternative 

explanations. First, the number of trials was equated for the 

full and selective feedback groups. This meant that the full 

feedback groups received up to twice as much feedback as 

the selective groups. Secondly, trial-by-trial training 

performance was analyzed in order to examine any 

differences in the rate at which learning occurred. Thirdly, 

at test, participants were asked to rate how important each 

cue was when generating their predictions (a measure of 

their knowledge of the cue-weightings). They were also 

asked to estimate the percentage of companies that were 

profitable in training (a measure of their knowledge of the 

base-rate of profitability).  

Finally, two different base-rates were used. For half of the 

participants (the 50% groups), 50% of the companies shown 

in training were profitable, while for the remainder (the 80% 

groups) 80% were profitable. If the extra feedback allowed 

participants in the full feedback condition to learn more 

accurately about the task structure, including the base-rate, 

then they should be more sensitive to these different base-

rates. In all other respects Experiment 1 was identical to that 

conducted by Elwin et al. 

 

Method 

Participants. Forty-eight introductory Psychology students 

from UNSW participated for course credit.  

Design. Two between-subject manipulations were 

conducted. Half of the participants were given feedback on 

every trial (full feedback groups) and half were only given 

feedback on trials in which they predicted profit (selective 

feedback groups). Orthogonal to this manipulation, for half 

of the participants 50% of the companies shown in training 

were profitable, and for the remaining half, 80% were 

profitable. Participants were evenly and randomly allocated 

into these four groups. 

Materials & Procedure. The materials and procedure were 

based upon those of Elwin et al. Participants were given a 

computerized profit prediction task. On each trial, 

participants were given four cues, which were the 

company’s scores (0 – 10; higher scores indicate better 

performance) on each of four economic indices (market 

share, turnover, staff experience, expenses). Once shown the 

cues, participants made a prediction as to how many 

percentage points of profit (or loss) that company would 

make in the following year, on a scale ranging from 50% 

loss to 50% profit.  

The profit made by each company was calculated by 

taking each cue value and multiplying it by the weight of 

that cue (1, 2, 3 or 4) and then summing these values. This 

yields a value between 0 and 100. For the 50% base-rate 

groups, 50 was then subtracted from this sum so as to make 

the company profits range from -50 (loss) to +50 (profit). 

For the 80% group, 35 was subtracted from the weighted 

sum of the cue-values. This yielded values between -35 and 

65, in which approximately 80% of the values were positive. 

These values were then adjusted to fit the -50 to +50 scale 

(scores greater than 0 were multiplied by 50/65 and scores 

below 0 were multiplied by 50/35). The profit scores were 

calculated in this manner in order to (i) keep the profit range 

in the 80% groups equal to that for the 50% groups (-50 to 

+50), and (ii) to keep the distribution of the profit scores 

similar between the 80% and 50% groups.  

After making each profit prediction, the full feedback 

groups were shown the correct answer. The selective 

feedback group, in contrast, were only shown the actual 

profit of that company if they had predicted the company to 

be profitable (i.e. had predicted a profit greater than 0). 

Otherwise these participants were simply moved to the next 

trial. All participants were given 4 blocks of 60 training 

trials (240 training trials in total). The transition between 

blocks was not signaled to participants, and participants 

were not provided with any breaks in training.  

Upon completion of training, all participants were told 

that their ability to predict profitability was to be tested, and 

that they were to re-rate a small selection of the companies 

that they had previously seen. The test procedure was very 

similar to the training procedure, except that only 60 trials 

were given and no feedback was provided.  

Immediately before the first test-trial, participants were 

asked to estimate the percentage of companies that were 

profitable in training (a measure of the base-rate) on a scale 

ranging from 0 – 100%. Then, immediately after completing 

the last test-trial, participants were asked to rate how 

important each cue had been when making their predictions, 

on a scale of 0 to 100 (a measure of cue-weights). 

 

Results & Discussion 

Prediction Data. The absolute value of the difference 

between the predicted profit and actual profit on each trial 

was calculated, and averaged across all of the trials in each 

block to yield participants’ mean prediction error per trial. 

Low error scores indicate accurate predictions. Participants’ 

prediction accuracies across training and test are shown in 

Figure 1. 

Participants’ prediction accuracy scores in training were 

analyzed using planned, orthogonal contrasts in a 
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multivariate ANOVA. Type I error was controlled at .05. 

Averaged across the four training blocks, no significant 

differences in accuracy were observed between the 50% 

groups, and the 80% groups, F(1,44) = 1.92. Within each of 

these base-rate groups, no significant differences in 

prediction accuracy were observed between participants 

given full feedback and those given selective feedback; for 

the 50% groups, F(1,44) = 2.45; for the 80% groups, F < 1. 

Thus, selective feedback did not impair overall prediction 

accuracy during training. 

 

Figure 1: The mean prediction errors in Experiment 1. Error 

bars indicate the SEM for all figures. 

 

To examine whether selective feedback impaired the 

learning rate, a linear trend analysis of participants’ 

prediction error was conducted. Averaged across the four 

groups, a significant negative linear trend in prediction error 

was observed, F(1,44) = 39.21. This indicates that overall 

prediction accuracy increased across training. Amongst the 

50% groups, participants given selective feedback showed a 

numerically larger decline in error across training than those 

given full-feedback, but this difference was not significant, 

F < 1. Similarly, amongst the 80% groups, the decline in 

error was numerically larger for the selective group, but 

again this difference was not significant, F(1,44) = 2.47. In 

summary, full feedback did not appear to benefit overall 

training accuracy or learning rate. If anything, the decline in 

error (a measure of learning-rate) was greater for the 

selective feedback groups, but these differences were not 

reliable. 

The same between-subjects contrasts used to analyze 

participants’ prediction accuracy in training were used to 

analyze their accuracy at test. No significant differences 

were observed, maximum F(1,44) = 2.54. Thus any 

differences in training performance were not transferred to 

the test phase. 

Knowledge of task structure. Although no benefit for the 

full feedback groups was observed in participants’ 

prediction accuracy (in training or test), these groups may 

have learned more about the task structure than the selective 

groups. To examine this prediction, participants’ ratings of 

cue-importance and their estimates of the proportion of 

profitable companies were analyzed. 

Participants’ mean importance ratings for each cue are 

shown in Figure 2. A linear trend analysis shows that, 

averaged across the four groups, participants correctly rated 

the most heavily weighted cues as more important than the 

least weighted cues, F(1,44) = 31.50. This linear trend did 

not interact with the any of the between-subject, main effect 

contrasts, all Fs < 1. This suggests that neither the base-rate 

nor the feedback manipulation affected participants’ 

knowledge of the cue-weightings. 

 

 
Figure 2: Mean ratings of cue importance in Experiment 1. 

 

Participants mean estimates of the proportion of profitable 

companies were compared against the objective base-rate 

(either 50 or 80) with one-sample t-tests. Of the 50% base-

rate groups, the full-feedback group significantly 

overestimated the base-rate, M = 58.42, t(11) = 4.64, but the 

selective feedback group’s estimate did not significantly 

differ from the correct value, M = 51.17, t(11) < 1. Of the 

80% groups, the mean estimate of the full feedback group 

(M = 74.25) was closer to the correct value than the 

selective feedback group (M = 71.75), but both groups 

significantly underestimated the base-rate, t(11) = 2.21and 

3.68, respectively. Thus, there is mixed evidence regarding 

whether selective feedback impaired (or improved) 

participants’ ability to monitor the base-rate of profitable 

companies.  

   In summary, the present data support and extend Elwin et 

al.’s findings. No evidence was found to suggest that 

selective feedback impaired learning or reduced 

participants’ knowledge of the task structure, relative to 

participants given full feedback. Unlike Elwin et al.’s study, 

this cannot be due to uneven numbers of trials. The number 

of trials was equated between groups and thus, in the present 

study, the full feedback groups received more feedback than 

the selective groups. On average, the 50% and 80% base 

rate selective groups received feedback on only 61% and 

80% of the trials, respectively.  Nevertheless, no 

corresponding decrease in performance was observed. 

   One may wonder why no decrease was seen. Perhaps the 

present scenario was too simple to demonstrate the benefits 

of full feedback. For example, participants in the present 

task may have initially learned quite rapidly until they 

reached a performance level with which they were satisfied, 

and then ceased learning. On this account, the present study 

may not be sensitive to the influence of feedback because 
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only a small amount of feedback may be required: enough 

to drive the initial learning process and then all further 

feedback could be ignored.  

 

Experiment 2 

To examine this possibility, the difficulty of the learning 

task was increased in Experiment 2 by reversing the cue-

weightings during training for half of the participants (the 

change groups). For the remainder (the same groups), the 

cue-weightings did not change. In order to achieve accurate 

profit predictions, the change groups must engage in 

learning at least twice: once initially, and once when the cue 

weights reverse. Thus, this design may be more sensitive to 

the influence of feedback on learning.  

   This weighting reversal manipulation may increase 

sensitivity in a second way, as it changes the task 

environment from static to dynamic. Full feedback may be 

particularly valuable in a dynamic environment because it 

may allow participants to detect any changes earlier, and 

thus to begin learning about the new environment sooner. 

Indeed, it has been shown that when the task-structure is 

abruptly changed, it is very difficult for participants to 

respond, even if they are given full feedback (Bröder & 

Schiffer, 2006; Rieskamp, 2006). Thus, Experiment 2 

should be sensitive to any benefit offered by comprehensive 

feedback over selective feedback. It is predicted that the 

decrease in prediction accuracy due to the cue-weighting 

reversal will be briefer in duration, and perhaps smaller in 

magnitude, for the full feedback group than the selective 

feedback group. Further, the full feedback group is 

predicted to show more accurate knowledge of the new 

(changed) cue-weightings than the selective feedback group. 

 

Method 

The method for Experiment 2 is similar to Experiment 1, 

except where noted.  

Participants. Forty-eight psychology students from UNSW 

participated for course credit. 

Design. Two between subject manipulations were 

conducted. The feedback manipulation was the same as in  

Experiment 1. Orthogonal to this manipulation, the cue-

weightings were reversed after the first training block for 

half of the participants (the change groups) but were not for 

the remainder (the same groups). Participants were evenly 

and randomly allocated into these four groups. 

Procedure & Materials. The procedure & materials 

differed from those of Experiment 1 in five respects. First, 

the base rate of company profitability was 50% for all 

participants. Second, training was divided into three blocks 

of 88 trials (rather than four blocks of 60). Third, after the 

first training block, the weightings of the four cues were 

reversed for the change groups. Thereby the most heavily 

weighted cue became the least weighted cue, and the second 

heaviest weighted cue became the second least heavily 

weighted, etc. Fourth, the pre-test instructions were altered 

to explicitly state that no feedback would be given in the test 

phase.  

  Finally, we required an online measure of participants’ 

cue-weighting and base-rate estimates, such that it could be 

delivered both before and after the cue-weighting reversal. 

To this end, 10 data missing (DM) trials were randomly 

interspersed in the last 30 trials before the cue-weighting 

reversal, and a further 10 were interspersed in the last 30 

trials of the final training block. There were two types of 

DM trials: type (i), which assessed the perceived cue-

weightings and type (ii), which assessed the perceived base-

rate. On each type (i) trial, participants were shown one cue 

with a maximal score (10) but were told that the data 

regarding the remaining three cues was missing. There were 

2 such trials for each cue, and thus there were 8 type (i) 

data-missing trials per testing occasion.  On each type (ii) 

trial, participants were told that all information regarding 

that company had been lost. Two type (ii) trials were given 

per testing occasion. On all DM trials, as on the normal 

trials, participants were required to generate a profit 

prediction. No feedback was given on DM trials. 

 

Results & Discussion 
We were primarily interested in how participants would 

respond to the cue-weighting reversal, and thus it was 

important that participants had learned the initial cue-

weightings. To ensure this, all participants who had a mean 

error-score of 15 or larger in the first training block were 

excluded from subsequent analyses. This criterion was 

selected by examining participants’ prediction data from 

Experiment 1. Fifteen participants were removed, leaving 

between 7 – 9 participants in each group. 

Prediction Data. The accuracy scores for each group are 

shown in Figure 3. Averaged across all the training blocks, 

no differences were observed between the same and change 

groups, F(1,29) = 2.02. Within the same groups, no 

differences in accuracy were seen between those given 

selective versus full feedback, F < 1, replicating Experiment 

1. However, within the change groups, the predictions of the 

selective feedback group were significantly more accurate 

than those of the full feedback group, F(1,29) = 7.12.  

 

 
Figure 3: Mean prediction accuracy in Experiment 2. 

 

   Averaged across all groups, predictions were more 

accurate on the last two training blocks (after the weighting-

reversal; the Post blocks) than on the training block before 

the reversal (the Pre block).  As expected, the increase in 
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accuracy between the Pre and Post blocks was significantly 

larger for the same groups (1.71 points) than for the change 

groups (0.06 points), F(1,29) = 5.23. The magnitude of 

improvement between Pre and Post did not differ between 

the same groups, F < 1. However, amongst the change 

groups, the predictions of the full feedback group was 

significantly impaired by the reversal, but the predictions of 

the selective feedback group were relatively unaffected, 

F(1,29) = 4.12.  

   Finally, no between-group differences in prediction 

performance were seen at test, all Fs < 1. In summary, 

contrary to our predictions, the cue-weighting reversal did 

not appear to reduce the prediction accuracy of the selective 

feedback group. Instead, the reversal specifically impaired 

the performance of the full feedback group. 

Knowledge of task structure. Participants’ predictions on 

the DM trials are summarized in Figure 4. If participants 

were sensitive to the weightings of the cues, they ought to 

have predicted more profit on trials in which information 

was available for the most heavily weighted cue (40%), and 

least on trials in which information was only available on 

the least weighted cue (10%). As expected, averaged across 

groups, a significant linear trend was observed in 

participants’ prediction on the Pre DM trials in which high 

profits tended to be predicted on trials in which the more 

heavily weighted cues were shown, F(1,29) = 41.93. This 

trend did not interact with any main-effect, between-group 

contrasts, all Fs < 1.This indicates that the groups did not 

differ in their knowledge of the cue-weights before the 

reversal. 

 

Figure 4: Mean profit predictions on data missing trials in 

Experiment 2. 

 

   The Post DM trials (delivered after the weighting reversal) 

show a different pattern. Note that for the change groups, 

that the cue labeled 10% in Figure 4 was the most heavily 

weighted cue in the Post training blocks. Thus, ideally the 

change groups should show a negative linear trend on the 

Post DM trials, while the same group should show a 

positive linear trend. Averaged across all groups, a 

significant positive linear trend was observed on the Post 

DM trials, F(1,29) = 7.52. Surprisingly, this linear trend did 

not interact with the contrast comparing the same and 

change groups, F(1,29) = 2.53. However, it did interact with 

the contrast comparing the two change groups, F(1,29) = 

4.95. This interaction reflects the full feedback group’s 

continued use of the initial cue-weighting scheme to 

produce predictions on the Post DM trials, as contrasted 

with the selective feedback group’s use of the new cue-

weighting scheme. Thus, contrary to our hypothesis (but 

consistent with the training data), the change group given 

selective feedback learned more about the new cue-

weightings than the change group given full feedback. Put 

simply, full feedback impaired learning in a dynamic 

environment. 

General Discussion 

The present experiments examined the benefits of 

comprehensive feedback in a multiple cue, deterministic 

prediction task. Consistent with Elwin et al. (2007), 

Experiment 1 showed that full feedback did not lead to 

improved prediction accuracy at test, even when the number 

of training trials was held constant. Further, full feedback 

did not improve prediction accuracy in training, or increase 

participants’ learning rate (if anything, the opposite was 

found), or provide better knowledge of the task structure. 

Experiment 2 showed that full feedback can impair 

prediction accuracy in training, due to decreased sensitivity 

to change.  

   These results are counter-intuitive, and are not consistent 

with standard error-based models of learning. As noted 

earlier, these accounts suggest that learning can only occur 

when feedback is provided. On these accounts, all else being 

equal, more trials with feedback (or “reinforced” trials) 

should produce more learning. The present findings go 

further than prior studies that have shown learning in the 

absence of prediction error (e.g. Bott, Hoffman & Murphy, 

2007) because the present data demonstrate that prediction 

error can impair learning performance. 

   One might argue that learning had reached asymptote in 

the present experiments, and thus further feedback ought not 

to improve prediction accuracy. However, performance did 

not approach ceiling in either experiment, as the task was 

deterministic, and thus perfect performance was possible (in 

principle). Further, performance does not appear to have 

been limited by cognitive resources; our computer 

simulations (not reported here) show that cognitively 

undemanding strategies could achieve much better 

performance than was observed. Thus, optimal or 

asymptotic performance was not reached. 

   Instead, a more parsimonious account of the data is that, in 

Experiment 2 at least, selective feedback facilitated 

learning. This raises a question as to what participants 

learned on the feedback absent trials. Elwin et al. and 

Henriksson et al. argue (on the basis of participants’ base-

rate estimates) that participants simply assume that their 

prediction was correct on feedback absent trials (termed 

constructivist coding). Consistent with their hypothesis, 

base-rate estimates were systematically lower for the 

selective feedback groups in the present task. However, if 
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participants simply assume that they are correct unless 

shown otherwise, this should lead to systematic decreases in 

prediction accuracy, especially in an environment where the 

cue-weightings were abruptly reversed. No such impairment 

was observed. 

However, a combination of this idea with two further 

assumptions may account for the present data. First, 

following Elwin et al. let it be assumed that (i) participants 

believe themselves to be correct on feedback absent trials 

and consequently do not encode the details of these trials 

into working memory. Further, suppose (ii) that participants 

can only hold information about a small number of trials (a 

focal set) in working memory at any time (Miller, 1956).  

Finally, suppose (iii) that participants are more easily able to 

reason about trials in which high cue-values are shown than 

on trials in which low cue-values are shown. This 

assumption may be analogous to the greater ease with which 

participants learn on cue-present than on cue-absent trials 

(which has been suggested to explain the differences 

between cue-competition and retrospective revaluation; Van 

Hamme & Wasserman, 1994).  

If one accepts these assumptions, then the selective 

feedback condition may facilitate learning by maximizing 

the efficiency of limited working memory resources. 

Specifically, selective feedback allows participants to 

populate their working memory solely with examples which 

are easy to reason about (high cue-value instances), and this 

may lead to more rapid learning of the cue-weights and 

hence more accurate profit predictions. Perhaps the most 

straightforward test of this speculative account is to modify 

Experiment 2 such that the selective feedback group only 

gets feedback on trials in which they predict a loss. 

According to assumption (iii) this should result in impaired 

learning relative to the full feedback group.  

Alternatively, participants in the full feedback groups may 

have sought to learn about two outcomes, profit and loss, 

whereas those in the selective feedback group may have 

focused on only one outcome, profit. In this case, the two 

outcomes are symmetrical, and thus learning about both is 

redundant. Nevertheless, participants did not necessarily 

know this, and those in the full feedback groups may have 

sought to learn about both. If so, then the greater difficulty 

of the dual-outcome prediction task may explain why those 

in the full feedback condition were most affected by the 

cue-weighting reversal in Experiment 2. A simple test of 

this account is to recode participants’ predictions and the 

correct answers on to a scale varying from 0% to 100% 

profit, rather than from 50% loss to 50% profit. Under these 

circumstances, this account predicts that the difficulty of the 

task is equated for the selective and full feedback groups, 

and thus any performance differences in response to change 

should disappear. 
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