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IMPLICATIONS OF mHVSR SPATIAL VARIABILITY ON SITE RESPONSE 
PREDICTABILITY 
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1 Department of Civil & Environmental Engineering 

University of California, Los Angeles, USA 
2 Department of Civil & Natural Resources Engineering 

University of Canterbury, Christchurch, NZ 
 

Abstract 

One-dimensional ground response analyses (GRA) can introduce model error to site 
response estimates when wave propagation is not dominated by vertically propagating shear 
waves. We identify sites suitable for GRA based on microtremor horizontal-to-vertical spectral 
ratios (mHVSRs). We analyzed 300 microtremor recordings from 17 vertical array sites in 
California, comparing mHVSRs at varying spatial separations. We find that low mHVSR spatial 
correlation, as measured using Longest Common Subsequence, tends to occur at vertical array 
sites that are poorly modeled by GRA. Conversely, stronger mHVSR correlations tend to occur at 
sites where GRA is relatively effective.   

Keywords: horizontal-to-vertical spectral ratios, ground response analysis, site response, spatial 
variability 

Introduction 

One-dimensional (1D) ground response analyses (GRA) are commonly applied for 
evaluating the effects of site response on ground shaking. These 1D analyses rely on the 
assumptions that the soil profile is made up of laterally continuous horizontal layers and the 
wavefield is comprised of only vertically-propagating shear waves. Previous studies have 
evaluated the effectiveness of 1D GRA at vertical array sites in Japan (Thompson et al. 2012; 
Kaklamanos et al. 2013; Pilz and Cotton, 2019; Tao and Rathje 2020a) and California (Teague et 
al. 2018; Afshari and Stewart 2019; Tao and Rathje 2020a; Stewart and Afshari 2021; de la Torre 
et al. 2022). Many of these studies have found that the site response predicted by 1D GRA does 
not accurately capture observed transfer functions from appreciable fractions of the vertical array 
sites and overpredicts transfer function ordinates near fundamental mode frequencies.  

Misfits of 1D GRA to observation can be attributed to complexities of the soil profile and 
wave field that are difficult to anticipate in advance for sites without vertical arrays (i.e., most sites 
for which seismic hazard analyses are to be performed). To address this, a number of recent 
SSHAC projects have incorporated model error into their logic trees. This model error represents 
epistemic uncertainty in the use of 1D GRA as the basis for site response modeling. Using data 
from California sites, a model for model error was developed by Stewart and Afshari (2021), which 
has subsequently been confirmed by Bahrampouri and Rodriguez‐Marek (2023) using data from 
Kik-net sites in Japan when reasonable levels of VS profile variability are considered in the data 



interpretation. The approximate level of model error at periods shorter than the soil column period 
is 0.3 natural log units, which is appreciable. Such high levels of model error represent network 
averages, whereas some individual sites are known to be relatively accurately modelled by 1D 
GRA. For such sites, lower levels of model error in principle could be technically defensible. 
However, for this to be realized would require site characterization methods that can be used to 
evaluate whether a site will behave in a relatively one-dimensional manner. In the absence of 
abnormally extensive site characterization (i.e., many closely spaced invasive tests to measure VS 
profiles), we currently lack such methods. 

In this study, we investigate the use of microtremor Horizontal-to-Vertical Spectral Ratios 
(mHVSR) at a series of locations across a site as a means by which to assess site heterogeneity. 
For each of 17 vertical array sites in California, mHVSR was measured near the array and at a 
series of stations at distances of approximately 50, 100, 250 and 500 m from the array in an 
approximately circular pattern (12-16 locations per site in total). We propose repeatable metrics 
by which to interpret spatial variations of mHVSR across these locations and apply them to a 
dataset of 300 microtremor measurements from the 17 vertical sites. Using data from prior studies, 
we re-evaluate the goodness-of-fit of empirical and theoretical transfer functions from the vertical 
arrays to identify sites with and without good match of 1D GRA to the data. Finally, we perform 
preliminary tests of the hypothesis that mHVSR spatial variability metrics correlate to 1D GRA 
modeling effectiveness.  

Methodology for Spatial Measurement and Interpretation of mHVSR 

HVSR is an economical technique for seismic site characterization, employing a three-
component seismic instrument that records ambient ground vibrations over a relatively brief 
duration (~ 1-2 hours) in two horizontal directions and vertically. Fourier amplitude spectra (FAS), 
and the ratio of horizontal-to-vertical FAS are computed. Originally proposed by Nogoshi and 
Igarashi (1971) and later popularized by Nakamura (1989), HVSR reveals site resonances if 
horizontal components of seismic waves are amplified by sites to a greater degree than vertical 
components. HVSR that is based on ambient vibrations from microtremors or anthropogenic 
sources is commonly termed mHVSR to differentiate it from HVSR derived from earthquakes 
(eHVSR).  

Numerous studies have found that the lowest frequency peak observed in mHVSR often 
correlates with the fundamental shear wave resonant frequency (f0) of the site (Lermo and Chavez-
Garcia 1993; Lachet and Bard 1994; Ghofrani et al. 2013; Molnar et al. 2018). Ordinates from 
mHVSR have also been used in empirical models as predictors of site response (e.g., Pinilla-
Ramos et al. 2022; Wang et al. 2022a; Buckreis et al. 2024). Here a different application of 
mHVSR is discussed, as a low-cost indicator of site heterogeneity.  

Sites considered and mHVSR data collection 

We utilize a California vertical array database (Afshari et al. 2019) that consists of 21 sites, 
which are primarily located near major highway bridges. These sites have time-averaged shear-
wave velocities in the upper 30 m (VS30) ranging from 160-810 m/s, with 10 sites being less than 
300 m/s (Afshari and Stewart 2019).  



From 17 of these sites, 300 microtremor measurements were performed, 16 from (Ornelas 
et al. 2023) and 1 from Prof. Brady Cox (personal communication, 2024). These measurements 
are archived in the shear wave velocity profile database (VSPDB) (Kwak et al. 2021). Figure 1 
shows the locations of each of these stations and Table 1 provides details of each site, including 
the mHVSR measurement identification number in the relational database (e.g., VSPDB ID). 

Table 1. Attributes of vertical array sites in California used in this study 

 

 
Figure 1. Locations of vertical array sites used in this study  



Instruments in these mHVSR arrays were configured in a concentric circle layout, with the 
center instrument near the vertical array and others at radii of 50, 100, 250, and 500 m. We 
attempted to collect data from at least four locations around each circle for about 1-2 hours each 
at different times. However, in some cases, we were constrained by bodies of water and restricted 
access to properties (typically private property). The naming convention of the tests used was 
based on the site, the distance from the array, and the index of the test. For example, testing at site 
2 and radius 50 m was named 2.50.1. A test at the vertical array or close to it would be 2.0.0, 
meaning that it is 0 m away and the only test taken there. Figure 2 shows the test layouts for sites 
in the Martinez Bay Area (Figure 2a) and El Centro-Meloland in Imperial Valley (Figure 2b). 
Figure 2a shows an example of the limitations that occurred while collecting the microtremor data, 
where some of the desired locations are in a nearby waterbody or private property.  

 
Figure 2. Layout of mHVSR measurement locations: (a) plan view of site in Benicia-Martinez 
(site 2), showing the limitations in the collection of data; (b) plan of site in El Centro-Meloland 
(site 4), showing a layout where all tests were performed at the site. Numbers indicate test 
names -- the first digit indicates the station number, the second indicates the distance from the 
vertical array, and the last indicates the index of the test. 

 

The temporary surveys were performed with deployments of Nanometrics Trillium 
Compact Horizon 120s 3-component broadband seismometers with Pegasus PGS-140 dataloggers. 
These seismometers have a flat frequency bandwidth from 0.0083 – 100 Hz (0.01 – 120 s). The 
tests were performed for a recording time of 1-2 hr with a sampling rate of 200 Hz. The sensors 
were generally partially buried 51-102 mm, where possible, to improve coupling with the ground, 
and always covered with a 19-L bucket to reduce external noise such as wind. Figure 3 shows the 
set-up of two different sensors, one that was mounted on the surface, and the other buried below 
ground.  



 

Figure 3. Example field deployment of the sensors used for this study showing surface and 
partially buried configurations  

The data processing procedures used in the calculation of mHVSR ordinates are adapted 
from Wang et al. (2022b) as described by Ornelas et al. (2024). These procedures are not repeated 
here for brevity. Figure 4 shows an example smoothed mHVSR mean curve and standard deviation 
for the Martinez site (i.e., site 2 in Figure 2a). This site has a significant low-frequency peak, at 
about 0.7 Hz, which will be discussed further below.  

 

Figure 4. Computed mean mHVSR curve for a station 2.0.0 at site 2 Benicia-Martinez, showing 
an example of a processed mHVSR curve. 

Correlation metric for evaluation of spatial variability in HVSR 

Processed mHVSR data for each location in the circular arrays was evaluated for similarity 
to the center mHVSR curve closest to the vertical array. This evaluation began with visual 
inspections of the data by three different analysts (the three authors of this paper) to qualitatively 
assess compatibility of the curves and to determine how their correlation might be measured. We 
decided to consider mHVSR ordinates within frequency intervals, with each frequency interval 
represented a bin with a peak in any of the mHVSR curves at the site. The mHVSR curves were 
also organized by radial distance from the vertical array (50, 100, 250, 500 m).  

Analysts visually inspected the mHVSR curves of all sites for each distance and frequency 
bin and qualitatively evaluated the similarity between the mHVSR closest to the vertical array (i.e., 



the reference 0.0 test) and the mHVSR curves at different radial distances. Figure 5 shows an 
example of two sites that the analysts inspected (the sites in Figure 2). Figure 5a is an example of 
mHVSR curves judged to be spatially similar, meaning that the majority of the curves (shown in 
grey) have similar shapes and amplitudes, compared to the reference mHVSR curve (shown in 
red) for the first two frequency intervals. Figure 5b is an example of mHVSR curves judged to be 
spatial variable, due to vertical spacing of their ordinates (in this case the shapes are similar). Other 
sites judged to be spatially variable had curves with different shapes relative to the reference curve, 
suggesting more pronounced geologic complexity.  

 

Figure 5a. Mean mHVSR curves from Benicia-Martinez (site 2) for the central station (red line) 
and four radial distances (gray lines). The black curve denotes the ETF from the vertical array. 
The blue lines indicate different frequency intervals associated with distinct resonant peaks. 

Because the analysis of spatial variability of mHVSR is used subsequently to investigate 
the effectiveness of 1D GRA, we felt it was useful for the plots in Figure 5 to depict the empirical 
transfer functions (ETFs) derived from vertical arrays, which demonstrate the frequency range 
over which site response was measured. The ETFs were computed as described in the following 
section and are shown in black in Figure 5. Our rationale is that the spatial correlations of mHVSR 
ordinates are presumably most relevant for investigations of GRA over the frequency range (e.g., 
fundamental mode frequency) as revealed by ETF ordinates. However, we did not consider ETF 



attributes when selecting the frequency intervals used to assess correlations between different 
mHVSR curves. 

 

Figure 5b. Mean mHVSR curves from El Centro-Meloland (site 4) for the central station (red line) 
and four radial distances (gray lines). The black curve denotes the ETF from the vertical array. 
The blue lines indicate different frequency intervals associated with distinct resonant peaks.  

For each of the considered frequency intervals, analysts assigned values of 0 to 3 based on 
their assessment of the similarity of mHVSR curves at a given radial distance from the center 
station. The indices indicate the following:  

0. No peak was present in the reference curve in the frequency range 
1. The curves were poorly correlated 
2. Intermediate levels of correlation between curves for the frequency range and radial 

distance 
3. The curves were well correlated for the frequency range and radial distance 

Because the indices are qualitative and user-dependent, we sought to identify correlation metrics 
that could be computed directly from the data and provide similar results for the various radial 
distances and frequency bins. Four correlation metrics were considered, three of which appeared 
to best match the analysts’ visual assessments. These three metrics are: 

• Longest Common Subsequence, LCSS (e.g., Vlachos et al. 2002) 



• Pearson’s sample correlation coefficient r (e.g., Benesty et al. 2009) 
• Mean Absolute Error (e.g., Willmott et al. 2005) 

The association of the analyst-defined indices with correlation metrics is represented in Figure 6, 
in which histograms are presenting showing the binned occurrences of the selected metrics for 
results having a given index (0, 1, 2, 3). In Figure 8, strong agreement between the analysts’ indices 
and the metrics is provided by high values of LCSS correlation and Pearson’s correlation, and low 
values of maximum absolute error (MAE), for index 3 data and the opposite trends for index 1 
data. All three correlation metrics demonstrate such trends, but to varying degrees. Ultimately, we 
selected the LCSS correlation due to the visually strongest trends with analysts’ indices. 

  

Figure 6. Histogram showing the distribution of values for three different correlation models: 
Pearson r coefficient, Mean Absolute Error (MAE), and Longest Common SubSequence (LCSS). 
These histograms compare the choices by analyst with what the values calculated by the 
correlation models.  

The LCSS metric, typically denoted S as shorthand for “similarity value,” is computed as 
follows (Vlachos et al. 2002): 

 𝑆𝑆(𝐴𝐴,𝐵𝐵, 𝜖𝜖, 𝛿𝛿) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴,𝐵𝐵)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛,𝑚𝑚)

 (1) 



where A and B are arrays of mHVSR ordinates of size 𝑛𝑛 × 2 and 𝑚𝑚 × 2, respectively (n and m 
indicate the number of frequencies in each array and 2 reflects that the arrays have one column for 
frequencies and one for amplitudes), 𝜖𝜖 is a user-selected matching threshold that ranges from 0 to 
1, 𝛿𝛿 is a radius parameter that controls (for a given point with a given reference frequency) the 
frequency range around the reference where a match can be sought, and the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 operator 
evaluates the match between paired points between the arrays. We utilize the python library tslearn 
(Tavenard et al. 2020) to compute S between the two mHVSR curves across selected frequency 
intervals.  

Figure 7 shows two HVSR curves (labeled as “ref” and “meas”) and lines between them to 
illustrate how the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 operator functions. In both cases, matches between paired points are 
evaluated. The pairing can occur vertically, as in the case of the green lines indicated in Figure 7 
as 𝜖𝜖 = 1, or it can occur across frequencies as indicated by the blue lines (𝜖𝜖 = 0.5).  For a given 
threshold, the algorithm looks for the optimal pairing to evaluate similarity. If the curves are close 
together (overlayed) then all the points are perfectly paired; for this condition, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝜖𝜖,𝛿𝛿 will return 
an integer representing the number of points that were matched between the two curves, causing 
𝑆𝑆 to be unity per Eq. (1). As the number of paired points decreases, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 decreases, causing 𝑆𝑆 
to drop below unity. The degree to which pairings can consider points across frequencies is 
controlled jointly by the 𝜖𝜖 and 𝛿𝛿 parameters, with pairings across frequencies increasing as 𝜖𝜖 and 
𝛿𝛿 decrease. We considered this feature of the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 metrics to be advantageous relative to the  
other metrics, as one can select  𝜖𝜖 and 𝛿𝛿  for use with the algorithm in order to align the algorithms 
outcomes to users preferences from visual assessment of the data. The 𝛿𝛿 parameter is referred to 
in literature as the Sakoe-Chiba (Sakoe and Chiba 1978) radius (also called the warping window 
size). This radius influences how far in frequency space point pairings can occur between curves, 
taking into account slight differences in the curves caused by external factors (e.g., noise in time 
series data). Algorithm run time increases as 𝛿𝛿 increases because more frequencies need to be 
interrogated for potential matches. For the present study we used a 𝛿𝛿 = 10; as shown in Figure 7 
for this value of 𝛿𝛿, matches across frequencies are made for 𝜖𝜖 < 1 but not for 𝜖𝜖 = 1. 

The matching threshold parameter 𝜖𝜖 and range parameter  𝛿𝛿 affect the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴,𝐵𝐵) 
calculation as follows: 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴,𝐵𝐵, 𝜖𝜖, 𝛿𝛿) = 

 �

0  𝐴𝐴 𝑜𝑜𝑜𝑜 𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴1:𝑛𝑛−1,𝐵𝐵1:𝑚𝑚−1) �𝐴𝐴1,𝑖𝑖  −  𝐵𝐵1,𝑗𝑗�  <  𝜖𝜖 & �𝐴𝐴2,𝑖𝑖  −  𝐵𝐵2,𝑗𝑗�  <  𝜖𝜖 & |𝑖𝑖 − 𝑗𝑗| ≤  𝛿𝛿 

𝑚𝑚𝑚𝑚𝑚𝑚 �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴1:𝑛𝑛−1,𝐵𝐵), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖(𝐴𝐴,𝐵𝐵1:𝑚𝑚−1)� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (2) 

In Eq. (2), 𝐴𝐴1:𝑛𝑛−1 is the array A but with its last row removed (hence its length is n-1), which is 
referred to by Vlachos et al. (2002) as the head(A). 𝐵𝐵1:𝑚𝑚−1 is similarly defined as array length m-
1.  𝐴𝐴1,𝑖𝑖 and 𝐴𝐴2,𝑖𝑖 refer to the frequency and amplitude in array A for row 𝑖𝑖, which is an index between 
1 and the array length (𝐵𝐵1,𝑗𝑗 and 𝐵𝐵2,𝑗𝑗 are similarly defined using index 𝑗𝑗). The second line on the 
right side of Eq. 2 seeks matches by taking the absolute differences (in both frequency and 
amplitude) between points in arrays A and B; if those differences are < 𝜖𝜖, then the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 count 
increases by 1. If the absolute differences are > 𝜖𝜖, then the maximum is used (third line on the right 



side of Eq. 2). The default value of 𝜖𝜖 is 1, which matches points at the same frequencies, as shown 
in Figure 7. Vlachos et al (2002) indicated that the determination of  𝜖𝜖 is application dependent, 
and a value of 1 indicates the curves are relatively similar. Selecting 𝜖𝜖 lower than 1, would allow 
the algorithm to search further along the curve to make a match, as shown in Figure 7. For the 
present study we used 𝜖𝜖 = 0.75. 

 

   

Figure 7. Comparison of two mean HVSR curves, showing the differences in LCSS paths for two 
different matching thresholds. LCSS path position (x-axis) indicates the index value for which 
HVSR amplitude is sampled, and corresponds to a specific frequency. The LCSS paths identify 
the points used to derive similarity between curves. 

Interpretation of Vertical Array Seismic Data 

As noted in the Introduction, previous studies have evaluated the effectiveness of 1D GRA 
using data from vertical array sites in Japan and California. Many of these validation studies have 
found that the site response predicted by 1D GRA does not accurately capture observed transfer 
functions from appreciable fractions of the vertical array sites. Several of the validation studies 
investigated whether direct modeling of multidimensional effects such as wave scattering 
(Thompson et al. 2012; de la Torre et al, 2022), non-vertical incidence (Thompson et al. 2012), 
and laterally-varying soil/rock layers (Hallal and Cox 2020) improve site response predictions at 
vertical array sites, with mixed results. For the purposes of the present study, we retain the use of 
1D GRA as the basis of comparison to empirical transfer functions.  

Due to the potential for improved insights from the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛿𝛿,𝜖𝜖 metric (Eq. 1), we have re-
assessed the compatibility of empirical transfer functions (ETF) from vertical array data and 
theoretical transfer functions (TTF) from 1D GRA. Both ETFs and TTFs considered here are taken 



from de la Torre et al. (2022) for the California vertical array sites considered in Afshari and 
Stewart (2019).  

In de la Torre et al. (2022), ETFs were computed as the ratio of the Fourier amplitude 
spectrum (FAS) for the observed ground surface motion to the FAS for the downhole motion for 
each event. For each frequency, the median and lognormal standard deviation were calculated 
across the data for all events. These ETFs can be considered as the ratio of an outcropping motion 
(from the surface) to a within motion (at depth). TTFs were computed using 1D GRA in Opensees 
(McKenna 2011) with viscoelastic material properties to model the linear site response, consistent 
with the weak ground motions considered for the ETF. TTFs can be derived using either within or 
outcropping representations of the input motion. Both the median ETF and TTF were smoothed 
using Konno and Ohmachi smoothing (Konno and Ohmachi 1998) with a smoothing bandwidth 
of 100.  

We applied the procedure described in the previous section for evaluating correlations 
between mHVSR curves to examine correlations between TTFs and ETFs.  This was done for 
different frequency intervals corresponding to modal frequencies in the TTF and ETF. Results for 
all sites are summarized in Table 2 and example results for the same two sites considered 
previously are shown in Figure 8. The mean mHVSR curves for the reference tests are also 
presented in the figures, which will be discussed subsequently. TTFs based both on within- and 
outcropping input motions are shown in Figure 8, although the fit assessments used only the within 
TTF results, which are the theoretically correct choice for application of 1D GRA (Kwok et al. 
2007).  

For site 2 (Benicia-Martinez South), as shown in Figure 8a, the ETF and TTF peaks align. 
This suggests good correlation, which is confirmed by an LCSS S value of 0.76 (Table 2). The 
alignment of peaks is less favorable for site 4 (El Centro-Meloland), which has S = 0.36. Results 
for all sites are provided in Table 2. We interpret S > 0.6 as a good fit, which occurs for 53% of 
sites. We interpret S < 0.45 as poor fit, which occurs for 35% of sites. Values of S between 0.45 
and 0.6 are considered to have an intermediate ETF-TTF correlation, which occurs for 12% of 
sites.  

The variability column in Table 2 is based on the between-event standard deviation of ETFs 
over the first frequency interval (denoted 𝜎𝜎ln𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀 ). For reference, we note that previous studies 
(Thompson et al. 2012; Tao and Rathje 2020a) have used  𝜎𝜎ln𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀  = 0.35 as a threshold value 
distinguishing low and high variability, although for a different level of smoothing than that used 
here. Based on that threshold, 42% of sites have high variability. Two sites experienced low 
variability, but poor fit, and four sites experienced high variability, but a good fit.  

  



Table 2. Correlations of ETF and TTF and mHVSR based on LCSS metric as evaluated in this study 
using first-model frequency interval. For mHVSR, the S values are averaged over all considered 
distance intervals.   

 

 

Figure 8. Comparison of empirical transfer function (ETF) with theoretical transfer functions 
derived using within and outcropping representations of input motions: (a) site 2 results 
showing generally good correlation and (b) site 4 results showing poor correlations.  

  



Relationship between GRA Effectiveness and mHVSR Correlation 

The mHVSR correlation metrics can be examined from a number of perspectives to 
evaluate their consistency with respect to frequency and separation distance. However, for this 
paper, we focus solely on their relationship to GRA effectiveness, as represented in the prior 
section.  

 Figure 9 compares S values derived for the first-mode frequency interval from the ETF-
TTF and the closest associated frequency interval in mHVSR, using values from Table 2.  The 
positive correlation between the S values supports the hypothesis that mHVSR spatial correlation 
is predictive of 1D GRA effectiveness, as represented by ETF-TTF S values. In particular, mHVSR 
S values > 0.8 correspond to S > 0.6 for ETF-TTF (indicating favorable effectiveness of 1D GRA) 
in 6 out of 8 cases (75%). At the other end of the scale, mHVSR S values < 0.6 correspond to ETF-
TTF S values < 0.45 in 5 of 5 cases (100%). As a result, we consider the spatial variability of 
mHVSR measurements to have promise as an indicator for 1D GRA effectiveness. Further research 
will refine these relationships, including data from additional sites and investigation of their 
dependence on distance intervals.  

   

Figure 9. Relationship between S-values for first frequency interval in the ETF-TTF data and the 
closest associated mHVSR frequency interval in mHVSR averaged over the radial distances 
available from the mHVSR instrument arrays. Shaded region indicates a 95% confidence interval 
for the trend. These correlations illustrate the predictive capacity of mHVSR spatial correlation 
on 1D GRA effectiveness.  

As part of assessing the relationship between mHVSR and site response as revealed by the 
vertical arrays, it is useful to examine the relationships between the mean ETF and mean mHVSR 
curves. Two examples of such comparisons are provided in Figure 8. In the case of site 4, the 
lowest frequency peaks are close to aligning, whereas for site 2 they do not (the lowest mHVSR 
peak near 1 Hz is at a lower frequency). If the portion of the profile that controls site response is 



included within the depth range of the vertical array, then reasonable alignment of peaks is 
expected. This appears to be the case with site 4, which has an unusually deep vertical array (~ 
195 m), even though the site is in a very deep basin that extends beyond the base depth of the array. 
It is likely that the resonant frequency associated with the overall basin thickness is lower than the 
lower-frequency limit of the mHVSR curve, which is not unusual (Ornelas et al. 2024). In the case 
of site 2, the base of the array is located in blue hard shale, which has a Vs,DH = 600 m/s (where 
DH signifies downhole sensor). Within the domain of the vertical array, the hard shale does not 
have a significant impedance contrast, which likely occurs at greater depth, which would explain 
the lower frequency resonances seen in the mHVSR curve for the site. 

 

Conclusions 

This study has demonstrated that microtremor horizontal-to-vertical spectral ratio 
(mHVSR) spatial correlation may serve as an effective indicator for assessing the reliability of 1D 
GRA. Utilizing a dataset of 300 microtremor recordings from 17 vertical downhole array sites 
across California, we investigated the spatial variability of mHVSR through three correlation 
metrics: Longest Common Subsequence (LCSS), Pearson’s r Coefficient, and Mean Absolute 
Error (MAE). Among these, we recommend LCSS as the preferred metric to characterize spatial 
variability, due to its ability to more effectively represent analyst judgment. Our findings revealed 
that 75% of the sites that exhibited a high degree of spatial correlation from mHVSR using the 
LCSS metric in Eq. (1) (denoted S) had observed site responses from vertical arrays that were well 
modelled by 1D GRA. Moreover, 100% of sites that exhibited a low degree of spatial correlation 
in mHVSR were not well modelled by 1D GRA. The analyses concentrated on frequency intervals 
encompassing low-frequency peaks in both the transfer function and HVSR, with higher frequency 
peaks showing diminished correlation, likely influenced by interference from cultural noise. This 
research presents a promising, cost-effective approach for evaluating site spatial variability in the 
absence of more extensive, and costly invasive site characterization data. Further investigations 
are needed to refine these relationships using additional data and to explore their dependence on 
distance and frequency. 
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