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The lack of multi-omics cancer datasets with extensive follow-up
information hinders the identification of accurate biomarkers of clinical
outcome. In this cohort study, we performed comprehensive genomic
analyses on fresh-frozen samples from 348 patients affected by primary
colon cancer, encompassing RNA, whole-exome, deep T cell receptor

and 16S bacterial rRNA gene sequencing on tumor and matched healthy
colontissue, complemented with tumor whole-genome sequencing for
further microbiome characterization. A type1helper T cell, cytotoxic,
gene expression signature, called Immunologic Constant of Rejection,
captured the presence of clonally expanded, tumor-enriched T cell clones
and outperformed conventional prognostic molecular biomarkers, such
as the consensus molecular subtype and the microsatellite instability
classifications. Quantification of geneticimmunoediting, defined as alower
number of neoantigens than expected, further refined its prognostic value.
We identified a microbiome signature, driven by Ruminococcus bromii,
associated with a favorable outcome. By combining microbiome signature
and Immunologic Constant of Rejection, we developed and validated a
composite score (mICRoScore), whichidentifies agroup of patients with
excellent survival probability. The publicly available multi-omics dataset
provides aresource for better understanding colon cancer biology that
could facilitate the discovery of personalized therapeutic approaches.

Althoughthere has been a substantial amount of research conducted  rely on the tumor-node-metastasis staging and the detection of DNA
onbiomarkers for primary colon cancer, the current clinical guidelines  mismatch repair (MMR) deficiency or microsatellite instability (MSI),
inthe USA and Europe (including the National Comprehensive Cancer  in addition to standard clinicopathological variables, to determine
Network and European Society for Medical Oncology guidelines) only  treatment recommendations. MSlis caused by somatic or germline
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defective of MMR genes and leads to the accumulation of somatic muta-
tions, neoantigens resulting inimmune recognition and high density
of tumor infiltrating lymphocytes®.

Thestrength of theinsitu adaptiveimmune reaction, as captured
for instance by the evaluation of the density and spatial distribution
of T cells Immunoscore), is associated with a reduced risk of relapse
and deathindependently of other clinicopathological variables, includ-
ing MSI status*”.

However, despite the overwhelming evidence of the prognostic
effectoftheImmunoscore and otherimmune-related parametersincolon
cancer®’,alack of association between gene-expression-based estimates
of immune response and patient survival in The Cancer Genome Atlas
(TCGA) colon adenocarcinoma (COAD) cohort has been noted by the
research community®°. TCGA, for its genomic data richness and cura-
tion, represents the preeminent dataset for omics analyses; however, the
collecting of comprehensive clinical data, including survival outcomes
was neither a primary objective of TCGA nor a practical possibility in view
ofitsworldwide scope and time constraints”. Assuch, the limited patient
follow-up data associated with TCGA-COAD and other TCGA datasets
has hindered statistically rigorous survival analyses". Inaddition, TCGA
did not include dedicated assays for T cell receptor (TCR) repertoire
analysis or microbiome characterization, which was later performed
using bulk DNA and RNA sequencing (RNA-seq) data and includes only
few healthysolid tissue (for example healthy colon) samples'>". Further-
more, as TCGA focused initially on cataloging genomic and molecular
changes that occur in cancer cells, sample inclusion criteria based on
stringent tumor purity cutoffs were imposed", potentially biasing the
population toward less-immune- or stroma-rich tumor specimens.

In recent years, while quantitative features of primary colon
cancer, including those that are cancer cell intrinsic, immunological,
stromal or microbial in nature, have been reported to be significantly
associated with clinical outcomes, individually*, knowledge of how
their interactions impact patient outcome is fragmentary.

Todissect this phenotypic complexity with respect to outcomes,
we used orthogonal genomic platforms to rigorously profile alarge col-
lection of primary colon cancer specimens (unselected for tumor cell
purity) and matched healthy colontissue, complemented with curated
clinical and pathological data annotation and appropriate follow-up.

Results

AC-ICAM overview

Fresh-frozen tumor samples and matched neighboring healthy colon
tissues (tumor-normal pairs) from systemic treatment-naive, patients
with histological diagnosis of colon carcinoma were profiled with
orthogonal genomic platforms. After cross-platform quality control
(based onwhole-exome sequencing (WES) and RNA-seq data) and inclu-
sion criteria checking, genomic data from 348 patients were retained
and used for downstream analyses (Fig. 1aand Extended DataFig.1a,b;
Methods provides further details). The median follow-up time was 4.6
years. We refer to this resource as the Sidra-LUMC AC-ICAM: an Atlas
and Compass of Inmune-Cancer-Microbiome interactions.

The ICR outperforms conventional molecular classifications
Amodularimmune gene signature capturing the continuum of cancer
immunesurveillance, termed asthe Immunologic Constant of Rejection
(ICR)®, had been proposed”. We subsequently optimized and con-
denseditintoafixed 20-gene panel, showing prognostic significance
indifferent cancer types (for example, melanoma'®, bladder cancer™,
breast cancer’>”, neuroblastoma® and soft-tissue sarcoma®’). The ICR
also correlates with response toimmunotherapy across multiple cancer
types, including breast**, melanoma'® and non-small-cell lung cancer®.
The ICR signature includes gene modules that reflect the activation
of type 1T (T,1) cell signaling, expression of CXCR3/CCRS5 chemokine
ligands, cytotoxicity and counter-activation of immunoregulatory
mechanisms? (Fig. 1b).

Asafirst objective, we conducted a validation of the ICR signature
onthe AC-ICAM cohort. This objective was predefined before datawere
generated (prospective validation of retrospectively collected samples;
Methods provides detail). A consensus-clustering approach based on
theICR genes (Extended DataFig. 2a,b) segregated the cohortinthree
clusters/immune subtypes: ICR high (hot tumors), ICR medium and ICR
low (cold tumors) (Fig. 1b). Systematic transcriptomic analysis using
103 previously defined immune traits (Methods) revealed co-clustering
of these traits into seven different modules (M1-M7) (Extended Data
Fig.3), with ICR belonging to M2 (lymphocyte infiltration signature),
together with other immune signatures, including the tumor inflam-
mation signature’. We then characterized the immune disposition
in relation to Consensus Molecular Subtypes (CMS)*, a well-defined
transcriptomic-based classification of colon cancers. CMS categories
include CMS1/immune, CMS2/canonical, CMS3/metabolicand CMS4/
mesenchymal. Overall, t-distributed stochastic neighbor embedding
(t-SNE) plotting of the whole expression data segregated CMS1-CMS3
samples, but a high heterogeneity was observed for CMS4 (Extended
Data Fig. 2c, left). Within CMS subtypes, ICR varied considerably
(Extended DataFig. 2c, right). While most of the CMS1samples were ICR
high, implying immune activation®, CMS4 samples were spread across
the three ICRimmune subtypes. According to the anatomiclocation, a
progressive right-to-left colon enrichment (for CMS2) and depletion
(for CMS1) (Extended Data Fig. 2d), was evident'®. ICR score (average
ofthe20ICR genes) and leukocyte subsets enrichment scores, showed
only a modest decrease from right-to-left colon, with ICR high being
more prevalentin cecum versus rectosigmoid tumors (Supplementary
Fig.1). The enrichment scores of cancer-cell-related pathways'® were
clearly distinct across CMS subtypes (Extended DataFig. 2e). ICR score
correlated negatively with certain cancer-cell pathways in all CMS
subtypes (forexample, WNT-f3 catenin and NOTCH signaling), whereas
a positive correlation with immunosuppressive and stromal-related
pathways (for example, transforming growth factor (TGF)-p, epithelial
to mesenchymal transition and vascular endothelial growth factor
signaling) was only observed in CMS4 tumors (Extended Data Fig. 2f).

The abundance of naturalkiller (NK) celland T cell subsets was the
highestin the ICR-highimmune subtype across all CMS, whereas other
leukocyte subsets were more variable (Fig. 1c, heat map). Conversely,

Fig.1| AC-ICAM study design, immune-related gene signatures, immune

and molecular subtypes and survival. a, Samples from a total of 348 patients
with colon cancer were included in AC-ICAM. Number of profiled samples

and resulting analytes are indicated for each platform, including RNA-seq,

WES, TCR sequencing (immunoSEQ TCRp assay), 16S rRNA gene sequencing

and metagenomic analysis from whole-genome sequencing (WGS) to profile
microbiome composition. An additional 42 tumor samples were profiled with
16S rRNA gene sequencing that did not have any matched normal tissue available
(ICAM42).b, Heat map of 20 ICR genes (normalized, log,-transformed expression
values, zscored by row). Columns represent samples (n = 348) annotated with
ICR cluster, CMS and MSI status. NA, not available. ¢, Deconvoluted abundancies
of distinct infiltrating cell populations by ConsensusTME and their association
with OS and PFS. Median enrichment scores (zscored by row) within each CMS,

stratified by ICR cluster areindicated in the dotted heat map (left). HR (center)
and corresponding 95% confidence intervals (error bars) as calculated by Cox
proportional hazard regression are displayed as a forest plot (middle) (n =346
independent samples from 346 patients). Pvalues for the associated HRs are
indicated in the bar chart (-logl0 Pvalue, right). d, Kaplan-Meier survival curves
of ICR clusters for OS (left) and PFS (right). e, Kaplan-Meier survival curves of
CMS for OS (left) and PFS (right). f, Circos plot of the relations between ICR and
CMS classification. Size of each element is proportional to number of samples
ineachrespective category. g, OS Kaplan-Meier curve of ICR clusters within the
CMS4 subtype. (d,e,g) HRs and 95% confidence intervals are calculated by Cox
proportional hazard regression. *Overall Pvalue is calculated by log-rank test.
Vertical lines indicate censor points. Pvalues are two-sided.
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the abundance of fibroblast and endothelial cells was increased in
CMS4, irrespective of ICR assignment, confirming the increased stro-
mal content in these tumors. Based on statistical significance, the
associationbetween ICR score and progression-free survival (PFS) was
stronger than what observed for any stromal cell or leukocyte subsets;
similar results were obtained for the association with overall survival
(0S) (Fig. 1c, forest plot).

ICR immune subtypes had distinct OS and PFS, which gradually
increased fromICRlowto high (Fig.1d). Asexpected, CMS4 was associated
with poor survival'®; however, ICR reverted this negative trend in survival,
withICRhighbeing associated with longer OS evenwithin the CMS4 group
(Fig.1e-g). Conversely, CMS did not stratify the ICR-high cluster (Extended
DataFig. 2g). ICR remained significantly associated withimproved OSin
the Cox multivariate analysis (together with pathological stage and age),
whereas microsatellite instability (MSI) status and CMS did not (Sup-
plementary Table 2). The relationships between ICR and CMS depicted
in Fig. 1 were confirmed in the TCGA colon cancer cohort (TCGA-COAD;
Supplementary Fig. 2). Overall, in TCGA, the survival differences were
attenuated (in the PFS analysis) or absent (in the OS analysis) for ICR,
immune infiltrates and CMS. Nevertheless, ICR still stratified survival in
patients with CMS4 cancers (Supplementary Fig. 2; PFS analysis). Overall,
we validated the prognosticrole of ICR in colon cancer.

ICR captures tumor-enriched, clonally expanded T cells
Ithasbeenreported that only aminority of T cells infiltrating a tumor
tissue is specific for tumor antigens (less than 10%)**°. Most intratu-
moral T cells are therefore referred to as bystander T cells. We then
soughtto address why ICR, whichmeasures T cellinfiltration and func-
tional orientation without considering antitumor specificity, bears
such a strong prognostic connotation.

A dedicated deep sequencing of the TRB gene by immunoSEQ
was performed on all samples (114 tumors and 9 healthy colon tis-
sues) with sufficient DNA for this assay. TRB gene sequence informa-
tion was also extracted from bulk RNA-seq using MiXCR (n = 341)™.
Among stromal cell and leukocyte subsets (measured by RNA-seq),
the strongest correlation with the number of conventional (af3) T cells
with aproductive TCR (immunoSEQ TCR productive DNA templates),
was observed for estimates of T cell subsets (Fig. 2a), implying robust-
ness of DNA and RNA-based measurements; however, the strongest
correlation withimmunoSEQ TCR productive clonality was observed
for ICR score (r=0.61), substantiating the ability of ICR to capture
additional features beyond T cell abundance (Fig. 2a,b). Despite
the inherent limitation in terms of sensitivity and specificity of TCR
repertoire analysis using bulk RNA-seq, MiXCR TCR clonality cor-
related well withimmunoSEQ TCR clonality (r = 0.64) as well as with
ICR (r=0.40) (Fig. 2b). Consistently, among ICR clusters (overall and
within CMS categories), theimmunoSEQ TCR clonality was the high-
estintheICR-high group andin the CMS1/immune group among CMS
subtypes (Fig. 2c and Extended Data Fig. 4a), which has the highest

proportion of ICR-high tumors (Fig. 1f). Using the whole transcrip-
tome (18,270 genes), six out of the top ten genes positively correlat-
ing with TCR immunoSEQ clonality were represented by ICR genes
(IFNG, STAT1, IRF1, CCL5, GZMA and CXCL10) (Fig. 2d). Furthermore,
the network of the top 50 genes correlating with immunoSEQ TCR
clonality were centered on the ICR master regulators /RF1 and STATI
(Fig. 2e). The correlation of immunoSEQ TCR clonality with most of
the ICR genes was stronger compared to the one observed with mark-
ers of tumor-reactive CD8" T cells defined by single-cell sequencing
approaches® (Fig. 2f,g).

For nine patients, immunoSEQ TCR profiles were available on
both the tumor and matched healthy colon tissue. This allowed the
definition of overlap between T cell clones observed in the tumor
and healthy colon sample for each of these patients (Extended Data
Fig. 4b,c). The proportion of tumor-enriched T cell clones correlated
withICRscore (r=0.75, P=0.019; Fig. 2h,i). Thisimplies that the T cell
clones infiltrating ICR-high tumors are highly divergent from those
infiltrating healthy tissue, whereas T cells in ICR-low tumors are also
presentin healthy tissue.

In conclusion, our analyses demonstrated that the ICR signature
captures the presence of tumor-enriched, clonally expanded T cells,
possibly explaining its prognostic connotation.

Somatic alterations associated with weak immune response
We sought to identify potential drivers of immune responsiveness
related to cancer cell somatic alterations, such as mutations and
copy-number variations by performing WES (Extended Data Fig. 5a,b)
on 281 tumor samples and corresponding healthy tissue.

Interms of somatic mutations, the tumor mutational burden (TMB)
of the AC-ICAM dataset was highly comparable to the TCGA-COAD
cohort (Fig. 3a), as were the clinicopathological parameters (Supple-
mentary Fig. 3). Unlike the TCGA-COAD cohort, however, inclusion of
samplesin our study did not depend on tumor purity. In fact, stromal
andimmune content (ESTIMATE score) and the infiltration of individual
lymphocyte subpopulations (Fig. 3b and Supplementary Fig. 4) was
significantly increased in the AC-ICAM compared to the TCGA-COAD
datasets, whereas the opposite was observed for cancer-cell-intrinsic
signatures (Supplementary Fig. 5). This was paralleled by alower pro-
portion of CMS1and a higher proportion of ICR low in the TCGA-COAD
compared to AC-ICAM (Supplementary Fig. 6). While the same pro-
portion of MSI-high (MSI-H) cases was observed in the two cohorts
(Supplementary Fig. 3), MSI-H TCGA-COAD samples displayed lower
levels of CD8' T cells (Supplementary Fig. 6), which is consistent with
a positive selection of less-immune-infiltrated specimens. We then
subsampled the cohort 100 times using two methodologies: one was
random and the other was onasubgroup of samples with an ESTIMATE
distribution that approximates that of the TCGA-COAD. The random
subsampling resulted in tripling the number of subsets in which the
Cox proportional regression showed a statistically significant survival

Fig.2| TCR metrics and correlation withimmune-related genes, immune
and molecular subtypes. a, Correlation between immune gene signatures and
TCR metrics from immunoSEQ DNA sequencing. b, Scatter-plots visualizing
correlation between ICR score, productive TCR clonality by immunoSEQ DNA
sequencing and TCR clonality as determined by MiXCR using RNA-seq data.
Pearson’s rand Pvalue of the correlations are indicated. The gray areareflects
the 95% confidence level interval for predictions of the linear regression
model. ¢, Visualization of a T cell repertoire with a high clonality (top) and low
clonality (bottom). Each color represents aunique T cell clone, proportions are
represented asillustrative circle diagrams. Violin plots show the relationship
between productive TCR clonality and ICR classification and CMS subtypes,
center line, box limits and whiskers represent the median, interquartile range
and 1.5x interquartile range. Pvalues were calculated using a two-sided, unpaired
Student’s t-test. d, Pearson correlation between all genes (n =18,270) and TCR
clonality (colored, FDR < 0.05). Top ten genes with highest positive correlation

and top ten genes with highest inverse correlation are labeled. FDR calculated

by Benjamini-Hochberg correction. e, Core network of genes with the highest
association with productive TCR clonality (top 50 genes) using Ingenuity
Pathway Analysis. f,g, Pearson’s correlation between immunoSEQ-based TCR
productive clonality and the expression of ICR genes (f) and genes that express
markers of tumor-reactive CD8' T cells (g). The magnitude of significance for
each correlation is represented by the number in the green square indicating the
exponent (x) in the scientific notation of the FDR (x10™). h, Example scatter-plots
for an ICR-high sample and an ICR-low sample showing overlap between clones
from the primary tumor and its matching healthy colon tissue sample. Tumor-
enriched T cell clones (>0.1% in the tumor, which are at least 32 times higher in
the tumor compared to normal) are highlighted. i, Correlation of proportion of
tumor-enriched T cell clones in the tumor (in percent) with ICR score. Pearson’s r
and Pvalue of the correlation are indicated in the plot. All Pvalues are two-sided.
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benefit of the ICR score compared to the sampling method approximat-
ing the TCGA-COAD ESTIMATE distribution (P < 0.0001, chi-squared
test) (Supplementary Figs.7 and 8). These findings suggest that alower

a -log,, P value b E F 16 W@
10 S 03— r=061,P=66x10" * 0.4 4 r=0.64,P=9.5x10. 0.4 +r=0.40,P=4.9x10™
148 0 1.48 4.98 11.76 5= n="14 2l I n=114 e n=341
N 38 2< o3 Z2< o3
ICRscore* © G 02- 705 - 7\75 .
Cytotoxic cells - o I 02 . Gy 02 e
NK cells - 0 2 cQ °Q
Y8 T cells - 25 01~ ®X o & X
CD8" T cells - S E e R 0
Macrophages M1 - 8= o- 0 o
Regulatory T cells - & ‘ | | | | | | - ‘ ‘
A
5 Ca‘%t‘T CQHS | 4 6 8 0 01 02 03 6 8 10
endritic cells - . .
Immune score - < ICR score Productive TCR clonality ICR score
Macrophages - (immunoSEQ, DNA)
Macrophages M2 - c
Mast cells - , & & 06 |
Monocytes - (e} é v > ©° P-6.4x10" 2z : P=0.091
Eosinophils - 4 (<} s [ = P=19x10"° E] P=0.032
Neutrophils - e} é 5= P=0.038 oG
Plasma cells - 39 04 S 04
B cells - [ x B &3
Endothelial - I e =5
. n=114 > [
Fibroblasts - ©™ | "~ SE 4, 2 E 0.2
02 0 02 04 06 5 E S <
6, o = S
: 3 a 3 2
Productive clonality @ s é " £ o a o4
(immunoSEQ) ) é T T T T T T T
-8~ Productive templates é N gfo‘ B 5T EERCRT)
(immunoSEQ) Q EOI'IJ g "ﬁ’ -2 T . cl? 8
0L ¥Xg Xc E £ £ &
ocseF5ESE = £ £
= = H N Mmoot
2 0o 0 2
S s = =
o O ©O
d e CRTAM Correlation () with TCR
n=14 IFNG clonality (immunoSEQ),
INTERLEUKIN  SCAVENGER receptor CLASS A n= ’I’I4
PRF1 0.70
10 112 receptor U
TBX21 NKG7
x ’RF}’\_STATW KIR2DL{/KIR2DL3 cogra 0.46
s GBPTN Ggpa 9
=] CL),(BC%LOG \ IFN-a/IFN-B Fegr3 aVaY T ioti fact
2 5 | wepct A Nozma KIR3DL2 StOtQ ) o {~/ Transcription factor
- - TGFBI IRF1 St@lmer group
MYOCD, TLE2 NLRCS KIR 'Qﬂ K 0as {J Transporter
LEFTY1xLRRC55 IFNitype 1
CUEDCT EPS2 APOL6 % Enzyme
TGFBII MHC class | (complex) 54 E3Kp2 Y
0 s O \/ Cytokine
T T T MHG class | (family)
-0.4 0 0.4 CD8A e v
Correlation (r) with TCR clonality (immunoSEQ) TAP1
IL-12 (complex)
f ICR g Markers of tumor-reactive CD8" T cells
T,1 cell signaling Effector functions
OO CReD @ B (coi03)
GNLY
CD8A CD8B -CDSQ
B OCr) o —
IL12B
(czvs) (Gzve) @
@ (7ex21 GITR
Immune regulatory ppicot )& CD137
CXCR3/CCR5
chemokines B (cp274)(ciLA4 TIM3 0
cxcLo) (cxcLio) @ FOXP3 0 @)

B(ces @(oor ) (Poco CXCLI3
Correlation (r) with TCR clonality (immunoSEQ), [[] Not significant Correlation (r) with TCR clonality (immunoSEQ), [[] Not significant
n=14 . n=14 [ -

032 070 FDR (107 032 070 FDR (107
h Patient 366 (ICR high) Patient 176 (ICR low) i 3
> 10 —{ Tumor enriched 10 o . < i 366
2w a.2%. § _ 40~ 075, P=0.019
5% 1.00 d % R
g o< 30 - 225 .
Lo Sy
5B 010 - Eg
0T O 22 2 -
25 L ©
CE o=
S 5 0.01 c o
T & S3 10-
Q. s
a <]
T T T T T Q 0 -
0.01 0.10 1.00 10 0.01 0.10 1.00 10 a_?

Productive frequency in adjacent healthy tissue (%)

ICR score

immune-stromainfiltration could have animpact on survival analysis,
contributing to the lack of correlation between immune traits and OS
observed in TCGA-COAD (Supplementary Fig. 2).
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Anoverview of the somatic alterations landscape of the AC-ICAM
cohort is represented in Fig. 3c. We identified eight cancer-related
genes®> > with a mutation frequency of <5% in TCGA-COAD*® and
Nurses’ Health Study (NHS)-Health Professionals Follow-up Study
(HPFS) cohorts™ that were enrichedin AC-ICAM and that had not been
previously reported as colon cancer oncogenic mediators*® or cancer
driver genes for colorectal cancer® (highlighted in pink in Fig. 3c).

Overall, we observed somatic mutations in 42 genes associ-
ated positively (P < 0.05) with ICR score, whereas no mutations were
enriched in samples with a lower ICR score (Extended Data Fig. 5¢).
Whenwesstratified the analysis according to the hypermutation status,
weidentified gene mutation frequencies that were associated with both
ahigher (Extended DataFig. 5d) or lower ICR score (Fig. 3d, orange and
green squares). Mutations of MAP3K1, which were previously associ-
ated withlow ICRin breast and pan-cancer TCGA analysis'*”, were the
only ones withanegative correlation with ICR score in both hypermu-
tated and non-hypermutated cancers in AC-ICAM. In hypermutated
tumors, mutations in the homologous recombination repair genes
BRCA1, BRCA2 and FANCA and the mucinous histology were associated
withalowerICR score, consistently with the previously reported enrich-
ment of BRCAI and BRCA2 somatic mutations in mucinous colorectal
tumors® (Fig. 3d, box-plot and Extended Data Fig. 5e).

With respect to somatic copy-number genomic aberrations
(SCNAs), no clear association was observed with ICRimmune classifi-
cation as they were dependent primarily on the mutational load/MSI
status and secondarily on the CMS status'®* (Fig. 3e).

Altogether, this analysisidentified a relationship between specific
cancer-related genes and/or histological characteristics and a lower
level of intratumoral immune activation.

Geneticimmune editing refines the prognostic value of ICR
Wethen proceeded by integrating ICR and TMB data. While hypermu-
tated samples frequently displayed an ICR-high phenotype, a consid-
erable proportion of ICR-high samples (46%) had alow TMB (Fig. 4a),
which did not impact the OS within or across ICR classes (Fig. 4b and
Extended Data Fig. 6a,b), coherently with what previously observed
for the Immunoscore*”.

While we observed no difference in OS between high versus low
TMB (Extended Data Fig. 6a) tumors, the presence of genetic immu-
noediting (GIE; calculated as the ratio of the observed versus the
expected number of neoantigens) was nevertheless associated with
improved OS (Extended Data Fig. 6c). We then explored a composite
score, called the immunoediting score (IES), based on both ICR clus-
ter assignment and presence or absence of GIE (IES1=ICR low and no
GIE; IES2 = ICRlow and GIE; IES3 = ICR high and no GIE; IES4 = ICR high
and GIE) (Fig. 4c), similar to what was proposed in metastatic colon
cancer by combining the Immunoscore and GIE*'. We propose that
the combination of the two parameters may more accurately reflect

the presence of an active, antitumor immune response. Consistently
with this hypothesis, a progressive increase of OS was observed from
IES1to IES4 (Fig. 4d). The additive value of combining ICR with GIE
was confirmed inICR-mediumsamples (Extended Data Fig. 6d), which
served here as aninternal validation. While the TMB was higher in GIE
versus non-GIE samples, GIE was observed inasignificant proportion of
both hypermutated and non-hypermutated tumors (55.1versus 38.7%)
(Supplementary Fig.9). Patients with IES4 tumors, of which~50% were
hypermutated or MSI-H (Extended Data Fig. 6e), indeed demonstrated
improved survival, with similar survival across stage I-11l (Extended
DataFig. 6f). No conclusion could be made inthe IES4 stage IV subgroup
asitonlyincluded two patients. No statistically significant difference
was observed in terms of stage distributions and IES (chi-squared test,
P=0.46; Extended DataFig. 6g). IES remained significantly associated
with OS in a multivariable Cox model corrected by stage (P = 0.045;
Extended Data Fig. 6h). IES categories also differed in term of TCR
clonality, withincreasing clonality from IES1to IES4 (Fig.4e). The same
trend was observed within the ICR-medium subgroup, inwhichthe TCR
clonality wasincreased (although not significantly) in the GIE samples
compared to the non-GIE samples (Extended Data Fig. 6i). The positive
correlation between IES and TCR clonality was statistically significant
when corrected for ICR score using multiple regression analysis and
was confirmed by local polynomial regression analysis (Extended Data
Fig. 6j,k). Overall, these results suggest that the level ofimmune editing
(IES) accurately reflects the level of a protective antitumor immune
response driven by clonally expanded T cells.

Microbiome compositionin healthy and colon cancer tissue
We sequenced the 16S rRNA gene using DNA extracted from matched
tumor and healthy colon tissues from 246 patients (Fig. 5a; AC-ICAM246
cohort). This dataset was used for the microbiome landmark analy-
sis. Whole-genome sequencing (WGS, median coverage 76x) was per-
formed in a subgroup of these samples (n =167; Fig. 5b) for technical
validation. For validation purposes, once the landmark analysis was
completed, we analyzed 16S rRNA gene-sequencing data from 42 addi-
tional tumor samples for which no matched normal DNA was available
for this assay (referred here as ICAM42 cohort, see also Fig.1a).

After applying the same abundance filter to AC-ICAM246 and
TCGA-COAD datasets, AC-ICAM captured all the genera detected in
TCGA-COAD", which displayed almost identical co-correlation pat-
terns in the two cohorts, in additional to several other genera (Sup-
plementary Fig.10).

First, we compared the relative abundance of taxa between
matched tumor and healthy colon tissues. At the phylum level, we
observed a significant increase of Fusobacteria in tumor compared
to healthy samples (Fig. 5a) with a high concordance between the
two methods (Fig. 5b). At the genus level, as expected*, the strongest
changes were observed for Fusobacterium (Fig. 5c and Extended Data

Fig.3|Detection of somatic alterations and association with tumorimmune
subtypes. a, TMBin the AC-ICAM cohort and all TCGA cohorts. b, ESTIMATE
scores in AC-ICAM and TCGA-COAD cohorts. Unpaired two-sided Student’s
t-test. ¢, Oncoprint of cancer-related genes that are most frequently somatically
altered. Samples are ordered by nonsynonymous mutational load. Frequency
of mutated samples as percentage of the total number of samples is shown on
theleft side of the plot, including the percentage of all somatic alterations,
including deep deletions, amplifications and single-nucleotide variants (SNVs)
and for only SNVs. Genes are ordered by frequency of SNVs. Genes with an SNV
frequency >15% are included in the oncoprint, whereas genes with a frequency
between 5-15% are included in the bar chart below. POLE is included below the
dotted gray line in the oncoprint to visualize the POLE mutation in relation to
MSlstatus. d, Oncoprint of genes with somatic mutations that are associated
with low ICR score as determined by fitting of binomial linear regression
models. Binomial linear models were generated for non-hypermutated and
hypermutated subgroups separately. All genes with Pvalue < 0.05 as predictor

variablein the regression model are displayed. Orange triangle marks genes that
were associated with lower ICR score in non-hypermutated samples, whereas the
blue triangle highlights genes associated with low ICR in hypermutated samples.
Significance of the association is indicated on the left of the plot. Box-plot of ICR
score by tumor histology (mucinous versus all other histological classifications)
in hypermutated samples, mutated in either of the homologous recombination
(HR) repair genes (BRCAI, BRCA2 and FANCA) are indicated by the color of

the dots. Pvalueis calculated using unpaired, two-sided Student’s ¢-test. AC,
adenocarcinoma; NOS, not otherwise specified; MUT, mutant; WT, wild-type.

e, Heat map of copy-number changes of the 22 autosomes, with red indicating
gains and blue indicating losses. Samples are sorted by mutational load category,
POLE mutation status, ICR, CMS and MSI, consecutively. All Pvalues are two-
sided; nreflects the independent number of samples. For all box-plots, center
line, box limits and whiskers represent the median, interquartile range and 1.5x
interquartile range, respectively.
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Fig. 7a), which was mostly represented by F. nucleatum (Fig. 5d). Our
analysis captured several additional taxa highly enriched in either
tumor or healthy tissues (false discovery rate (FDR) < 0.05 and fold
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change >2) (Fig. 5cand annotated in Supplementary Table 5). No major
differenceinadiversity (the variety and abundance of species within an
individual sample) was observed between tumor and healthy samples
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Fig. 4| Tumor mutational burden, immunoediting score, TCR clonality and
survival. a, Nonsynonymous mutation frequency per mega base (Mb) by ICR
cluster. Pvalue was calculated using unpaired, two-sided Student’s ¢-test. Center
line, box limits and whiskers represent the median, interquartile range and 1.5x
interquartile range, respectively. b, Kaplan-Meier OS curve for the combination
of ICR cluster and mutational load category. Mutational load high is defined as
nonsynonymous mutation frequency of >12 per Mb. Overall Pvalue is calculated
by log-rank test. ¢, Scatter-plot of ICR score by genetic immunoediting (GIE)
value for ICR-high and ICR-low samples. Number of samples in each quadrant is

indicated in the graph. Gray area delineates ICR scores from 5-9.d, Kaplan-Meier
for OSby IES. Censor points are indicated by vertical lines and corresponding table
of number of patients at riskin each groupisincluded below the Kaplan-Meier plot.
Overall Pvalueis calculated by log-rank test. e, Violin plot of IES by productive TCR
clonality (immunoSEQ) (left) and MiXCR-derived TCR clonality (right). Spearman
correlation statistics are indicated above each plot. Significance within ICR low
and highisindicated. Center line, box limits and whiskers represent the median,
interquartile range and 1.5x interquartile range, respectively. Pvalues are two-
sided, nreflects theindependent number of samples.

(Extended DataFig. 7b) and only amodestly reduced microbial diver-
sity was observed in ICR-high versus ICR-low tumors (Extended Data
Fig. 7b). Selenomonas and Selenomonas 3 were the taxa most signifi-
cantlyincreasedinICR-high versus-low tumors (Fig. 5e, Extended Data
Fig. 7c and Supplementary Table 6). In terms of survival analysis, the
highest number of nominally significant associations was obtained
using tumor data (rather than healthy colon data) and OS as the end
point (Extended Data Fig. 7d and Supplementary Table 7).
Fusobacterium and F. nucleatum abundances were associated with
advanced stage”, presence of BRAF mutations*, MSI-H status”**and a
trend toward worse PFS survival (Extended DataFig. 8)", as previously
observed. Instead of a negative correlation with T cells**, Fusobacterium
or F. nucleatum abundances were associated with cytotoxic T cells and
NK cells paralleled by an increase of myeloid markers and signaling
(for example, CD68, TREMI and /L8 signature). The lack of associa-
tion with a favorable outcome might be explained by the ability of
F. nucleatum to inhibit T and NK cell killing of tumor cells by binding
and activating the inhibitory receptors TIGIT* and CEACAMI (ref. 46)

orbyinduction of IL-8-mediated myeloid activation* (Extended Data
Fig.8 and Supplementary Fig.11).

A microbiome signature (MBR score) predictive of survival

To detect clinically relevant associations between the microbial
repertoire and clinical outcome, we aimed at identifying a microbi-
ome signature predictive of survival using genus-level data from 16S
rRNA gene sequencing, as part of our landmark microbiome analy-
sis (AC-ICAM246, n =246, testing set). On the AC-ICAM246, weran a
multivariable elastic-net OS Cox regression model that selected 41
features (taxa) with a coefficient different to zero (associated with
differential risk of death; Methods). We termed this list of taxa and
associated coefficients MBR classifier (Fig. 5f). A score was assigned
to each sample (MBR score) by applying the MBR classifier. The MBR
score displayed stability across different anatomic locations (in both
tumor and healthy samples (Supplementary Fig.12), despite the vari-
able abundances of some taxa with respect to anatomic location; Sup-
plementary Fig.12d).
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Co-abundance network inference using SparCC*® correlation
coefficients revealed five distinct clusters of taxa (Extended Data
Fig.9a). Taxa enriched in ICR-high versus ICR-low samples or in tumor
versus healthy colon samples displayed high co-abundance (enriched
in C3) and the same was observed for taxa enriched in healthy colon
orinICR-low samples (enriched in C1; Extended Data Fig. 9b). Low and
high-risk taxa (according to MBR classifier) were spread across the dif-
ferent clusters (Extended Data Fig. 9b). Only marginal differences in
survival were observed using estimates based on the cumulative abun-
dance of genera belonging to each cluster identified by the network
analysis (Extended Data Fig. 9c). The only survival association with an
FDR <0.1was detected for C5 (OS analysis, P= 0.017, hazard ratio (HR)
1.6, high versus low abundance, FDR = 0.085). C5 was constituted by
three taxa, including one MBR-high-risk genera and no MBR-low-risk
genera. Overall, these results suggest that clinical outcome is influ-
enced by microbiome diversity, which is captured by the MBR classi-
fier. Consistently, a high a diversity was associated with a prolonged
OSFDR <0.05for allthe a diversity estimates (Extended Data Fig. 9d).

Because of the strong contribution of Ruminococcus2to the MBR
classifier, we sought to identify the actual Ruminococcus species. In
WGS data, the Ruminococcus genus mostly consisted of Ruminococcus
bromii, which also had the strongest correlation with Ruminococcus 2
(Fig.5g and Extended Data Fig.10a). R. bromii presence was confirmed
by PCR, which had strong correlation with sequencing data (for exam-
ple, 91% concordance between WGS and PCR; Extended DataFig.10b,c).

Validation of the MBR score

AlowMBRscore (MBR <0, MBR low), inour training cohort (ICAM246,
training set) was associated with aconsiderable (85%) reduction of risk
of death (Fig. 5h). We confirmed the association between MBR low
(risk) and prolonged OS in two independent testing sets (ICAM42 and
TCGA-COAD cohorts), individually and combined (Fig. 5h,i, testing
sets). The performance of the final MBR model was lower on the test
sets than on the training set, which is typical for machine-learning
models (Extended Data Fig. 10d); however, the concordance index
of the final MBR model in both the test sets were superimposable to
the ones obtained via cross-validation of the best MBR model on the
training set (Extended Data Fig. 10d), substantiating that the model
can generalize well to new (unseen) data.

Asimilar, butless-pronounced trend in terms of reduction of the
risk of deathwas detected by simply using intratumoral Ruminococcus
2(basedon16Sdata)or R. bromiipresence (based on either PCR or WGS
data) (Extended DataFig.10e). Intratumoral Ruminococcus2and MBR
score, whichstrongly correlated with each other, were similarin tumor
and healthy colon tissues (Fig. 5j).

Therelationship between the microbiome and clinical outcome
pointed to an interaction between the microbiome and biological
processes occurring in the tumor. When correlating immune trait
values with the MBR score, the strongest (inverse) correlation with

the MBR score was observed for signatures capturing the prevalence
of CD103" dendritic cells (DCs) with unique antigen processing and
presentation capabilities for efficient antigen cross-presentation
to CD8" T cells (CD103*, mean signature (P=0.003) and CD103*
signature to CD103™ signature ratio (P = 0.001)) (Fig. 6a and Sup-
plementary Table 8)*. Consistently, correlation analyses between
individual taxaincluded in the MBR classifier and immune traits dem-
onstrated, with few exceptions, a positive correlation with myeloid
signatures and a negative correlation with the CD103* ratio for taxa
with positive MBR coefficient (higher risk of death), while the reverse
was observed for taxa with a negative MBR coefficient (Extended
Data Fig. 10f).

Development and validation of the mICRoScore
We thensought to develop amulti-omics parameter that could capture
asubgroup of patients with exceptional survival.

Among single-omics parameters that were significant in the uni-
variate Cox regression OS analysis (ICR, MBR and GIE categories), only
ICRand MBR were retained by the multivariable Cox models (P < 0.05;
Supplementary Table 9) adjusted for age, CMS subtypes, stage and
MSI status. MBR and ICR were therefore combined into an integrated
score (mICRoScore).

Indeed, in the training cohort (AC-ICAM246), the co-presence
of ICR high and MBR low (mICRoScore high) identified a subgroup of
patients witha 97% 5-year OS, with only three deaths detected atalater
follow-up (Fig. 6b) that were not related to colon cancer (Extended
Data Fig. 10g). No deaths were observed during the entire follow-up
in patients with mICRoScore high in the TCGA-COAD cohort (n =107,
testing set; Fig. 6¢). In both the training (AC-ICAM) and the testing
(TCGA-COAD) sets, the mICRoScore-high group consisted of patients
atdifferent stages (Extended Data Fig.10h). The additive effect of the
two parameters was due to the ability of MBR to segregate ICR high
intotwo distinctrisk categories (Fig. 6d,e and Extended Data Fig. 10i).

Discussion

Our multi-omics approach allowed us to thoroughly examine the
molecular characteristics of immune responsiveness in colon cancer
and uncover interactions between the microbiome and the immune sys-
tem. We found thata T1 cell/cytotoxicimmune activation, as captured
by the ICR, immunoediting, concurrent expansion of TCR clonotypes
and specific intratumoral microbiome composition, were associated
withafavorable clinical outcome. ICR was associated with OS indepen-
dently of MSI and CMS, which both lost statistical significance in the
multivariate analysis. Its prognosticimpactincreased when combined
with a metric capturing the genetic immunoediting (IES).

Using deep TCR sequencing in tumor and healthy tissues, we
showed that the prognostic effect of ICR could be due to its ability to
capture the presence of tumor-enriched and possibly tumor-antigen
specific, T cell clones.

Fig.5|Microbiome in tumor and healthy tissue and relationship with ICR
and survival. a, Microbiome composition at phylum level using 16S rRNA
gene-sequencing estimates in tumor and matched healthy colon tissue; samples
are ordered by difference in Fusobacteria between tumor and healthy tissue.

b, Side-by-side microbiome composition at the phylum level using 16S rRNA
gene sequencing and WGS estimates in colon cancer tissue. Bar plot shows

mean of Spearman correlation between the two techniques for each phylum,
error bar represents s.d. ¢, Differences between tumor and matched healthy
colon genera (paired Mann-Whitney U-test). *Previously described associations
(Supplementary Table 5). d, Pie chart reflects the contribution of each individual
species to the total Fusobacterium sp. as determined by WGS data; color gradient
reflects the Spearman correlation between the relative abundance of individual
species derived from WGS and the relative abundance of Fusobacterium
determined by 16S rRNA gene sequencing. e, Differences of microbiome genera
between ICR high and ICR low tumor samples (unpaired Mann-Whitney U-test).

f, The coefficients of the 41 taxa in the MBR classifier as selected by the OS
elastic-net Cox regression model. Family is indicated between parentheses.
*The taxonomical order is indicated between brackets, as family was unassigned
(uncultured). g, Pie chartas in d but for Ruminococcus sp. h, Forest plot showing
the HR (center), 95% confidence intervals (error bars) and corresponding Pvalue
calculated by Cox proportional hazard regression analysis for OS of the 16S MBR
classifier scoresin training and test sets. i, Kaplan-Meier curves corresponding
to h.j, Correlation between MBR score in the tumor versus relative abundance
of Ruminococcus 2 (top), relative abundance of Ruminococcus 2 in healthy

tissue versus tumor (middle) and MBR score in tumor versus healthy colon
(bottom). The gray band reflects the 95% confidence interval for predictions of
the linear regression model between the plotted variables. P value for Spearman
correlation for relative abundance and P value for Pearson correlation for MBR
scores areindicated. OS. All Pvalues are two-sided; nreflects the independent
number of samples.
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The AC-ICAM addressed the limitations of the TCGA colon can-
cer cohort noted by the scientific community
by our comparative analyses. While several studies have described
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b,c, Kaplan-Meier curves of OS by mICRoScore in AC-ICAM (b) and TCGA-
COAD (c).d,e, Kaplan-Meier curve of OS in ICR-high samples by mICRoScore
in AC-ICAM (d) and TCGA-COAD (e). Overall Pvalueis calculated by log-rank
test. Vertical lines indicate censor points. HRs and 95% confidence intervals are
calculated by Cox proportional hazard regression. All Pvalues are two-sided;
nreflects theindependent number of samples.

colon cancer arelacking. By analyzing the tumor microbiome composi-
tion using 16S rRNA gene sequencing in AC-ICAM samples, we identi-
fied amicrobiome signature (MBR risk score) with strong prognostic
value. This signature was derived from tumor samples, but there was
a strong correlation between the healthy colon and tumor MBR risk
scores, suggesting that this signature may capture the patient’s gut
microbiome composition.

Additional analysis and technical validation using orthogonal
platforms such as WGS and PCR indicated that the detected signal
was driven by R. bromii. Correlation analyses between the MBR risk
score and immune traits suggest a specific positive modulation of
CD103" dendritic cells, which are critical for antitumor immune
responses. We speculate that the identified consortium of bacteria
favors optimal T cell priming mediated by CD103" dendritic cell acti-
vation and suppression of the myeloid compartment, leading to the
induction of a partially protective antitumor immunity.

By combining the ICR and MBR scores, we were able to identify
and validate amulti-omics biomarker (mICRoScore) that could predict
exceptionally long survival in patients with colon cancer.

Studies on the gut microbiome compositions of patients receiv-
ingimmunotherapy, including anti-CD19 CART cell treatment™, have
shown favorable associations with Ruminococcus and or R. bromii
and response*®™°, Here, we propose the R. bromii as the possible link
between prognostic and predictive microbiome-based signatures. Our
findings support the testing of adjuvant microbiota-targeted/dietary
interventions®®” aimed at decreasing the risk of recurrence and death
in patients with colon cancer through the induction of an antitumor
response against minimal residual disease. These approaches might
also beinvestigated in the context of neoadjuvantimmunotherapy™.

Forexample, datafrom breast and sarcoma mouse models suggest
that the gut microbiome can be enriched with R. bromii through the
administration of castalagin (an ellagitannin found in certain aliments
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including the berry Myrciaria dubia), resulting in enhanced antitumor
immunity, possibly mediated by boosting antigen presentation and
T cellresponse®.

Administration of Myrciaria dubia powder concomitantly with
immune checkpointinhibitorsis currently being exploredin patients
with melanoma and non-small-cell lung cancer (NCT05303493).

Our study has some notable limitations. While the cohort was rela-
tively large and compares favorably with the TCGA-COAD colon cohort
(forexample, ~50% OS events more in AC-ICAM versus TCGA-COAD®°),
it remains underpowered for stage-specific survival analysis. For the
mICRoScore, we were unable to assess and quantify potential data
overfitting as we did not reserve internal samples for this purpose;
however, we observed a good performance of the mICRoScore in the
external validation cohort (TCGA-COAD), which may be due to the
combination of two biologically relevant variables (ICR and MBR)
into the model. This combination likely contributed to the model’s
impact and suggests that the mICRoScore might be generally appli-
cable. We did not perform in situ spatial profiling, which could reveal
more complex spatialimmune-microbiome interactions®. Additional
researchisneeded to confirmthe validity of the mICRoScore and inves-
tigate its potential applications in clinical treatment decision-making.
Both the mICRoScore and IES could be tested in the context of cancer
immunotherapy as predictive biomarkers. Data from the NIBIT-M4
trial and publicly available datasets suggest that the combination
of the genetic immunoediting and ICR (IES) has predictive value in
melanoma patients treated withimmune checkpoint inhibitors®. The
quantification of the immunoediting using WES data is an emerging
subject of research®®**, These scores might also be explored to define
asubgroup of patients with stage Il tumors that could be eligible for
areduced chemotherapy regimen.

In conclusion, the AC-ICAM provided insight into the biology of
colon cancer that could be utilized to establish clinical-grade prog-
nostic or predictive biomarkers and to identify targeted therapies for
personalized treatment approaches. We hope that further exploita-
tions of our resource by physicians and scientists around the globe
will lead to the discovery of new concepts within cancer research,
ultimately improving life expectancy of patients suffering from this
frequent and aggressive disease.
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Methods

Samples used in this observational cohort study (tumor tissue and
matched healthy colon tissue, AC-ICAM cohort) are from patients
with colon cancer diagnosed at Leiden University Medical Center,
the Netherlands, from 2001 to 2015 that did not object for future use
of human tissues for scientific research and that were consented on
biospecimen protocol ‘Immunology and Genetic of colon Cancer’
approved by the Committee on Medical Ethics of Leiden University
Medical Center (study protocol no. P00.193 (06/2001)). Snap-frozen
tumor and healthy colon tissue were stored at —-80°C until processing
for DNA and RNA extraction. DNA and RNA from those samples were
extracted at Leiden University Medical Center and then transferred
to Sidra Medicine for sequencing together with de-identified clinico-
pathological data of the corresponding patients (Sidra Medicine IRB
study protocols no.1768087-1(04/2016)/1602002725 (06/2022)). All
genomic assays (WES, WGS, 16S RNA gene sequencing, RNA-seq, TCR
sequencing and PCR) were performed at Sidra Medicine.

Patient information was de-identified and patient samples
were anonymized and handled according to the medical guidelines
describedin the Code of Conduct for Proper Secondary Use of Human
Tissue of The Federation of Dutch Medical Scientific Societies. This
research was performed accordingto the recommendations outlined
inthe Helsinki Declaration.

For eachassay weincluded all samples that had sufficient material
(forexample, DNA or RNA) available at the time of processing consider-
ing the need to preserve aliquots for additional/future assays.

Collection of biological samples

Snap-frozen tumor and healthy colon tissue were collected from
patients with colon cancer who underwent surgical resection of the
primary tumor between 2001 and 2015 at Leiden University Medical
Center. Patients who received radiotherapy and/or chemotherapy
before resection and patients with a primary tumor of non-epithelial
origin were excluded. Based on tissue availability, successful nucleic
acid extraction and subsequent sequencing quality control (QC),
data from 348 patients were retained in the final AC-ICAM cohort
(Extended Data Fig. 1). Clinicopathological and follow-up data were
retrospectively collected from hospital records. Patient information
was de-identified and patient samples were anonymized and handled
accordingto the medical guidelines described in the Code of Conduct
for Proper Secondary Use of Human Tissue of The Federation of Dutch
Medical Scientific Societies. Extensive clinicopathological and survival
dataof the cohort are available (Supplementary Table1).

Statistical analysis

Details of the statistical analysis are described in each method section.
All Pvalues were two-sided. Multiple testing corrections were per-
formed by calculating the FDR using the Benjamini-Hochberg method,
as appropriate. For missing data, no dataimputations were used.

Survival analysis

Kaplan-Meier curves were generated using ggsurvplot from R pack-
age survminer (v.0.4.9). HRs between any two groups of interest and
corresponding Pvalues based on a Cox proportional hazard regression
analysis and 95% confidence intervals (95% Cl), were calculated using
R package survival (v.2.41-3). Cox proportional hazard analysis was
only computed whenboth groups of comparison consisted of at least
ten patients. Overall P value for comparison of survival between two
or more groups was also calculated by log-rank test.

Multivariate Cox regression was performed using conventional
clinical and biological variables, as explained in the specific section.
Separate multivariate Cox regression analyses were runincluding age
(continuous), pathological stage (ordinal), MSI status (binary) and
CMS (categorical). Additional variables that were found significantin
univariate Cox proportional hazard regression analysis were added

to these models. These variables included, ICR score (continuous) or
ICR cluster (ordinal), GIE (binary) and MBR group (binary). Forest plots
were generated using ‘forestplot’ (v.1.7.2).

Tissue processing
Tumor and healthy tissue samples (unselected for tumor cell purity)
were sectioned inacryostat until the surface areawas sufficient to assess
tissue morphology by H&E staining. Non-target tissue was removed by
macrodissection, including necrotic or adipose tissue and for tumor tis-
suesamples, healthy colon tissue. When macrodissection wasrequired,
an H&E-stained slide was examined after this to confirm removal of
unwanted tissue types. Frozen tissue was then sectioned at 20 pm until
approximately ~10-15 mg was collected per sample. A final section
post-sample processing was made for H&E staining. The collected tissue
was stored at —80 °C for afew months until DNA and RNA extraction.
QC metrics of RNA and DNA data were superimposable between
samples collected over the years (Supplementary Figs.13 and 14).

DNA and RNA extraction

Nucleic acid extraction from fresh-frozen tissue sections was per-
formed using the QIAGEN AllPrep DNA/RNA Mini kit following the
manufacturer’s protocol. This process was fully automated on a QIA-
GEN QIAcube. B-mercaptoethanol (3-ME) was added to the lysis buffer
ontheday of use. Lysis was performed by completely submerging the
sectionsin350 pllysis buffer. Tubes were rotated for atleast 1 hat room
temperatureto allow complete homogenization. QlIAcube AllPrep DNA/
RNA Mini kit Standard (v.2) program was run, after which DNA and RNA
samples were stored at—80 °C. The same DNA was used for human and
microbiome sequencing. Samples were shipped from Leiden University
Medical Centre (LUMC), The Netherlands to Sidra Medicine, Qatar
under atemperature-controlled environmentat-80 °C (for 4 d). Sam-
ples from 361 patients were sequenced by WES and RNA-seq. Samples
from13 patients were excluded as they did not pass QC, including con-
cordance between healthy and tumor samples (Extended Data Fig.1).
The final cohort included 348 patients, for which RNA-seq for tumor
samples was possible and passed QC. A subset of samples from these
patients were processed with additional assays including WGS, TCR
sequencing and 16S RNA gene sequencing, based on the availability
of samples for these assays, as described in the following sections.

RNA sequencing

The integrity and concentration of the extracted RNA was assessed
on the LabChip GXII Touch HT using the RNA Assay and the DNA 5K/
RNA/Charge Variant Assay LabChip (PerkinElmer). Sequencing mRNA
libraries were constructed from 500 ng of total RNA using the Illumina
TruSeqStranded mRNA kit (Illumina). cDNA was synthesized using
Superscript IV Reverse Transcriptase (Thermo Fisher) and amplified
for15 cycles after ligating with TruSeq RNA Combinatorial Dual-Index
adapters. Clonalamplification and cluster generation was performed
using Illumina’s cBot 2 System. Sequencing libraries were run on Illu-
mina HiSeq platforms using 75 bp (93% of samples) or 150 bp (7% of
samples) paired-end reads at the Clinical Genomics Laboratory, Sidra
Medicine. We targeted a coverage of 20 M reads per sample. Obtained
coveragewas 18.4 M (s.d. 4.7 M).

Transcriptomic data processing

Data conversion and demultiplexing was performed using bcl2fastq2
conversion software (v.2.20). FastQC was run to perform QC checks
on the raw sequence data (Python v.2.7.1, FastQC v.0.11.2). Trimming
of adaptor sequences was performed using flexbar (v.3.0.3) using Illu-
mina primers FASTA file. Subsequently, reads were aligned to reference
genome GRCh38.93 by Hisat2 (v.2.1.0) using SAMtools (v.1.3). After
alignment, QC was performed to verify quality of the alignment and
paired-end mapping overlap (Bowtie2, v.2.3.4.2). Finally, the feature-
Counts function of subreads (v.1.5.1) was used to count paired reads per
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genes. Gene expression normalization was performed within lanes, to
correct for gene-specific effects (including GC content) and between
lanes, to correct for sample-related differences (including sequenc-
ing depth) using R package EDASeq (Exploratory Data Analysis and
Normalization for RNA-seq) (v.2.12.0). The resulting expression values
were quantile normalized using R package preprocessCore (v.1.36.0).
All downstream analysis of the expression data was performed using
R (v.3.5.1, or later).

Whole-exome sequencing

DNA concentrations were quantified using Quant-iT broad range dsDNA
Assay (Thermo Fisher) onthe FlexStation 3 Microplate reader (Molecular
Devices). DNA of both tumor and matched normal samples was available
for294 patients. Whole-exomelibrarieswere constructed with the Agilent
SureSelect XT Target enrichment kit and the exonic DNA was captured
using the Agilent SureSelect XT Human All Exon Vér2 capture library for
60-Mb exonicregions. Libraries were constructed using 250 ng of DNA
and were sequenced on Illumina’s HiSeq 4000 platform using 150 bp
paired-end reads (150PE) at the Genomics Core, Sidra Medicine. Reads
were mapped toreference genome hs37d5 (1000 Genomes Phase2 Refer-
ence Genome Sequence) based on GRCh37/hg19 using BWA (v.0.7.12).
WES (200x for tumor and 100x for normal) had an on-target sequenc-
ing rate of 65-70%. The median (across samples) of the average target
coverage (per sample) was129x (interquartile range (IQR) 18) for tumor
samples and 69x (IQR 10) for normal samples (Extended Data Fig. 5a).
In tumors, sequencing achieved >20-fold coverage of at least 99% of
targeted exons and >70-fold in at least 81% targeted exons. In healthy
samples, sequencing achieved >20-fold coverage of at least 94% of tar-
geted exons and >30-fold in at least 84% targeted exons. Adaptor trim-
ming was performed using the tool trimadap (v.0.1.3). ConPair was run
toevaluate concordance and estimate contamination between matched
tumor-normal pairs. In eight of the pairs a mismatch was detected
and for five pairs, a potential contamination was indicated. HLA typing
data were used to validate these results. All potential mismatches and
contaminations were excluded, retaining 281 patients for data analysis.

TCGA data

RNA sequencing. RNA-seq data (raw counts) from TCGA were down-
loaded and processed using R package TCGAbiolinks (v.2.18.0). Gene
symbols were converted to official HGNC gene symbols and genes
without symbol or gene information were excluded. Normalization was
performed within lanes, to correct for gene-specific effects (including
GC content) and between lanes, to correct for sample-related differ-
ences (including sequencing depth) using R package EDASeq (v.2.12.0)
and quantile normalized using preprocessCore (v.1.36.0). After nor-
malization, samples were extracted to obtain a single primary tumor
tissue (TP) sample per patient. Clinical data were sourced from the
TCGA Pan-Cancer Clinical Data Resource™ and survival events OS and
progression-freeinterval (relabeled here as PFS) were used. ICR cluster-
ing and calculation of ICR score was performed exactly as described
forthe AC-ICAM cohort. For the TCGA-COAD cohort, the optimal num-
ber of clusters for best segregation based on the Calinski-Harabasz
criterion was three. CMS classification of TCGA-COAD samples was
performed as described for the AC-ICAM cohort. The Single Sample
Predictor by ‘CMSclassifier’ (v.1.0) was used for comparison of CMS
classification between AC-ICAM and TCGA-COAD.

Arenormalized matrix of both TCGA-COAD and AC-ICAM datasets
was generated by merging the raw counts matrices and performing the
EDASeq normalization, as described above, on this combined matrix.
These data were used to calculate ssGSEA scores for deconvoluted
immune cell subpopulations, immune signatures and oncogenic path-
ways, to compare between cohorts.

Somatic mutation data. Somatic mutation calls from the TCGA MC3
Project were downloaded using R package TCGAmutations (v.0.3.0)

using the function tcga_load() with parameters ‘COAD’ for study and
‘MC3 for source. The downloaded Mutation Annotation Format (MAF)
file contained 406 distinct TCGA tumor sample barcodes and 18,183
genes (Hugo Symbol). This file was filtered to only include nonsynony-
mous mutations (‘Frame_Shift_Del’, ‘Frame_Shift_Ins’, ‘In_Frame_Del’,
‘In_Frame_Ins’,‘Missense_Mutation’,‘Nonsense_Mutation’,‘Splice_Site’,
‘Translation_Start_Site’,'Nonstop_Mutation’), analogous to the variant
filter applied to the AC-ICAM somatic mutation calls.

Microbiome. Microbiome genus relative abundance matrix for
TCGA-COAD cohort (125 tumor samples and 221 genera, WGS data) was
downloaded from The Cancer Microbiome Atlas website >. TCGA-COAD
relative abundance matrix wasfiltered to exclude duplicated samples
(samples fromvial B, eight samples). Overall, 81 genera were present
with a nonzero abundance in at least one of the 117 samples (main
matrix). When we applied the same filter as the one used for AC-ICAM
16SRNA gene-sequencing data (presencein atleast10% of the samples
with atleast1%relative abundance in one sample), 27 taxa at the genus
level were retained.

NHS and the HPFS study data

Somatic mutation data. Somatic mutationsin NHS and HPFS Colorectal
Cancers were downloaded from the supplementary data of the Gian-
nakis et al. study (Giannakis, Supplementary Table 3). The downloaded
file contained 619 distinct tumor sample barcodes and 19,208 genes
(Hugo Symbol). We excluded the samples with tumor anatomic site
specified as rectum (anatomicssite is available in Giannakis Supplemen-
tary Table1) and retained 482 colon cancer samples. Only nonsynony-
mous mutations were included at the variant filter (‘Frame_Shift_Del’,
‘Frame_Shift_Ins’, ‘In_Frame_Del’, ‘In_Frame_Ins’, ‘Missense_Mutation’,
‘Nonsense_Mutation’, ‘Splice_Site’, ‘Translation_Start_Site’, ‘Nonstop_
Mutation’), analogous to the variant filter applied to the AC-ICAM and
TCGA-COAD somatic mutation files.

Cancer-related gene annotation

Acancer-related genelist was constructed from using different sources,
as previously described:* (1) genes used by two consortia to define
germline genetic variations in pediatric cancers (n =159;** n =565
(ref. 33)); (2) genes with at least one pathogenic or likely pathogenic
germline variants in the TCGA cohort (n =99)°; (3) genes classified as
driver genesaccording to the most updated TCGA analysis (n = 299)°;
(4) genes included in the MSK-IMPACT (n =505), MSK-IMPACT HEME
(n=575), Foundation One CDx (n = 324) and Foundation One Heme
(n=593) panels; (5) cancer genes cataloged as tier 1 by the Sanger
Cancer Gene Census (n =576); and (6) cancer genes defined as such
by Vogelstein et al.””. Sources 4-6 were downloaded from OncoKB®,
Original sources’ gene names were converted into Ensemble GRCh37
gene symbols. The final listincluded 1,219 unique cancer genes and is
provided in the Supplementary Information.

Transcriptome analysis

ICR score and clustering. Consensus clustering based on 20 a priori
selected ICR genes (IFNG, IRF1, STAT1, IL12B, TBX21, CD8A, CDSB,
CXCL9, CXCL10, CCLS, GZMB, GNLY, PRF1, GZMH, GZMA, CD274/PDL1,
PDCDI, CTLA4, FOXP3 and IDOI)*, was applied to the normalized
log,-transformed expression matrix using R package ConsensusClus-
terPlus (v.1.42.0)° using 5,000 repeats, agglomerative hierarchical
clustering with Ward criterion inner and complete outer linkage. The
optimal number of clusters allowing for the best segregation of sam-
pleswas based onthe Calinski-Harabasz criterion. Optimal number of
clusters used for segregation was three. Colon cancer samples in the
cluster with the highest expression of ICR genes were designated as ‘ICR
high’, the intermediate cluster as ICR medium’and the cluster with the
lowest expression was designated ‘ICR low’. The mean log,-transformed
expression value of the 20 ICR genes is referred to as the ICR score.
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CMS classification. Samples were classified according to CMS by
R package ‘CMSclassifier’ (v.1.0) using random forest method'. The
obtained CMS labels (from the column ‘RF.predictedCMS’ in output
dataframe) were used for all downstream analyses with the exception of
the comparison of CMS subtypes between AC-ICAM and TCGA cohort.
To allow between-cohort comparison, we ran the CMSclassifier using
the ‘single-sample predictor’ method. This method makes it possible
to predict unique samples, witha constant output whether the sample
is predicted alone or within a series of samples’ and can therefore be
used for comparison across cohorts.

Dimension-reduction of the complete expression matrix was
performed using t-SNE by ‘Rtsne’ (v.0.15) and visualized using ggplot2
(v.3.3.2). The t-SNE plot was annotated with distinct colors to visualize
the distribution of samples of different CMS (using random forest
method) in high-dimensional space. The same t-SNE plot was annotated
byICR clusterinaseparate panel. A circos plot to visualize the relation
between CMS and ICR classifications was generated using the chord-
Diagram function from R package ‘circlize’ (v.0.4.8).

Immune cell deconvolution and ESTIMATE. Consensus tumor micro-
environment cell estimation (ConsensusTME)’® was performed to
estimate relative abundancies of specific immune cell subsets from
bulk transcriptome data. This method relies on integrated gene sets
from multiple sources that have been curated and validated on a
per-cancer-type basis, using benchmark datasets and seems to out-
perform previously published methods”. We applied ConsensusTME
using R package ConsensusTME (v.0.0.1.9) using parameters ‘COAD’ to
specify cancer type and ‘ssgsea’ as statistical method.

The median of each ConsensusTME score was calculated per CMS
stratified by ICR cluster and was displayed in a dotted heat map using
R package ComplexHeatmap (v.2.1.2). The association of each Con-
sensusTME score with OS and PFS was calculated by Cox proportional
hazard regression. HR and corresponding 95% Cls as are displayed as
forest plots (forestplot v.2.0.1).

Toinfer estimated levels of overall stromal and immune cell infil-
trationto the tumor, the ESTIMATE algorithm (v.1.0.13) was applied to
the expressiondatainR. ESTIMATE was run for both TCGA-COAD data-
set and the AC-ICAM cohort. The combined ESTIMATE score for both
the stromal and immune signature was compared between cohorts
and abox-plot was generated using ggplot2 (v.3.3.2).

Analysis of tumor-related signatures and immune traits.
Single-sample gene set enrichment analysis (ssGSEA) was applied to
the log,-transformed, normalized gene expression matrix” (GSVA,
v.1.38.2). Gene sets that reflect specific tumor-related pathways were
selected from multiple sources as described in detail in Roelands
et al.”’ and Supplementary Source Data Table 6a. Enrichment scores
of each of these 48 pathways by CMS were visualized using Complex-
Heatmap (v.2.1.2). To better understand the interactions between
tumor-intrinsic signaling and the immune microenvironment, we
calculated thePearson correlation between the ICR score and the scores
of the 48 tumor-related pathways. This analysis was performed in the
total cohort as well as across CMS subtypes.

Immune traits considered for analysis were based on a collection
of well-characterized immune traits*’>. This collection includes 68
gene signatures related to immunomodulatory signaling, including
IFN signaling, TGF-f3, wound healing (core serumresponse) and T cell/B
cell response®”. Gene expression values were median centered and
gene symbols were mapped to EntrezIDs (org.Hs.eg.db_3.6.0). Sig-
natures scores were then mean centered and their s.d. values were
scaled to one. For all other immune traits, ssGSEA was applied. These
included signatures for antigen-presenting machinery (APM1 and
APM2) and angiogenesis and nine TCGA-based coexpression sig-
natures (metagene attractors). This collection was supplemented
with the tumor inflammation signature’ and two non-overlapping

signatures of IFN-stimulated genes (ISGs), including IFNG hallmark
gene set IFNG.GS and ISG resistance signature (ISG.RS)™, calculated
using ssGSEA. Finally, the deconvoluted immune cell abundancies by
ConsensusTME’ and ICR score’® were included among the immune
traits. In total we used 103 immune traits (including ConsensusTME)
(Supplementary Source Data 6 provides gene signatures and corre-
sponding references).

The pairwise Pearson correlation between all immune traits was
calculated and the resulting correlation matrix was plotted using
ComplexHeatmap (v.2.1.2) with hierarchical clustering. Co-clustering
immune traits that formed distinct modules were visualized and
labeled according to the immune traits’ enrichment. The clustering
was compared to previously defined immune trait modules within a
pan-cancer setting, by annotation of the correlation matrix with the
previously defined clusters in Sayaman et al.’.

Survival analysis on AC-ICAM subsampling. We subsampled
AC-ICAM hundreds of times in two ways, one was random, the other
was on a subgroup of samples with an ESTIMATE distribution that
approximates that of the TCGA-COAD. The function ‘approxfun’in R
was used to generate a function to approximate the density of ESTI-
MATE scores in TCGA-COAD. Cases were sampled from AC-ICAM using
the ‘sample’ functionin R with prob argument set to sample points with
probability distribution of the TCGA-COAD. Each subsampled cohort
consisted of 200 samples. The number of subsets in which the Cox
proportional regression for ICR score was significant was compared
between the two ways of subsampling, statistical significance was
determined using a chi-squared test.

TCRtargeted sequencing by immunoSEQ assay

This sensitive and specific dedicated assay requires high quantity of
genomic DNA (>2 pg) and sample selection was exclusively based on
DNA availability. TCR sequencing was performed using extracted DNA
of 114 primary tissue samples and ten matched healthy colon tissues
with sufficient DNA available.

DNA samples were normalized to a concentration of 125 ng pl™
using 3.840 pg of DNA as input per sample. The immunoSEQ assay
from Adaptive Biotechnologies was used to amplify all possible vari-
able, diversity and joining (VD]J) gene rearrangements of the TCRf3
locus (TRB) using a multiplex PCR method. PCR and magnetic bead
cleanup were performed according to manufacturer’s instructions.
Recommended QC was performed after the first PCR and second PCR
amplification steps by running the PCR product on an agarose gel. Puri-
fied second PCR amplification products were pooled and the library
pool was quantified using Agilent Bioanalyzer 2100. Subsequently,
pools were diluted to a concentration of 1 pM and sequenced on Illu-
mina NextSeq 500/550 system with Mid Output kit (150 cycles) and
Custom NextSeq Sequencing Primer (P/N, M150) (read 1, 156 cycles
andread 2,9 cycles). Sequencing was performed using survey resolu-
tion (two replicates per sample). A sample manifest was created in
immunoSEQ Analyzer and the raw sequencing data were uploaded
to the Adaptive Biotechnologies cloud following the manufacturer’s
instructions. Data were processed using the company’s proprietary
pipeline. Number of total templates analyzed per sample ranged
1,906-95,834 (median 21,258). The average read coverage per sample
ranged 11.4-80.6 (median 36.2).

TCR analysis

TCR immunoSEQ data analysis. ImnmunoSEQ sample-based output
variables, as made available by the immunoSEQ Analyzer, include
the total number of templates analyzed, number of productive tem-
plates, fraction productive templates, number of total rearrangements,
number of productive rearrangements, productive clonality and the
maximum productive frequency. Herein, the total number of tem-
plates reflects the total number of T cells analyzed, of which only the
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productive templates can produce afunctional protein receptor (rear-
rangementin the sample are inframe and do not contain astop codon).
Thetotal number of productive rearrangementsis the total number of
unique T cell clones and clonality is calculated by normalizing the pro-
ductive entropy using the total number of productive rearrangements
and subtracting the result from 1. Values for (productive) clonality
range from O to 1, with values near O reflecting more polyclonal sam-
plesand values near 1representing samples with just few predominant
rearrangements dominating the observed T cell repertoire (TRBgene).
Ahigh T cell clonality implies presence of expanded T cell clones.
Relationships between ICR score, immune traits, number of pro-
ductive templates and productive clonality were tested using Pearson’s
correlation and visualized by scatter-plots using ggplot2 (v.3.3.2).
Similarly, Pearson’s correlation coefficient was calculated between pro-
ductive clonality and each of the 18,270 genes in the expression matrix.
Avolcano plot was used to visualize significant results (ggplot2). The
top 50 genes with the highest correlation with TCR productive clonal-
ity were mapped to the Global Molecular Network and core network
analysis was performed using Ingenuity Pathway Analysis software.
Dataonall productive rearrangements per sample were exported
from the immunoSEQ Analyzer Rearrangement Details View. This
file includes the exact nucleotide sequence generated through V(D)
J recombination, corresponding amino acid sequence, number of
templates and productive frequency. Overlapping TCR sequences
between tumor samples and matched healthy colon tissues (n = 9) were
evaluated and visualized by scatter-plots (ggplot2). Sequences witha
productive frequency at least 32-fold higher in the tumor compared to
the healthy colontissue and atumor productive frequency >0.1% were
defined as tumor-enriched sequences, as previously implemented by
Beausangetal.”. The fraction of tumor-enriched TCR sequencesin the
tumor was calculated by dividing the number of productive templates
of tumor-enriched sequences by the total number of productive tem-
plates per tumor sample. Pearson’s correlation coefficient between the
fractiontumor-enriched TCR sequences and ICR score was calculated.

MiXCR for TCR repertoire derived from bulk RNA-seq. The software
MiXCR (v.3.0.13)*° was used to retrieve the VD) repertoire from bulk
RNA-seq data aligned to reference genome GRCh37. MiXCR was run
through docker and with the single command analyze shotgun. The
R package ‘immunarch’ was used to analyze the MiXCR output into
the R environment. For the TCRf locus (7TRB), the TCR clonality was
calculated as1- normalized Shannon entropy (see Calculation section
for details) for all samples, except seven cases for which MiXCR failed
toidentify clones.

Whole-exome-sequencing data analysis

Somatic mutation calling and small insertions and deletions. SNVs
were called using mutect (v.1.1.7) and somatic small insertions and
deletions (indels) using strelka2 (bcbio-nextgen v.1.1.1). We applied
an optimized variant filtering pipeline (Extended Data Fig. 5b). To
filter out false-positive single-nucleotide polymorphism calls, fpfilter
was used, the applied filtering parameters are specified in the fpfiler.
pl script shared on GitHub. Subsequently, MAF files were generated
using VCFtoMAF tool (v.1.6.16), which also appended the SIFT (sorting
intolerant from tolerant), PolyPhen and Exome Aggregation Consor-
tium annotations. MAF files were loaded into R where indels with low
complexity regions were excluded. For both SNVs and indels, a cutoff
for minimum allele fraction of 5% and tumor depth of more than three
reads was applied. The Exome Aggregation Consortium data were
then used to filter out common variants that are encountered in >1%
in the general population. After these technical exclusion criteria,
biologicalffilters were applied, including selection of nonsynonymous
mutations (frame shift deletions, frame shiftinsertions, inframe dele-
tions, inframe insertions, missense mutations, nonsense mutations,
nonstop mutations, splice site and translation start site mutations).

The resulting number of variants/mutations per Mb (capture size is
40 Mb) per sampleisreferred to as the nonsynonymous TMB. Next, to
identify most frequently mutated genesin our cohort that might play a
rolein cancer, we excluded variants that are predicted to be tolerated
according to SIFT annotation or benign according to PolyPhen (poly-
morphism phenotyping). Finally, all artifact genes, which are typically
encountered as bystander mutations in cancer that are mutated for
example as a consequence of a high homology of sequences in the
gene, were excluded™. The OncoPlot function from ComplexHeatmap
(v.2.1.2) was used to visualize the most frequent somatic mutations.

Comparison of TMB with TCGA datasets. To compare the TMB in
the AC-ICAM with all 33 TCGA cohorts derived from the MC3 project,
we used the tcgaCompare function from maftools (v.2.6.05, R). For
AC-ICAM, the filtered MAF for nonsynonymous mutations was used
asinput with specified capture size of 40.

Comparison of somatic mutations with other cohorts. To define
mutated genes in the AC-ICAM that were not previously described
in colon cancer, we performed a comparison of the most frequently
mutated genes in AC-ICAM (>5% of the tumor samples) with frequen-
ciesdetected in previously published datasets containing colon cancer
samples (TCGA-COAD and NHS-HPFS) as well asreported cancer driver
genes® or colon oncogenic mediators®. First, we extracted genes with
a nonsynonymous mutation frequency >5% in the AC-ICAM cohort.
Subsequently, only genes that are likely involved in cancer develop-
ment, as described in the section ‘Cancer-related gene annotation’,
were retained. All artifact genes (mutations typically encountered as
bystander mutations in cancer that are mutated for example asa con-
sequence of ahighhomology of sequencesin the gene), were excluded.
Genes that have previously been reported as colon cancer oncogenic
mediator®® or cancer driver gene for colorectal cancer (COADREAD)*
were also excluded. Finally, only genes with a mutation frequency
<5% in the NHS-HPFS colon cancer cohort® and <5% in TCGA-COAD*®
were maintained. As a final filter, only genes that had a nonsynony-
mous mutation frequency of at least twofold in AC-ICAM compared to
TCGA-COAD were labeled as potentially new in colon cancer.

Estimation of MSI from whole-exome sequencing data. We applied
MANTIS (v.1.0.4), atool for rapid detection of microsatellite instabil-
ity on our WES data”’. Briefly, a bed file suitable for use by MANTIS
was created using RepeatFinder function of the MANTIS tool, to find
microsatellites regions within the reference genome (GRCh37). MANTIS
was then run for each tumor and matched normal BAM file pair using
these detected microsatellite loci. The instability score between the
two samples within the pair was used to classify samples either as MSI-H
(MANTIS score > 0.4) or MSS (MANTIS score < 0.4).

Somatic mutations associated with ICR. We investigated the associa-
tion of specific somatic alterations, including SNVs and smallinsertions
or deletions (indels) and ICR immune phenotype. Binomial linear
regression models were fitted to define which specific mutations
associate with ICR score using the glm function with family ‘bino-
mial’ (R). This analysis was performed in the total cohort (n=281) as
well as within hypermutated (n = 69) and non-hypermutated (n =212)
subgroups separately. The estimate and P value were extracted for
each gene and FDR was calculated using the Benjamini—-Hochberg
method. Significant genes withan FDR < 0.1and that were mutatedin at
least five patients in the analysis subgroup were plotted as OncoPrints
(ComplexHeatmap, v.2.1.2).

Mutations in homologous recombination genes, mucinous
histology, and ICR. Genes with an inverse association with ICR score
within hypermutated colon cancerincluded genes involved inhomolo-
gous recombination repair. The frequency of mutations in either of
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theidentified genes (BRCA2, BRCA1and FANCA) genes were compared
between hypermutated cases of mucinous histology with hypermu-
tated cases with other histological classifications. An unpaired Stu-
dent’s ¢-test was used to compare ICR score between hypermutated
cases of mucinous histology with hypermutated cases with other
histological classifications.

Somatic copy-number alteration segmentation

Asegmentation file was generated for each sample and later amerged
file forallsampleswasuploaded toIGV (v.2.11.0). We have used a pipe-
line using GATK (gatk-package-4. beta.6) to generate each tumor sam-
ple’s segmentation file. We performed the below steps:

1. Calculated the coverage of tumor and normal BAM files for each
interval using GATK CalculateTargetCoverage.

2. Generated the panel of ‘normal’ using normal samples by GATK
CreatePanelOfNormals options.

3. Normalizing the tumor data using GATK NormalizeSo-
maticReadCounts methods using PON generated during the
above step.

4. Performed the segmentation of tumor data using input files
from the above steps using GATK PerformSegmentation.

5. The merged segmentation file of all the samples was uploaded
to IGV and snapshots were generated.

Overview of SCNAs. We explored the prevalence of SCNAs among ICR
clustersand hypermutated and non-hypermutated subgroups by explora-
tion of the segmentationfileinIGV. Briefly, the log,-transformed segmen-
tationfilewasloadedinIGV with reference genome GRCh37,includingan
annotation text file including mutational load category (hypermutated,
non-hypermutated), POLE mutation status, ICR cluster, CMS and MSI
status. Thesamples were ordered consecutively by MSl status, CMS, ICR,
POLE and mutationalload category. Prevalence of amplificationand dele-
tions was visually inspected and compared between groups.

Geneticimmunoediting and immunoediting score

HLA typing, neoantigen prediction and GIE. HLA typing was per-
formed on both WES and RNA-seq data using OptiType (bcbio-nextgen
v.1.1.5in Python v.2.7.0)’%. Neoantigen prediction tool pVACseq from
pVACtools was run using the following predictors: MHCnuggetsl,
NNalign, NetMHC, SMM, SMMPMBEC and SMMalign. The obtained
vcfs from our somatic mutation calling pipeline were used as input
for pVACseq, along with the predicted HLA type from WES data. Gene
expression dataaligned to GRCh37 in transcripts per million was anno-
tated to the vcfs using vcf-expression-annotator. Mutant-specific
binders, relevant to the restricted HLA-I allele, are referred to as neo-
antigens, as described in detail by Zhang et al.”’. Mutated epitopes with
amedian IC,, binding affinity across all prediction algorithms used
<500 nM, with a corresponding wild-type epitope with a median ICs,
binding affinity > 500 nM, were used as criteria to infer neoantigens.
Predicted neoantigens were used to calculate the GIE value. We calcu-
lated the GIE value by taking the ratio between the number of observed
versus the number of expected neoantigens. The expected number of
neoantigens was based on the assumption of alinearity between TMB
and the number of neoantigens. We therefore assumed that samples
that have a lower frequency of neoantigens than expected (lower GIE
values), display evidence of immunoediting. A higher frequency of
neoantigens than expected indicates a lack of immunoediting, see
calculations section for details.

IES classification and analysis. The IESis a composite score based on
both ICR and GIE. Tumors of IES4 are those predicted to be the most
immune active, as they are ICR high and display GIE. Tumors of IES1
are expected to be mostimmune silent, classified both as ICR low and
an absence of GIE. Tumors of the intermediate groups IES2 and IES3

reflect ICR-low and GIE and ICR-high and non-GIE tumors, respectively.
Mutationalload category, MSl status and pathological stage distribu-
tion was compared between IES groups using a chi-squared test. The
OSwas compared between patients with different IES and between GIE
and non-GIE tumorsin the ICR-mediumgroup using Cox proportional
hazard regression analysis. A Cox proportional hazard’s multivariate
model was fitted with IES (ordinal) and pathological stage (ordinal).

Association between IES and TCR clonality. The Spearman correla-
tion between IES as ordinal variable and TCR clonality from immu-
noSEQ as well as MiXCR-based clonality was calculated. We performed
several additional analyses to assess whether the relationship between
TCR productive clonality and IES was driven by ICR. Multiple regres-
sion analysis was performed with ICR score and immunoSEQ TCR
clonality as continuous variables to predict productive TCR clonality
(immunoSEQ). Second, the data were modeled through local polyno-
mial regression fitting of the productive TCR clonality (immunoSEQ)
by IES category (ordinal variable).

Microbiome: bacterial 16S rRNA PCR sequencing
This study complies with the STORM reporting guidelines; the com-
pleted checklist can be found in Supplementary Table 12.

The 16S rRNA gene sequencing was performed at the Host-
microbe Interaction Laboratory, Sidra Medicine.

Hypervariableregions V3-V4 of 16S rRNA gene were amplified with
PCRusing the amplicon primers with lllumina adaptors (underlined):

Forward:

5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNG-
GCWGCAG’3

Reverse:

5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH-
VGGGTATCTAATCC’3.

Inbrief, PCRwas performed in a25-pl reaction mixture containing
5 pl each forward and reverse primer (1 pM), 2.5 pl template DNA for
the samples and 12.5 pl 1x Hot Master Mix (Phusion Hot Start Master
Mix). No human DNA depletion was used. The amplifications were per-
formed ona Veriti 96-well Thermal Cycler (Thermo Scientific) with the
following program:initial denaturation at 95 °C for 2 min, followed by
30cycles of denaturationat 95 °Cfor 30 s, primer annealing at 60 °C for
30 sand extensionat 72 °C for 30 s, with a final elongation at 72 °C for
5min. The presence of PCR products was confirmed by electrophoresis
inal.5% agarose gel conducted at 80 V/cmin Tris-borate-EDTA (TBE)
buffer. Amplicons were then purified using AgenCourt AMPure XP
magnetic beads (Beckman Coulter) according to the lllumina MiSeq
16S Metagenomic Sequencing Library Preparation protocol. As positive
controls, weincluded DNA from stool samples (extracted with QIAGEN
QIAmp Fast DNA Stool Mini kit), using the same input of DNA as the one
used for the AC-ICAM samples. We obtained similar 16S rRNA amplicon
PCR products across the tissue samples and the positive controls,
indicating that the DNA extraction protocol used resulted in enough
recovery of the microbial DNA from our specimens.

Samples were multiplexed using a dual-index approach with the
Nextera XT IndexKkit (Illumina) according to the manufacturer’sinstruc-
tions. The concentration of amplicons was determined using the Qubit
HS dsDNA assay kit (Life Technologies,) followed by pooling to achieve
an equimolar library concentration. The final pooled product was
paired-end sequenced at 2 x 300 bp using a MiSeq Reagent kit v3 on
Illumina MiSeq platform (Illumina) at the Sidra Medicine research
facility. Sequencing was also performed on 27 empty wells across plates
to exclude the occurrence of large-scale cross-contamination among
samples during sequencing procedures: the minimum and maximum
read counts were 2 and 234, respectively and the average and median
reads counts were 37 and 18, respectively. No negative controls for
sampling or DNA extractions were included. Samples were aliquoted
randomly in the plate.
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Microbiome: 16S rRNA gene sequencing and data processing
Sequenced data were demultiplexed using MiSeq Control Software.
The overall quality of sequencing quality was evaluated using FastQC
and the demultiplexed sequencing data were imported into Quantita-
tive Insightsinto Microbial Ecology (QIIME2;v.2019.4.0) software pack-
age. The datawere denoised with DADA2, which includes a multi-step
process, including read filtering, dereplication and chimera removal.
Paired 250-bp reads were trimmed of the initial five low-quality bases
and further processed to generate the amplicon sequence variant,
interchangeably called operational taxonomic units (OTUs). The data
were subsampled at adepth of 22,704 and then normalized using the
rarefaction on OTUs count at even depth. Taxonomic classification
was performed utilizing 16S rRNA gene database from Silva classifier
(silva-132-99-515-806-nb-classifier). The datawereimportedintoRina
Biological Observation Matrix (biom) format, before further evaluation
with Phyloseq (v.1.34.0). The 16S rRNA gene sequencing was performed
onallsamples with sufficient DNA available: 246 tumor samples and 246
matched healthy colon tissues from the same patients (AC-ICAM246)
and on additional 42 tumor samples (ICAM42) for which there was no
sufficient DNA available from the healthy colon counterpart.

The minimum and maximum read counts were 25,868 and 351,069,
respectively. The average and median reads counts were 82,506 and
75,668, respectively. No samples were excluded from the analysis.

Alpha diversity (within sample community) was assessed by
observed OTUs (sum of unique OTUs per sample), Chaol (Chao 1987)
anabundance-based richness estimator thatis sensitive torare OTUs,
Shannon (Shannon1948) and inverse Simpson (InvSimpson) (Simpson
1949), the last one being more dependent on highly abundant OTUs
and less sensitive to rare OTUs. Indices were read into R using R pack-
age vegan (v.2.5-6).

Relative abundance of distinct microbiome elements was deter-
mined using the transform_sample_counts function from Phyloseq,
such that sum of all abundance values per sample is equal to one
(Microbiome_Relative = transform_sample_counts (pyloseq_object,
function(x) x / sum(x))). OTU tables were aggregated by taxonomic
ranks including phylum (26 unique phyla), class (48 classes), order
(97 orders), family (207 families), genus (562 genera) and species (846
species). As the confidence for annotation of reads decreases with
decreasing rank, some reads were only annotated with higher ranks.

Microbiome: WGS and data processing
Library construction and sequencing was performed at the Sidra Clini-
cal Genomics Laboratory Sequencing Facility. DNA was quantified
using the Quant-iT dsDNA Assay (Invitrogen) on the FlexStation 3
(Molecular Devices). Thelibrary was constructed from 250 ng of DNA
with the lllumina TruSeq DNA Nanokit. Library quality and concentra-
tion was assessed using the DNA 1k assay on a PerkinEImer GX2 and
gPCRusing the KAPA Library quantification kit onaRoche LightCycler
480 II. Genomic libraries were sequenced with paired-end 150 bp on
HiSeq X (32% of samples) and Novaseq 6000 (68% of samples) systems
(Illumina) following the manufacturer’s recommended protocol to
achieve aminimum average coverage 60x for tumor samples. Quality
passed reads were aligned to the human reference genome GRCh38
using BWA. Human sequencing reads were removed and unaligned
nonhost reads were extracted using SAMtools. Low-quality unaligned
reads were trimmed and samples were processed for taxonomic profil-
ing using MetaPhlAn2 (ref. 80). MetaPhlAn2 uses a library of unique
clade-specific marker genes to estimate bacterial relative abundance
at the species level. The program was run with default parameters
exceptanalysistype settorelative abundance and restricted to bacte-
rial organisms only. WGS was targeted to achieve >60x coverage per
sample. The median (across samples) of the average target coverage
(per sample) was 76x (range of 50-92).

0f 3.2 x 10" total reads (median 1.9 x 10° reads per sample; IQR
2.1x108),1.5 x 108 (median 1x10° reads per sample; IQR 3.4 x 10°) were

aligned to bacteria. A total of 132 taxa, at genus level were detected,
of which 3 were excluded as possible contaminants (Deinococcus,
Ralstonia and Enhydrobacter)” (main matrix). When we applied the
samefilter asthe one used for 165 RNA gene-sequencing data (presence
inatleast10% of the samples with atleast 1% relative abundance inone
sample), 54 taxa at the genus level were retained. WGS was performed
inall samples with sufficient DNA available (n =167).

Ruminococcus bromii PCR

PCR was performed based on Wang et al.*' using R. bromii 16S rDNA
forward primer (GAAGTAGAGATACATTAGGTG) and R. bromii16SrDNA
reverse primer (ACGAGGTTGGACTACTGA). PCR was performed using
AmpliTaq Gold 360 Master Mix (Thermo Fisher, 4398881), 20 ng of
sample DNA and 5 nM of each primer. The amplification conditions
were one cycle of 95 °C for 10 min, then 35 cycles of 95 °C for 30 s,
50 °Cfor30sand 72 °Cfor 30 s and finally one cycle of 72 °C for 7 min
before storing at 4 °C. PCR products (10 pl each) were separated by
electrophoresis in 2% agarose gels (Sigma, A4718) containing eth-
idium bromide (1 pg ml™) (Sigma, E1510) using a 100-bp DNA ladder
(New England Biolabs, NO551G) for size verification. PCR band inten-
sity was defined as negative when intensity was absent or extremely
faint. PCR was considered positive if band was gradually more intense
(graded from 2 to 4). PCR was performed in all samples from the
AC-ICAM246 cohort with sufficientamounts of DNA available (n =126).

Microbiome data analysis

Genus-level filtering. On tumor samples, microbiome genera were fil-
teredtoincludegenerawhicharepresentinatleast10% of the samples
with atleast 1% relative abundance in one sample; 138 out of 562 were
retained. These included 137 genera and the genus labeled ‘unknown’
that reflects all reads for taxa with insufficient confidence at the genus
level. The same filtering was applied to normal samples; 129 genera
were retained. A total of 120 genera overlapped between normal and
tumor samples, 9 generawere uniquein normalsamplesand 18 genera
were unique in tumor samples.

This set of filtered genera were used for all downstream analysis
except for the comparison between tumor and normal pairs. For this
analysis we include any genera that passed the filtering approach
described above for either normal or tumor groups (if taxa passed the
filtered in tumor samples they were retained in normal samples and
vice versa; total 147 genera).

Contaminant assessment. To remove putative contaminants from
the 16S rRNA gene-sequencing data, we used a list of microbial taxa
that are typically found in negative blank reagents, as described by
Salter et al.®. This list has previously been curated and annotated by
Poore et al.” by manual review of the literature. This curation allowed
the discrimination of taxa that are ‘likely contaminants’, ‘potentially
pathological or commensal genera’ and ‘mixed evidence’ genera that
have been described both as pathogens as well as contaminants. We
flagged those taxa that were ‘likely contaminants’ as well as ‘mixed
evidence’ for potential exclusion from our 16S rRNA gene-sequencing
microbiome abundance matrix.

In total, we detected 25 taxa that were ‘likely contaminants’ and
10 taxa with ‘mixed evidence’ in at least one out of the 492 samples.
To evaluate the extent of potential contamination by these 35 taxa,
we calculated the sum of these taxa for each sample. On average, only
0.04732% of the total microbial abundance per sample consisted of
‘flagged’ taxa (min, 0%; first quartile, 0%; median, 0%; third quartile,
0.03485%; and max, 4.46%). Furthermore, most of these putative con-
taminant taxa (n = 33) were detected in only fewer than 20 (out of
492) samples. Potential contaminating bacteria that we detected in
the highest numbers of samples were Oxalobacter in 39 samples and
Micrococcusin 28 samples. Detected putative contaminants and taxa
withmixed evidence fromthe 16S rRNA-sequencing datawere removed
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when we applied the minimal abundance filter (presence in at least
10% of the samples with at least 1% relative abundance in one sample).

Microbiome comparison between tumor and healthy colon tissue.
At the phylum level, the overall distribution of microbiome composi-
tion was visualized using stacked bar charts. The order of samples was
determined by descending relative abundance of the phylum Fusobac-
teriain tumor samples and the matching healthy colon samples from
corresponding patients were ranked in the same order as the tumor
stacked bar chart.

A paired Mann-Whitney U-test (two-sided) was used to deter-
mine microbial phyla/generawithsignificantly different relative abun-
dancebetween tumor and paired normal samples. FDR was calculated
using the Benjamini-Hochberg method. Results were visualized in
volcano plots.

Microbiome comparison between ICR groups. An unpaired Mann-
Whitney U-test (two-sided) was used to calculate which filtered genera
(n=138) were differentially abundant between ICR-high and ICR-low
samples. FDR was calculated using the Benjamini-Hochberg method.
Results were visualized in volcano plots.

Co-abundance network inference. We performed co-abundance
analysisintumor samples from the AC-ICAM246 cohort. Co-abundance
analysis, whichinvolves studying the presence of multiple components
withinacomposition, can be difficult to performaccurately when using
relative abundance. This is because the relative abundance of the dif-
ferent components is constrained to sum to 1, which can lead to the
appearance of false correlations. To address thisissue, techniques such
as co-abundance network inference can be used to more accurately
infer relationships between the components.

Before co-occurrence analysis, the genus labeled ‘unknown’ was
excluded. SparCC****was used to calculate the co-occurrences between
the 137 remaining taxa using centered log-ratio (cIr)-transformed OTU
counts in tumor samples (Python, SparCC3). A total of 500 inference
and 10 exclusioniterations were used to estimate the median correla-
tion of each pairwise. The statistical significance of the correlations was
calculated using abootstrapping procedure to generate 500 simulated
data®. For each component pair, pseudo P values (two-sided) were
assigned as the proportion of simulated bootstrapped datawitha cor-
relation at least as extreme as the one computed for the original data.
Benjamini-Hochberg FDR was used for multiple testing correction.
All the correlations were then sorted using a statistically significant
cutoff (FDR < 0.05) and SparCC correlation coefficient > +0.3. Clusters
among the networks (groups of at least three correlated genera using
the cutoffs specified above) were defined via a fast greedy clustering
algorithm. All co-occurrence networks were made using the R pack-
age ‘NetCoMI (v.1.1.0) - Network Construction and Comparison for
Microbiome Data’®* and visualized using Cytoscape (v.3.9.1).

Within each cluster, the total relative abundance was calculated
by summing up the relative abundance values for genera that posi-
tively correlated with each other. For each of the identified clusters,
survival analysis was performed by binarizing each sample into high
and low abundance based on the median total relative abundance of
each cluster.

MBR model development, training set. We first normalized the genus
abundance matrix by converting each genus columninto a z score
using mean and s.d. and treating the normalized abundance matrix
asthe training set. We built a relaxed multivariable elastic-net OS Cox
regression model using the glmnet R package (v.4.1.4) on the train-
ing set. The optimal hyper parameters (y and A) for the best model
were identified through fivefold cross-validation via a grid-search
technique using the ‘cv.glmnet’ function. We used the concordance
index as a performance metric. The parameters for which the mean

cross-validation concordance index was the highest were selected as
optimal hyper parameters. Next, the final model was built using these
hyper parameters onthe complete training set. To calculate risk scores
in the training dataset (MBR scores), we passed the training set and
best model to the ‘predict’ function. A total of 41 features (genera)
were present in the best model with nonzero coefficients; we refer to
these features as the ‘MBR classifier’, which represents the final model.
A positive or negative coefficient of each genus of the MBR classifier
can be binarized into ‘high-risk’ and ‘low-risk’ groups using the cutoff
threshold of O and attributed to the strength of association with sur-
vival. A higher positive coefficient means high hazard risk of death,
whereas a negative coefficient corresponds to lower risk of death.

MBR model validation, testing sets. We validated the final model on
two datasets. Both datasets consist of samples that were not used for
modeltraining (unseendata). Oneis anindependentinternal ICAM42)
dataset, referred to as testing cohort 1 and the other is an external
cohort (TCGA-COAD), referred to as testing cohort 2. The ICAM42
consists of 42 samples and TCGA-COAD consists of 117 samples. We
processed the two datasets to convert the abundance values for each
genus into zscores using the mean and s.d. derived from the training
set. These abundance matrices were passed to the ‘predict’ function
along with the best model to estimate corresponding risk scores. The
risk score (MBR score) of any tested sample is only dependent on the
relative abundance of the list of genera that overlap with the ones
included in the MBR classifier (the risk score for each sample is not
dependent on one of the other samples). Finally, the MBR scores are
binarized using the cutoffthreshold O to categorize the test sampleinto
‘high-risk’ (>0) and ‘low-risk’ (<0) groups as performed in the training
set. Therefore, no cutoff optimization occurred in the validation phase.

MBR model performance assessment. We tested the concordance
index (1) inthe training set using the final MBR model; (2) in the training
set using the cross-validation of the best MBR model (five permuta-
tions, 80% training and 20% validation partition); and (3) in each test
set cohort separately (ICAM42 and TCGA-COAD) and in the full test
set (ICAM42 and TCGA-COAD combined) using the final MBR model.

Taxa used for the MBR score calculation in other cohorts. To calcu-
late the MBR score in each additional dataset we used taxa that over-
lapped with the 41 genera of the MBR classifier, which was developed
using 16S rRNA gene sequencing on tumor samples.

Therewere 16 of 41 taxain the TCGA-COAD (WGS data) and 18 of 41
taxainthe AC-ICAM WGS data (tumor sample) mainmatrices. All the 41
taxawere availableinthe ICAM42 cohort (tumor samples) and the MBR
score for AC-ICAM healthy colon tissue samples was based on36 genera
that passed the applied genus-levelfiltering for healthy tissue (the list of
the taxa used for each platformis available in Supplementary Table 11).

The Silva classifier used for genus attribution in the 16S rRNA
gene-sequencing data includes ‘Ruminococcus I’ and ‘Ruminococ-
cus 2, whereas WGS-WES TCGA data only include ‘Ruminococcus’ as
genus-level taxa. Therefore, for matching purposes, when calculat-
ing the risk score, we replaced the labeling of ‘Ruminococcus I' and
‘Ruminococcus 2’ with ‘Ruminococcus’. In WGS AC-ICAM ‘R. bromii’
was used instead.

R.bromii validation analysis. We characterized the specific species
underlying the reads supporting the Ruminococcus 2 taxon from 16S
sequencing data. Previously, a high degree of sequence similarity was
reported between the Ruminococcus 2 taxa from the Silva classifier
and the species R. bromii®. The subset of samples that had both 16S
sequencing and WGS data available was used to calculate the Spear-
man correlation between each Ruminococcus species (from WGS data)
and the 16S Ruminococcus 2 (16S) relative abundance. In addition, the
proportion of WGS reads that mapped to each specific Ruminococcus
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species was calculated as fraction of all WGS reads that were assigned
to the Ruminococcus genus.

To confirmthe presence of R. bromii, we performed a PCR specific
to R. bromii on the 126 AC-ICAM tumor samples for which sufficient
DNA was still available (see section R. bromii PCR for technical details
on PCR). The concordance between detection of R. bromiiin PCR and
16S Ruminococcus2was defined as the percentage of samples for which
bothmethods hadidentical results. The discordant cases were further
examined by evaluation of WGS results. Furthermore, the concordance
betweendetection of R. bromiiin PCRand R. bromiiin WGS was assessed
inthe 86 samples for which data from both methods were available.

mlICRoScore development. In view of the individual contribution of
analytes extrapolated by individual platforms such as the ICR (RNA-seq
data), the GIE (WES data) and the MBR scores (16S data) and TCR clonal-
ity (immunoSEQ and MiXCR) we sought to develop amulti-omics param-
eter that could capture asubgroup of patients with exceptional survival.

Each parameter that was significantin the univariate Cox regression
analysis (ICR, as ordinal variable, low, medium, high; GIE as binary vari-
able, non-GIE versus GIE; and MBR score, as binary variable, low versus
high), was assessed withinamultivariable Cox regression model adjusted
forage (as continuous variable), CMS subtypes (as categorical variable,
CMS1-CMS3, versus CMS4), stage (as ordinal variable, I, 1, Illand IV) and
MSI status (as binary variable, MSS versus MSI-H). The parameters that
were retained by the multivariable Cox models were combined into an
integrated score. For univariate analysis we used RNA-seq, WESand TCR
clonality data from the entire AC-ICAM cohort and MBR score derived
from 16S rRNA gene-sequencing data of the AC-ICAM246 cohort.

The mICRoScore reflects the co-presence of ICR high and MBR
low risk, defined as mICRoScore high. On the AC-ICAM246 (training
set), all samples with MBR-high risk and/or in ICR-medium or ICR-low
group are defined as mICRoScore low. The survival between patients
with mICRoScore high and mICRoScore low was compared using Cox
proportional hazard regression analysis and alog-rank test.

mICRoScore validation. We used data from TCGA-COAD as external
validation cohort to test the mICRoScore (testing set). The TCGA-COAD
cohort includes 107 patients with both tumor microbiome data (down-
loaded from Dohlmanetal.”°) and RNA-seqdataavailable (used for ICR esti-
mation).ICRassignments from this cohort (see section TCGA data) were
combined with the MBR classification to classify patients asmICRoScore
highand mICRoScorelow. The survival between patients with mICRoScore
high and mICRoScore low was compared using alog-rank test.

Sample ssize considerations

Sample size calculation is challenging in multi-omics studies due to
the multitude of parameters that could be examined (implying the
use of different tests from different platforms generating data with
different datadistribution) and empirical methods have been used by
many consortia. Correlation between ICR and survival was declared as
aprimary objective inthe research proposal submitted to the funding
agency before any genomic data were generated, representing there-
fore a prospective-retrospective validation (JSREP07-010-3-005).

In the submitted proposal (2015), we planned to profile 400
tumors for gene expression analysis (samples from 456 patients were
screened, samples from 391 patients were available for processing
and samples from 348 patients retained after QC in the final cohort,
see Extended DataFig.1) and atleast 100 tumor-normal pairs for WES
analysis (initially planned only for a subgroup of ICR-high versus -low
tumors) and 100 for TCR sequencing using the immunoSEQ assay
considering the highamount of DNA thatis necessary (>2 pug). Securing
additional funds allowed us to perform WGS and 16S rRNA sequencing
andto expand the WES and TCR analyses to any sample with sufficient
DNA available. No specific power calculation was performed at that
time and the targeted sample size was based on the estimated number

of samples that could be retrieved from LUMC (n = 400), which com-
pared favorably with the sample size of similar studies in the field.

Regarding detection of somatic mutations and considering the
overall somatic mutations frequency in colon cancer, 150 tumor
exomes will give a power >90% to detect a 10% mutational frequency
in 90% of genes®.

Regarding survival analysis, in terms of ICR (the primary objective
inthe submitted proposal), for the comparison between ICR high ver-
sus ICR low, with77 OS events detected, our study has a power >80% for
anHR of 0.5with atwo-sided a of 0.05. With 154 OS eventsin the whole
cohort, our study has a power of 90% for an HR of 0.59 (assuming two
group of equal size ¢) and a power of 90% for an HR of 0.57 (assuming
groups with unequal sample size, 2:1) with atwo-sided a of 0.05.

Calculations

TCR clonality calculation by immunoSEQ assay data (targeted
DNA). Entropy (H) is calculated by a standard Shannon entropy calcula-
tionwithlogbase 2. Clonality is the inverse of the normalized entropy
calculation. The equations are below:

Shannon entropy : H(x)=—XP(x)log, [P(X)]
Specifically, for our data:
For aproductive (inframe) sequencex,

P(x) = sequence count/total productive count

Entropy =
-1 x the sum over all unique productive (inframe) sequences of
( (sequence count/total productive count)

xlog, (sequence count/total productive count) )

Normalized entropy =

entropy/log, (productive unique inframe sequences)

Clonality = 1 — normalized entropy

TCR clonality calculation on bulk RNA-seq data (MiXCR). Entropy
(H) is calculated by a standard Shannon entropy calculation with log
base 2. The equations are below:

Shannon entropy H (x)= —XP(x)log, (P(x))

Forasequencex,

P(x) = sequence count/total count

The Shannon entropy was normalized so that it canassume a value
between 0 and 1. The normalized Shannon entropy is referred to as
Pielou’s evenness and is calculated as below:

Pielou’s evenness : J = H/log (S)
where Sis the number of unique TCR/CDR3 sequences.

Clonality is calculated as the inverse of the normalized entropy
(/) calculation:

Clonality = 1/
Genetic immunoediting value. The GIE value is calculated by taking

the ratio between the observed (O) versus the expected (E) number
of neoantigens:
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GIE value = O/E

inwhich E is a function of the number of nonsynonymous muta-
tionsin that specific sample (x):

E(x)=—-2.38770 + 0.09171 x x

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

BAM files for RNA and WES data, along with FastQ files for 16S rDNA
sequencing and non-aligned WGS reads are available through con-
trolled access at dbGaP (phs002978.v1.p1) and public access SRA
(PRJNA941834; 16S and WGS). Names of the raw data files contain
barcodes with a fixed structure as follows:

Example barcode: SER-SILU-CC-PO001-PT-01-A-01

-Study category: SER (Sidra Extrant Research)

-Study: SILU (Sidra-LUMC)

-Cancer type: CC (Colon Cancer)

-Patient ID: POOO1 (P for patient followed by four-digit number)
-Sample: PT (primary tumor), AN (adjacent normal)

-Portion: 01,02, 03 (in case of multiple PT from same patient)

-Assay + pipeline: A-01: RNA-seq, GRCh38 (used for gene expression)
A-02: RNA-seq, GRCh37 (used for MiXCR and neoantigen prediction)
B-02: WES, GRCh37

C-01: TCRSeq, Adaptive pipeline

D-01:16S rRNA gene sequencing

D-02: WGS unaligned nonhost reads

Source datafor all main figures, Extended Data Figs.1-10 and Supple-
mentary Figs. 1-12 are available as Supplementary Data. The Supple-
mentary Data workbook includes per-sample metrics from RNA-seq,
WES, TCR immunoSEQ and microbiome profiling. A complete list of
Source Data is available on sheet 1 of the Supplementary Data work-
book, followed by source data figure location in sheet 2.

A secondary repository for Supplementary Data is available via Fig-
Share (https://doi.org/10.6084/m9.figshare.16944775)%, including
large files such as the MAF files for WES, segmentation file for the analy-
sis of copy-number genomic aberrations, the 165 OTU tables. FigShare
will be also updated with metrics that will be generated in the future.
Processed data and clinical data are also available via cBioportal for
interactive data exploration (Sidra-LUMC AC-ICAM dataset; https://
www.cbioportal.org/).

Accessto SRA, cBioportal and FigShare is unrestricted andimmediate,
controlled access through dbGAP is managed by the National Institutes
of Health/National Cancer Institute data access committee through
the dbGAP portal. An estimation of the required time to obtain access
to the data and detailed statistics on the outcome and timeline of the
data access request can be found at https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/DataUseSummary.cgi. Source dataare provided
with this paper.

Code availability

Scripts and command lines used to analyze the sequencing and
genomic data are available at GitHub AC-ICAM-NM, including the
script used for the development of the MBR model and calculation of
the MBRrisk score (https://doi.org/10.5281/zenodo.7766220).
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Extended Data Fig. 1| Study design for comprehensive genomic profiling

of colon cancer. AC-ICAM study design. a, Visual representation of exclusion
criteriaand number of excluded samples from the 456 available samples in the
LUMC biobank, followed by overview of tissue processing and genomic profiling
of fresh-frozen tumor and matched normal colon tissue samples. Samples of a
total of 348 colon cancer patients were included in AC-ICAM. Number of profiled
samples and technical specifications are indicated for each platform, including
RNA Sequencing (RNA-Seq), Whole-Exome Sequencing (WES), TCR sequencing
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of colon cancer cohort (n =348). Number in pie chart indicates number of
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Extended Data Fig. 5| Mutation calling and associations between ICR and
somatic alterations. a, The mean target coverage in tumor and normal colon
tissue. Center line, box limits and whiskers represent the median, interquartile
range and 1.5x interquartile range respectively. b, Visual representation of

the mutect-strelka2 based mutation calling pipeline, indicating at each step
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with the highest correlation with ICR score according to fitting of abinomial
linear regression model using all samples as input. d, Oncoprint of genes with
the highest correlation with ICR score according to fitting of binomial linear

regression models using either hypermutated or non-hypermutated samples.
All genes with Pvalue <0.05 as predictor variable in the regression model are
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Extended Data Fig. 6 | Immunoediting score and survival analysis. a, Kaplan-
Meier curves for OS for patients with a tumor with High (>12/Mb) versus Low
(<12/Mb) TMB. b, Same as a, but only including ICR Medium. ¢, Kaplan-Meier
curves for OS by GIE status. d, Same as ¢ in ICR Medium patients. Overall Pvalue
is calculated by log-rank test and P value corresponding to HR is calculated using
cox proportional hazard regression (a-d). e, Stacked bar charts of mutational
load category (top) and MSl status (bottom) per IES. f, Kaplan-Meier curves for
OS (left) and PFS (right) stratified by AJCC pathological stage (1, I1, 1) within IES4.
Stratification was not performed for stage IV due to the limited number (n = 2).
g, Stacked bar chart of distribution of AJCC Pathological Tumor Stage by IES. h,
Multivariate cox proportional hazards model for OS including IES (ordinal, IESI,
1ES2, IES3, IES4) and AJCC Pathological Tumor Stage (ordinal, Stage I, 11, 111, IV).
Pvalues corresponding to HR calculated by cox proportional hazard regression

analysis are indicated. i, Violin plot represents TCR clonality as determined by
MiXCRinICR Medium samples. Center line, box limits, and whiskers represent
the median, interquartile range and 1.5x interquartile range respectively.
Pvalue calculated by unpaired, two-sided t-test. j, Results of the multiple linear
regression model showing the respective contributions of productive TCR
clonality (X;) and (X,) for prediction of IES (Y). Corresponding significance of the
effects areindicated in the scatter-plots (left). k, Local Polynomial Regression
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Extended Data Fig. 7| Microbiome in tumor and normal tissue. a, Paired
box-plot for microbial genera that were most significantly enriched in tumors
compared to matched normal, and vice versa. Tumor and normal pairs are
connected, red lines reflect pairs with anincreased proportion in the tumor,
while blue lines reflect adecreased proportion in the tumor compared to
matched normal. Center line, box limits, and whiskers represent the median,
interquartile range and 1.5x interquartile range respectively. b, Distinct alpha
diversity matrices (InvSimpson, Chaol, Observed and Shannon) between tumor
and normal colon tissue, Pvalues were calculated using paired Mann-Whitney
U-test (upper). Alpha diversity between ICR High, ICR Medium, and ICR Low,
innormal (N) and tumor (T) tissues (lower), P values were calculated using an

unpaired Mann-Whitney U-test. Center line, box limits, and whiskers represent
the median, interquartile range and 1.5x interquartile range respectively.

¢, Violin plots of relative abundance of microbial genera stratified by ICR cluster
(top two most significantly enriched in ICR High, and top three in ICR Low).
Center line, box limits, and whiskers represent the median, interquartile range
and 1.5x interquartile range respectively. ICR High, n = 59; ICR Medium, n =128;
ICR Low, n=59.d, Number of genera significantly associated with OS and PFS
using either the tumor or normal tissue. All Pvalues are two-sided. n reflects the
independent number of samples in all panels. Overall Survival (OS). Progression-
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Extended DataFig. 8 | Relation between relative abundance of Fusobacterium
and tumor characteristics in AC-ICAM. Relative abundance of Fusobacterium
(derived from 16 S rRNA gene sequencing) a-g, and Fusobacterium nucleatum
(derived from WGS) h-min relation with tumor characteristic and the

tumor microenvironmentin AC-ICAM. a, Box-plot for relative abundance of
Fusobacteriumin tumor samples by ICR cluster. Spearman correlation statistics
and corresponding Pvalueisindicated. b, Box-plots for relative abundance

of Fusobacteriumin tumor samples by anatomical location. ¢, Spearman
correlation between the relative abundance of Fusobacteriumin tumor samples
as determined by 16 SrRNA gene sequencing and immune gene signatures

d, Relative abundance of Fusobacterium in tumor samples by MSl status,
hypermutation status, CMS (CMS1vs the rest, unpaired t-test, P= 0.021), and

by pathological stage, Pvalues are calculated using unpaired t-test. e, Relative
abundance of Fusobacterium in tumor samples by BRAF mutation status. Green
box is not mutated, pink box with nonsynonymous mutation. f, Kaplan-Meier

curves corresponding to patients with tumor samples with a relative abundance
of Fusobacterium above the median compared to those below the median. Overall
Pvalueis calculated by log-rank test. Vertical lines indicate censor points. g, T cell
enrichment score (ssGSEA using Bindea et al, T cell signature) in tumor samples
with absence of Fusobacterium (negative) or presence (positive) (left). Stacked
bar chart of distribution of T cell quartiles by Fusobacterium categories (negative,
low, high) (right). h, Same as a, but for Fusobacterium nucleatum as determined

by metagenomic analysis of WGS. i, Same as b, but for Fusobacterium nucleatum.
Jj.Sameas ¢, but for Fusobacterium nucleatum.k, Same as d, but for Fusobacterium
nucleatum.l, Same as e, but for Fusobacterium nucleatum. m, Same as f, but for
Fusobacterium nucleatum.n, Same as g, but for Fusobacterium nucleatum.

All Pvalues are two-sided; n reflects the independent number of samplesin all
panels. Overall Survival (OS). Progression-Free Survival (PFS). For all box-plots:
Center line, box limits, and whiskers represent the median, interquartile range and
1.5xinterquartile range respectively.

Nature Medicine


http://www.nature.com/naturemedicine

https://doi.org/10.1038/s41591-023-02324-5

Resource
a c4 b -
c1
SparCC correlation > 10.3! Q cs © Enriched in ICR High
FDR < 0.05 \e) © Enriched in ICR Low
c2 (FDR <0.1)
Cc1 N
Tumor samples

AC-ICAM246 (n=246)

© Enriched in Tumor
C2 o Enriched in Normal
\ (FDR <0.1)

© MBR High risk
(MBR score > 0)

c2 © MBR Low risk
(MBR score < 0)

Positive correlation Negative correlation

n =246

s P FDR HR Prs P FDR HR
®ct 018 022 0.76 ecCt —_— 021 021 074
c2 — 014 022 074 c2 —_— 0.059 0.15 0.63
c3 — 082 082 096 c3 ———— 0097 016 15
c4 —_— 01 022 072 c4 —_— 0.026 0.13 0.58
Cs —— 0017 0085 1.6 c5 ——— 019 021 14

| R E—— | I I R —

020 050 1.0 20 020 050 1.0 20

HR (95% Cl)
— —>
High abundance associated Low abundance associated
with improved survival with improved survival

HR (95% ClI)
— —
High abundance associated Low abundance associated
with improved survival with improved survival

d n=246 0s PFS

P FDR HR P FDR HR
Observed — 0.00082 0.00163 0.49 Observed —— 0.15 0.181 0.7
Chaot — 0.00032 0.00129 0.47 Chao — 0.1  0.181 067
Shannon — 0.048 0.0482 0.67 Shannon —— 0.18  0.181 0.72
InvSimpson — 0.014 0.019 0.61 InvSimpson — 0.067 0.181 0.64

020 050 1015 020 050 1.015

HR (95% CI) HR (95% Cl)

«— —

High alpha diversity associated Low alpha diversity associated
with improved survival with improved survival

of therelative abundance of each genus (High vs low based on median) in each
clusterin AC-ICAM246.d, Association between OS and PFS and distinct alpha
diversity metrics (High vs low based on median) of the tumor microbiome in
AC-ICAM246.HR (center), corresponding 95% confidence intervals (error bars)
and corresponding Pvalues are calculated by cox proportional hazard regression
(c-d). All Pvalues are two-sided; nreflects the independent number of samples in
all panels. Overall Survival (OS). Progression-Free Survival (PFS).

— —>
High alpha diversity associated Low alpha diversity associated
with improved survival with improved survival

Extended Data Fig. 9| Co-occurrence network of microbial taxaand
associations of identified clusters with biological and clinical parameters.
a, SparCC co-occurrence network using centered log-ratio transformed OTUs in
the AC-ICAM246 tumor samples. b, Overlay of network taxa with taxa enriched
inICR High or Low group (left panel), with taxa enriched in tumor vs normal
colon samples (middle panel), and when present in the MBR classifier, either as
low or high risk (right panel). ¢, Association between OS and PFS and the sum
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Extended Data Fig. 10 | Technical validation of microbiome data, MBR and
mICRoScore assessment, and correlation of MBR taxa with immune traits. a,
16 SrRNA gene sequencing versus WGS relative abundance of Ruminococcus 2.
Spearman correlationand Pvalue are indicated. The gray band reflects the 95%
confidence interval for predictions of the linear regression model between

the plotted variables. b, PCR gelimages of 126 DNA samples amplified for

R. bromii. ¢, Concordance between R. bromii PCR and detection of Ruminococcus
2by 16 S rRNA gene sequencing or of R. bromii by WGS (positivity was defined
asarelative abundance > 0).d, Concordance index of optimal multivariate cox
regression model per dataset. The cross-validation performance highlights

the mean concordance of 10-different folds with the optimal hyper parameters
(gamma and lambda) that is, the same parameters as the optimal model. e, Forest
plot with HR (center), corresponding 95% confidence intervals (error bars), and
Pvalue calculated by cox proportional hazard regression analysis for OS, using:
1) the16 SMBR score in AC-ICAM, 2) WGS R. bromii abundance 3) PCR-based R.

bromii abundance, 4) 16 S Ruminococcus 2 relative abundance and 5) MBR score
calculated using WGS data. f, Heat map of Spearman correlation between the
relative abundance of the MBR classifier taxa in tumor samples and immune
traits. Only correlations with an FDR > O.1are visualized. An additional row is
added for Ruminococcus 2 showing all correlations, unfiltered for FDR. * The
taxonomical orderisindicated between brackets, as family was unassigned.

g, Kaplan-Meier curve for PFS in AC-ICAM, with all patients stratified by
mICRoScore High vs Low. HR and P value are calculated using cox proportional
regression. h, AJCC pathological stage within the mICRoScore High group in
AC-ICAM and within TCGA-COAD i, Kaplan-Meier curve for PFS in AC-ICAM, with
all patients with ICR High stratified by mICRoScore. Overall Pvalue is calculated
by log-rank test and Pvalue corresponding to HR is calculated using cox
proportional hazard regression. Overall Survival (OS), Progression-Free Survival
(PFS). All Pvalues are two-sided; n reflects the independent number of samples
inall panels.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
For AC-ICAM, clinical data was collected in excel from LUMC medical records. All samples were processed in the current study and all obtained
(omics-) data is shared within the current resource manuscript (see data availability statement).
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Data analysis Tools for (pre-)processing of sequencing data included: FastQC (v.0.11.2), Flexbar (v3.0.3), Hisat2 (v2.1.0), SAMtools (v.1.3), (Bowtie2,
v.2.3.4.2), subreads (v1.5.1), BWA (v.0.7.12),Bcl2fastg2 (v2.20), Trimadap (v.0.1.3), Mutect (v.1.1.7), Strelka2 (bcbio-nextgen v1.1.1),
VCFtoMAF (v.1.6.16), ConPair (Bergmann et al. 2016), RepeatFinder (Volfovsky et al. 2001), MANTIS (Kautto et al, 2017), OptiType (bcbio-
nextgen v1.1.5), pVACtools (Hundel et al, 2020), MiXCR (v3.0.13), MetaPhlAn2. Downstream analyses were performed using R (v.3.5.1, or
later). Transcriptome data analyses using R packages: EDASeq (v.2.12.0), preprocessCore (v.1.36.0), ConsensusClusterPlus (v.1.42.0),
CMSclassifier (v.1.0), Rtsne (v.0.15), ConsensusTME (v.0.0.1.9), ESTIMATE (v.1.0.13), GSVA (v.1.38.2). Survival analysis using R package:
survival (v.2.41-3), survminer (v.0.4.9), forestplot (v.1.7.2 & v2.0.1). WES data analysis using: R package maftools (v2.6.05), IGV (v2.11.0).
Microbiome analysis was performed using: R package Phyloseq (v.1.34.0), R package vegan (v.2.5-6), python package SparCC3 (based on
python3), R package NetCoMI (1.1.0), and visualized using Cytoscape (v3.9.1). Machine learning models were trained and tested using the R
packages: glmnet (v4.1.4), doParallel (v1.0.17) to build glmnet models in parallel, factoextra (v1.0.7) and pracma (v2.3.8) for making PCA plots,
survivalAnalysis (v0.3.0) for survival analysis, ggfortify (v0.4.14) for plotting results of ML models. Specific for TCGA data analysis:
TCGAmutations (v 0.3.0), TCGAbiolinks (v2.18.0). Additional packages used for data formatting/manipulation included the following: stringr
(v1.4.1), dplyr (v1.0.8), purrr (v0.3.4), data.table (1.14.2). R packages used for plotting and associated statistical analyses included: circlize
(v.0.4.8), ComplexHeatmap (v.2.1.2), ggplot2 (v.3.3.2), ggpubr (v.0.4.0). and Ingenuity Pathway Analysis (IPA) software was used for core
network analysis and visualization of the Global Molecular Network correlated with immunoSEQ productive TCR clonality. Analysis scripts and
custom code can be found on the zenodo github release (DOI:10.5281/zenodo.7766220)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Datasets used: Raw counts from RNASeq from TCGA were downloaded and processed using R package Biolinks (v.2.18.0). Somatic mutation calls from the TCGA
MC3 Project were downloaded using R package TCGAmutations (v 0.3.0) using the function tcga_load() with parameters “COAD” for study and “MC3” for source.
The microbiome genus relative abundance matrix for TCGA-COAD cohort (125 tumor samples) was downloaded from TCMA: The Cancer Microbiome Atlas (https://
tcma.pratt.duke.edu). TCGA-COAD relative abundance matrix was filtered to exclude duplicated samples (samples from vial B, 8 samples).

Data Availability

BAM files for RNA and Whole Exome Sequencing data along with FastQ files for 16S rDNA sequencing and non-aligned WGS reads are made available through
controlled access at dbGaP (phs002978.v1.p1) and public access SRA (PRINA941834 (16S) & SUB12936752 (WGS)) . Names of the raw data files contain barcodes
with a fixed structure:

-Study category: SER (Sidra Extrant Research)
-Study: SILU (Sidra-LUMC)
-Cancer type: CC (Colon Cancer)
-Patient ID:  POO1 (P for patient followed by 4-digit number)
-Sample: PT (primary tumor), AN (adjacent normal)
-Portion: 01, 02, 03 (in case of multiple PT from same patient)
-Assay + pipeline: A-01: RNASeq, GRCh38 (used for gene expression)
A-02: RNASeq, GRCh37 (used for MiXCR and neoantigen prediction)
B-02: WES, GRCh37
C-01: TCRSeq, Adaptive pipeline
D-01: 16S rRNA gene sequencing
D-02: WGS unaligned nonhost reads

Source Data for all main Figures, Extended Data Figures and Supplementary Figures 1-12 are available as “Supplementary Data”. The “Supplementary Data”
workbook includes per sample metrics from RNASeq, WES, TCR immunoSEQ, and microbiome profiling. A complete list of all the Source Data is available on Sheet 1
of the “Supplementary Data” workbook, followed by a Source Data Figure Location in Sheet 2.

A secondary repository for Supplementary Data is available via FigShare (DOI:10.6084/m39.figshare.16944775), including large files such as the Mutation Annotation
Format (MAF) files for WES, segmentation file for the analysis of copy number genomic aberrations, the 16S Operational Taxonomic Unit (OTU) tables. FigShare will
be also updated with metrics that will be generated in the future.

All processed data and clinical data are also available via cBioportal for interactive data exploration.

Access to SRA, cBioportal and Figshare is unrestricted and immediate, controlled access through dbGAP is managed by the NIH/NCI data access committee (DAC)
through the dbGAP portal. For estimation of the required time to obtain access to the data, detailed statistics on the outcome and timeline of the data access
request can be found here.
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Self-reported sex was not considered in the study design. The proportion of male and female (self-reported sex) is included in

Supplementary Table 1 and Extended Data Figure 1. No sex-related analysis was performed as the identification of sex-
specific immune/microbiome modulation was outside the scope of the present work.

Population characteristics Extensive clinico-pathological and survival data of all 348 patients that were included in AC-ICAM are available

Recruitment

Ethics oversight

(Supplementary Source Data). A summary of the population characteristics of is presented in Supplementary Table 1 and
Supplementary Figure S3. These included age (range: 25-91 years; mean = 68 years, median= 69 years), self-reported sex (n =
182 males, n = 166 females), tumor stage (n = 55 Stage |, n = 122 Stage Il, n = 110 Stage Ill, n = 61 Stage V), tumor anatomic
location (n = 183 right-sided colon, n = 165 left-sided colon), adjuvant treatment (n = 238 without treatment, n = 110 with
adjuvant treatment), and history of cancer (n = 260 without history of cancer, n = 85 with history of cancer), among others.

Samples used in this research (tumor tissue and matched normal colon tissue, AC-ICAM cohort) are from colon cancer
patients diagnosed at Leiden University Medical Center from 2001 to 2015 that did not object for future use of human tissues
for scientific research and that were consented on biospecimen protocol “Immunology and Genetic of colon Cancer”
approved by the Committee on Medical Ethics of Leiden University Medical Center (study protocol n. P00.193 (06/2001).

Samples used in this observational cohort study (tumor tissue and matched normal colon tissue, AC-ICAM cohort) are from
colon cancer patients diagnosed at Leiden University Medical Center, the Netherlands, from 2001 to 2015 that did not object
for future use of human tissues for scientific research and that were consented on biospecimen protocol “Immunology and
Genetic of colon Cancer” approved by the Committee on Medical Ethics of Leiden University Medical Center (study protocol
n. P00.193 (06/2001)). DNA and RNA from those samples were extracted at Leiden University Medical Center and then
transferred to Sidra Medicine for sequencing together with de-identified clinico-pathological data of the corresponding
patients (Sidra Medicine IRB study protocols n. 1768087-1 (04/2016) / 1602002725 (06/2022)). All genomic assays (i.e., WES,
WGS, 16S RNA gene sequencing, RNA-seq, TCR sequencing, and PCR were performed at Sidra Medicine, Doha, Qatar).

Patient information was de-identified and patient samples were anonymized and handled according to the medical guidelines
described in the Code of Conduct for Proper Secondary Use of Human Tissue of The Federation of Dutch Medical Scientific
Societies. This research was performed according to the recommendations outlined in the Helsinki Declaration.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size

Sample size calculation is challenging in multi-omics studies due to the multitude of parameters that could be examined (implying the use of
different tests from different platforms generating data with different data distribution) and empirical methods have been used by many
consortia. Correlation between ICR and survival was declared as primary objective in the research proposal submitted to the funding agency
before any genomic data was generated, representing therefore a prospective-retrospective validation (JSREPO7-010-3-005).

In the submitted proposal (2015), we planned to profile 400 tumors for gene expression analysis (samples from 456 patients were screened,
samples from 391 patients were available for processing and samples from 348 patients retained after QC in the final cohort, see Extended
Data Fig. 1), and at least 100 tumor-normal pairs for WES analysis (initially planned only for a subgroup of ICR high vs Low tumors), and 100
TCR sequencing using immunoSEQ assay considering the high amount of DNA that is necessary (> 2ug). Securing of additional funds allowed
us to perform WGS and 16S rRNA sequencing, and to expand the WES and TCR analyses to any sample with sufficient DNA available. No
specific power calculation was performed at that time and the targeted sample size was based on the estimated number of samples that
could be retrieved from LUMC (n = 400), which compared favorably with the sample size of similar studies in the field. For instance the TCGA
Colon and Rectal Cancer dataset available at that time had 276 patients (The Cancer Genome Atlas Network, Comprehensive molecular
characterization of human colon and rectal cancer, Nature, volume 487, pages330-337 (2012)).

Regarding the detection of somatic mutations, and considering the overall somatic mutations frequency in colon cancer, 150 tumor exomes
will give a power >90% to detect a 10% mutational frequency in 90% of genes. (Spratt, D. E. et al. Racial/Ethnic Disparities in Genomic
Sequencing. JAMA Oncol. 2, 1070-1074 (2016))

Regarding the survival analysis, in terms of ICR (primary objective in the submitted proposal), for the comparison between ICR High vs ICR
Low, with 77 OS events detected, our study has a power > 80% for an HR of 0.5 with a two-sided a of 0.05. With 154 OS events in the whole
cohort, our study has a power of 90% for an HR of 0.59 (assuming two group of equal size ¢), and a power of 90% for an HR of 0.57 (assuming
groups with unequal sample size, 2:1) with a two-sided a of 0.05.
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Data exclusions  The initial patient cohort for which samples were screened consisted of 456 patients. Specimen requirements included that the corresponding
tumor anatomic site should be colon, the collected specimen included malignant tissue of the primary tumor, and the primary tumor is of
epithelial origin. This resulted in the exclusion of 22 patients for which tumor anatomic site was not colon (i.e., rectum, jejunum, ilieum), 17
patients for which collected tissues were non-malignant (including carcinoma in-situ), 11 patients for which collected tissues were relapses or
metastases of the primary tumor and 7 patients with a primary tumor of non-epithelial origin. Patients that received radiotherapy and/or
chemotherapy prior to resection (n = 8). These exclusion criteria led to a total of primary colon tumors from 391 patients for sample
processing. For thirty of these patients, insufficient material was available for DNA and RNA isolation. Sequencing was performed on 361
primary tumor samples. Following stringent quality control criteria, sequencing data of 13 patients were removed, which left a total of 348
patients in the AC-ICAM cohort. An overview of sample exclusions is presented in Extended Data Fig. 1.

Replication The immunoSEQ assay, a dedicated assay for deep sequencing of the TRB gene, was applied to 114 tumors and 9 normal colon tissues. As
second method, TCRB gene sequence information was also extracted from bulk RNA sequencing using the software MiXCR from data of 341
tumor samples. For samples that were profiled by both methodologies, TCR clonality derived from the immunoSEQ assay was correlated to
the TCRB clonality derived from MiXCR using the Pearson correlation test (Fig. 2b).

The relationships between ICR and CMS depicted in Fig. 1 were confirmed in the TCGA colon cancer cohort (TCGA-COAD, Supplementary Fig.
2). Overall, in TCGA-COAD, the survival differences were attenuated (in the PFS analysis) or absent (in the OS analysis) for ICR, immune
infiltrates, and CMS. Nevertheless, ICR still stratified survival in patients with CMS4 cancers (Supplementary Fig. 2, PFS analysis).
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Microbiome genus relative abundance matrix for TCGA-COAD cohort estimated by WGS was downloaded from TCMA: The Cancer
Microbiome Atlas (Dohlman et al). This dataset was used to confirm the presence of microbial genera in colon cancer. After applying the same
abundance filter to AC-ICAM246 and TCGA-COAD datasets, AC-ICAM captured all the genera detected in TCGA-COAD. Furthermore, the co-
abundance patterns of microbial genera were compared between cohorts (Supplementary Fig. 10).

An elastic net OS cox regression model was run on the AC-ICAM246 training set. Mean cross validation of the best model was used for
optimization of hyperparameters using data of the AC-ICAM246 training set only. The resulting MBR classifier and corresponding calculated
scores were strongly associated with survival in the AC-ICAM246 cohort (n = 246). Two independent testing cohorts were used to confirm the
association between MBR and overall survival. These included an independent set of 42 samples of the AC-ICAM cohort (AC-ICAMA42, testing
set) that were reserved for internal validation, and 117 samples of the TCGA-COAD cohort as external dataset (TCGA-COAD, testing set), as
well as the combined testing set (AC-ICAM42 + TCGA-COAD, n = 159). The concordance indexes of the final MBR model in both test sets were
equal to those obtained through cross-validation of the best MBR model in the training set, suggesting a high generalizability of the model to
new data.

The genus with the strongest effect in the MBR classifier was Ruminococcus 2. Using WGS data, we were able to identify the actual
Ruminococcus species and demonstrated that Ruminococcus 2 reads mapped to Ruminococcus bromii (R. bromii). We further validated
these findings with a third technique, R. bromii PCR. R. bromii presence was confirmed by PCR, which had strong correlation with sequencing
data (i.e., 91% concordance between WGS and PCR) (Extended Data Figure 10).

We used data from TCGA-COAD as external validation cohort to test the mICRoScore (testing set). TCGA-COAD cohort includes 107 patients
with both tumor microbiome data and RNASeq data available (used for ICR estimation). The survival between patients with mICRoScore High
and mICRoScore Low was compared using a log-rank test.

Randomization  Thisis an observational cohort study. The study does not involve an intervention, so patients were not randomized. Samples biobanked at
LUMC were used and processed according to sample availability. Initially we decided, for microbiome analysis, to only include patients for
whom there was sufficient material to perform 16S RNA gene sequencing in both tumor and normal colon samples (246 patients, AC-
ICAM246). This analysis was presented in the first version of the submitted manuscript.

During the review process a request was made to expand the number of samples analyzed for microbiome composition. We then analyzed
tumor samples from 42 patients for whom there was no sufficient material from normal colon (ICAM42). Those samples were used to validate
the MBR score that was developed in the 246 samples (AC-ICAM246).

Blinding The study does not involve an intervention and did not compare treatments so there was no blinding.
Sample processing was performed by operators that did not have access to outcome data at that time.
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