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Abstract

Improved Acquisition Methods for Hyperpolarized 13C Magnetic Resonance Imaging

Shuyu Tang

Magnetic resonance imaging with hyperpolarized 13C-labeled compounds via dynamic nu-

clear polarization (DNP) has been used to non-invasively study metabolic processes in vivo.

This method provides a transient signal enhancement of more than 10,000 fold compared

to imaging 13C compounds at thermal equilibrium. However, as soon as the pre-polarized

13C-labeled compound leaves the polarizer, its hyperpolarized state would irreversibly de-

cay to the thermal equilibrium with a decay constant characterized by T1, which is typi-

cally less than one minute. The rapid loss of nonrenewable polarization brings challenges

in hyperpolarized 13C magnetic resonance imaging. This dissertation presents improved

acquisition methods for hyperpolarized 13C imaging with the injection of hyperpolarized

[1-13C]pyruvate, which is the most widely studied substrate to date. The improved acqui-

sition methods include a regional bolus tracking sequence for automatic acquisition timing,

real-time calibration of frequency and RF power for robust acquisitions, metabolite specific

balanced steady state free precession (bSSFP) sequence and metabolite specific fast spin echo

sequence for efficient use of polarization in hyperpolarized [1-13C] imaging. The proposed

acquisition methods have been demonstrated in various clinical applications on a MR 3T

scanner. Bolus tracking and real-time acquisition methods have been used in imaging human

brain, heart, kidney and prostate. Metabolite specific bSSFP sequence has been applied in

imaging human kidney. Metabolite specific fast spin echo sequence has been demonstrated

in imaging human brain.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a non-invasive and non-radioactive medical imaging

modality which can provide a wide range of information, including anatomy, bulk movement,

perfusion, diffusion, and metabolism. Currently, most clinical MRI studies acquire signals of

hydrogen (1H), the most abundant atom in the body. Other atoms such as 13C, 19F , 23Na,

and 31P can also be imaged. 13C is the only stable isotope of carbon that is detectable by

MRI. Since carbon is present in all organic molecules, 13C MRI is capable of detecting a wide

range of chemicals in living organisms. However, the low natural abundance of 13C limits the

sensitivity of 13C MRI. A process called hyperpolarization[2] was used to enhance the MR

signals of 13C-labeled compound in a designated machine termed polarizer. Hyperpolarized

13C MRI refers to imaging the hyperpolarized 13C-labeled compound being injected into the

body and its downstream metabolites. Once leaving a polarizer, hyperpolarized 13C-labeled

compounds lose their nonrenewable signals rapidly and this poses new challenges in MRI

acquisition.

The most widely studied compound to date in hyperpolarized 13C studies is [1-13C]pyruvate

due to its favorable polarization properties and its crucial role in a number of significant

metabolic pathways. Monitoring metabolic changes using [1-13C]pyruvate has been explored

in a number of pathologies, including cancer [8, 38], heart failure [48], inflammatory arthri-

tis[30], traumatic brain injury[18] and diabetes[27]. This dissertation focuses on improving

acquisition methods for hyperpolarized 13C imaging with the injection of hyperpolarized

[1-13C]pyruvate on a clinical MR 3T scanner.
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Chapter 2 introduces the principles of magnetic resonance imaging and outlines the prin-

ciples, challenges and applications of hyperpolarized 13C magnetic resonance imaging.

Chapter 3 describes a regional bolus tracking and real-time frequency/power calibra-

tion methods for hyperpolarized [1-13C]pyruvate imaging. This scheme allows for auto-

matic acquisition timing based on bolus information of a specific region of interest(ROI).

Real-time frequency/power calibration improves the calibration accuracy in hyperpolarized

[1-13C]pyruvate imaging compared to conventional phantom calibration. Accurate power en-

sures accurate flip angle, which is crucial for the use of nonrenewable hyperpolarized signal.

This method was demonstrated in clinical hyperpolarized [1-13C]pyruvate studies of brain,

heart, kidney and prostate.

Chapter 4 and 5 describes multi spin-echo sequences for efficient use of the hyperpolarized

signal by repetitively refocusing transverse spins. Chapter 4 presents a metabolite specific

3D stack-of-spiral balanced steady state free precession (bSSFP) sequence. This sequence

showed a 2.5-fold signal-to-noise ratio (SNR) improvement on lactate imaging compared to

gradient echo sequences as well as improved the spatial coverage compared to Cartesian

bSSFP sequence. As with any bSSFP sequence, this sequence was sensitive to B0 inhomo-

geneity. However, there are some clinical applications such as brain and kidney where B0 is

relatively homogenous and it’s appropriate to use this sequence. Clinical translation of this

sequence was demonstrated on human kidneys.

Chapter 5 presents two metabolite specific fast spin-echo (FSE) sequences. The first

sequence used B1-insensitive adiabatic refocusing pulses. This sequence showed a near 2-fold

SNR improvement over gradient echo sequences but specific absorption rate (SAR) limits the

number of adiabatic pulse used for clinical studies. The second sequence used varied crusher

gradients to eliminate stimulated echo pathways and preserve nonrecoverable hyperpolarized

magnetization. Compared to constant crusher gradients, varied crusher gradients reduced

the signal loss of the longitudinal magnetization. Shinnar-Le Roux (SLR) pulses were used

in this sequence for spin refocusing and thus the refocusing performance was sensitive to

RF power amplitude. Appropriate application of this sequence was to image regions with

homogenous B1, for example, human brain with a birdcage transmit coil, as shown in this

chapter.
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Chapter 2

Background

This chapter provides the background information of magnetic resonance imaging and hy-

perpolarized 13C magnetic resonance imaging.

2.1 Fundamentals of Magnetic Resonance Imaging

Magnetic resonance imaging is a nonradiative imaging modality that allows non-invasively

acquiring anatomical and physiological information of a subject. This section introduces

the basic principles of magnetic resonance imaging from a perspective of classical physics,

although some quantum physics descriptions are included when necessary. More detailed

description of magnetic resonance imaging can be found in many popular textbooks[39, 3].

2.1.1 Magnetization

Spin angular momentum is an intrinsic property of particles, such as nuclei and electrons.

These particles are also referred to as spins. Spin angular momentum gives rise to magnetic

dipole moment which can be imagined as a vector quantity created by a spinning charged

sphere. Magnetic dipole moment is non-zero for nuclei with odd number of protons or/and

neutron, such as 1H and 13C. In the presence of an external magnetic field, spins orient their

magnetic dipole moment parallel (n+)or anti-parallel(n−) to the magnetic field - this process

is called polarization. The n+ population is of lower energy and the tendency to occupy a

3



Figure 2.1: Effect of the external magnetic field on spins. The arrows represent the ori-
entation of magnetic dipole moment of each particle. (a) With no external field, spins are
randomly oriented. (b) Applying the external field B causes spins to align themselves in par-
allel (n+) or anti-parallel(n−) states. The (n+) population has a lower energy. The energy
difference between two population gives rise to a net magnetization, M.

lower energy state results in a population difference, leading to a net magnetization which

we will refer to as the magnetization M (Fig. 2.1). The magnetization would reach an

equilibrium state proportional to gyromagnetic ratio and the external magnetic field while

inversely proportional to the temperature.

2.1.2 Relaxation

When the equilibrium polarization is disturbed, the magnetization returns to it’s equilib-

rium state through a process called relaxation, which consists of transverse and longitudinal

components(Fig. 2.2).

The longitudinal relaxation, also known as the spin-lattice or T1 relaxation, describes the

restoration of the magnetization parallel to the external field. This process is characterized by

the time constant T1, which depends on the rate of energy exchange between the spin and its

surrounding environment such as tissue structure and external field strength. At the higher

external field strength, more energy is required to restore the equilibrium magnetization.

Hence T1 values typically lengthen with increasing external magnetic field.

4



Figure 2.2: The magnetization undergoes relaxation. (b) The longitudinal magnetization
returns to the equilibrium by T1 relaxation. (c) Transverse magnetization decays by T2
relaxation.

The transverse relaxation, also known as the spin-spin or T2 relaxation, describes the

decay of the magnetization in the plane perpendicular to the external field. This process is

characterized by the time constant T2, which is dominated by the interaction between the

magnetic dipole moments of neighboring spins. This interaction, known as dipolar coupling,

results in the loss of phase coherence of the transverse magnetization and manifests as trans-

verse decay. If spins are mobile, as in the liquid, they are free to move and will experience a

range of local magnetic fields created by magnetic dipole moments of surrounding spins. This

averages the effects of dipolar coupling. Hence T2 values typically increase with increasing

mobility of spins. Factors determining T1 also affect T2 relaxation, therefore, T2 is always

smaller than T1.

The effects of T1 and T2 relaxation on the magnetization are quantitatively described in

the next section.

2.1.3 Bloch Equation

The interaction between magnetization M and the magnetic field B is governed by the Bloch

equation:
dM

dt
= M× γB− Mxi +Myj

T2
− (Mz −M0)k

T1
(2.1)

5



where M = [Mx,My,Mz]
T is the magnetization vector, B is the magnetic field vector,

t is time, γ is the gyromagnetic ratio which depends on nucleus, M0 is the equilibrium

magnetization, i, j and k are unit vectors in x,y,z directions respectively, T1 and T2 are

longitudinal and transverse relaxation time constant respectively. The cross-product term

describes the rotation of the magnetization vector about the magnetic field vector. This

rotation process is called precession and the rotation frequency is known as the Larmor

frequency or resonant frequency.

As discussed in the previous sections, T1, T2 and M0 depend on the external magnetic

field B. In magnetic resonance imaging, B consists of three types of magnetic fields: 1)

B0, the main static field; 2) B1, radiofrequency fields which are used for excitation (section

2.1.4); 3) G, gradient fields which are essential for spatial encoding (section 2.1.5). Since the

amplitudes of B1 and G are approximately 1000 times less than that of B0, only the effect

of B0 on T1, T2 and M0 is considered in the Bloch equation. As B0 is constant on a MRI

scanner, T1, T2 and M0 are treated as constants. The direction of M0 and T1 relaxation is

parallel to B0 while that of T2 relaxation is perpendicular to B0.

If only the static magnetic field B0 is present, the longitudinal magnetization Mz is:

Mz(t) = M0 + (Mz(0)−M0)e
− t
T1 (2.2)

And the transverse magnetization Mxy is:

Mxy(t) = Mxy(0)e
− t
T2 (2.3)

2.1.4 RF Excitation and Signal Detection

The equilibrium magnetization M0 aligns with the static magnetic field B0. To detect

the magnetization, another magnetic field B1 is applied to the transverse plane to tip the

magnetization vector away from the B0 direction. This process is known as excitation (Fig.

2.3). The B1 field is generated by a radiofrequency (RF) coil and applied at the Larmor

frequency of the detected spins. The shape and duration of the RF pulse determines its

bandwidth. Spins with resonant frequency falling within this bandwidth will be excited.

In the rotating frame of reference at the Larmor frequency, B1 is static and the magnetiza-

tion is rotating about the B1 vector. In the laboratory frame of reference, the magnetization

6



Figure 2.3: Illustration of RF excitation in the laboratory frame (a) and rotating frame
(b). B1 field is applied at the Larmor frequency of the spins. In the rotating frame, B1

field vector remains stationary, the magnetization vector M is rotating about the B1. The
angle (α) between the magnetization vector before (dashed arrow) and after (solid arrow)
experiencing B1 field is called flip angle. In the laboratory frame, both the B1 vector and
magnetization vector are rotating with the Larmor frequency, and their relative movement
are the same as in the rotating frame.

vector is rotating about the B0 vector and gradually approaching the transverse plane. The

angle between the magnetization vectors before and after applying B1 field is called flip angle

and is determined by the integral of the B1 field.

α =
∫ T

0
γB1(t)dt (2.4)

where T is the duration of the RF pulse.

After excitation, the transverse component of the magnetization vector rotating about

B0 causes a change in magnetic flux and induces an electromotive force (EMF) in an RF

receiver coil oriented to the transverse plane. The received signal is called free induction

decay (FID), which will be processed to reconstruct an MR image. RF coils are used to both

transmit RF pulse for excitation and receive RF signals for image formation.

7



2.1.5 Spatial Encoding

Spatial encoding of the magnetization is achieved with linear magnetic field gradients in

the x, y and z directions. Typical spatial encoding includes slice excitation and acquisition

encoding.

Slice excitation requires simultaneously applying an RF pulse of a band-limited frequency

response and a linear gradient field. The gradient produces a spatially varying resonant

frequency along a direction, and the pulse only excites locations whose frequencies fall within

the spectral passband of the RF pulse.

Acquisition encoding occurs after RF excitation and it requires simultaneously applying

gradient fields and acquiring signals. K-space (k(t)) is proportional to the integral of the

applied gradients (G(t)) over time.

k(t) =
γ

2π

∫ t

0
G(τ)dτ (2.5)

In the rotating frame at the Larmor frequency, the acquired signal (neglecting relaxation) is

s(k) =
∫
r
m(r)e−i2πkr (2.6)

where r is spatial location and m is the transverse magnetization. Taking the Fourier Trans-

form of the acquired signal recovers the magnetization signal in the image space.

Proper image formation depends on the appropriate coverage in k-space. The field of view

(FOV) is the inverse of the spacing of sample points in the k-space, while the spatial resolution

(δ) is the inverse of the k-space coverage. These relationships are direction dependent.

FOV =
1

∆k
(2.7)

δ =
1

n∆k
(2.8)

where n is the number of samples along the direction.

Routes to cover k-space region are referred to as trajectories, which are achieved by

applying appropriate gradients. There are many different trajectories, such as Cartesian,

Echo-Planar Imaging (EPI), Radial and Spiral[3]. Selecting a trajectory involves many

considerations, such as acquisition speed, robustness to hardware imperfection, signal-to-

noise efficiency, motion sensitivity and off-resonance artifacts.
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2.1.6 Image contrast

An MRI experiment requires repetitively applying RF and gradient waveforms. This series of

waveforms is known as a pulse sequence. Repetition time (TR) is defined as the time duration

between neighboring RF excitations. The amount of T1 relaxation depends on TR, thus TR

is indicative of the T1 image contrast. Echo time (TE) is defined as the duration from the

peak of the RF pulse to the time when gradients traverse the center of k-space. The center

of k-space dominates the image intensity and the decay of the transverse magnetization at

the center of k-space depends on TE, thus TE is indicative of the T2 image contrast.

2.2 Introduction to Hyperpolarized 13C Magnetic

Resonance Imaging

This chapter provides some background information of hyperpolarized 13C MRI, including

an introduction to hyperpolarized 13C MRI, dynamic nulcear polarization hyperpolarization

method for 13C, challenges in hyperpolarized 13C MRI acquisition as well as the clinical

applications of hyperpolarized [1-13C]pyruvate MRI.

2.2.1 Hyperpolarized 13C Magnetic Resonance Imaging

Conventional magnetic resonance imaging is based on the nucleus of the hydrogen atom

(1H), which is the most abundant element in the body. 13C MRI is based on 13C, a non-

radioactive isotope of carbon. Since most key metabolic intermediates consist of carbon-

containing compounds, imaging based on 13C is a potentially important tool for probing

metabolism. Due to low gyromagnetic ratio (1/4 of proton) and low natural abundance

(<1%) of 13C, hyperpolarization techniques (Fig. 2.4) are used to increase the 13C MR signal.

In hyperpolarized 13C MRI, a 13C labeled compound is hyperpolarized in a polarizer and

then transferred to the MR scanner for injection. Once a polarized 13C-labeled compound is

taken out of the polarizer, the signal of the hyperpolarized 13C-labled compound will decay

irreversibly to its thermal equilibrium with a time constant characterized by T1 (Fig. 2.5). T1

of 13C-labled compounds used for these experiments are typically on the order of 1-2 minutes.
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Figure 2.4: Hyperpolarization temporarily enhances magnetization by redistributing spin
populations into different energy states. The spin population state(n+) parallel to the ex-
terinal magnetic field has a lower energy than the one (n−) anti-parallel to the exterinal
magnetic field.

Inside the subject, the injected substrate could participate in in vivo metabolism. 13C MRI

is performed to acquire signals of the injected substrate and its downstream metabolites[21,

22].

2.2.2 Dynamic Nuclear Polarization

As mentioned in section 2.1.1, the magnetization depends on the population difference be-

tween spins at different energy states. Hyperpolarization is a process to temporarily redis-

tribute the population of energy levels and significantly increase the magnetization (Fig.

2.4).

The most common hyperpolarization technique used for 13C is dynamic nuclear polar-

ization [2] (DNP). DNP is based on the transfer of polarization from the electron spins to

nuclear spins. Because the gyromagnetic ratio of an electron is 600 times higher than that

of protons, at any magnetic field, unpaired electrons will be more polarized. By placing

13C-labeled compound in close proximity to unpaired electrons and applying microwave irra-

diation at a proper frequency, the polarization of the unpaired electrons will be transferred

to 13C. The optimal temperature for an efficient polarization transfer is about 1K, where the

polarization difference between unpaired electrons and 13C reaches a maximum.
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Figure 2.5: Comparison of longitudinal relaxation between thermal equilibrium and hyper-
polarized state. At thermal equilibrium, the longitudinal magnetization increases by T1
relaxation to reach the equilibrium. At hyperpolarized state, since its initial longitudinal
magnetization is much larger than the equilibrium magnetization, the return of the longitu-
dinal magnetization to the thermal equilibrium is a decay dependent on T1 relaxation.

2.2.3 Challenges in Hyperpolarized 13C MRI Acquisition

Compared with conventional 1H magnetic resonance imaging, many new technical challenges

arise in hyperpolarized 13C MRI including 13C probes, polarizer, 13C RF coil and acquisition

methods for hyperpolarized 13C MRI. This section focuses on introducing the challenges in

the acquisition methods, which is also the focus of this dissertation.

Nonrenewable Polarization

As mentioned in section 2.2.1, the hyperpolarized magnetization is nonrecoverable and decays

to thermal equilibrium on the order of 1-2 minutes. Nonrenewable polarization requires

efficient use of the polarization. An intuitive solution is to utilize the polarization as soon

as possible to minimize the polarization loss due to T1 decay. This solution is sufficient for

acquiring a snapshot of the injected substrate and not imaging its downstream metabolites.

However, in hyperpolarized 13C MRI, it is often of interest to monitor dynamic changes of
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the injected substrate and its downstream metabolites over a period of time (typically ∼1

min). Therefore, variable flip angles [61, 37, 64, 31] over metabolites and/or over time points

have been proposed to ensure sufficient signal build-up of the downstream metabolites and

preserve sufficient polarization at the later time points. Proper calibration of RF power is

required to achieve accurate flip angles. In hyperpolarized 13C MRI, lack of endogenous 13C

signals make power calibration difficult. One way to address this challenge is to perform real-

time power calibration after the injected substrate arrives at the region of interest. However,

estimating the arrival time of the injected substrate is challenging for clinical studies due

to the inherent physiological difference across subjects. Bolus tracking could be used to

monitor the arrival of the injected substrate and trigger the real-time power calibration.

This strategy is described in Chapter 3.

Another way to improve the efficient use of the polarization is to utilize the T2 relaxation

by repetitively refocusing transverse magnetization. Two common refocusing schemes are

fast spin echo (FSE)[63, 58] and balanced steady state free precession (bSSFP)[28, 36, 34,

35, 52]. Fast spin echo uses a train of 180o refocusing pulses with a pair of crusher gradients

applied before and after each refocusing pulse. This method is robust to the main magnetic

field inhomogeneity but susceptible to spatial power inhomogeneity and likely to saturate

nonrenewable polarization on the edge of transmit coil where power is usually largely different

from the central region. The bSSFP sequence uses a train of refocusing pulse with zero net

gradient area between any two neighboring refocusing pulses. In conventional proton MRI,

this method is prone to banding artifacts caused by main magnetic field inhomogeneity.

However, since the gyromagnetic ratio of 13C is four times much lower that of 1H, the

banding artifacts in 13C bSSFP imaging are less prominent than those in 1H bSSFP imaging.

Discussions of applying FSE and bSSFP in hyperpolarized 13C MRI are presented in Chapter

4 and 5.

Fast Dynamic Imaging of Multiple Metabolites

Due to chemical shift phenomenon, which is a small displacement of the resonant frequency

due to electron shielding of the main magnetic field, the 13C substrate and its downstream

metabolites have different resonance frequencies. If their MR signals are acquired without
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applying spatial encoding, the Fourier Transform of these FID signals will produce a fre-

quency spectrum with multiple frequency peaks. During imaging, additional encoding is

required to decouple signals along the frequency dimension. Compared with conventional

1H imaging where a snapshot of anatomical images is usually acquired, hyperpolarized 13C

MRI acquires dynamic images of multiple metabolites with fast signal decay. This makes fast

imaging techniques indispensable. A spiral trajectory[26] - the fastest trajectory to achieve

a given spatial coverage - and its variations are used in most sequences presented in this

dissertation. When a moderate matrix size is required or fewer metabolites are acquired,

an Echo Planar Imaging (EPI)[7, 15] trajectory or a Cartesian trajectory[23] with proper

undersampling strategies could be better options than spiral trajectory due to their better

robustness to field inhomogeneity and better tolerance to gradient imperfection.

To decouple multiple metabolites signals along the frequency dimension, frequency infor-

mation could be encoded using gradients or RF pulse, or a combination of both. Encoding

using only gradients[45, 59] is straightforward and is applicable for any frequency spectrum.

However, the drawbacks of this approach are long acquisition times and no metabolite spe-

cific sequence optimization. Encoding using only RF pulses[7] is the opposite case: requiring

complicated RF pulse design and prior knowledge of frequency spectrum, but allowing shorter

acquisition time and metabolite specific optimization. The advantages of encoding using RF

pulse meet the requirements of hyperpolarized 13C imaging - fast imaging requiring short

acquisition time and efficient use of polarization requiring metabolite specific optimization.

Therefore, metabolite specific excitation is used in all sequences presented in this disserta-

tion.

2.2.4 Clinical Applications of Hyperpolarized [1-13C]Pyruvate

MRI

The most widely studied compound to date in hyperpolarized 13C studies is [1-13C]pyruvate

[21, 22, 1] because it is easy to polarize, T1 is relatively long (∼ 1 min), its safety has

been demonstrated in human studies and it plays a crucial role in a number of significant

metabolic pathways that convert [1-13C]pyruvate to: [1-13C]lactate via lactate dehydrogenase

(LDH), [1-13C]alanine via alanine aminotransferase, and [1-13C]bicarbonate via the pyruvate
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dehydrogenase complex. Currently, there are 27 ongoing hyperpolarized [1-13C] clinical trials

registered on clinicaltrials.gov. Most of applications are cancer, in the areas of prostate,

brain, breast, ovary and cervix. Other applications include cardiovascular diseases, fatty

liver disease and traumatic brain injury.
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Chapter 3

A Regional Bolus Tracking and

Real-time B0/B1 Calibration Method

for Hyperpolarized 13C MRI

3.1 Abstract

Acquisition timing and B1 calibration are two key factors that affect the quality and accu-

racy of hyperpolarized 13C MRI. The goal of this project was to develop a new approach

using regional bolus tracking to trigger Bloch-Siegert B1 mapping and perform real-time B1

calibration based on regional B1 measurements, followed by dynamic imaging of hyperpolar-

ized 13C metabolites in vivo. The proposed approach was implemented on a system which

allows real-time data processing and real-time control on the sequence. Real-time center

frequency calibration upon the bolus arrival was also added. The total hyperpolarized sig-

nal loss caused by the proposed bolus tracking and real-time frequency/power calibration

was calculated based on applied flip angles and expected to be less than 7%. The feasibil-

ity of applying the proposed framework for in vivo hyperpolarized [1-13C]pyruvate imaging

was tested on a clinical 3T scanner on healthy rats, tumor-bearing mice and human ap-

plications including brain, heart, kidney and prostate. Automatic acquisition timing based

on either regional bolus peak or bolus arrival was achieved with the proposed framework.

Reduced blurring artifacts in real-time reconstructed images were observed with real-time
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center frequency calibration. Flip angle correction using B1 maps results in a more consistent

quantification of metabolic activity (i.e, pyruvate-to-lactate conversion, kPL). Experiment

recordings are provided to demonstrate the real-time actions during the experiment.

3.2 Introduction

In light of the nonrenewable nature and fast decay of the hyperpolarized magnetization,

acquisition timing and transmit power (B1) calibration are two key factors that affects the

quality and accuracy of hyperpolarized 13C imaging.

Bolus tracking for triggering the acquisition has been used in clinical MRI for proton MR

angiography [11]. Appropriate acquisition timing for hyperpolarized 13C imaging is useful

in several aspects: a) Excitation before the bolus arrival may saturate the nonrecoverable

hyperpolarized signal particularly near the coils conductive elements where the B1 can be

elevated. b) Many variable flip schemes [61, 37, 64, 31] that optimize the hyperpolarized

MRI signal sampling require knowledge of the bolus arrival. c) It is more straightforward for

kinetic modeling to start signal sampling after the bolus maximum [9] to eliminate the need

to account for the input function. d) Inconsistent acquisition timing leads to quantification

errors when metabolite to substrate ratios are used as a quantitative metric [62, 9]. Currently,

in vivo hyperpolarized 13C imaging protocols typically start at a certain fixed delay time

after bolus injection. The delay time is determined based on prior knowledge, which can be

unreliable due to the inherent physiological variability of each individual. This is particularly

problematic in human subjects in which 12 s variations in bolus arrival have been observed

in a clinical trial of hyperpolarized 13C prostate study [38]. This variability can be further

exacerbated in tumors where the vascularization and perfusion are highly inconsistent over

subjects [12]. Recently, a bolus tracking method using a slab FID as tracking signal was

demonstrated [9] for automatic acquisition timing. However, this method didn’t reflect the

signal variation within the imaging slab.

In the context of hyperpolarized 13C MRI, B1 calibration is crucial for variable flip an-

gle schemes [61, 37, 64, 31] and quantification of metabolic activities [53]. Due to the

virtually non-existent endogenous 13C signal, 13C B1 calibration is typically performed on

external phantoms, but this approach does not account for the variability of subject load-
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ing. Bloch-Siegert B1 mapping has been applied to hyperpolarized 13C imaging [25, 50] and

is advantageous due to its short acquisition time and efficient use of the hyperpolarization

signal. However, real-time power compensation has not yet been accomplished to calibrate

the flip angle during the scan.

This chapter presents a new approach using regional bolus tracking to trigger Bloch-

Siegert B1 mapping and real-time RF power compensation based on regional B1 measure-

ments followed by dynamic imaging of hyperpolarized 13C metabolites. Real-time center

frequency calibration upon bolus arrival was also implemented. Thermally polarized 13C

phantom experiments were performed to validate Bloch-Siegert B1 mapping. The feasibility

of applying the proposed framework for in vivo hyperpolarized 13C imaging was demon-

strated on healthy rats, tumor-bearing mice and human studies including brain, kidney,

heart and prostate on a clinical 3T scanner. This proposed method was designed to improve

the efficient use of the hyperpolarized signal as well as the accuracy and the robustness of

hyperpolarized 13C imaging.

3.3 Methods

3.3.1 Real-time Hyperpolarized 13C MRI

The proposed scheme is illustrated in Fig. 4.1. ROIs for both bolus tracking and B1 cali-

bration are prescribed according to proton anatomical images before starting 13C sequences.

The bolus tracking sequence starts before the hyperpolarized substrate is injected. Real-time

center frequency calibration based on the acquired slab frequency spectrum can be triggered

upon the bolus arrival. Bloch-Siegert B1 mapping is either triggered right after frequency

calibration or at peak bolus signal. The RF power for all sequences is then calibrated in

real time based on the measured ROI B1. The sequence triggered upon the completion of

B1 calibration in this study is alternating metabolite specific dynamic imaging, which could

be replaced by any hyperpolarized 13C sequence for other studies. Our proposed scheme was

implemented on a GE Signa MR 3T scanner (GE Healthcare, Waukesha, WI) using commer-

cial software (RTHawk, HeartVista, Los Altos, CA) which allows for real-time reconstruction

of acquired data and feedback control of the pulse sequence. The software was installed on a
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Figure 3.1: Overview of the proposed scheme. Bolus tracking was used to monitor ROI
bolus arrival or bolus peak and trigger real-time B0/B1 calibration, followed by metabolite
specific imaging. B0 calibration (‘CF Cal’) is performed based on the frequency spectrum
of a prescribed slab. B1 calibration (‘B1 Cal’) consists of Bloch-Siegert imaging and RF
power compensation based on ROI B1. Metabolite specific imaging could be replaced by
any hyperpolarized 13C sequence for other studies.

workstation (2.4GHz, 16 proccessors, 64 GB RAM) running the Ubuntu operating system.

The bolus tracking sequence used a singleband spectral-spatial excitation pulse and a

single-shot spiral readout, similar to Fig. 3.2 but without the Fermi pulse and associated

delay. In these studies, this was used for selective imaging of [1-13C]pyruvate, but could be
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adapted for other metabolites (e.g. 13C-urea). The algorithm for tracking the maximum

bolus signal was implemented based on prior works [11, 9]. The bolus signal is the mean

value of a prescribed ROI placed on the tracking image. Our bolus tracking acquisition

consists of two modules, noise calibration and bolus tracking, which can be performed in-

dependently. Noise calibration is used to determine the tracking threshold. If the tracking

threshold has been previously computed, bolus tracking can be performed without running

noise calibration. In the noise calibration module, the tracking threshold Sthr is determined

as Sthr = cthrσ = cthr
mnoise√

π
2

, where σ is the standard deviation of Gaussian noise in the

complex image, mnoise is the mean value of magnitude images of noise and cthr is a scaling

factor. 100 calibration scans (TR = 200 ms) are performed to compute mnoise which is con-

verted to σ [17]. Given the noise distribution of the background in magnitude images follows

a Rayleigh distribution[17], if a probability Pthr that a noise signal is above the tracking

threshold is required, the proportional relationship between Sthr and σ can be derived using

the cumulative distribution function of a Rayleigh distribution. For example, cthr = 3 would

result in a Pthr of 0.001%.

In the bolus tracking module, bolus tracking sequence is used to monitor either ROI bolus

arrival or bolus peak. The sequence is resumed automatically if the bolus peak or bolus

arrival is not detected. Bolus arrival is determined as ROI signal above the signal threshold.

When bolus arrival is detected, a trigger is sent to start other sequences. For bolus peak

detection, when a cumulative number ncum of signal increases is detected and all these signals

are above the tracking threshold, the program starts to update the peak value. When the

bolus signal is lower than upeak fraction of the current peak signal, detection of bolus peak will

be reported. In our study, upeak was determined based on estimated hyperpolarization loss

due to T1. For example, under the assumptions of a T1 of 30s, an excitation flip angle of 5o,

no more pyruvate from the bolus coming into the ROI and neglecting metabolic conversion,

the hyperpolarization loss over a TR of 1s for the bolus tracking sequence would be 1 - cos(5o

× π/180) = ∼0.04, and the remaining hyperpolarization (∼0.96) was used as upeak. The use

of cumulative increase rather than successive increase as used in the previous work [9] aims

to improve the robustness of the tracking algorithm to motion and injection with unstable

rates. For some experiments, during the time that bolus signal was below the current signal

peak but above upeak threshold, a short repetition time was used to shorten the time interval
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Figure 3.2: Metabolite-specific imaging sequence used in this study, where all instances
included a singleband spectral-spatial excitation pulse (passband 120 Hz, stopband 600 Hz)
and a single-shot spiral readout. The sequence shown also includes an off-resonance Fermi
pulse (TRF = 12 ms, ωRF = ±4.5 kHz) for Bloch-Siegert B1 mapping, while bolus tracking
and metabolite imaging also used this sequence but without Fermi pulse and its associated
delay. Other key parameters for bolus tracking were FA 5o (pyruvate), TR 1s; and for
Bloch-Siegert B1 mapping were FA 10o (pyruvate), TR 200ms.
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between actual bolus peak and detected bolus peak.

The Bloch-Siegert B1 mapping sequence[47, 25, 50] (Fig. 3.2) shared the similar excita-

tion and readout as bolus tracking, using a singleband spectral-spatial excitation pulse and

a single-shot spiral readout, whereas an off-resonance Fermi pulse (KBS = 6.76rad/G2 ) was

inserted in between. The phase difference between two Bloch-Siegert B1 mapping sequences

with opposite ωRF was used to calculate B1. Taking the phase difference removes receiver

phase and minimizes the influence of B0 off-resonance frequency [47]. Parameters used in

this study were designed to measure a maximum B1 of 0.48G. The two phase maps were

masked based on corresponding magnitude images in order to eliminate noisy phases due

to low signal. The threshold was determined as SB1 = cB1σ, where cB1 is a scaling factor

and noise standard deviation σ was obtained from the bolus tracking sequence. The ratio

of the desired B1 to the measured ROI B1 was passed to all sequences as a scaling factor to

calibrate transmit power in real time.

The center frequency calibration sequence consists of a sinc excitation pulse with slab

selection gradient and a 102 ms readout with a 5kHz bandwidth. The acquired spectrum is

used to calibrate center frequency for all sequences in real time. Metabolite specific imaging

was used to alternately acquire signals of 13C metabolites over time. The metabolite specific

imaging sequence shared the same excitation RF pulse and readout as bolus tracking, using

a singleband spectral-spatial excitation pulse and a single-shot spiral readout, but with

different excitation frequency and different flip angles for imaging different 13C metabolites.

All methods described are available through the HeartVista research collaboration portal

(https://www.heartvista.com/git/shuyu/hv_research_shuyu).

3.3.2 Phantom and Animal Experiments

Validations of the Bloch-Siegert B1 mapping sequence were performed on a 13C/1H birdcage

coil as well as on a 13C figure-8 transceiver coil. For experiments using the 13C/1H birdcage

coil, a cylindrical ethylene glycol phantom with a base of 3.6cm diameter was used. Axial 13C

B1 maps at four transmit powers (50%, 75%, 100% and 150% of the calibrated power) were

acquired (FA 90o, slice thickness 10mm, Fermi pulse duration TRF 12ms, frequency offset ωRF

±4.5kHz, FOV 10cm, in-plane resolution 2.5 × 2.5mm, TR 2s, NEX 100). For experiments
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Table 3.1: 13C sequence parameters for animal experiments.

using the 13C figure-8 transceiver coil, a cup (cross-section diameter from 5.5 to 7.5cm, height

7.5cm) filled with oil was placed on top of the coil. An axial 13C magnitude map with a

nominal 180o excitation (FA 180o, slice thickness 100mm, FOV 20cm, in-plane resolution 5

× 5mm, TR 1s, NEX 100) and its corresponding B1 map (FA 60o, slice thickness 100mm,

Fermi pulse duration TRF 8ms, frequency offset ωRF ±3kHz, FOV 20cm, in-plane resolution

5 × 5mm, TR 1s and NEX 200) were acquired. A 2D phase unwrapping algorithm [56] based

on minimum spanning tree was implemented to correct phase images of B1 mapping off line.

Hyperpolarized 13C animal experiments were performed to test our proposed scheme using
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normal Sprague-Dawley rats and transgenic adenocarcinoma of mouse prostate (TRAMP)

mice with 13C/1H birdcage coils (8cm diameter for rats, 5cm diameter for mice). Two experi-

ments were also performed on a rat with a 13C figure-8 transceiver coil. A total of six rats and

two TRAMP mice were used to test the proposed scheme. All animal studies were conducted

under protocols approved by the University of California San Francisco Institutional Animal

Care and Use Committee (IACUC). Both rats and mice were anesthetized with isoflurane

(1-2%) and placed in a supine position on a heated pad throughout the duration of the

experiments. [1-13C]pyruvic acid (Sigma Aldrich, St. Louis, MO) mixed with 15mM trityl

radical (GE Healthcare, Waukesha, WI) and 1.5mM Gd-DOTA (Guerbet, Roissy, France)

was polarized in a HyperSense dissolution DNP system (Oxford Instruments, Abingdon, UK)

at 1.35K and 3.35T for ∼1h. A 4.5mL volume of 80mM NaOH and 40mM Tris buffer was

used as dissolution media, resulting in a 80mM [1-13C]pyruvate solution, with final pH of

6-8. The hyperpolarized [1-13C]pyruvate was injected into the animal via tail vein catheters,

∼2.6mL for each rat and ∼350µL for the mouse. Each animal received two injections.

All animal experiments were performed using the proposed scheme (Fig. 4.1). 13C

sequence parameters for animal experiments are shown in Table 3.1. Some experiments were

performed with real-time center frequency calibration. The desired B1 of the Fermi pulse

in B1 mapping sequence for all experiments was always set to 0.3G (344% of B1 required

for a 90o excitation of the spectral-spatial pulse used in this study). Using the measured

transmit B1 maps, all in vivo results were compensated for spatial B1 variations and flip

angles between sequences. RF power measurements are shown as relative B1 maps which is

the measured B1 normalized by the desired B1. For some experiments, data from alternate

pyruvate and lactate dynamic imaging was used to quantify pyruvate-to-lactate conversion

rate (kPL) based on a two-site exchange model [19] using non-linear least-squares fitting.

For rat experiments using the 13C/1H birdcage coil, an anatomical localizer was acquired

using proton 3D bSSFP sequence (FOV 16 × 8 × 4.8cm, Matrix size 256 × 256 × 76). A

total number of five injections were performed on three rats using the proposed scheme with

different combinations of injection times (8s, 12s) and transmit gains (100%, 120% of pre-

scan power calibration). Real-time center frequency calibration was not performed in these

studies. A 13C urea phantom was used for frequency and pre-scan power calibrations. 13C

images were acquired on the axial kidney plane. ROIs for bolus tracking and B1 calibration
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were both placed on the left kidney.

For rat experiments using the 13C transceiver coil, an anatomical localizer was acquired

using proton T2-weighted fast spin echo sequence (FOV 6 × 6cm, Matrix size 256 × 256)

with the scanner body coil. The rat was positioned in a way that right kidney was about 1

cm further than left kidney from the bottom 13C transceiver coil. This set up was designed to

produce a distinct B1 variation between two kidneys. Two injections were performed using

the proposed scheme with the same parameters but with different tracking/B1 calibrating

ROIs, one on right kidney and the other on left kidney. A 13C urea phantom embedded

on the coil was used for initial pre-scan frequency and power calibration. Real-time center

frequency calibration was performed at the bolus arrival. 13C images were acquired on the

axial kidney planes with an injection time of 10s and transmit gain set based on pre-scan

with the 13C-urea phantom.

For the TRAMP experiment, an anatomical localizer was acquired using proton T2-

weighted fast spin echo sequence (FOV 6 × 6cm, Matrix size 256 × 256). Real-time center

frequency calibration was performed at the bolus arrival. 13C images were acquired on

the axial tumor plane with an injection time of 12s and transmit gain the same as the

calibrated power in pre-scan. A 13C urea phantom was used for pre-scan frequency and

power calibration. ROIs for bolus tracking and B1 calibration were both in the tumor.

3.3.3 Human Studies

Human studies were performed to demonstrate the flexibility of the proposed scheme (Fig.

4.1) in various hyperpolarized [1-13C]pyruvate applications. Brain, kidney and heart ex-

periments were performed on healthy volunteers while prostate studies were performed on

patients bearing prostate tumors. Subjects were recruited with institutional review board

approval and provided with written informed consent for participation in the study. An In-

vestigational New Drug approval was obtained from the U.S. Food and Drug Administration

for generating the agent and implementing the clinical protocol. 1.47g of Good Manufac-

turing Practices (GMP) [1-13C]pyruvate (Sigma Aldrich, St. Louis, MO) mixed with 15mM

electron paramagnetic agent (EPA) (AH111501, GE Healthcare, Oslo, Norway) was polar-

ized using a 5T SPINlab polarizer (General Electric, Niskayuna, NY) for 3h before being
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Table 3.2: 13C sequence parameters for human studies

rapidly dissolved with 130oC water and forced through a filter that removed EPA. The solu-

tion was then collected in a receiver vessel and neutralized with NaOH and Tris buffer. The

receive assembly that accommodates quality-control processes provided rapid measurements

of pH, pyruvate and EPA concentrations, polarization, and temperature. In parallel, the

hyperpolarized solution was pulled into a syringe (Medrad Inc, Warrendale, PA) through a

0.5µm sterile filter (ZenPure, Manassas, VA) and transported into the scanner for injection.

The integrity of this filter was tested in agreement with manufacturer specifications prior to

injection. A 0.43mL/kg dose of ∼250mM pyruvate was injected at a rate of 5mL/s via an

intra-venous catheter placed in the antecubital vein, followed by a 20mL saline flush.

Brain studies used a birdcage transmit coil and a 32 channel receive coil [33]. Kidney

studies used a clamshell transmit coil and a 16 channel receive coil. Prostate studies used

the clamshell transmit coil and an endorectal receive coil. Cardiac studies used the clamshell
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transmit coil and 8 channel paddle receive coils.

Different from animal experiments, excitation pulses for bolus tracking, B1 mapping

and metabolite-specific dynamic imaging were replaced with a different singleband spectral-

spatial RF pulse (130Hz FWHM passband, 870Hz stopband) [16]. B1 mapping and real-

time B1 calibration were triggered right after real-time center frequency calibration. In some

studies, more than one B1 slice were acquired while B1 calibration was always performed

on the central slice. The ROI for both bolus tracking and B1 calibration was placed on

the tissue of interest for different applications accordingly. Following B1 calibration, multi-

slice 2D acquisitions were performed to alternately acquire signals of [1-13C ]pyruvate and

its downstream [1-13C] metabolite (lactate, bicarbonate and alanine). A 13C urea phantom

embedded on the coil was used for pre-scan frequency calibration. Pre-scan power calibration

was performed on a 13C ethylene glycol head phantom. Proton anatomical images were

acquired with body coil built in the scanner. 13C sequence parameters for all human studies

are presented in Table 3.2.

For the online reconstruction, multichannel k-space data were combined using sum of

squares. In the offline processing, coil combination was performed by using pyruvate signals

as coil sensitivity maps [65].

3.4 Results

3.4.1 Phantom and Animal Results

Axial thermal 13C B1 maps of the 13C/1H birdcarge coil at 50%, 75%, 100% and 150% of the

calibrated transmit power are shown in Fig. 4.4a. The mean B1 value of the phantom region

versus the relative transmit power is plotted (Fig. 4.4b) to demonstrate the quadratic rela-

tionship between Bloch-Siegert phase difference and transmit power. A comparison between

the magnitude image of nominal 180o excitation and its corresponding B1 map of a thermal

13C phantom on the 13C transceiver coil is shown in Fig. 4.4c and Fig. 4.4d. The B1 value

along the dark band in Fig. 4.4c and its corresponding theoretical excitation flip angle (0.3

G) is plotted in Fig. 4.4e, demonstrating the accuracy of Bloch-Siegert B1 mapping.

Results of a representative hyperpolarized [1-13C]pyruvate experiment using the proposed
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scheme to image the kidneys of a healthy rat with 13C/1H birdcage coil are shown in Fig.

3.4. Real-time center frequency calibration was not performed in this study. Fig. 3.4d

displays every other timeframe of the real-time reconstructed data where magnitude images

are normalized by the peak value of the corresponding metabolic series. The acquired B1

map (Fig. 3.4b) was homogenous, as expected for this coil. The initial transmit power

was purposely set to 120% of the power calibrated on a thermal 13C phantom and resulted

in a nominal B1 scaling factor of 0.83 (1/1.2), which was in reasonable agreement with the

real-time computed B1 scaling factor of ∼0.87. Normalized pyruvate signal curves combining

the data of bolus tracking and pyruvate/lactate dynamic imaging are shown in Fig. 3.4c for

different ROIs. These pyruvate signal curves demonstrate that the ROI (left kidney) bolus

peak was successfully detected, and acquisition timing would be different if the tracking ROI

was on the major vessels.

Results of a hyperpolarized [1-13C]pyruvate experiment using the proposed scheme to

image the tumor of a TRAMP mouse with 13C/1H birdcage coil is shown in Fig. 4.7. Fig. 4.7e

displays every other timeframe of the real-time reconstructed data where magnitude images

are normalized by the peak value of the corresponding metabolic series. The frequency

spectrum (Fig. 4.7d) acquired from the imaging slab at the bolus arrival shows that the

measured pyruvate frequency was 20Hz downfield from the frequency calibrated based on a

thermal 13C phantom. Bolus tracking images right before and after real-time center frequency

calibration in Fig. 4.7e demonstrate that real-time center frequency calibration reduced

blurring caused by off resonance reconstruction in real-time reconstructed images. Fig. 4.7b

depicts the normalized B1 map which is homogenous as expected for the coil. The real-time

B1 scaling factor (Fig. 4.7b) was 1.05, indicating a 5% difference from the power calibrated

on a thermal 13C phantom. Tumor kPL (Fig. 4.7c) fitted using pyruvate and lactate signals

was ∼ 0.09 s−1, agreeing with prior works[4] which showed a kPL range of 0.03 to 0.08 s−1

for high grade TRAMP tumor.

Results of two hyperpolarized [1-13C]pyruvate experiments using the proposed scheme

to image the kidneys of healthy rats with one-sided 13C surface transceiver coil are shown

in Fig. 3.6. Two experiments were performed with the same parameters but with different

tracking/calibrating ROIs, one on the right and the other on the left kidney, where the left

kidney was closer to the coil. B1 maps (Fig. 3.6b) acquired in two experiments are consistent
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and show that the left kidney experienced a 40% higher B1 than the right kidney did. This

agreed with the real-time B1 scaling factors, 1.49 and 1.07 for the tracking experiments on

the left and right kidney, respectively. kPL maps fitted with and without flip angle correction

for the two experiments are shown in Fig. 3.6c, where kPL values of right kidney, left kidney

and intestine are labeled. Root mean squared errors of kPL values in the three labeled ROIs

between two experiments are 0.0033 with flip angle correction and 0.0045 without flip angle

correction, demonstrating that using acquired B1 maps to correct flip angle results in more

consistent kPL estimations.
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Figure 3.3: Validation of Bloch-Siegert B1 mapping on the 13C/1H birdcage coil using a
cylindrical ethylene glycol phantom (a-b) and on the 13C figure-8 transceiver coil using a cup
filled with oil (c-e). For the latter experiment, the oil cup was placed on the top of the 13C
coil. In both experiments, the desired B1 of the Bloch-Siegert pulse was 0.3G, at which the
excitation pulse would produce the theoretically accurate flip angle. (a) Axial 13C B1 maps
of birdcage coil with 50%, 75%, 100% and 150% relative to the calibrated transmit power
in pre-scan. (b) A plot of Bloch-Siegert phase difference versus relative transmit power.
Each data point corresponds to the mean value of the phantom area of each B1 image in
(a). The data point at the relative power of zero is estimated to be zero. The quadratic
curve is computed by a least-squares fitting. (c) Axial 13C image of transceiver coil with a
nominal 180o flip angle. The dark band in the image corresponds to a 180o signal null. (d)
Corresponding axial B1 map of (c), where the dark band corresponds to ∼0.3 G as expected.
(e) A plot of B1 value across the dark band and corresponding flip angles calculated based
on the B1 value.
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on the left kidney. Injection time was 8 s and initial power was purposely set to 120%
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displayed in the order of time. Every other timeframe is shown. Experiment recording:
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3.4.2 Human Results

Data from the four HP 13C exams are presented in Fig. 3.7 to Fig. 3.10. The bolus arrival and

peak were successfully detected in these studies, indicating the selected tracking threshold

staying above the noise level. Compared to the frequency calibrated on the phantom, the

real-time calibrated frequency had a larger difference in the kidney (-49Hz, Fig. 3.9), heart

(-24Hz, Fig. 3.8), and prostate (20Hz, Fig. 3.10) studies than in the brain study (0Hz,

Fig. 3.7). This finding is as expected, since large field inhomogeneity was present in the

abdominal studies.

Compared to the B1 calibrated on the urea phantom, the real-time calibrated B1 within

the body had a larger difference in the kidney (25%, Fig. 3.9), heart (30%, Fig. 3.8),

prostate (30%, Fig. 3.10) studies than in the brain study (4%, Fig. 3.7). This finding is

as expected, since the transmit coil (birdcage) used in the brain study has a more uniform

transmission profile than what was used in other studies (clamshell or surface coil). Non-

uniform transmission profile brings more challenges in power calibration. Since B1 mapping

is triggered according to ROI bolus signal, sufficient signal is guaranteed at the ROI location

but not necessarily in other regions. If B1 map of a large FOV is required, B1 mapping could

be triggered manually according to the signal build-up which is also allowed in our real-time

framework. Metabolite specific images were successfully acquired in all these studies with no

apparent signal reduction, compared to our prior studies which didn’t use bolus tracking and

real-time B0/B1 calibration. This indicated that the small flip angle used in the tracking

and real-time calibration process caused minimal hyperpolarization loss.
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Figure 3.7: Results of hyperpolarized 13C studies in the human brain using the acquisition
scheme in Fig. 4.1. The metabolite images are from a sum across the dynamic acquisition. A
birdcage transmit coil and a 32 channel receive coil are positioned surrounding the brain. The
ROI for bolus tracking and B1 calibration was on the brain tissue near the superior sagittal
sinus. The real-time measured pyruvate frequency was the same as the frequency calibrated
in the pre-scan. The real-time measured ROI B1 was 4% higher than what was calibrated
in the pre-scan. The link of the experiment recording is https://youtu.be/Oq36Z7ayQ0g
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Figure 3.8: Results of hyperpolarized 13C studies on the human heart using the acquisition
scheme in Fig. 4.1. The metabolite images are from a sum across the dynamic acquisition.
A clamshell transmit coil was positioned on the anterior and posterior sides of the subject
and 8 channel paddle receive coils were positioned on the anterior and left sides of the chest.
The ROI for bolus tracking and B1 calibration was placed on the right ventricle. The real-
time measured pyruvate frequency was 24Hz downfield from the frequency calibrated in the
pre-scan. The real-time measured B1 was 70% of what was calibrated in the pre-scan.
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Figure 3.9: Results of hyperpolarized 13C studies on the human kidneys using the acquisition
scheme in Fig. 4.1. The metabolite images are from a sum across the dynamic acquisition.
A clamshell transmit coil was positioned on the anterior and posterior sides of the subject
and a 16 channel receive coil was positioned on the anterior and posterior sides of abdomen.
The ROI for bolus tracking and B1 calibration was placed on the right kidney. The real-
time measured pyruvate frequency was 49Hz downfield from the frequency calibrated in the
pre-scan. B1 difference was observed between the left and right kidneys whose B1 values
are 75% and 67% of the B1 value calibrated in the pre-scan. The link of the experiment
recording is https://youtu.be/Joc9LABNRbc
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Figure 3.10: Results of hyperpolarized 13C studies on a human prostate tumor using the
acquisition scheme in Fig. 4.1. The metabolite images are from a sum across the dynamic
acquisition. A clamshell transmit coil was positioned on the anterior and posterior sides of
the subject and an endorectal coil was used for receive. The ROI for bolus tracking and B1
calibration was on the tumor. B1 calibration in the experiment is triggered on the bolus peak
rather than on the bolus arrival, which would allow a broader perfused region of injected
pyruvate and thus lead to a larger coverage of acquired B1 maps. The real-time measured
pyruvate frequency was 20Hz upfield from the frequency calibrated in the pre-scan. The
real-time measured B1 was 70% of what was calibrated in the pre-scan.

37



3.5 Discussion

As discussed in the Introduction section, automatic acquisition timing via bolus tracking

improves efficient use of hyperpolarization as well as consistency and accuracy of hyperpo-

larized 13C imaging. Furthermore, accurate timing is critical for some optimal variable flip

angle schemes and metabolic quantification [61, 37, 64, 31]. The implementation of regional

bolus tracking in this work improves the flexibility and accuracy of acquisition timing, and it

would be especially useful for imaging tissue with low perfusion rate where injected metabo-

lites would arrive at the target region later relative to major vessels or other tissues. The

resolution of the bolus tracking image should be chosen as coarse as possible to improve

image SNR but fine enough to detect the desired tracking region (e.g. major vessels from

other tissues). An alternative approach is to use 2D spatially selective excitation pulses,

but this approach is less robust to signals from off-resonance metabolites. In this study,

bolus tracking triggered its following sequences either upon bolus arrival or following peak

detection. This could easily be modified to use other schemes, such as starting metabolic

imaging during the bolus or adding an additional delay from the peak. Manually triggering

sequences during bolus tracking is also allowed in the designed framework and is useful if

the automatic tracking algorithm fails. The bolus tracking used a flip angle of 5o and a TR

of 1 s. Assuming an injection time of 10s, the expected total hyperpolarized signal loss due

to bolus tracking RF pulses would be less than 4%.

The naturally low-abundance 13C signal requires real-time B1 mapping for accurate in

vivo measurements of RF power in hyperpolarized 13C imaging. The acquired B1 map is

useful for flip angle correction of images and is crucial for quantification of metabolism (e.g.

kPL[53]) as demonstrated in in vivo results (Fig. 3.6). Real-time B1 calibration could achieve

accurate flip angle during the scan, which is critical for variable flip angle schemes and large

flip angle pulses [49], and avoiding unnecessary use of hyperpolarization. The upper limit of

the B1 measurement depends on the KBS value of the Bloch-Siegert pulse while the lower

limit depends on the SNR. 2D phase unwrapping could be implemented in real time to

extend the upper limit of B1 measurement. Real-time masking of the acquired B1 map

based on signal intensity made the real-time B1 calibration robust when the B1 calibration

ROI contained regions with low hyperpolarized signal. The two TRs required for the B1
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mapping sequence used a pyruvate flip angle of 10o, using only 3% of the hyperpolarization

magnetization.

Center frequency calibration is crucial for metabolite specific imaging. For singleband

spectral-spatial pulses, frequency calibration errors will reduce the flip angle and may also

excite undesired resonances. For spiral or echo-planar imaging (EPI) readouts, frequency

calibration errors will lead to off-resonance blurring and shift artifacts. Both of these factors

can undermine the accuracy of Bloch-Siegert B1 mapping and quantification of metabolism.

Frequency calibration based on a thermal 13C phantom, which must be placed external to the

subject, doesn’t represent frequency within the subject. Although B0 maps can be obtained

via proton imaging, in vivo shimming could still be challenging, particularly in the presence

of motion. In this study, real-time center frequency was triggered upon bolus arrival, which

improved the quality of all the following real-time reconstructed images (Fig. 4.7e). The

102ms readout duration of the center frequency measurement sequence resulted in a ∼10Hz

frequency resolution which could be improved with a longer readout duration. A 3o flip angle

costs less than 0.2% of the hyperpolarized magnetization.

The transition time between acquisitions is mainly attributed to real-time image recon-

struction and loading sequence waveforms. For animal experiments using single-channel

acquisition, the transition times of a bolus tracking acquisition, real-time center frequency

calibration, real-time B1 calibration and their following sequences were about 60ms, 60ms

and 400ms, respectively. For human experiments, a longer transition time (∼800ms) was

observed for real-time B1 calibration, whereas transition times for bolus tracking acquisi-

tion and real-time center frequency calibration remained similar. The longer transition time

found in B1 calibration could be caused by its more complicated reconstruction compared

to frequency calibration, and its shorter TR compared to a bolus tracking acquisition which

typically used a TR of 1s and allowed real-time reconstruction to be completed during the

dead time of a TR.

A 13C-pyruvate and 13C-urea co-polarized injection [60] would benefit substantially from

the proposed methods. 13C-urea could be used to perform bolus tracking, real-time center

frequency and B1 calibration. This strategy would fully preserve hyperpolarized signal of

pyruvate[9] and provide higher SNR for B1 mapping by using a larger flip angle. Cardiac and

respiratory motion could detrimentally affect bolus tracking and Bloch-Siegert B1 mapping.
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Cardiac gating could be used [25]. In terms of respiratory motion, breathholding is often

used in clinical studies. Respiratory gating is not suitable for bolus tracking due to large

potential delays but can be applied to perform B1 mapping at the end of exhalation[25], in

which case, a short TR (200ms) as used in this study is recommended. A more challenging

but robust approach to handle motion is to perform real-time image registration. To extend

the proposed scheme for volumetric calibration, real-time center frequency and B1 calibration

can be integrated with a multislice imaging framework[25].

3.6 Conclusion

This work demonstrated an approach that integrates automatic acquisition timing using the

regional bolus signal with real-time center frequency calibration, Bloch-Siegert B1 mapping

and real-time RF power compensation based on regional B1 measurements as well as dy-

namic hyperpolarized 13C imaging. This scheme allows for timing the acquisition based on

bolus information of a local region within the imaging plane. Real-time center frequency

calibration and B1 calibration, ensures accurate center frequency and flip angles which are

used in the following hyperpolarized 13C sequences. The theoretical total hyperpolarized

signal loss caused by the proposed bolus tracking and real-time frequency/power calibration

is less than 7%. The proposed scheme was successfully demonstrated for animal and human

hyperpolarized [1-13C]pyruvate imaging on a clinical 3T scanner. Future work will focus

on incorporating pyruvate-urea co-polarized injections, volumetric calibration and motion-

compensation methods into the proposed scheme to improve efficiency, accuracy, and robust-

ness of hyperpolarized 13C studies.
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Chapter 4

A Metabolite Specific 3D

Stack-of-Spiral bSSFP Sequence for

Improved Lactate Imaging in

Hyperpolarized [1-13C]Pyruvate

Studies

4.1 Abstract

The balanced steady-state free precession (bSSFP) sequence has been previously explored

to improve the efficient use of non-recoverable hyperpolarized 13C signal, but suffers from

poor spectral selectivity and limited matrix size. The purpose of this study was to develop

a novel metabolite-specific 3D bSSFP (“MS-3DSSFP”) sequence with stack-of-spiral read-

outs for improved lactate imaging in hyperpolarized [1-13C]pyruvate studies on a clinical 3T

scanner. Simulations were performed to evaluate the spectral response of the MS-3DSSFP

sequence. Thermal 13C phantom experiments were performed to validate the MS-3DSSFP

sequence. In vivo hyperpolarized [1-13C]pyruvate studies were performed in rodents and

human to compare the MS-3DSSFP sequence with gradient echo sequences for lactate imag-
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ing. Simulations, phantom and in vivo studies demonstrate that the MS-3DSSFP sequence

achieved spectrally selective excitation on lactate while minimally perturbing other metabo-

lites. Compared with GRE sequences, the MS-3DSSFP sequence showed approximately a

2.5X SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model

and human kidneys. Improved lactate imaging using the MS-3DSSFP sequence in hyperpo-

larized [1-13C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP

sequence could be applied for other clinical applications such as in the brain or adapted for

imaging other hyperpolarized 13C metabolites such as pyruvate and bicarbonate.

4.2 Introduction

The MR signals of hyperpolarized [1-13C]pyruvate (173 ppm) and its downstream metabolites

- [1-13C]lactate (185 ppm), [1-13C]pyruvate hydrate (181 ppm), [1-13C]bicarbonate (163 ppm)

and [1-13C]alanine (178 ppm) - are typically acquired using gradient echo (“GRE”) sequences

(CSI[14], multi-echo IDEAL[45, 59], metabolite specific EPI[7, 15] or spiral[26] acquisition)

where the transverse magnetization is spoiled at the end of each repetition time. Compared

to GRE acquisitions, the balanced steady state free precession (“bSSFP”) [54] sequence

can acquire the nonrenewable hyperpolarized magnetization more efficiently by repetitively

refocusing transverse spins, which is especially valuable for imaging metabolites with long

T2s such as [1-13C]pyruvate or [1-13C]lactate [28, 36, 34, 35, 52].

Our work focuses on improving lactate imaging with hyperpolarized [1-13C]pyruvate in-

jections using a bSSFP framework. Three bSSFP strategies for lactate imaging have been

proposed in prior works. The first strategy [28] utilized a broadband pulse to excite all com-

ponents (i.e. pyruvate, lactate, bicarbonate, alanine, pyruvate-hydrate) in [1-13C]pyruvate

studies and decomposed the spectral information using multi-echo readouts. By acquiring

all compounds at one time, this strategy limits the acquisition optimization (e.g. flip an-

gle, resolution) for individual compounds and requires longer acquisition times if not all the

compounds in the spectrum are of interest.

The second strategy [35] reduced the number of excited compounds - only exciting lactate,

pyruvate hydrate and alanine - and applied a saturation pulse to suppress undesired signals

from alanine and pyruvate hydrate at the beginning of each bSSFP acquisition. There
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are three main drawbacks in this strategy. Since the conversion between pyruvate hydrate

and pyruvate maintains an equilibrium in the liquid state [41], the pre-saturated pyruvate

hydrate signal may recover fast enough to contaminate lactate acquisitions at later bSSFP

echoes. Directly saturating pyruvate hydrate would also accelerate the loss of pyruvate

magnetization and thus reduce the signals of downstream metabolites. In addition, the

saturation performance may be imperfect in the regions where transmit B1 profile is not

homogeneous.

The third strategy [52] excited one metabolite at a time (i.e. metabolite specific excita-

tion) and was applied for imaging [1-13C]urea, [1-13C]pyruvate and [1-13C]lactate with the

bSSFP sequence on a 14.1T scanner. To meet the constraint of a short TR required in

bSSFP sequences, this strategy designed a multiband RF pulse using a convex optimization

approach [51]. Compared with single-band RF pulses, multiband RF pulses could potentially

shorten the RF duration by releasing the constraints on frequency ranges of no interest. Our

work adapted this strategy to a clinical 3T scanner.

This chapter presents a novel metabolite specific 3D bSSFP sequence (”MS-3DSSFP”)

with stack-of-spiral readouts for improved dynamic lactate imaging in hyperpolarized [1-

13C]pyruvate studies on a clinical 3T scanner. A lactate specific excitation pulse was de-

veloped using a previously described approach [51]. Stack-of-spiral readouts were used to

accelerate the acquisition. The excitation profile of the newly designed RF pulse at the

bSSFP state was simulated to investigate the banding artifacts and to examine the spectral

selectivity of the RF pulse. Thermally polarized 13C phantom experiments were performed to

validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13C]pyruvate experiments were

performed on healthy rats, prostate cancer mouse model and patients with renal tumors to

compare the MS-3DSSFP sequence with metabolite specific GRE (”MS-GRE”) sequences, in

the aspects of signal-to-noise ratio (SNR), image artifacts and impact on other metabolites.
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4.3 Methods

4.3.1 Sequence design and simulation

The MS-3DSSFP sequence (Fig. 4.1) consists of a multiband RF pulse and a center-out 3D

uniform-density stack-of-spiral readout. The RF pulse was designed using a prior approach

[51] to minimize the pulse duration. This pulse had a duration of 9ms, a maximum B1 of

0.2195G, a 40Hz passband on lactate (0Hz), a 40Hz stopband with 5% ripples on pyruvate

hydrate (-128Hz) and 40Hz stopbands with 0.5% ripples on bicarbonate (-717Hz), pyruvate

(-395Hz) and alanine (-210Hz). The 3D stack-of-spiral trajectory consists of 16 stacks and

each stack consists of four 3.8ms interleaves. All gradients have zero net area over the course

of one repetition. A 6 pulse non-linear ramp preparation scheme (i.e. 4o, 16o, 24o, 36o,

48o, 60o for a flip angle of 60o) was used to achieve a stable frequency response while the

reverse-ordered pulses were used for tip back. The MS-3DSSFP sequence was implemented

on a GE Signa MR 3T scanner (GE Healthcare, Waukesha, WI) using a commercial software

(RTHawk, HeartVista, Los Altos, CA).

In the bSSFP sequence, TR determines the frequency locations of banding artifacts, which

occur at repetitions of 1/TR. A TR of 15.3ms was used for the MS-3DSSFP sequence to

maximize the distance between banding artifacts and metabolite frequencies. The excitation

profiles of the RF pulse and its averaged transverse magnetization over all echoes of bSSFP

acquisitions were simulated. Simulation parameters were: number of RF pulses = 50, TR =

15.3ms, T1 = 30s, T2 = 1s, 6 non-linear ramp preparation pulses, flip angle = 60o.

The choice of flip angle for the bSSFP sequence in the hyperpolarized study is a tradeoff

between banding artifacts and preserving magnetization for dynamic imaging. Prior bSSFP

work [43] has shown a favorable use of large flip angle (>100o) to reduce banding artifacts.

However, to perform dynamic imaging in hyperpolarized studies, a small flip angle around

30o in MS-GRE acquisitions [37] (equivalent to 60o in the bSSFP sequence) was required to

maintain sufficient SNR for multiple time points. In our work, we used a flip angle of 60o to

achieve a compromise between the two considerations.
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Figure 4.1: Pulse sequence of the proposed MS-3DSSFP sequence (a). It consists of a
lactate specific excitation pulse and a 3D center-out stack of spiral readout (c). Each stack
(b) consists of four interleaves. The details of the excitation pulse are described in Fig. 4.3.

4.3.2 Phantom and Animal Experiments

To test the MS-3DSSFP sequence, phantom experiments were performed on a 13C-enriched

sodium bicarbonate syringe phantom (T1 ≈ 26s, T2 ≈ 1.5s) with a dual-tuned 1H/13C

transceiver birdcage coil. 3D images of the phantom were acquired along with proton images

and field maps. To test the excitation profile, 13C images were also acquired at the frequencies

of lactate, pyruvate hydrate, alanine, pyruvate and bicarbonate. At the frequency of each

metabolite, 13C images were acquired at the frequency offsets from -30 to 30 Hz with a step

of 10Hz.

Hyperpolarized [1-13C]pyruvate animal experiments were performed on healthy Sprague-

Dawley rats (N = 3) and transgenic adenocarcinoma of mouse prostate (TRAMP) mice (N

= 3) to test our MS-3DSSFP sequence in vivo. 13C/1H birdcage coils (8cm diameter for

rats, 5cm diameter for mice) were used. All animal studies were conducted under protocols
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approved by the University of California San Francisco Institutional Animal Care and Use

Committee (IACUC). Both rats and mice were anesthetized with isoflurane (1-2%) and

placed in a supine position on a heated pad throughout the duration of the experiments.

[1-13C]pyruvic acid (Sigma Aldrich, St. Louis, MO) mixed with 15mM trityl radical (GE

Healthcare, Waukesha, WI) and 1.5mM Gd-DOTA (Guerbet, Roissy, France) was polarized

in a 3.35T SPINlab polarizer (GE Healthcare, Waukesha, WI) at 0.8K for ∼1h, resulting in

a 80mM [1-13C]pyruvate solution, with final pH of 6-8. The hyperpolarized [1-13C]pyruvate

was injected into the animal via tail vein catheters, ∼3mL for each rat and ∼350µL for the

mouse.

Hyperpolarized 13C sequence parameters for animal experiments are shown in Table 4.1.

Each animal received two injections of same dose of [1-13C]pyruvate. Lactate signals were

acquired using the MS-3DSSFP sequence in one injection (”experiment A”) but using a 3D

MS-GRE sequence (described below) in the other injection (”experiment B”). Pyruvate and

alanine signals were acquired using the same 3D MS-GRE sequence in both injections. This

experiment design where different acquisitions were used for lactate while same MS-GRE

acquisitions were used for pyruvate and alanine allows comparing the MS-3DSSFP sequence

with a MS-GRE sequence for lactate imaging, as well as examining the perturbation of

the MS-3DSSFP sequence on pyruvate and alanine signals. Bicarbonate signals were not

acquired due to its inherently lower signals which would not provide sufficient signals to

compare between the two sequences.

The 3D MS-GRE sequence consists of a single-band spectral-spatial excitation (130Hz

FWHM passband, 870Hz stopband) [16] and stack-of-spiral readouts. Each stack was a 22ms

single-shot spiral readout. The two injections shared the same spatial resolution, temporal

resolution and number of time points. The 3D MS-GRE sequence used 16 excitations for a 3D

encoding and each excitation pulse used a flip angle of 7.67o so that the equivalent flip angle

of these 16 excitations was the same as a 60o flip angle used in the MS-3DSSFP sequence. The

effective flip angle θeq of N excitations with a flip angle of θ for each excitation is calculated

as arccos(cos(θ)N). Initial pre-scan frequency and power calibration were performed on a 13C

urea phantom which was removed before pyruvate injection. All acquisitions were started

6s after the end of pyruvate injection. For each experiment, a 13C frequency spectrum

was acquired and real-time 13C B1 calibration [55] was performed right before metabolite
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Table 4.1: 13C sequence parameters used in rat, TRAMP and human studies with hyperpo-
larized [1-13C]pyruvate injection. For the same subject, two experiments (A and B) would be
performed back-to-back for comparison. In experiment A, lactate signals were acquired with
the metabolite specific 3D SSFP (MS-3DSSFP) sequence while pyruvate and alanine signals
were acquired with the metabolite specific GRE (MS-GRE) sequences. In experiment B, all
three metabolites were acquired with MS-GRE sequences. In TRAMP mouse studies and
one of the human study, experiment B was performed first. In other studies, experiment A
was performed first.

acquisition.

For rat experiments, an anatomical localizer was acquired using proton 3D bSSFP se-

quence (FOV 16 × 16 × 17.92cm, Matrix size 256 × 256 × 112). For the TRAMP mice

experiment, an anatomical localizer was acquired using proton T2-weighted fast spin echo

sequence (FOV 6 × 6cm, Matrix size 512 × 512). For all animal experiments, a B0 map was

acquired using IDEAL IQ sequence (FOV 32 × 32cm, Matrix size 256 × 256).
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4.3.3 Human study

Hyperpolarized [1-13C]pyruvate human studies (N = 2) were performed to demonstrate the

feasibility of applying the MS-3DSSFP sequence in a clinical settings (4.1). Patients with

renal tumors that required surgical removal were recruited with institutional review board

approval and provided with written informed consent for participation in the study. An In-

vestigational New Drug approval was obtained from the U.S. Food and Drug Administration

for generating the agent and implementing the clinical protocol. 1.47g of Good Manufac-

turing Practices (GMP) [1-13C]pyruvate (Sigma Aldrich, St. Louis, MO) mixed with 15mM

electron paramagnetic agent (EPA) (AH111501, GE Healthcare, Oslo, Norway) was polar-

ized using a 5T SPINlab polarizer (General Electric, Niskayuna, NY) for 3h before being

rapidly dissolved with 130oC water and forced through a filter that removed EPA. The solu-

tion was then collected in a receiver vessel and neutralized with NaOH and Tris buffer. The

receive assembly that accommodates quality-control processes provided rapid measurements

of pH, pyruvate and EPA concentrations, polarization, and temperature. In parallel, the

hyperpolarized solution was pulled into a syringe (Medrad Inc, Warrendale, PA) through a

0.2µm sterile filter (ZenPure, Manassas, VA) and transported into the scanner for injection.

The integrity of this filter was tested in agreement with manufacturer specifications prior to

injection. A 0.43mL/kg dose of ∼250mM pyruvate was injected at a rate of 5mL/s via an

intra-venous catheter placed in the antecubital vein, followed by a 20mL saline flush.

In human studies, 13C kidney images were acquired with in-house built clamshell transmit

coil and 8-channel paddle receive array [57]. 13C sequence parameters for this study are

presented in Table 4.1. Similar to the experiment design in animal experiments, the patient

received two injections to compare the MS-3DSSFP sequence with MS-GRE sequences. The

MS-GRE sequence used in this study was a multi-slice 2D MS-GRE sequence with the same

excitation pulse and the same single-shot spiral readout as used in the animal studies. 13C

dynamic imaging was started 6s after the bolus arrival in kidney which was monitored by a

bolus tracking sequence [55]. Initial pre-scan frequency and power calibration were performed

on 13C urea phantom attached outside the receive coil, which was removed before pyruvate

injection. Real-time 13C frequency and power calibration [55] were performed on the renal

tumor and triggered upon bolus arrival. Proton anatomical reference images were acquired
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with a 4 channel paddle receive coil, using a 2D SSFSE sequence with FOV 38 × 38cm,

matrix size 512 × 512.

4.3.4 Reconstruction and Data Analysis

For all studies, gridding of k-space data were performed using Kaiser-Bessel gridding method

[20] (http://web.stanford.edu/class/ee369c/mfiles/gridkb.m) with an oversampling factor of

1.4 and a kernel width of 4.5. The gridded k-space data is zero-filled by a factor of 2,

applied with a 2D fermi filter and inverse Fourier transformed to the reconstructed image.

Multi-channel data were combined by using pyruvate signals as coil sensitivity maps [65].

Area-under-the-curve (AUC) images were calculated by summing the complex data through

time. Signal-to-noise ratio (SNR) was calculated as signal magnitude divided by the mean

of noise magnitude. Lactate-to-pyruvate AUC ratio images were calculated by dividing the

SNR of lactate AUC images by the SNR of pyruvate AUC images. To compare AUC of a

metabolite between experiment A (pyruvate/alanine: MS-GRE; lactate: MS-3DSSFP) and

experiment B (pyruvate/lactate/alanine: MS-GRE) (Table 4.1), SNR of the AUC images

was calculated and then divided by the SNR of pyruvate AUC images acquired in the same

experiment. To compare dynamic curves of a metabolite between experiment A and experi-

ment B, SNR of each time point was calculated and then divided by the highest SNR of the

pyruvate dynamic curve acquired in the same experiment.

Signal levels of undesired metabolites in MS-3DSSFP lactate acquisitions were estimated.

First, the concentration ratio between an undesired metabolite and lactate was estimated

using the signals acquired from experiment B where all compounds were acquired with MS-

GRE sequences. Flip angle was compensated in the concentration ratio. Next, to estimate

the signal ratio between an undesired metabolite and lactate in MS-3DSSFP, the concen-

tration ratio was multiplied with MS-3DSSFP point spread function (PSF) amplitude ratio

between the undesired metabolite and lactate. The MS-3DSSFP PSF amplitude was cal-

culated by multiplying MS-3DSSFP excitation profile with the simulated PSF amplitude of

the MS-3DSSFP readout. The following equation describes the above calculation:

px =
Sx ∗ sin(θl) ∗ δx ∗ Ix

Sl ∗ sin(θx)
(4.1)
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where p is the signal level (%) of an undesired metabolite x in MS-3DSSFP lactate acquisi-

tions, l is lactate, S is the signal measured in experiment B, θ is the flip angle used in ex-

periment B, δ is the stopband amplitude of the excitation RF pulse used in the MS-3DSSFP

sequence, I is the central amplitude of the simulated off-resonance PSF of the interleaved

spiral readouts used in the MS-3DSSFP sequence. Pyruvate hydrate signals were assumed

to be as 8% of pyruvate signals [14]. Stopband amplitudes δ are described in pulse design:

0.5% for alanine, 0.5% for pyruvate and 5% for pyruvate hydrate. The off-resonance PSF

amplitudes I of the MS-3DSSFP readouts are obtained from simulations (Fig. 4.2): 0.327

for alanine, 0.191 for pyruvate and 0.701 for pyruvate hydrate.

4.4 Results

Simulated excitation profiles of the MS-3DSSFP sequence and its averaged transverse mag-

netization over all bSSFP echoes are shown in Fig. 4.3. Frequency bands and stopband

ripples of the excitation profiles were as desired. Most banding artifacts fell outside of the

desired frequency bands except one banding artifact which was observed 18Hz upfield from

the alanine frequency. In the simulation, the amplitude of this banding artifact was about a

third of the on-resonance peak, although its actual value in a hyperpolarized 13C pyruvate

study depends on the T1 and T2 of alanine as well as the conversion rate between pyruvate

and alanine.

Results of validating the MS-3DSSFP sequence on a [13C]bicarbonate syringe phantom

(T1 ∼= 26s, T2 ∼= 1.5s) with a rat birdcage coil are shown in Fig. 4.4. 13C images, proton

images and B0 maps scaled to 13C frequency were provided. The dash-line-boxed slice shows

a bright proton image but a dark 13C image. This is consistent with the large B0 variation

(-50Hz) at that slice corresponding to SSFP banding. Results of validating the excitation

profile of the bSSFP sequence on the phantom are presented in Fig. 4.5. Excitation profiles

measured from phantom experiments were found to be consistent with the simulation.

Results of representative hyperpolarized [1-13C]pyruvate experiments to compare the MS-

3DSSFP sequence with MS-GRE sequences using the experiment parameters in Table 4.1

are presented in Fig. 4.6 (rat), Fig. 4.7 (TRAMP mouse) and Fig. 4.8 (renal tumor pa-

tient). Comparing lactate AUC maps of the two experiments, no banding artifacts were
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Figure 4.2: Simulations of off-resonance PSF of the interleaved spiral readouts (4 inter-
leaves, 3.8ms for each interleaf) used in this study. Frequencies of metabolites are Lactate =
0Hz, Pyruvate Hydrate = -128Hz, Alanine = -210Hz, Pyruvate = -395Hz, Urea = -635Hz,
Bicarbonate = -717Hz.
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observed in the MS-3DSSFP results. This finding agrees with the homogenous B0 maps

found in most areas of rat kidneys, TRAMP tumors and human kidneys, although large

B0 variations are found near the tissue-air interfaces. In some tumor regions, lactate-to-

pyruvate AUC ratio maps reveal different contrasts between the two experiments, as shown

in Fig. 4.7 and Fig. 4.8. Compared to results of experiment B (pyruvate: MS-GRE; lac-

tate: MS-GRE), lactate-to-pyruvate AUC ratio map of experiment A (pyruvate: MS-GRE;

lactate: MS-3DSSFP) shows better alignment with the underlying T2 weighted proton im-

ages. This could be a result of T2 contrast provided by the MS-3DSSFP sequence. Higher

values of lactate-to-pyruvate AUC ratio map are found in experiment A compared to ex-

periment B, demonstrating the MS-3DSSFP sequence provides higher SNR over MS-GRE

sequences. AUC maps of pyruvate and alanine show consistent contrast between the two

experiments, demonstrating minimal perturbation of the newly designed MS-3DSSFP RF

pulse on pyruvate and alanine.

Representative dynamic curves of lactate, pyruvate and alanine signals are presented in

Fig. 4.9 acquired with experiment parameters described in Table 4.1. Metabolites signal

ratios between the two experiments are presented in Fig. 4.13. Compared with MS-GRE

sequences, the MS-3DSSFP sequence shows an overall approximately 2.5X SNR improvement

and demonstrates higher SNR performance at every time point for lactate imaging in rat

kidneys, tumors of TRAMP mice and human kidneys. Comparing AUC between the two

experiments, there is almost no difference in pyruvate and a 5% to 20% difference in alanine

AUC, which demonstrates the lactate spectral selectivity of the MS-3DSSFP sequence.

Signal levels of undesired metabolites (i.e. pyruvate and alanine) in MS-3DSSFP lactate

acquisitions were quantified in three types of ROIs: rat kidneys, tumors of TRAMP mice and

human kidneys (Table 4.2). The highest signal contribution from undesired metabolites was

found in rat kidneys - 0.05% from alanine, 1.14% from pyruvate and 3.36% from pyruvate

hydrate, where 1% means that the ratio between the undesired metabolite and lactate is

0.01.
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Figure 4.3: Simulated excitation profiles of the excitation pulse alone (blue) and its averaged
transverse magnetization over all echoes of a bSSFP acquisition (red). An overall view of
the profile is shown in graph (a) and graph (b). Zoomed views (±40Hz) of excitation profiles
around each metabolite are shown in graph (c) and graph (d). The excitation pulse has
a 40Hz passband on lactate (0Hz), a 40Hz stopband of 5% maximum ripple on pyruvate
hydrate (-128Hz) and 40Hz stopbands of 0.5% maximum ripples on bicarbonate (-717Hz),
pyruvate (-395Hz) and alanine (-210Hz). Simulation parameters for bSSFP acquisitions
include: number of RF pulses = 64, TR = 15.3ms, T1 = 30s, T2 = 1s, 6 non-linear ramp
preparation pulses, flip angle = 60o

[H]
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Figure 4.4: Validation of the MS-3DSSFP sequence on a [13C]bicarbonate syringe phantom
(T1 ∼= 26s, T2 ∼= 1.5s) with a rat birdcage coil. 13C images were acquired at 8 × 8 ×
20mm and reconstructed at 4 × 4 × 20mm. Bright spots at the bottom of proton images are
the water pad in the coil. B0 maps are shown at 13C frequency. The dash-line-boxed slice
shows a bright proton image but a dark 13C image, consistent with the large B0 variation
(-50Hz) at that slice.
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Figure 4.5: Validation of the MS-3DSSFP sequence on a 13C-enriched sodium bicarbonate
phantom (T1 = 26s, T2 = 1.5s). 13C images were acquired at the frequencies of lactate
(“Lac”), pyruvate hydrate (“Pyrh”), alanine (“Ala”), pyruvate (“Pyr”) and bicarbonate
(“Bic”). For each metabolite, 13C images were acquired at the frequency offsets from -30 to
30 Hz with a step of 10Hz. All 13C images were acquired at 8 × 8 × 20mm and reconstructed
at 4 × 4 × 20mm. The mean value of the phantom area for each image is normalized by
the value of the lactate image at zero frequency offset and plotted in graph (b). Simulation
results from Fig. 4.3 are also displayed here for comparison.
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Figure 4.6: Comparison of the MS-3DSSFP sequence with a 3D MS-GRE sequence on
a healthy rat with hyperpolarized [1-13C]pyruvate injections using experiment A (pyru-
vate/alanine: MS-GRE; lactate: MS-3DSSFP) and experiment B (pyruvate/lactate/alanine:
MS-GRE). Experiment parameters are described in Table 4.1. AUC maps of each metabo-
lite are displayed windowed to the maximum signal across slices. B0 maps were thresholded
using a mask removing the pixels with SNR lower than 3 in the water magnitude images.
B0 maps colorbar is displayed at the bottom. Lactate-to-pyruvate AUC ratio maps of the
kidney slices are shown and thresholded using a mask removing the pixels with SNR lower
than 3 in the lactate or pyruvate magnitude image.
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Figure 4.7: Comparison of the MS-3DSSFP sequence with a 3D MS-GRE sequence on a
TRAMP mouse prostate tumor with hyperpolarized [1-13C]pyruvate injections using ex-
periment A (pyruvate/alanine: MS-GRE; lactate: MS-3DSSFP) and experiment B (pyru-
vate/lactate/alanine: MS-GRE). Experiment parameters are described in Table 4.1. AUC
images of each metabolite, and lactate-to-pyruvate AUC ratio images and B0 maps are
shown. B0 and AUC ratio maps are thresholded the same way as described in Fig. 4.6. B0
maps colorbar is displayed at the bottom.
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Figure 4.8: Comparison of the MS-3DSSFP sequence with a multi-slice 2D MS-GRE sequence
in the kidneys of a patient with a renal tumor with hyperpolarized [1-13C]pyruvate injections
using experiment A (pyruvate/alanine: MS-GRE; lactate: MS-3DSSFP) and experiment B
(pyruvate/lactate/alanine: MS-GRE). Experiment parameters are described in Table 4.1.
AUC images of each metabolite, and lactate-to-pyruvate AUC ratio images and B0 maps are
shown. B0 and AUC ratio maps are thresholded the same way as described in Fig. 4.6. B0
maps colorbar is displayed at the bottom.
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Figure 4.9: Representative dynamic curves of lactate, pyruvate and alanine signals acquired
in experiment A (pyruvate/alanine: MS-GRE; lactate: MS-3DSSFP) and experiment B
(pyruvate/lactate/alanine: MS-GRE). Experiment parameters are described in Table 4.1.
All signals were divided by corresponding noise signals and then divided by the highest
value of the pyruvate dynamic curve for normalization. Corresponding dynamic images are
shown in Fig. 4.10, Fig. 4.11 and Fig. 4.12.
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Figure 4.10: Dynamic images and ROI signal curves of a rat kidney slice of the experiments
described in Fig. 4.6. Each image is displayed windowed to its own maximum signal to
visualize metabolites at all time points. All ROI signals were divided by corresponding noise
signals and then divided by the highest value of the pyruvate dynamic curv for normalization.
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Figure 4.11: Dynamic images and ROI signal curves of a TRAMP mouse tumor slice of
the experiments described in Fig. 4.7. Each image is displayed to its own maximum signal
to visualize metabolites at all time points. All ROI signals were divided by correspond-
ing noise signals and then divided by the highest value of the pyruvate dynamic curve for
normalization.
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Figure 4.12: Dynamic images and ROI signal curves of a human renal tumor slice of the
experiments described in Fig. 4.8. Each image is displayed to its own maximum signal
to visualize metabolites at all time points. All ROI signals were divided by correspond-
ing noise signals and then divided by the highest value of the pyruvate dynamic curve for
normalization.
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Figure 4.13: Metabolites AUC ratios and lactate ratios of dynamic curves at each time point
between experiment A (pyruvate/alanine: MS-GRE; lactate: MS-3DSSFP) and experiment
B (pyruvate/lactate/alanine: MS-GRE) at each time point. Experiment parameters are
described in Table 4.1. Data from rat kidneys, TRAMP tumors and human kidneys were
included in the summary with a criterion of SNR greater than 3. The averaged lactate ratios
are shown by the solid lines and ±1 standard deviations are shown by the dashed lines.
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Table 4.2: Estimated signal levels of off-resonance metabolites in lactate acquisitions using
the MS-3DSSFP sequence. Signal levels are estimated according to Eq. 4.1. A signal level
of 1% means that in a MS-3DSSFP lactate acquisition, the ratio between the off-resonance
metabolite and lactate is 0.01.
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4.5 Discussion

Metabolite Specific Excitation for bSSFP

We designed a multiband RF pulse (Fig. 4.1) under the constraint of short TR in a bSSFP

sequence to achieve spectrally selective excitation on lactate while minimally perturbing

other metabolites on a clinical 3T scanner. The 9ms pulse duration was primarily determined

by the frequency difference between lactate and pyruvate hydrate (128Hz at 3T) which has

the closest frequency to lactate among all compounds in hyperpolarized [1-13C]pyruvate

studies. The newly designed RF pulse had a maximum power of 0.2195G and we didn’t see

specific absorption rates (SAR) issues in our studies.

Our MS-3DSSFP sequence can be easily adapted to image [1-13C]pyruvate or [1-13C]bicarbonate.

Because these two metabolites have larger frequency differences from other compounds com-

pared to the frequency difference of lactate to pyruvate hydrate, it is guaranteed to find

a solution of metabolite specific excitation pulse for [1-13C]pyruvate or [1-13C]bicarbonate

while meeting the TR requirement in our studies. In contrast, it is challenging to design a

metabolite specific excitation pulse for imaging alanine, which has a frequency difference of

82Hz (at 3T) to pyruvate hydrate, much closer than the frequency difference between lactate

to pyruvate hydrate.

Spiral bSSFP vs Cartesian bSSFP

Spiral readouts were used in the MS-3DSSFP to accelerate the acquisition. All prior HP 13C

bSSFP work used Cartesian readouts, which brought challenges to acquire enough data for

multiple metabolites in dynamic imaging. For example, whole human brain HP 13C imaging

typically uses a matrix size of 16 × 16 × 16 and a FOV of 24 × 24 × 24 cm. Assuming

a TR of 15ms, 3D Cartesian readouts need 16 × 16 × 15ms = 3.84s to cover a volume

for one metabolite, which would result in insufficient temporal resolution when more than

one metabolite needs to be acquired. Given the relatively small matrix size, undersampling

strategies will only achieve limited acceleration, therefore fast imaging readouts are pre-

ferred[10]. Under the same requirement of matrix size and FOV, stack-of-spiral readouts

using two interleaves per stack could achieve an acquisition time of 2 × 16 × 15ms = 0.48ms
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and an even larger matrix size (24 x 24 x 24), assuming a 3.8ms readout time for each spi-

ral interleaf (same as what we used in this study), a 5 G/cm maximum gradient and a 20

G/cm/ms maximum slew rate.

The center k-space of the spiral readout is not at the center of the TR, which may cause

a slight SNR loss compared to Cartesian readouts. Assuming a spiral readout duration of

3.8 ms as used in our studies and a T2∗ of 50 ms, the SNR loss of missing the center of the

TR will be 1-exp(-1.9/50) = 4%.

MS-3DSSFP vs MS-GRE

By comparing the results of two experiments whose experiment parameters are shown in

Table 4.1 (experiment A: MS-3DSSFP for lactate, MS-GRE for pyruvate/alanine; experiment

B: MS-GRE for lactate/pyruvate/alanine.), we assessed the performance of the MS-3DSSFP

sequence in the aspects of SNR, contrast, banding artifacts, artifacts by exciting undesired

metabolites and impact on acquisition of other metabolites. These issues will be discussed

in the following paragraphs.

To fairly compare SNR between the MS-3DSSFP sequence and MS-GRE sequences, we

used the same spatial resolution, starting time of acquisition, temporal resolution and number

of time points. The effective flip angle (see definition in Methods) of the MS-GRE sequence

was the same as the flip angle used in the MS-3DSSFP sequence. Readout durations of

the two sequences were not matched since T2∗ limits the readout duration of a MS-GRE

sequence. Compared with MS-GRE sequences, our MS-3DSSFP sequence has shown an

overall 2.5-fold SNR improvement (Fig. 4.9 and Fig. 4.13) for dynamic lactate imaging in

hyperpolarized [1-13C]pyruvate studies. The SNR improvement ratio would increase with

increasing T2 (Fig. 4.14). Besides utilizing T2, other features of the MS-3DSSFP sequence

could also contribute to the SNR improvement, including the shorter echo time due to shorter

RF pulse and shorter spiral readout time which results in less signal reduction caused by B0

inhomogeneity.

Compared with MS-GRE sequences, the MS-3DSSFP sequence can also provide T2 con-

trast for tissue characterization. In our studies, such contrast differences are observed in

some tumor regions in lactate-to-pyruvate AUC ratio maps as shown in Fig. 4.7 and Fig.
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Figure 4.14: Simulation of bSSFP SNR as a function of T2, assuming SNR is 1 when T2
is 1s. Simulation parameters include T1 = 30s, TR 15.3ms, # of time points 30, # of RF
pulses 64.
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4.8.Parameters of the MS-3DSSFP sequence (e.g. flip angle, TR) could be explored to enable

jointly estimating lactate T2 and pyruvate-to-lactate conversion rate.

Excitation profiles of a bSSFP sequence are determined by both the excitation profile

of the RF pulse and banding artifacts governed by the chosen TR. Two types of image

artifacts could be a result of excitation profiles of a bSSFP sequence: the null-signal banding

artifacts of metabolites of interest (in frequency ranges with high flip angles) and artifacts

by exciting undesired metabolites (in frequency ranges with low flip angles). Comparing in

vivo lactate AUC results (Fig. 4.6, Fig. 4.7, Fig. 4.8) of MS-GRE and MS-3DSSFP, no null-

signal banding artifacts are found in the MS-3DSSFP results. In some peripheral regions

of TRAMP tumors (Fig. 4.7) where large B0 variations are noted, both MS-GRE and MS-

3DSSFP sequences shows hypointense signals in AUC maps of pyruvate and lactate but show

hyperintense signals in pyruvate-to-lactate AUC ratio maps. This indicates that both MS-

GRE and MS-3DSSFP sequences are sensitive to B0 inhomogeneity although reasons could

be different.For MS-3DSSFP, the reason is reduced excitation due to a narrow excitation

bandwidth (40Hz). For MS-GRE, reduced excitation could also be a reason although this

is expected to be not as bad as MS-3DSSFP, and another reason could be reduced signal

due to long spiral readouts (22ms), which can be improved by using proper off-resonance

correction [40, 32].

Exciting undesired metabolites would cause both artificially elevated lactate signals and

ring-shaped artifacts. Simulation (Fig. 4.2) shows that for the interleaved spiral readouts

used in our studies, artifacts from pyruvate hydrate and alanine mostly stay in the center

of the point spread function while artifacts from pyruvate, urea and bicarbonate are spread

out, which will cause ring-shaped artifacts. No ring-shaped artifacts were observed in the

MS-3DSSFP images. Signal levels of undesired metabolites (i.e. pyruvate and alanine) in

MS-3DSSFP lactate acquisitions were summarized in Table 4.2. These signal levels could be

higher if acquisition starts early when pyruvate and pyruvate hydrate signals are high while

lactate signals have yet to build up.

Exciting undesired metabolites would also sacrifice their magnetization and reduce their

signals. Comparing AUC results between the two experiments (Fig. 4.13), there is almost

no difference in pyruvate and a 5% to 20% difference in alanine AUC. The cost in alanine

signals is consistent with the simulation (Fig. 4.3) and phantom (Fig. 4.5) results where
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a banding artifact is identified 18Hz upfield from alanine frequency. Therefore, it is more

robust to apply our MS-3DSSFP sequence for imaging ROIs with low alanine production

such as most tumors, kidney or brain.

Interleaving Different Sequences In One Injection

In hyperpolarized 13C studies, signals of different metabolites are usually acquired using the

same sequence so that results reveal the contrast of metabolite concentration. In our studies,

we developed a method of imaging different metabolites using different sequences in one

injection, i.e., imaging lactate using MS-3DSSFP while imaging pyruvate and alanine using

MS-GRE. This method is achieved by using commercial software (RTHawk, HeartVista, Los

Altos, CA) where interleaving different sequences are allowed. It could potentially provide

multiple contrasts for multiple metabolites in a single injection, whereas the same purpose

could possibly be achieved by using a MR-Fingerprinting type of acquisition[29].

Precautions of Performing MS-3DSSFP Experiments

To run the MS-3DSSFP sequence, several issues need to be carefully handled. As discussed

before, the RF pulse used in the MS-3DSSFP sequence has a narrow bandwidth (40Hz) and

real-time frequency calibration [55] is crucial to the robustness of this sequence. Furthermore,

the multiband RF pulse used in this study does not avoid exciting urea, therefore, it is

suggested to remove urea phantom which was typically used in pre-scan frequency and power

calibration, otherwise there could be spiral off-resonance artifacts from urea signals. Finally,

the multiband RF pulse was not slice-selective, therefore the field of view along the slice

direction needs to be as large as the extent of 13C receive coils.

4.6 Conclusion

This work described a novel 3D bSSFP sequence that integrates a lactate specific excitation

pulse and stack-of-spiral readouts for improved lactate dynamic imaging in hyperpolarized

[1-13C]pyruvate studies on a clinical 3T scanner. Compared with MS-GRE sequences, the

MS-3DSSFP sequence showed an overall 2.5X SNR improvement for lactate imaging in rat
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kidneys, tumors of TRAMP mice and human kidneys. Future work will include exploring

joint estimation of lactate T2 and pyruvate-to-lactate conversion rate, extending the ap-

plications of the proposed sequence for imaging regions with acceptable B0 homogeneity

such as human brain, as well as imaging other metabolites (e.g. pyruvate, bicarbonate) in

hyperpolarized [1-13C]pyruvate studies.
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Chapter 5

Metabolite Specific Multi Spin-Echo

Sequences for Hyperpolarized 13C

MRI

5.1 Introduction

The long T2 relaxation time of 13C-labeled metabolites at clinical field strengths (e.g. lactate

T2 ∼0.5s-2s at 3T[63, 44, 34]) allows for efficient use of hyperpolarized signal by sampling

data at repetitively refocused spin echoes. Besides bSSFP sequences as discussed in the

previous chapter, sequences with fast spin echo (FSE) type of acquisitions[58] have been

also explored to improve the efficient use of hyperpolarized signal. Different from bSSFP

sequences where refocusing pulses could use arbitrary flip angle and net gradient areas are

always zero between two neighboring refocusing pulses, FSE sequences use a pair of identical

crusher gradients applied before and after each refocusing pulse typically with a flip angle of

180o. Compared with bSSFP sequences, FSE sequences are substantially less sensitive to B0

inhomogeneity, and have no constraint of short TR which allows a longer RF excitation pulse

to achieve a better metabolite specific excitation. Refocusing pulses of FSE sequences can be

either a Shinnar-Le Roux (SLR) pulse or an adiabatic inversion pulse. Compared with SLR

pulses, adiabatic refocusing pulses are B1 insensitive above the adiabatic threshold, which

is crucial for hyperpolarized 13C studies since any unnecessary excitation would cause loss
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of nonrenewable hyperpolarization. The disadvantages of adiabatic refocusing pulse are the

requirement of high RF power which is more likely to hit the specific absorption rate (SAR)

limit.

This chapter presents two metabolite specific multi spin-echo sequences where adiabatic

refocusing pulse and Shinnar-Le Roux (SLR) refocusing pulses were used respectively. In

the work using SLR refocusing pulses, varied crusher gradients were used to reduce the loss

of longitudinal hyperpolarized 13C magnetization.

5.2 A Metabolite Specific Multi Spin-Echo 2D

Sequence with Adiabatic Refocusing Pulse for

Hyperpolarized 13C MRI

This work presents a metabolite specific multi spin-echo sequence using adiabatic refocusing

pulse for improved SNR in hyperpolarized 13C imaging.

5.2.1 Methods

The proposed sequence (Fig. 5.1) consists of a single-band spectral-spatial (SPSP) pulse, a

spiral readout right after the excitation, and spiral in/out readouts at each spin echo formed

by a single adiabatic pulse.

The SPSP RF pulse[16] used in this study was designed to excite [1-13C]pyruvate and

[1-13C]lactate alternatively at 3T, with a passband of 120Hz and a stopband of 600Hz. The

design of adiabatic pulses (Fig. 5.2) was the same as the prior work[6], with stopband

ripples of <0.2% and a refocused bandwidth of ∼1.4kHz to refocus all metabolites in [1-

13C]pyruvate studies. At each spin echo, spiral-in and out readouts were used to improve

the TR efficiency. Spiral readouts are used to maximize spatial coverage. The spiral-in

gradient waveform was obtained by time reversing and negating the spiral-out waveforms

[13]. Both gradient echoes and spin echoes are acquired in the same excitation to maximize

the use of transverse magnetization and also allow direct comparison between gradient echo

acquisitions and multi spin-echo acquisitions.
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Figure 5.1: Overview of the proposed sequence which includes a single-band spectral-spatial
excitation pulse (passband FWHM 120Hz), a spiral readout (25ms) and spiral in/out read-
outs at each spin echo formed by a single adiabatic pulse (see Fig. 5.2). Four spin echoes
are used in this study.

In prior spin-echo 13C sequences, adiabatic pulses[6, 24] were always played out in pairs

to refocus the quadratic phase[5]. In this work, we analyzed the phase of refocusing using an

adiabatic pulse in response to frequency and RF power. We noticed that over a short range

of frequencies (Fig. 5.3a) and RF power (Fig. 5.3b), the variation of Mxy phase is small

enough to preserve sufficient signals. For example, reduction of Mxy amplitude is negligible

when averaged over a frequency range of ±10Hz and about 17% averaged over a RF power

range of ±5%. Within a spatial resolution (∼ 1cm) for 13C imaging, variations of frequency

and RF power are typically smaller than 10Hz and 5% respectively, thus sufficient signals

should be preserved at the spin echoes formed by a single adiabatic pulse.
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Figure 5.2: Amplitude (a) and phase (b) of adiabatic pulse used in this study (10ms, peak
B1 1.7G, refocusing bandwidth ∼1.4kHz, stopband ripple <0.2%). Inversion profile of this
adiabatic pulse is simulated in graph (c).

The proposed sequence for dynamic hyperpolarized 13C imaging was tested in vivo using

normal Sprague-Dawley rats with 13C/1H birdcage coils on a clinical GE 3T scanner. DNP

experiments used a HyperSense polarizer and 80mM [1-13C] pyruvate was injected. Two ex-

periments were performed with dynamic pyruvate and lactate imaging on rat kidneys, where

the first experiment acquired lactate data using the proposed sequence with one gradient

echo (GE) and four spin-echoes (SE) (nominal TE 80ms, 152ms, 244ms and 316ms) and the

second experiment only used the first spiral readout without any adiabatic pulses or spin echo

readouts. For both experiments, pyruvate signals were acquired using a single gradient-echo

spiral readout. Other experiment parameters included injection time 10s, FApyr 10, FAlac

40, TRpyr 2s, TRlac 2s, slice thickness 2cm, FOV 8 × 8cm, in-plane resolution 2.5 × 2.5

mm, 30 time frames for each metabolites. Bolus tracking and real-time B1 calibration [55]

using pyruvate signals from the left kidney were added prior to this acquisition to trigger

the sequence upon the bolus peak and achieve accurate center frequency and B1 power in

real time.

5.2.2 Results

Fig. 5.4 shows the results of two hyperpolarized [1-13C]pyruvate experiments on rat kidneys

(experiment 1: pyruvate GE, lactate GE + SE; experiment 2: pyruvate GE, lactate GE).
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Figure 5.3: Simulation of phase and corresponding transverse amplitude generated by a
single adiabatic pulse over a range of frequency (a) and power (b)with initial magnetizations
pointing to positive x axis. The mean magnetization amplitude over a range of 20Hz is about
1. Mean amplitude over a range of ±5% is about 0.83.

The results are magnitude images normalized by the noise standard deviation. Images of

experiment 2 were then rescaled to compensate for any polarization differences by equalizing

the peak pyruvate SNR of the left kidney to that in experiment 1.

As shown in Fig. 5.4a, a reasonable amount of SNR (∼50% as the gradient echo) was left

at the fourth spin-echo (nominal TE 316ms). Combined lactate images (Fig. 5.4a-b, Fig.

5.4e) were found to achieve higher SNR compared to GE-only images, with an improvement

as much as 2 fold at a single time frame. The combination of one GE and four SE images

had greater SNR than one GE for 30 s (15 acquisitions with a 2s temporal resolution).
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Figure 5.4: Results of two hyperpolarized [1-13C]pyruvate experiments in a normal rat us-
ing the sequence scheme shown in Fig. 5.1. (a-d) Pyruvate and lactate images over 15
acquisitions (temporal resolution = 2s). All images were normalized by their noise standard
deviation. Images of experiment 2 were also rescaled by equalizing its highest SNR with
that of experiment 1 to compensate for polarization difference between the two experiments.
Combination of gradient echo and all spin echoes data was performed by summing complex
images, after correcting the phase mismatch between the gradient echo, the odd and even
spin echoes. (e) Lactate and pyruvate SNR dynamics of left kidney, showing as much as
2-fold increase in lactate SNR when combining the gradient echo and all spin echoes.

A faster apparent decay rate was found in the pyruvate and lactate GE signals (Fig.

5.4e) in experiment 1. This could be possibly attributed to polarization saturation by adia-

batic pulses at the coil boundary where the adiabatic condition is not satisfied. Even with

this potentially partial saturation of magnetization at the coil boundaries, the proposed SE

method was still advantageous for imaging downstream metabolites (e.g. lactate) of pyruvate

because it provides greater SNR.
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5.2.3 Discussion

This work demonstrates improved SNR for hyperpolarized 13C imaging using a metabolite

specific multi spin-echo sequence with data acquisition at each spin echo formed by a single

adiabatic pulse. Since the image phases are different between odd echoes and even echoes,

such phase differences need to be compensated for before combining images at different

echoes. When extending this sequence to 3D acquisitions, phase encoding at odd echoes and

even echoes need to be grouped together separately for accurate reconstructions.

Timing is critical for the proposed sequence since power near the coil boundaries will go

below the adiabatic threshold and thus saturates inflowing spins in these regions. In this

study, the acquisition was prescribed to start at bolus peak to minimize saturating injected

bolus while ensuring most of injected bolus arriving at the imaging ROI. Spiral readouts

used in this study could be replaced with an echo-planar imaging trajectory which has less

spatial coverage but more robust to gradient imperfection.

Because the resulting phase of a single adiabatic pulse is sensitive to RF power and

frequency, moving spins that experience spatial B0 or B1 inhomogeneity during the refocusing

pulse train will have incomplete spin refocusing at even echoes and result in unwanted phase

accrual at later echoes. Therefore, it’s more robust to apply the proposed sequence for

imaging the static organs such as brain.

Extending the proposed sequence to clinical studies requires an adiabatic pulse with low

RF power. We were able to design an adiabatic pulse with maximum B1 of 0.4G (Fig.

5.5), stopband ripples of <1% and a bandwidth of 680Hz which is still able to refocus all

metabolites in [1-13C]pyruvate studies. We replaced the spiral in/out readouts with EPI

readouts and removed the first gradient echo acquisitions. On the same clinical 3T scanner,

the specific absorption rate (SAR) limit was reached when more than 16 adiabatic pulses

were used per 3.5s. Therefore, there is a limit for the number of adiabatic pulses being used

in a multi spin-echo sequences in clinical studies.

5.2.4 Conclusion

This work demonstrates an approach that incorporates multi spin echo acquisitions with

spiral in/out trajectories into dynamic hyperpolarized 13C MRI. The proposed method was
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Figure 5.5: Amplitude (a) and phase (b) of adiabatic pulse proposed for clinical study (12ms,
peak B1 0.4G, refocusing bandwidth ∼680Hz, stopband ripple <1%). Inversion profile of
this adiabatic pulse is simulated in graph (c).

found to achieve higher SNR over 15 dynamic acquisitions with a 2s temporal resolution.

Extending this method for clinical studies is challenging due to SAR limits. Future work

will focus on reducing the power of the adiabatic pulse.

5.3 A Metabolite Specific Non-CPMG Multi

Spin-Echo Sequence for Hyperpolarized 13C MRI

This work presents a metabolite specific GRASE sequence with Shinnar-Le Roux (SLR) re-

focusing pulses. Varied crusher gradients were investigated to reduce the loss of longitudinal

hyperpolarized 13C magnetization. This sequence met the clinical scanner limits and we

demonstrated the feasibility of applying this sequence for a brain hyperpolarized 13C MRI

study.

5.3.1 Methods

The proposed GRASE sequence (Fig. 5.6a) was implemented on the RTHawk system

(HeartVista, CA). A spectral spatial RF pulse[16] was used for excitation, followed by a

train of spectrally selective refocusing pulse (TBW 4.5, pulse duration 14ms) and EPI read-

outs. The refocusing pulse is designed to minimally perturb pyruvate signal while refocusing
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Figure 5.6: Pulse sequence waveforms for the GRASE sequence (a). A spectral spatial
pulse[16] was used for excitation, followed by a train of spectrally selective SLR (TBW
4.5, pulse duration 14ms, peak B1 0.3219G) refocusing pulse and symmetric EPI readouts.
Graph (b) shows the Mz profile of the refocusing pulse. A pair of crusher gradients was
placed before and after each refocusing pulse. Graph (c) demonstrates the varied crusher
gradients[42] used in this study.

lactate (Fig. 5.6b). A pair of crusher gradients was placed before and after each refocusing

pulse. Fig. 5.6c shows a varied crusher scheme[42], which has been used to eliminate the

stimulated echo pathway in the proton FSE sequences to improve the accuracy of T2 quan-

tification. In this study, we explored to eliminate stimulated echoes using this varied crusher

gradients to eliminate stimulated echoes in order to preserve the hyperpolarized longitudinal

magnetization.

Our studies were performed on a clinical GE 3T scanner. To compare constant crushers

with varied crushers, phantom experiments were performed with an enriched [13C] NaHCO3

phantom (T2 ∼1s, T1 ∼20s). For each crusher scheme, 2D acquisitions were performed using
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Figure 5.7: Comparison of phantom results between GRASE sequences using constant
crusher and varied crusher schemes. For each crusher scheme, 2D GRASE was performed
for four time points with a 30o flip angle. The same experiment was repeated at relative
RF powers of 90% (“b1=0.9”), 100%(“b1=1”) and 110%(“b1=1.1”), respectively. Phantom
magnitudes of the first echo were plotted over time points (a-b). Phantom phases at each
echo were plotted in (c-d). The difference of phantom phases between using 100% RF power
and other RF powers were plotted for each echo in (e-f).

the proposed GRASE (1s TR, 12 echoes) for four time points with a 30o flip angle. The

same experiment was repeated at a relative RF power of 90%, 100% and 110%, respectively.

Two hyperpolarized 13C experiments were performed on a tumor-bearing mouse with the

injection of [1-13C]pyruvate pre-polarized in a HyperSense DNP system. Each time point

has one 3D stack-of-EPI gradient-echo pyruvate acquisition and one single-shot 3D lactate

acquisition using the proposed GRASE (12 echoes). Constant and varied crushers were used

in the first and second experiment, respectively. At the end of the second experiment, lactate

signals were acquired without z phase encoding to measure the signal phase, which was used

for phase correction in 3D reconstruction. Scan parameters were: 3s temporal resolution,
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Figure 5.8: Results of 3D lactate images acquired using the proposed GRASE sequence
with constant crusher or varied crusher schemes. Pyruvate signals were acquired using a 3D
gradient echo sequence. ROI pyruvate signals and ROI lactate signals of the two experiments
were plotted over time points, and normalized to the signal at the first timepoint to account
for differences in polarization.

14×14×12 matrix size, 24mm excitation slab, 6o and 30o flip angle for pyruvate and lac-

tate, respectively, 3×3×4mm and 4×4×4mm resolution for the first and second experiment,

respectively.

To demonstrate the feasibility of applying the proposed sequence in clinical studies, a hu-

man brain study was performed with an injection of hyperpolarized [1-13C]pyruvate prepared

using a SPINlab polarized and methods described in a prior study[55]. Each time point had

one 2D gradient-echo pyruvate acquisition and one multiecho lactate acquisition using the

proposed GRASE (12 echoes) with varied crushers. Scan parameters were: 1.5×1.5×2cm

resolution, 24×24cm FOV, 3s temporal resolution, 20o and 30o flip angle for pyruvate and

lactate, respectively.

All experiments were triggered at bolus peak within the tissue of interest for real-time

frequency and B1 calibration[55].
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5.3.2 Results

Results of phantom studies are shown in Fig. 5.7. Faster signal decay is observed in exper-

iments using constant crushers (Fig. 5.7a) compared to using varied crushers (Fig. 5.7b),

indicating that eliminating stimulated echo path with varied crushers could reduce the loss

of the longitudinal magnetization. When RF power changes, varied crushers (Fig. 5.7f)

showed more stable phase over echoes than constant crushers (Fig. 5.7e). The robustness of

phase over echoes to RF power changes is necessary for applying phase encoding over echoes

when imaging inhomogeneous transmit B1 regions.

Results of animal studies using constant or varied crushers are shown in Fig. 5.8. 3D

lactate images of both experiments matches with the anatomical details and the 24mm

excitation slab which corresponded to 6 slices. As expected, similar decay rates are found

between gradient-echo pyruvate signals of the two experiments. A faster decay rate of lactate

signals was found in the experiment using a constant crusher gradient, which agrees with

phantom results discussed above.

Fig. 5.9 shows the dynamic 13C images of pyruvate, lactate and bicarbonate in the human

study. Combining images of echoes shows an improved SNR compared to a single-echo

image. Fig 5.10 shows lactate and bicarbonate T2 results in the human study. Bicarbonate

T2 values were predominantly about 500ms, while lactate T2 was substantially longer, with

half of lactate T2 values greater than 1000ms. The fitting examples in Fig. 5.10 demonstrate

the goodness of T2 fitting. Although the duration of the spin-echo train (440ms) of 12 echoes

is relatively short compared to the fitted T2 values (500-1500ms), our results still provide a

preliminary estimate of 13C lactate and bicarbonate T2 values in the human brain.

5.3.3 Discussion

In this work, we demonstrated using varied crusher gradients in fast spin echo sequences to

eliminate stimulated echo pathways and thus preserve nonrecoverable hyperpolarized mag-

netization. The same purpose could be possibly achieved by varied RF phases [46] over

TRs. Compared to varied RF phases, varied gradient amplitudes used in our study are more

sensitive to eddy currents and limited by maximum gradient capabilities. However, varied

RF phases takes seven echoes [46] for the preparation and thus nonrenewable hyperpolarized
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Figure 5.9: Results of 2D lactate and bicarbonate images acquired using the proposed
GRASE sequence with varied crusher. Images combined over echoes are also shown. 2D
Pyruvate images were acquired with a gradient echo sequence.

signals are lost due to T2 decay over the preparation period.

Although FSE using varied crusher gradients showed better robustness to B1 inhomo-

geneity compared to constant crusher gradients, there is still about a 25% acceleration in

loss of the longitudinal magnetization with B1 errors of 10%. This is due to the nature of

SLR refocusing pulses, which are sensitive to B1. Therefore, it is recommended to apply

the proposed sequence when the transmit B1 field is homogeneous, e.g., with a birdcage

coil. Large excitation flip angles are also recommended for use at the peak dynamic signal

of the metabolites to reduce the loss of longitudinal magnetization caused by imperfect B1.

Bolus tracking and real-time power calibration [55] can be used to monitor peak signal of

metabolites and accurately calibrate power.
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Figure 5.10: Results of lactate and bicarbonate T2 maps which were fitted using images of
the first time point shown in Fig. 5.9. Histograms of the measured T2 value are presented.
One voxel fitting example is shown for lactate and bicarbonate T2 maps, respectively.

5.3.4 Conclusion

A metabolite specific GRASE sequence using SLR refocusing pulses and varied crusher

gradients was developed for dynamic hyperpolarized 13C Imaging and demonstrated the fea-

sibility for use in human brain research. Compared to constant crusher gradients, varied

crusher gradients reduced the signal loss of the longitudinal magnetization. Signals of mul-

tiple echoes can either be used to encode a 3D volume, or to increase SNR or estimate T2

as a 2D multi-echo approach shown in this work. Future work will focus on optimizing the

refocusing pulses and understanding the phase evolution over echoes in the varied crushers

scheme.
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