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INTERACTIVE CORRESPONDENCE ANALYSIS IN
A DYNAMIC OBJECT-ORIENTED ENVIRONMENT

JASON BOND AND GEORGE MICHAILIDIS

ABSTRACT. A highly interactive, user-friendly object-oriented software package written in Lisp-
Stat is introduced that performs simple and multiple correspondence analysis, and profile analysis.
These three techniques are integrated into a single environment driven by a user-friendly graphical
interface that takes advantage of Lisp-Stat’s advanced graphical capabilities. Techniques that assess
the stability of the solution are also introduced. Some of the features of the package include colored
graphics, incremental graph zooming capabilities, manual point separation to determine identities
of overlapping points, and stability and fit measures. The features of the package are used to show
some interesting trends in a large educational dataset.

1. Introduction

Exploratory data analytic techniques have become increasingly popular over the last decade.
One of the main reasons for their popularity is that they are primarily intended to reveal features
in the data, by producing low dimensional maps in order to summarize the data, rather than to test
hypotheses about the underlying mechanism that generated the data. This practice is particularly
suitable for various fields in the social and biological sciences, where data practitioners are con-
fronted by large data sets, especially in terms of the number of variables involved, and therefore
a specific model is hard to postulate. However, most implementations of these techniques have
followed the example of other classical statistical methods, with lots of printed output, a few low
guality static graphs, and a batch processing mode. Obviously such programs are unsuitable for
these techniques that by nature require a high degree of interaction between the analyst and the
data , and also heavily depend on high quality graphical displays. Recent advances in computer
technology (dynamic real time graphics, menu driven programs, etc) have made possible a shift in
the development of statistical software towards truly interactive and dynamic environments. In this
paper we integrate three exploratory data analytic methods suitable for categorical data, namely
correspondence analysis of contingency tables, multiple correspondence analysis and analysis of
profiles into a program written in the Lisp-Stat language [27] that offers the user a high degree of
interaction with the data, high quality dynamic graphics, and the capability of assessing the stabil-
ity of the derived maps. The latter is usually an integral part of exploratory data analysis, since the
data analyst has to examine whether the discovered patterns are real or merely due to chance.

Date June 17, 1997.
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2. A Brief Account of Correspondence Analysis

Correspondence analysis (CA) is an exploratory multivariate technique that converts frequency
table data into graphical displays in which the rows and the columns of the table are depicted as
points. Mathematically, CA decomposes tifemeasure of association of the table into compo-
nents in a manner similar to that of principal component analysis for continuous data.

In CA no model is introduced, and no assumptions about the underlying stochastic mechanism
that generated the data at hand are made, contrary to the approach taken in logliner analysis [2],
one of the most frequently used alternatives for the analysis of multivariate categorical data. The
primary interestin CA is in the presentation of the structure of the observed data. This rationale has
been developed into an official principle by Beod and his co-workers [1]. CA can be traced back
in the work of Hirschfeld [14], although some of the basic ideas can be found in the work of Pearson
and his debate with Yule [5]. It has been rediscovered in various forms and in different contexts
in the work of Fisher [7], Guttman [12], Hayashi [13] and especially Beriatho paid special
attention to the geometric form of the method. Extensive accounts of the history of the technique
and its similarities and differences with other methods such as dual scaling, simultaneous linear
regressions, and canonical correlation are provided in the books by Nishisato [19] and Greenacre

[9].

We can distinguish betweesimpleCA (CA of contingency tables) andultiple CA, a gener-
alization of CA designed to handle more than two categorical variables.

2.1. Simple Correspondence AnalysisLetF be anl x J contingency table, whose entrigé, j)*
give the frequency with which row categargccurs together with column categoryLetr = Fu
denote the vector of row marginats= F’u the vector of column marginals addl= u'c = U'r the
total number of observations, wheuds the unit vector. LeD, = diag(r) denote the diagonal
matrix containing the elements of vectoandD. = diag(c) the diagonal matrix containing the
elements of vectoe.

Correspondence analysis is a technique with which it is possible to find a multidimensional
representation of the dependencies between the rows and the colurmngvefcan calculate the
so-calledy?-distances between rows, as well as between columnsy3-destance between rows
i andi’ of tableF is given by

2.1) (i)~ y EODI0- R )/r(i0)”
=i

c(])

1The(i, j) element of matriXA is denoted byA(i, j), theit" row by A(i,.) and thej™" column byA(., j). Similarly,
theit" element of a vectoa is denoted bya(i).
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Formula (2.1) shows th&f(i,i’) is a measure for the difference between the profiles of icawsl

i”. Whenever rows andi’ have the same profil&(i,i’) = 0. The difference between profilés

andi’ for columnj is divided byc(j), thus giving less influence to points for column categories
that have large marginals. The configurationl abw points is located in a Euclidean space of
dimensionl — 1. In that space, coordinatéscan be found so tha?(i,i’) would be the same as

the squared Euclidean distance between romrsdi’ of X. The profile of column marginakyj),

being the mean row profile, is the weighted average of the row points, where the row marginals
are used as weights, and is located in the origin of the spacex?Fftlistance concept can be used

in interpreting the configuration of points. It tells us that when two rows are close together, their
profiles must be similar and moreover they should be related in a similar manner to the columns.
On the other hand, whenever two rows are far apart, they are related in different ways to the
columns. When a row point is near the center of Xhgpace, its profile is similar to the profile of
column marginal€(j). Finally, when two row points are in opposite directions from the center,
they deviate in opposite ways from the profile of column marginals [11].

We would like to associate the configuratignwith the matrixF. DefineE = rc’/N. Note
that the elements d& have the fornE(i, j) =r(i)c(j)/N. We consider the singular value decom-
position (SVD) of the matrix

(2.2) Dy V2(F —E)Dg 2 = KAL,

with K'K = L'L = I, andA the diagonal matrix containing the singular values. The dimension-
ality of the solution equals m{h—1,J — 1). Matrix K contains scores corresponding to the row
categories. The scores are normalized to give

(2.3) X = NY2p; Y2k

so that,X'D;X = NI andu'D;X = 0. Since, CA is symmetric, we can also look at the column
categories, which after a suitable normalization are given by

(2.4) Y = NY2p 12

sothatY’D.Y = NI andu'D.Y = 0. Hence, in each dimension the row and the column scores have
a weighted variance of one and a weighted average of zero.

Given, the above solution for the row points, we can compute the column point configuration
as follows

(2.5) ¥ = NY2D;Y2LA = YA,
with the effect thal¥’D.Y = NAZ2. Similarly, for the row points we have that

(2.6) X = NY2D; 12K A = XA,
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so thatX’D, X = NAZ. Moreover, some algebra shows that

2.7) D; Y2(F —E)Dg Y2 = KAL' & D Y3(F —E)Ds 2L =KA &
Dy "?(F —E)Y/VN=KA &D; 1 (F—E)Y = VND; kA =X &
D, FY = X

where, the second relation follows from the fact thdt = I, the third from (2.4), and the last one
from the fact thaD; 1EY = D;}(D,uu/D¢)Y = uuD¢Y = 0. Similarly, we get that

(2.8) Y =D F'X.

Relations (2.7) and (2.8) are known as tfansition formulaeand can be used to interpret distances
between row and column points. When a row profile is equal to the average row profile, the first
relation shows that the row point will be at the weighted average of the columns, i.e. the origin of
the X space, and similarly for the column points. When for some colyrtire row profile value
F(i,j)/r(i) is larger than the avera@¢j), the column will attract the row point in its direction.

Regarding plotting the results, there are the following choices.

(1) Plot the pair()~<,Y), which shows that the row points are in the center of gravity of column
points. B
(1) Plot the pair(X,Y), which shows that the column points are in the center of gravity of row
points. o
(1) Plot the pair(X,Y).
(IV) Plot the pair(XAY2 YAY/2),

The last two options abandon the centroid principle present in the first two options. However,
using X as row scores (0¥ as column scores), distances between row points are equivalent to
x2-distances (similarly for column points). For this reason the third option that treats rows and
columns symmetrically is used most frequently in the French literature [11]. These options are
illustrated using Fisher's eye and hair color example [7] (for a description of this data set see
Appendix A). It is worth observing that options (Ill) and (IV) produce identical arrangements of
the points, and they are rescaled versions of each other, as expected.

D2 _

Using the fact that CA decomposes the mamxl/ (F —E)D¢ 7“ = KAL’, and using rela-

tions (2.3) and (2.4) we have
1 .
(2.9) D *(F ~E)Ds* = KAL' & DM (F — E)Dg " = - (NY?Dr V2KAL'DG 'NY?) «

1 1 1
D, '(F-E)Dt = JXAY & F = E+ 5D XAY'De = 5Dy (¢’ + XAY') D,
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Fisher’s Eye and Hair Color Example
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FIGURE 2.1. Upper Left: Normalization |, Upper Right: Normalization II, Bot-
tom Left: Normalization Ill, Bottom Right: Normalization IV (EL, EB, EM, ED:

light, blue, medium, dark eye color respectively; HF, HR, HM, HD, HB: fair, red,
medium, dark, black hair color respectively)
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which shows that CA decomposes the departure from independence in thefmath& usual test
for independence of a contingency table is given by Peag(éatatistic that is related to CA by

(2.10) trA% = x2/N,

which in the French literature is known as ttegal inertia [8]. Equation (2.10) shows that CA

also decomposes thg-statistic for testing independence of a contingency table. In closing, CA
performs a decomposition of the residuals of a contingency table in the absence of independence,
and the resulting picture allows a close inspection of the interactions between its rows and columns.

Remark 2.1. Passive rows and columnis some data analytic situations, one may want to exclude
certain rows or columns from the initial stage of the analysis, while still being able to inspect the
projections of such points onto the eventual CA maps. CA can easily accommodate such a situation
and a more complete account is provided in section 4.

2.2. Multiple Correspondence Analysis. In the presence of more than two categorical variables
we can proceed as follows. Suppose we have collected dateobjects (individuals, etc.) andl
variables, withk; categories per variable. L&; be aN x kj matrix with entriesG(i,t) =1, i =
1,...,N,t=1,...,kj, if objecti belongs to categoryof variablej, andG(i,t) = 0 if it belongs to
some other category. We denote®y- [G;|G;| . ..|G;| thesuperindicator matrix of all variables,
and byC = G'G the symmetric matrix known as the Burt table [8]. The Burt table contains all
the category marginals on the main diagonal and all possible cross-tablesJofahables in the
off-diagonal. MCA corresponds to performing simple CA on the Burt t&hlso the solution is
given by

(2.11) J7ID"Y2(C - DuuD/N)D Y2 = LA?L/,
where,D = diag(C). In this case the category points are given by
(2.12) Y = vVND Y2LA.

MCA can be thought of as the joint analysis of all the two-way tables composing the Burt table.
Hence, it uses the information contained in both the diagonal and off-diagonal blocks of the Burt
table. However, the diagonal blocks contain just the univariate marginals of each variable, and
do not contribute any information regarding associations of the variables. Each of these blocks of
perfect association has the highest inertia possible in a frequency matrix and corresponds geomet-
rically to the profiles coinciding with the vertices, since the profiles of a diagonal matrix are unit
vectors. The most apparent symptom of this problem is that the total inertia in an MCA is generally
high while the percentages of inertia along principal axes are invariably low, thus suggesting a bad
representation of the data. Possible alternatives to MCA of the Burt table are joint correspondence
analysis [10], a technique that only takes into consideration the off-diagonal blocks of the Burt
table, anchomogeneity analysighich jointly analyzes objects and variables, a version of which

is presented next.

2.3. Analysis of Profile Frequencies.The setup for the technique known in the literature as
ANAPROF [8] is the following. Consider the superindicator mat@xdefined in the previous
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section. In case the number of objettss much larger than the number of profiles (response
patterns) that occur in the data matrix, it is convenient to express the superindicator matrix as
G = GpS whereSis aqx ¥ jkj binary matrix withS(h,1) = 1 if categoryl belongs to thent"
profile, and O otherwise, ar@p aN x q profile indicator matrix, with entrie&p(i,h) = 1 if thejth
object has thé™ profile in S, and 0 otherwise. Defing = G,G,S, which is ag x ¥ k; matrix,

with G’pGp being a diagonal matrix containing the marginal frequencies of the profiles. Mratrix
has row marginal®; = G,Gp and column marginal®; = D = diag (G'G). We can now apply
simple CA to the matrixE, which is similar to homogeneity analysis [8]. However, the advantage
of this technique is that CA is performed on a small matgipesumably is much smaller thal)

and by using an explicit SVD decomposition we can look at the full solution, instead of thp first
dimensions that homogeneity analysis by means afli@nnating least squareslgorithm permits.
The solution is contained in the following SVD given by

(2.13) Dr /2 (E = DyuuDe) Dy Y2 = K*AL,

whereK* = (G,Gp) ~/?G/K, with K given byJ~%/2GD~/2 = KAL'. The solution for the vari-
ables is given by

(2.14) Y = VND V2LA,
while the solution for the objects by
(2.15) X = Gp(GpGp) ~/2K™.

However, since we are only interested in plotting unique profiles, we cahseb(G’pGp)*l/zK*.
This technique computes object coordinates, thus allowing the user to examine interactions be-
tween specific profiles that might be of special interest to him.

Remark 2.2. The Common SVDt is seen that at the heart of each of these three techniques lies
the solution of a SVD problem, which implies that for their implementation a single computational
routine is needed. The rest of the program contains input-output routines, such as reading the data
and creating the appropriate data matrices, plotting and formatting the results.

3. Stability Issues

All three techniques discussed in this paper (CA, MCA and ANAPROF) are primarily data
analytic technigues. However, when examining the graphical displays produced by the program the
user is usually confronted with the following question: “Are the patterns in the plots real, or merely
chance effects?” This question leads directly to the issue of “stability” of the results and their
“significance” in some statistical sense. The question of stability seems to be particularly relevant
when the data arise from some well defined random sampling scheme, or in other words when
it can be safely assessed that the data are a representative “image” of an underlying population.
However, this ideal situation, on which most conventional statistical inference is based, occurs
rather infrequently and many data sets are collected in a deliberate nonrandom fashion.



8 JASON BOND AND GEORGE MICHAILIDIS

The previous observation leads to the notionsxd@érnalandinternalstability. External stabil-
ity refers to the conventional notions of statistical significance and confidence. In the conventional
statistical framework, the aim of the analysis is to get a picture of the empirical world and the ques-
tion is to what extent the results do indeed reflect the real population values. In other words, the
results of any of the techniques discussed here are externally stable in case any other sample from
the same population produces roughly the same results (e.g. singular values, row and column pro-
files, etc.). Internal stability deals with the specific data set at hand. An internally stable solution
implies that the derived results give a good summary of that specific data set. In this case, we are
not interested in population values, because we might not know either the population from which
the data set was drawn or the sampling mechanism; in the latter case, we might be dealing with
a sample of convenience. Possible sources of instability in a particular data set are outlying ob-
servations or categories that have a large influence on the results. Internal stability can be thought
of as a form of robustness. An extensive discussion of these two notions and their implications in
data analysis can be found in Michailidis and de Leeuw [17] and in the numerous references cited
there.

In order to assess the stability of the techniques we resort to the nonparametric approach of
bootstrapping, that is suited for both external and internal stability. The bootstrap relies on a “new”
fictitious perturbed sample created by resampling with replacement from the data set (sample) at
hand. So, we attempt to assess stability by examining what would have happened if a truly “new”
sample was drawn from the underlying population. In the case of internal stability, bootstrapping
can be thought of as a form of data based perturbation analysis. In the remainder of this section we
present the appropriate method of bootstrapping for each of the three techniques. We also present
some analytical results for the singular values from simple CA (based on perturbation results for
eigenvalues [15]).

3.1. CA. Inthis case, the information contained in the original data set has been collapsed to the
observed contingency table. Thus, a moment of reflection shows that bootstrapping in this setting
is equivalent to simulating data from a multinomial with sample Biznd cell probabilities given

by the observed proportions (the elements of the ma&tyikl). The algorithm employed in the
program can be found in [6].

When distributingN throughout the contingency table, the possibility arises that the sum of
an entire row or column is 0. This is likely to occur when the original contingency table has
rows or columns with fairly low marginals. To avoid problems arising when compu@ingr
D¢, generalized inverses are used. The result is that the mass assigned to a particular row or
column with zero marginal is zero. Counts of the number of times each row or column has zero
marginals during the bootstrap iterations is provided as output and rows or columns that frequently
are entirely zero are likely to have rather unstable solutions.
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3.2. MCA and ANAPROF. We briefly outline the method in a general context (for a comprehen-
sive account see also [28]). Suppose we hheategorical variables. Each variable takes values
in a setS; (the range of the variable [8]) of cardinality (number of categories of variabjg.
DefineS = S; x ...S; to be theprofile spacethat has cardinality = ﬂleﬁj. That is the space

S ={(s1,---»Sj), §j € Sj, j € I} contains theJ-tuples of profiles. LeSbe al x 3J_, ¢; binary
matrix, whose elementS(h,t) are equal to 1 if thé'™" profile contains category and 0 other-
wise; that isS maps the space of profil&sto its individual components. Let alsgs be aN x ¢
indicator matrix with element§g(t,h) = 1 if the t'" object (individual etc) has th" profile in

S, andGg(t, h) = 0 otherwise. The superindicator mat= [G;]...|G;] can now be written as

G = GsS, which immediately shows that there is a one-to-one correspondence beébvemetd .

Consider a probability distributioR on S. Since the spac8 is finite, P corresponds to a
vector of proportiong = {pn} with Zﬁzl pnh = 1. In the present framework, it is not difficult to
see that each observed superindicator m&roorresponds to a realization of the random variable
Tt that has a multinomial distribution with parametéh$, p). The output of the techniques can
be thought of as functiong(m). From a specific data set of sidéwe can drawNN sets also
of sizeN, with replacement. In the present context, each subset corresponds to aGgaffixe
basic idea behind bootstrapping techniques is that we might as well have observed anggatrix
dimensiorN x ¢ consisting of the same rows, but in different frequencies, than the one we observed
in our original sample. So, we could have observed a superindicator r@dtriassociated with a
vector of proportiongm,, which is a perturbed version of The output of our techniques would
then naturally be a functiog(pm). Suppose that we have a sequencpg$ and thus of functions
®(pm). Then, under some mild regularity conditions on t{e it can be shown thap(pn) is a
consistent estimator af{ 1) and thatP, (¢(pm) < z|pm) is a consistent estimator & @(p) < z|p)
[24], whereP, denotes the conditional probability givem. The previous discussion indicates that
the appropriate way to bootstrap in MCA and ANAPROF is to sample objects with replacement,
or in other words, sample rows of the data matrix.

However, in many occasions this approach may lead to the following problem. If the fre-
qguency of a profile is low in the original data set, then there is the possibility of not appearing
in the bootstrap indicator matri®™. In this case some categories will be absent fromrntHe
bootstrap replication. In MCA, the problem of categories with zero marginals is treated identi-
cally as it is in simple CA. Generalized inverses are used in the computationtbe diagonal
matrix of column marginals of the super indicator mat@x The solution is computed for all
categories with nonzero marginals and once again, counts are provided for the number of times
a particular category has zero marginals during the bootstrap iterations. The problem of empty
profiles is alleviated in ANAPROF by first filling out the diagonal of & bootstrap resampled
matrix (G™)'(G™) with ones. This ensures that all profiles show up at least once in each boot-
strap iteration. The remaining — q bootstrapped observations are distributed to the diagonal of
(G™)/(G™M) according to a multinomial distribution with parametéts- q and diag(G'G)/N (the
sample matrix). The underlying assumptiorgef < N makes this a reasonable approach.
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3.3. Analytical Results for Singular Values. In a series of papers O’Neill [20, 21, 22, 23] has
derived the asymptotic distribution of the singular values (canonical correlations) of contingency
tables. We give a brief description of his main result relevant to the present work.

The starting point is the reconstitution formula (2.9). Dividing both sideN e get

(3.1 F/N= E/N+(Dr/N)X/\Y’(DC/N),

which can be written as
H*

(3.2) pij ~ ppj(1+ 3 AXENY(GN), =10, j=1,...,3,
h=1

wherep;j = F(i, j)/N denotes the sample proportion of ogllj), pi. (p.j) the marginal proportion

of rowi (columnj), andH* > 1 the number of nonzero smgular valukéh, h). O’Neill shows

that the variables/N(A(h,h) — A(h,h)), h=1,...,H*, whereA denotes the sample values and

N\ the population ones, are asymptotically normally distributed with zero means and second order
moments depending on the canonical correlations and on third and fourth order moments of the
elements oKX andY. Specifically,

(3.3) 0= (1+%/\2(£,€))[1+ Hz*/\(h,h)E(X(.,h)XZ(.,E))E(Y(.,h)YZ(.,K))]

- Z/\Z(E,E) [E(X*(,0) +E(YA(.,0)], £=1,...,H",
and

(3.4) O :%/\(ﬁ,ﬁ)/\(v,v) — g/\(ﬁ,ﬁ)/\(v,v) [E(X2(, 0)X2(.,v)) + E(Y2(,,O)Y2(,,v))]

H*

+ 3 AR [EXC WX OXV))EY (YL OY (V)

+%/\(£ ONVV{EX( XL O)EY(,Y3(,V)
+E(X(.,h)XZ(.,v))E(Y(.,h)YZ(.,E))}}, (v=1,... H"
An example of the notation and how to calculate the expectations in (3.3) and (3.4) is

I J
(35)  E(X.,h)X%(.,0) = zlxo ,X3(i,0) pij
J
I J H*

(3.6) - lea,h)xZ(i,e)pi.p.,-(1+h2 Ah )X (i, h)Y(j, h)).
=1j= =1

and similarly for the other moments.
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4. Implementation

The program is implemented in the Lisp-Stat [27] language. Its main features are discussed
below.

4.1. Computation. As mentioned in Remark 2.2 all three techniques are based on an explicit
singular value decomposition. Such a routine is readily available ihigpeStat[27] language.
However, there are several simplifications that can be made before such a routine should be used,
and are outlined next.

4.1.1. Correspondence Analysis.In CA, the matrix

1 _1
(4.1) D; 2(F —rc/)Dg 2 = KAL'

is formed first. Howevetr, r, ¢, D;, D; are computed only from the submatrix of the contingency
table that contains the subset of active rows and columns (the rows and columns that the user has
requested; see also Remark 2.1). At this point it must be checked whether any zero marginals
for rows or columns is produced from this active subset of the contingency table. Although for
small to medium sizesandc (e.g. no more than 10 categories) the formation and multiplication

of the diagonal matrice®B, andD. does not constitute a large computational burden, the process
occurs many more times than just in the formation of (4.1). Diagonal matrix multiplication is
therefore carried out by vectorizing the multiplication operation, or breaking apart the matrix to be
multiplied and performing separate vector multiplications on each row (or column). For example,

to form D; ¥/ 2(F —rc’) one would break the matri — rc’ into its rows and multiply these rows

by the diagonal elements ﬁ)‘(l/z. Passive row and column coordinates are computed from the
row and column solutions obtained from using the active rows and columns points. These points
are found by projecting the passive row and column profiles onto the respective row and column
solution space.

Let Sd-| denote the elementwise squaring of the elements of the matrix argument arfe) diag
a diagonal matrix with the vector argument on the diagonal with zeros elsewheti§. hestheith
row of K, andL; theit" row of L. The following statistics are also printed.

1. Inertias. The inertia due to thé" principal axis is; = A(i,i), thei" squared singular value
in the decomposition (4.1).

2. Partial Inertias. The partial inertias due to th& row (column) point for each of the
dimensions of the solution is given by the vedipr SqK;] (or SqL;] for the columns). For
a given principal axis and point, the partial inertia contribution is defined to be the squared
length of the projection of the point onto the principal axis. These are defined only for the
active points.



12 JASON BOND AND GEORGE MICHAILIDIS

3. Squared Cosinegzor the active points, the squared cosine ofitheow (column) point for
each of thep dimensions of the solution is given by the vector d@Sg(Dfl/zKi/\p))—lsc(Dr’l/zKi/\p).
For a given principal axis and point, the squared cosine is the proportion of the distance from
the point to the centroid of the cloud taken up by the length of the squared projection of the
point onto the axis. These are computed for the active as well the passive row and column
points.

4.1.2. ANAPROF. Aside from the computation of the appropriate SVD, the main computational
burden of ANAPROF is in the reading in of the data and the simultaneous formation of the matrices
SandGGp. This is done when the data file is first specified. If some of the variables in the data
set are to be treated as passive, the data set must be re-read from the data file. This was found to be
more efficient than routines to reduce (expand) the profile matrix and profile counts based on the
columns to be treated as passive (not passive). Once the data has been read, the following singular
value decomposition can be performed

(4.2) (diag (JG,Gp)) Y2FD Y2 = K*AL’

where D is the diagonal matrix of the column marginal§of G’pGpS Again, diagonal matrices

are stored as lists and products of full matrices with diagonal matrices are performed by breaking
the full matrix into its rows (or columns) and multiplying these rows (or columns) by the appro-
priate diagonal elements of the diagonal matrix. For plotting, we are only interested in unique
profiles; hence, we sét = Iy(G,Gp) ~Y/2K*.

4.1.3. MCA. Computational considerations for correspondence analysis on the Burt matrix are
similar to those for simple CA. Diagonal matrix multiplication is treated as in simple CA and
ANAPROF. As each variable in the Burt matrix comprises several columns (or rows), the spec-
ification of passive variables actually removes a block of the rows and columns from the Burt
matrix.

4.2. Object Structure. Figure (4.1) shows the inheritance tree for the program. The structure of
many of these prototypes are similar to those used in ([4]). As the types of operations (numerical
and data manipulation) performed, the types of plots available, the similarity of the desired type
of interactiveness of the plots, and the types of output are somewhat similar for all three analyses,
it was decided that one program that encompasses all three would be more efficient than three
separate non-interacting programs. To implement this idea, a single parent praiwdyoe-protqQ

was created which holds all information involving the data and the computed solution for all three
techniques. This parent prototype also controls the computational aspects of the analysis. The
three major groups of prototypes used in the accompanying program aaedber-protoparent
prototype, the dialog prototypes, and the plotting prototypes. Dialog prototypes are efficient due
to their ability to move between types of analyses and to reduce the amount of code produced by
consolidating similarities in output functions, types of plots available, and similarities in dialog
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FIGURE 4.1. Inheritance Tree

functions such as reading a new file or requesting a plot. The plotting prototypes take advantage of
Lisp-Stat’s interactive environment, especially the availability of mouse modes for manipulating
the contents of a plot.

Plotting is controlled and routed by tipdot-route-protoprototype. Each specific type of plot
is managed by its own prototype which initializes, fills, and stores the plot. Creating a separate type
of plot only requires the creation of a new managing prototype. The methods requireshave
:make-points:make-point-labelsinit-selected-pointsand:make-lines Each plot is created as an
instance of either thenacor-2d-plot-protar theanacor-3d-plot-protalepending on the requested
dimensionality of the solution.

The true interactive nature of the program can be found in the dialog and zooming prototypes.
Due to the fact that the techniques require different types of data input, additional options, and
types of output, different dialogs were implemented. It is possible, however, to switch between
different types of analyses by pressing Mew Data Filebutton in each main data dialog.

Zooming is performed through trEoom-protgprototype. This prototype is a descendant of
the graph-overlay-protgrototype and controls the mouse interaction with the plot. Three mouse
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modes are available within treoom-protoprototype and these mouse modes are accessed by
mouse clicks in the appropriate locations in the plots margin. The mouse 'maagselectings

used to override the standaigklectingmouse mode in order to capture mouse clicks that fall
outside of the plot margin. This mode is accessed by clicking inside the box m&etectingn

the plots margin. Selection of points may be performed at any state of zooming. To keep points
that are currently selected, whether they are showing or not, the shift key should be held down
while drawing a box around the desired points.

The ability to zoom in on points has been found to be very useful, not only for examining
the solution of an ANAPROF or CA analysis, but for any plot that contains a cloud of points and
where it of interest to distinguish these points from each other. A version of the type of zooming
implemented here, but with fewer features, is also used in the companion paper ([4]). Due to its
usefulness, it is available as a separate module which can be used on any Lisp-Stat plot by a simple
-add-overlaycall. The mouse modeoommay be selected by clicking in the square next to the
symbol “+” in the plots margin. Zooming may be performed any number of times, and the process
of “stepping out” of the zoom may be carried out by clicking in the square next to the syribol “
in the plots margin. “Stepping Out” of a zoom refers to returning to the previous zoomed state.
For example, one may select a set of points to be zoomed in on and then select a subset of these
zoomed points to be zoomed in on again. If the box next to theymbol is pressed the plot
is returned from the “zoomed-zoomed” state to the “zoomed” state. Zooming out completely is
accomplished by clicking in the square nexQatin the plots margin.

A common problem with Lisp-Stat plots is that points that are plotted directly on top of each
other are not distinguishable; their labels overlap, thus making them unreadable. This can occur in
an ANACOR analysis when two rows or columns have exactly the same profile. This problem is
solved by the mouse modep When the square next Expandis selected, a box may be drawn
around overlapping points. When the mouse is released, these points are centered in the plot and
are expanded (contracted) radially outward from each other by clicking on the up (down) arrow
symbols in the plots margin.

4.3. Using the Package.The flow and use of the program is very similar to [4]. Data needs to be
stored in a white space (space or tab) delimited file. For simple, the data needs to be in the form
of a contingency table, for ANAPROF and MCA the data matrix need be stored as itself. Missing
values are not allowed in any of the analyses but are planned for future upgrades of the program.
As an example, consider the Fisher eye/hair color data set. The initial process of loading the data
set can be seen in Figure 4.2.

Once the datais loaded, the dialog in Figure 4.3 appears. At this point, flenames for row status
and column status files describing the active or passive state of rows or columns may be provided.
These files need to be white space delimited files containing 0's and 1's. The length of the row
status file should be in accord with the number of rows in the data set, and analogously for the
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columns status file. A 1 corresponds to a row/column being treated as active and a 0 corresponds
to a row/column being treated as passive. MCA of the Burt Matrix only requires a column status
file with the number of entries equal to the number of columns in the data set, since the symmetric
Burt matrix is analyzed. ANAPROF also only requires a column status file. These status files are
optional and if not provided, the program will treat all rows and columns as active.

At this point, either just the solution may be computed or bootstrapping may be performed.
If bootstrapping is chosen, the number of bootstrap iterations is requested in a dialog. Once the
solution is computed, the user may plot various aspects of the solution or request printed output of
the solution. For simple CA, the plots available can be seen in Figure 4.4 and the output options in
Figure 4.5.

An example of the ANAPROF dialog can be seen in Figure 4.6. Again variable labels may be
provided as well as a variable status file. Also displayed is the g@hiband the value oN, where
g is the number of unique profiles ahds the number of rows in the data file. Ratios closer to zero
indicate fewer unique profiles. At this stage the solution can be computed or bootstrapping may
be performed. Available plots and output options can be seen in Figures 4.7, and 4.8, respectively.
MCA dialogs are identical to the ANAPROF dialogs, while plots and output options are identical
to the simple CA ones.

4.4. Normalization of Bootstrap Samples. Using (2.7), it can be easily seen that under normal-
izations (1) and (Il) the solution of CA is rotational invariant. For exampl® i§ a rotation matrix
satisfyingRR= RR = |, and we se¥? = YR we getX! = D;IFY! =D, 'IFYR=XR ltis a

similar case for the ANAPROF solution. Therefore, bootstrap replications of normalizations (1)
and (Il) of CA, and also of ANAPROF suffer from the same problem, thus making it impossible
to compare the bootstrapped solutions to the original ones. In order to make them comparable, we
need to rotate the solution of each bootstrap sample accordingly.

For CA under normalization (), suppo3eis the row solution for the original sample. Let
X (m) denote the solution for the row coordinates for thé bootstrap sample. The problem of
rotation in the presence of orthogonal constraints can be stated as

(4.3) Mingtr[(X — X(m)R)'Dy(m)(X — X(M)R)]

overRX'(m)D;(m)X(m)R= I. Since from the definition of the normalization of the row solution
we haveX’(m)D;(m)X(m) = I, the constraint reduces ®BR = |. This problem is known as an or-
thogonal Procrustes rotation problem and the solution is giveR-by V' whereX'D; (m)X(m) =

UAV'’. The rotated solution for normalization (I) in CA is analogous. For ANAPROF, we solve
equation (4.3) forR, using the identity matrix in the inner product insteadDpf The “other
portion” of the solution, meaning the column scores in normalizations (I) and the row scores in
normalization (II) of ANACOR, and the category quantifications in ANAPROF are rotated using
the same orthogonal rotation matfRx
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It can be seen why normalization (lll) and (IV) in CA and MCA on the Burt table do not
suffer from rotational invariance, by noticing that no such orthog&watists that simultaneously
satisfies the required normalization on the solution.

5. Comparisons to Other Programs

Most commercial software packages contain a procedure that performs CA and MCA -PROC
CORRESP in SAS, program CA in BMDP, program ANACOR in SPSS [25, 3, 26]. Our program
is very close to the commercial ones in terms of the output produced and the options offered (active
and passive categories, partial inertias, squared cosines). The main advantage of the commercial
programs is that they come with all of the data manipulation functions that are part of a general sta-
tistical package. The main advantage of this program is that it is menu driven, offers high quality
dynamic graphic capabilities (rotation of the plots, zoom-in-zoom-out options, selection of points),
and performs stability analysis. In summary, it utilizes all the recent advances in computer tech-
nology and is written taking into consideration the modern practice of exploratory data analysis.
Finally, it is an open platform, so that users can add modules suitable to their particular needs.

6. Applications

6.1. CA Application. The data in this example comes from the NELS:88 data set (for other ap-
plications that used the NELS:88 data set see [4, 18, 16]. A brief description of the variables is
given in Appendix B.

Rows and columns are treated symmetrically through the use of normalization Ill, so that
distances between rows and distances between columns are approxiAatislyibuted. Figure
6.1 shows the first two dimensions of the solution. The rows (F1S48A variable; how far the father
wants the student to go in school) and columns (F1S53B variable; type of occupation the student
expects to have at age 30) seem to exhibit the Guttman effect [9], falling in a horseshoe like pattern.

The first axis accounts for approximately 81% of the total inertia. The remaining eigenvalues
die off slowly to zero, as can be seen in Figure 6.3. Projecting the rows onto the first axis one can
see that there is an ordering by education., frarliSto HSto 2— YR etc. Note thalNA - Not
Applicable,DC - Don'’t Care, andDK - Don’t Know, fall into the middle range of the projections
onto the first axis. The far right of the plot is rather cluttered and makes it difficult to distinguish
point labels. Figure 6.2 shows the zoomed in portion of the cluster of points on the far right in
Figure 6.1. As suspected, desired education is ordered in this cluster as well, frdfR4some
Four Year college t& GRAD- College Graduate tBGRAD- Post Graduate School.
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The projections of the columns on the first axis follow a similar pattern, in that jobs that require
a lower level of education fall to the left while ones that require more education fall to the right.
It is also evident that jobs that require special types of schooling, that is Profesgrit@F),
Teaching(TEACH), Craft Jobg§CRAFT), etc fall close to the relevant education type.

In the interest of clearing up the picture, we trBé, DK, andNA as passive, as well asHS
due to its low row marginal. Figure 6.4 shows the first two dimensions of this solution. Again
the first dimension comes out particularly strong, taking up 88% of the total inertia and 7% more
than the previous solution. The second dimension only takes up around 6% of the total inertia.
The horseshoe like pattern remains and the general pattern of clustering doesn’t change. However,
there are some distinct changes that can be $S8B&ER- Machinery Operator anSERV- Service
Type Jobs have moved closeM®C- Specialty Vocational Schooling. SimilarlyABOR- Labor
Type Occupations angdARM- Farming Jobs have moved towatdS. Both of these changes seem
more reasonable than their previous positions and are due mainly to a larger relative proportion of
these jobs falling into< HS than in other profiles. The points2Y R- 2 Year Schooling and
PROT - Public Protection Jobs have moved to the top of the horseshoe BG|I®K, andNA
remain relatively in the same positions. Again, the first axis seems to be ordering points by level
of education or by jobs that require different levels of education.

The second axis, although rather weak, also seems to suggest an ordering. Notice that jobs/educati

levels that require/provide a higher level of specific/technical training are towards the bottom of

the second axis. For education lewélDC, PGRAD CGRADare lower tharHS, 2—YR and

4—Y Rin their second axis projection. For expected job at ag€RAFT, OPER SERV, TECH,

PROF, TEACH, andOW NERare lower in their second axis projection tHAROT, HOME, MIL,

LABOR CLER SALESandFARM. This interpretation is somewhat debatable in BBE Rand

MIL, among others might be argued to be jobs that require a great deal of specialty training but
again the second axis is somewhat weak in its contribution to the total inertia.
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To get an idea of the distances between rows and column for the first dimension of the solution,
one can look at the coordinates assigned to the rows and columns (see Figure 6.5). Each point has
an index corresponding to(eow, column) pair. The numerical ordering can be seen in Table B1. A
clustering of the rows and columns can be seen, with more distinct clusters formed in the columns.
Some rows are quantified so close that they cannot be recognized by selecting them. A zoom of
the middle rows can be seen in Figure 6.6. The columns are selected in Figure 6.7 and the columns
are numbered according to the ordering in Table B1.

We turn our attention to the question of stability of our solution. The following Table shows a
subset of the output for the first 2 dimensions of the original and the bootstrapped solution, for 20
replications. Judging from the bootstrap inertia means, the eigenvalues seem to be fairly stable.
Decomposition of total inertia along principal axes
AXES INERTIA (eigenvalues) %of INERTIA Cum %

1 13658 80.967 80.967
2 1.2053E-2 7.1452 88.112

Total .1686857456

Decomposition of total inertia along
principal axes for 20 Bootstrap Samples

AXES INERTIA BS MEANS INERTIA BS SDs %of INERTIA Cum %

1 .1374782007 6.3043487563E-3 75.648 75.6
2 1.5977882653E-2 2.4649213898E-3 8.7919 84.4
Total .18173

A nice graphical display of the bootstrap inertia points, along with the original inertia points
can be seen in Figure 6.8.

The bootstrapped solution points can be simultaneously plotted along with the original solu-
tion. This allows the inspection of the degree to which individual solution points are stable. This
becomes impossible for a moderate number of categories and a moderate number of bootstrap
replications as the points in the plots become totally indistinguishable (see Figure 6.8).

A solution to this problem can be seen in the left panel of Figure 6.9. Using the provided
dialog, individual variables may be selected. When a given category is selected, all of the bootstrap
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solutions as well as the original solution for that category are shown. Other points are hidden
from view. For example, we expect the bootstrapped solutions for the categd&to be fairly
unstable, since its original marginal frequency is rather low. This is case as seen in the right panel
of Figure 6.9. On the other han@GRADtaking up almost half of the total mass of the columns

is expected to have a more stable bootstrap solution. This is also the case, as seen in Figure 6.10.
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To simplify the computations involved in the bootstrapping, each set of bootstrap iterations
contains one replication of the original solution. Therefore, the original solution will be “covered
up” by at least one bootstrap iteration. Point separation becomes a useful tool at this point. For
a given category, one may wish to determine the position of the original solution in the cloud of
its bootstrap solutions relative to the positions of the other category solution points. This may be
done easily by expanding points that are overlapping until the original solution is found. On color
monitors this becomes easier because the original solution points are colored and therefore easier
to distinguish.

We compare the results from bootstrapping the singular values with those derived by the as-
ymptotic expansion method. The following Table contains the estimated asymptotic covariance
matrix of the singular valueA ([23]). Tests of the hypotheses that the singular values are zero
are strongly rejected, giving observed approxinatealues ofZ; = 36.72 andZ, = 9.06 where

Zy = N%/\(k, k)/okk. Therefore, the results from the 20 bootstrapped samples agree with the as-
ymptotic ones. It is worth noting that in order to conduct simultaneous hypothesis tests of the
components of\, O’Neill also gives first and second order moments of the central Wishart matrix
variate but those have not been implemented in the current version of this program.

Table 1
Decomposition of total inertia along principal axes

AXES | INERTIA %of INERTIA Cum %
1 .13658 80.967 80.967
2 1.2053E-2 7.1452 88.112
Total | .1686857456
Table 2

Asymptotic Covariance Matrix
of Singular Values

1.0235 0.2022

0.2022 1.4812

6.2. MCA Application. In this example we use a different set of variables from the NELS:88
data set. Excluding all observations with some information missing we end up with a sample size
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__Table3
Decomposition of total inertia along

principal axes for 20 Bootstrap Samples

AXES | INERTIA BS MEANS INERTIA BS SDs %of INERTIA Cum %
1 1376672426 5.9479779523E-3 75.278 75.3
2 1.5842090226E-2 2.20087987E-3 8.6627 83.9
Total .18288

of 21,562 observations (students). A description of the variables along with their coding is given
in Appendix C.
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FIGURE 6.11. Left:MCA category points; Right:MCA category points of passive variables

For this data set the variables SCHOOL, URBAN and GENDER were treated as passive. A
two dimensional solution accounts for 10% and 7% of the total inertia respectively. The category
points of the solution are displayed in Figure 6.11. It can be seen that the amount of time spent
on homework is associated with the scores received, for both subjects. More interestingly, there
seems to be a clustering of students according to the same category levels. Thus, students that get
high scores in mathematics and science tend to spend over 4 hours a week doing homework, while
students that receive low scores tend not to allocate any time on homework. Similar findings hold
for the other categories. The larger distance of points of categories 1 and 5 from the origin for all
variables, as opposed to those of categories 2 to 4 is a result of their lower marginal frequencies
(see Tables C1 and C2). Given the very large sample size, these results tend to confirm the stylized
fact that scores are positively associated with the amount of time spent studying a subject. What
about the effect of the background variables? Their category points are located around the origin,
which implies that they do not exhibit any particular association with scores and time spent on
homework. To get a better idea, a “zoom-in” display is shown in Figure 6.11. It seems that students
attending private schools are more prone to studying and consequently receive higher scores. On
the other hand gender and the degree of urbanicity seem to play no role, as expected. The problem
with MCA is that it does not provide information about individual profiles. That's why we turn
our attention to an analysis of profiles (ANAPROF) in order to get a better understanding of the
association of time spent studying and scores.
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6.3. ANAPROF Application. We continue with the analysis of the previous data set after drop-
ping the background variables, since they contributed very little. The category points are shown in
Figure 6.12, and they exhibit a very similar pattern (as expected) to the one derived from MCA.
It is worth noting that in this case the first two axes account for 13% and 10% of the total inertia,
respectively. The various profiles are shown in Figure 6.12 and in more detail in Figure 6.3. It can
be seen that the profiles are arranged along a horseshoe (similar to the one exhibited by the cate-
gory points), although the interior of the horseshoe is filled. This indicates that there are students
with ‘mixed’ profiles, i.e. that spend a lot of time on homework and score poorly, and vice versa,
students that score high and spend very little time studying. However, in the first two quadrants
(top panel in Figure 6.14) the majority of the students spends some time studying and scores sat-
isfactorily, while in the other two there are students with 'mixed’ profiles along with students that
study a lot and score high, or do not study at all and score low.

————————————————
Axd 134 Axt 137

FIGURE 6.12. ANAPROF category points and ANAPROF profiles

7. Appendix A - Fisher’s Eye and Hair Color Example

The following Table shows the 4 5 contingency table of 5387 school children from Caith-
ness, Scotland, classified according to the two discrete variables, eye color and hair color.

Table A1

Hair Color
Eye Color| Fair Red Medium Dark BlackTotal
Light 688 116 584 188 41580
Blue 326 38 241 110 3 718
Medium 343 84 909 412 261774
Dark 98 48 403 681 8% 1315
Total 1455 286 2137 1391 1185387
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FIGURE 6.14. The four quadrants (counterclockwise) of ANAPROF profiles

8. Appendix B - First NELS:88 Example

The variables used afe€lS48A- how far the father wants the student to go in school. and
F1S53B- type of occupation student expects to have at age 30.
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Table B1
F1S48A
F1S53B| <HS HS VOC2-YR 4-YR CGRAD PGRAD DK DC NA Total
CLER 4 30 59 45 36 136 29 53 24 43 459
CRAFT 10 66 166 39 45 107 25 63 13 43 577
FARM 0 15 28 13 16 40 7 17 3 7 146
HOME 1 27 15 20 21 116 21 38 9 28 296
LABOR 5 13 20 10 7 14 4 8 2 12 95
ADMIN 4 29 51 41 86 354 144 37 13 75 834
MIL 4 30 40 32 48 157 46 50 10 35 452
OPER 4 21 33 9 6 28 11 22 7 10 151
PROF 14 64 114 131 365 1898 702 214 50 2163768
OWNER 5 31 72 43 79 355 121 52 7 48 813
PROT 0 31 52 51 55 141 29 35 13 28 435
SALES 2 10 18 11 44 145 37 19 10 15 311
TEACH 5 15 23 17 77 385 90 36 16 39 703
SERV 2 23 41 15 13 64 21 41 11 26 257
TECH 2 15 80 42 84 361 112 58 14 40 808
Total 62 420 812 519 982 4301 1399 743 202 64%105

9. Appendix C - Second NELS:88 Example

The set of variables examined in this example are (in parentheses the name of the variable in
the Base Year Student Survey is given)

MH: Time spent on mathematics homework (BYS79A)
SH: Time spent on science homework (BYS79A)

MS: Mathematics standardized score (BY2XMSTD)
SS: Science standardized score (BY2XSSTD)
SCHOOL.: Private or public (G8BCTRL)

oghrwpE

Some summary statistics on these variables are given in the following Tables.

Table C1 (%) N=21562

Variable Categories

1 2 3 4 5
MH 8.3 416 229 18.2 9.1
SH 16.8 45.3 20.5 14.0 3.4

where the followingcodingis employed: 1=None, 2=Less than 1 hour, 3=1 hour, 4=2-3 hours,
5=more than 4 hours



INTERACTIVE CORRESPONDENCE ANALYSIS 29

Table C2 (%) N=21562
Variable| Mean StdDev Min Q1 Median Q3 Max
MS 51.8 10.3 31.7 423 49.7 58.7 70,5
SS 50.8 10.2 32.6 429 496 57.8 80.1

Table C3 (%) N=21562
Variable Categories
1 2 3 4 5
MS 159 35.3 245 195 4.8
SS 156 35.6 26.7 179 4.2

where the followingodingis employed: 1=(0,40], 2=(40,50], 3=(50,58], 4=(58,65], 5=(65,100]

Finally, 78% of the students attended public schools and 22% private schools (including reli-
gious schooals).
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