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Abstract 

The delay discounting perspective, which assumes an 
alternative-wise processing of attribute information, has long 
dominated research on intertemporal choice. Recent studies, 
however, have suggested that intertemporal choice is based on 
attribute-wise comparison. This line of research culminated in 
the tradeoff model (Scholten & Read, 2010; Scholten, Read, 
& Sanborn, 2014), which can accommodate most established 
behavioral regularities in intertemporal choice. One drawback 
of the tradeoff model, however, is that it is static, providing 
no account of the dynamic process leading to a choice. Here 
we develop a dynamic tradeoff model that can qualitatively 
account for empirical findings in intertemporal choice 
regarding not only choices but also response times. The 
dynamic model also outperforms the original, static tradeoff 
model when quantitatively fitting choices from representative 
data sets, and even outperforms the best-performing dynamic 
model derived from Decision Field Theory in Dai and 
Busemeyer (2014) when fitting both choices and response 
times. 
 

Keywords: intertemporal choice; tradeoff model; dynamic 
models, random utility, discrimination threshold 

Introduction  

Many human decisions, mundane or momentous, involve 

choices between outcomes that materialize at different times 

in the future, ranging from dieting and exercising plans to 

education and saving decisions. Research on such 

intertemporal choices has a long history and has revealed 

various behavioral regularities. For example, it was found 

that large rewards suffer less proportional discounting than 

small ones do (the magnitude effect; e.g., Green, Myerson, 

& McFadden, 1997), and that people’s preference between 

options that have different delays can reverse as time passes 

(e.g., Green, Fristoe, & Myerson, 1994). Various descriptive 

models have been developed to account for these empirical 

phenomena. Among them, the tradeoff model (Scholten & 

Read, 2010; Scholten, Read, & Sanborn, 2014) currently 

appears to be one of the most promising models since it 

provides a unified framework for qualitatively explaining a 

majority of the empirical findings. Most crucially, it can 

account for the nonadditivity in delay discounting (e.g., 

Scholten & Read, 2010; Scholten, Read, & Sanborn, 2014), 

which eludes any model built on the notion of delay 

discounting.  

One drawback of the tradeoff model, however, is its static 

nature. As a result, it lacks an account of the dynamic 

process leading to the explicit intertemporal choices. 

Nevertheless, any decision is a result of some process that 

unfolds in time. The characteristics of the process affect the 

final decision as well as process-related variables such as 

response time. Therefore, a static model provides only an 

incomplete description of intertemporal choice, and an 

account of the underlying dynamics is required for a more 

comprehensive understanding thereof. 

In this paper, we propose a modified tradeoff model of 

intertemporal choice that has a dynamic structure and can 

thus account for both choice and response time data. We 

show that this dynamic tradeoff model can qualitatively 

accommodate key findings in the literature regarding both 

choice patterns and relationship between choices and 

response times. In two model-comparison analyses, we 

further show that the dynamic model can even outperform 

promising competing models when fitting empirical data 

quantitatively.  

The Tradeoff Model  

To account for intertemporal choice, research has for a long 

time been mainly conceptualized using the notion of delay 

discounting, according to which the delay of a reward 

decreases its present subjective value. One major concern of 

this approach has been to find the most appropriate form of 

the discount function, which describes how subjective value 

decreases with increased delay length. A critical assumption 

in this endeavor is that each option has a discounted utility 

or present value independent of other competing options. 

Importantly, this predicts that intertemporal choice should 

be transitive: if, among three options X, Y, and Z, one 

chooses X over Y and Y over Z, then he or she should also 

choose X over Z.  

A series of studies by Read, Scholten, and colleagues, 

however, demonstrated that the transitivity of intertemporal 

choices is sometimes violated for a triple of options S, M, 
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and L with increasing money amounts and delay lengths 

(e.g., Scholten et al., 2014). For example, when facing 

Option S of receiving $30 in one week, Option M of 

receiving $35 in two weeks, and Option L of receiving $40 

in three weeks, some people might choose Option S over 

Option M, choose Option M over Option L, but choose 

Option L over Option S. In each pair, one option has a 

smaller but sooner reward (smaller-but-sooner, or SS, 

option), and the other has a larger but later reward (larger-

but-later, or LL, option). The cyclical choice pattern 

suggests that such people prefer the SS options for adjacent 

pairs of options (e.g., Option S vs. Option M), but the LL 

option for the distant pair (Option S vs. Option L). By 

contrast, others may instead choose the LL options for 

adjacent pairs but the SS option for the distant pair. The 

former cyclical pattern can be accounted for by assuming 

that the amount of discounting associated with a given 

difference in delay (i.e., the interval between one and three 

weeks) is smaller when it is treated as a whole than when it 

is divided into subintervals (e.g., two subintervals of one 

week), whereas the latter implies the opposite. Together, 

these patterns suggest nonadditivity in delay discounting.   

To accommodate violation of transitivity in intertemporal 

choice, several alternatives to discounting models were 

developed, culminating in the tradeoff model. The key 

difference between the tradeoff model and previous delay 

discounting models lies in how attributes are assumed to be 

processed. In contrast to the notion of alternative-wise delay 

discounting, the tradeoff model assumes that people process 

attribute information in intertemporal choice by comparing 

options within each attribute, and that advantages on one 

attribute (e.g., reward amount) are traded off against the 

disadvantages on the other attribute (e.g., waiting time). 

Such an attribute-based approach has been shown to better 

capture the empirical data quantitatively than the traditional 

alternative-based approach reflected in the delay 

discounting paradigm (Dai & Busemeyer, 2014).  

According to the tradeoff model, when choosing between 

an SS option with a money amount of xS and a delay length 

of tS, and an LL option with a money amount of xL and a 

delay length of tL, a decision maker (DM) compares the 

effective compensation with the effective interval. Let v(x) 

denote a value function and w(t) denote a time weighting 

function. The effective compensation is defined as the 

difference in the value of the two money amounts, that is, 

v(xL) – v(xS), and the effective interval is defined as the 

difference in the weighted delay lengths, that is, w(tL) - 

w(tS). In addition, the effective interval is assumed to be 

weighed against the effective compensation by a tradeoff 

function Q(w(tL) – w(tS)) to make the decision. The SS 

option should be preferred when Q(w(tL) – w(tS)) is larger 

than v(xL) – v(xS), and the LL option should be preferred 

when Q(w(tL) – w(tS)) is smaller than v(xL) – v(xS). 

In the latest version of the tradeoff model (Scholten et al., 

2014), the subjective value of a money amount x is given by 

                            𝑣(𝑥) =
1

𝛾
log(1 + 𝛾𝑥),                            (1)                                                                    

where γ represents diminishing absolute sensitivity to 

differences in money amount, the time weight of a delay 

length t is given by 

                              𝑤(𝑡) =
1

𝜏
log(1 + 𝜏𝑡),                           (2) 

where τ represents diminishing absolute sensitivity to 

differences in delay length, and                                          

        𝑄(𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)) =
𝜅

𝛼
log (1 + 𝛼 (

𝑤(𝑡𝐿)−𝑤(𝑡𝑆)

𝜗
)

𝜗

),  (3) 

in which κ > 0 represents delay sensitivity, ϑ > 1 represents 

superadditivity, and α > 0 represents subadditivity. To 

accommodate probabilistic choice patterns (Dai & 

Busemeyer, 2014), it is further assumed that the choice 

probability of the LL option over the SS option is given by a 

ratio rule, that is, 

                    Pr(LL|{SS, LL}) = (
𝑣(𝑥𝐿)−𝑣(𝑥𝑆)

𝑄(𝑤(𝑡𝐿)−𝑤(𝑡𝑆))
)1/𝜖 ,           (4) 

where ε > 0 represents response noise. With these 

assumptions, the models can accommodate a large number 

of behavioral regularities in intertemporal choice, such the 

aforementioned magnitude effect, preference reversal, and 

nonadditivity in delay discounting.  

A Dynamic Version of the Tradeoff Model 

One important aspect of intertemporal choice that the 

tradeoff model cannot explain is the recent finding 

regarding a relationship between choices and response times 

in intertemporal choice (Dai & Busemeyer, 2014). 

Specifically, it was found that pairs of options that give rise 

to extreme choice proportions tend to be associated with 

faster response times than pairs with more moderate choice 

proportions. We refer to this relationship as the fast-and-

extreme effect. Because the tradeoff model is silent on the 

temporal dynamics underlying intertemporal choice, it lacks 

an account of this finding. Here we present a modification 

of the model to equip it with a dynamic structure while 

keeping its key assumption of attribute-based processing.  

As the original tradeoff model, we assume that a DM 

performs intertemporal tradeoffs by comparing the effective 

intervals with the effective compensations. However, unlike 

the latest implementation of the model (Scholten et al., 

2014), in the modified version we assume a more 

straightforward comparison that goes without the mediation 

of the tradeoff function. Specifically, we assume that v(xL) – 

v(xS) is directly compared to w(tL) – w(tS). To accommodate 

the probabilistic nature of intertemporal choice, we make 

two further assumptions. First, both the effective 

compensation and the effective interval are assumed to be 

random, denoted as V(xL) – V(xS) and W(tL) – W(tS), 

respectively, to reflect the uncertainty in these subjective 

evaluations. Second, it is assumed that a decision is made 

when the absolute difference between the two (random) 

quantities is larger than a positive value; otherwise the DM 

acquires another sample of the effective compensation and 

interval without accumulating preferences from previous 

samples. This process continues until a decision can be 

made. Note that the first assumption echoes the notion of 

random utility in economics (e.g., McFadden, 1973), while 
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the second assumption is built on the concept of 

discrimination threshold in psychophysics (Fechner, 1860).  

To derive quantitative predictions, we assume that the 

effective compensation and effective interval follow 

independent normal distributions, with respective variance 

proportional to the mean of the distribution. As a result, the 

difference between effective compensation and effective 

interval is also normally distributed with  

               𝜇 = [𝑣(𝑥𝐿) − 𝑣(𝑥𝑆)] − [𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)],         (5) 

and  

       𝜎 = √𝑐{[𝑣(𝑥𝐿) − 𝑣(𝑥𝑆)] + [𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)]},       (6) 

in which c is a proportional constant to be estimated from 

the data.
1
 Given the assumption of non-accumulative 

sampling until a sufficiently large difference is obtained, the 

choice probability of the LL option is given by  

               Pr(𝐿𝐿|{𝑆𝑆, 𝐿𝐿}) =
Φ(

μ−δ

𝜎
)

Φ(
−μ−δ

𝜎
)+Φ(

μ−δ

𝜎
)
,                  (7) 

in which Φ represents the cumulative distribution function 

of a standard normal distribution, and δ denotes the smallest 

positive difference (i.e., the positive discrimination 

threshold) required to make a decision. 

Because the modified model goes without the tradeoff 

function and the related ratio choice rule (which are critical 

for the original model to accommodate the nonadditivity in 

delay discounting), an alternative mechanism is required in 

order to retain this capability. To this end, we further 

assume that the discrimination thresholds for choosing the 

SS and LL options (i.e., δS and δL) are different, echoing the 

general idea of decision bias in the literature of choice 

models (e.g., Busemeyer & Townsend, 1993).
2
 In this case,  

                Pr(𝐿𝐿|{𝑆𝑆, 𝐿𝐿}) =
Φ(

μ−δ𝐿
𝜎

)

Φ(
−μ−δ𝑆

𝜎
)+Φ(

μ−δ𝐿
𝜎

)
.                  (8) 

To derive predictions on response time distributions for 

the modified tradeoff model, we assume that the time it 

takes to assess a sample follows a Gamma distribution with 

a scale parameter of θ and a shape parameter of 2. Because 

empirical distributions of response time tend to be single-

peaked (rather than monotonously decreasing), we fix the 

shape parameter at 2 instead of 1. The total response time is 

assumed to be the sum of time(s) required for all samples 

drawn until a decision is made, plus a nondecision time. 

With these assumptions, we analytically derive joint 

probability density functions for both choices and response 

times (see Dai, Pleskac, & Pachur, 2016). Such analytical 

solutions are usually not available for other dynamic choice 

models. This ends our description of the modified tradeoff 

model (hereafter the dynamic tradeoff model). See Figure 1 

for the dynamic structure of the model. 

                                                           
1 The model performance results (reported in a later section) 

were virtually the same or worse when the standard deviation 

instead of variance of the relative distribution was set to be 

proportional to the mean and/or the tradeoff parameter κ in the 

static model was incorporated into w(t) as a multiplicative constant 

to put subjective value and time weight on the same scale. 
2 Mathematical proof on the necessity of this assumption for 

accommodating the relevant phenomena is available upon request.  

Explanatory Power of the Dynamic Tradeoff Model 

Because the dynamic tradeoff model inherits the assumption 

of attribute-based processing, it can accommodate several 

key findings in intertemporal choice, including the 

magnitude effect, the common ratio effect, and the common 

difference effect. According to the magnitude effect, larger 

amounts appear to be discounted at a lower rate than smaller 

ones. For example, if a DM is indifferent between receiving 

$100 now and receiving $200 in a year, suggesting an 

annual discount rate of 50%, then the same person would 

tend to prefer receiving $2000 in a year to receiving $1000 

now, suggesting an annual discount rate lower than 50%. 

From an attribute-based perspective, this change in discount 

rate can be easily explained by noticing that the effective 

compensation between $1000 and $2000 is much larger than 

that between $100 and $200, whereas the effective intervals 

for the two choice scenarios are just the same.  

 

 
 

Figure 1: The dynamic structure of the modified tradeoff 

model of intertemporal choice. 

 
The common ratio effect (i.e., the delay duration effect in 

Dai and Busemeyer [2014]) implies that increasing the 

delays of both options proportionally would shift people’s 

preference toward the SS option. In this case, the change in 

attribute values produces a larger effective interval while 

keeping the same effective compensation, with the observed 

effect as a natural result. Finally, the common difference 

effect suggests that postponing both options by the same 

length would increase people’s preference to the LL option. 

This effect is accounted for by the attribute-based approach 

together with the nonlinearity of the time weighting function 

(i.e., w(t)). The particular form of the function (i.e., 

Equation 2) entails that increasing both delays by the same 

length would lead to a smaller effective interval and thus 

shift preference towards the LL option.  

With the assumption of distinct discrimination thresholds 

for choosing the SS and LL options, it can be shown that the 

dynamic tradeoff model can produce nonadditivity in delay 

discounting demonstrated as a violation of transitivity. 
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Specifically, when the probabilistic nature of choice is 

considered, a violation of transitivity is usually formalized 

as a violation of weak stochastic transitivity (WST; 

Davidson & Marschak, 1959). WST requires that for a triple 

of options X, Y, and Z, if PXY ≥ 0.5, PYZ ≥ 0.5, then PXZ 

should also be no smaller than 0.5, in which PAB represents 

the probability of choose option A over option B in a binary 

choice. In other words, a violation of WST occurs when PXZ 

< 0.5 given the two preconditions. This is consistent with 

the dynamic tradeoff model. For example, for the 

aforementioned triple of options with increasing money 

amounts and delay lengths, the dynamic tradeoff model 

would predict PSM = 0.53, PML = 0.58, but PSL = 0.35 when γ 

= 0.05, τ = 0.01, c = 1, δS = 0.01, and δL = 2, violating WST. 

Besides showing intransitive intertemporal choices 

produced by sub- or superadditivity in delay discounting, 

Scholten et al. (2014) also suggested a more intricate pattern 

of intransitive intertemporal choice called relative 

nonadditivity. Specifically, intransitive intertemporal 

choices tend to show subadditivity when differences 

between delay lengths are large relative to the differences 

between money amounts, and show superadditivity when 

the differences between delay lengths are large relative to 

those between money amounts. To account for this pattern, 

Scholten et al. defined additivity in delay discounting in 

terms of a product rule of choice odds and showed that this 

definition naturally led to the pattern of relative 

nonadditivity. According to this definition, subadditivity 

occurs when  

                             Ω𝐿𝑆 > Ω𝑀𝑆 × Ω𝐿𝑀 ,                             (9) 

in which ΩXY denotes the choice odds of option X over 

option Y, that is, PXY/PYX, and superadditivity occurs when  

                             Ω𝐿𝑆 < Ω𝑀𝑆 × Ω𝐿𝑀 .                           (10) 

According to Scholten et al., the ratio choice rule of the 

static tradeoff model is the key component for explaining 

relative nonadditivity.  

The dynamic tradeoff model, which goes without the ratio 

choice rule, can account for the same phenomenon. 

According to the dynamic model, ΩMS and ΩLM tend to be 

smaller than 1 when differences between delay lengths are 

large relative to the differences between money amounts, so 

is ΩLS. Given the choice rule of the dynamic model (i.e., 

Equation 7 for equal discrimination thresholds for choosing 

the SS and LL options, or Equation 8 for distinct 

discrimination threshold), it can be shown that the same 

conditions tend to render Ω𝐿𝑆 > Ω𝑀𝑆 × Ω𝐿𝑀. For example, 

for a triple of options X, Y, and Z with increasing reward 

amounts of 10, 11, and 12 dollars, and increasing delay 

lengths of 5, 10, and 15 days, ΩMS = 0.074, ΩLM = 0.105, 

but ΩLS = 0.026 > 0.008 = ΩMS × ΩLM when γ = τ  = 0.05, c 

= 1, and δS = δL = 0.05. To the contrary, with the same set of 

model parameters but another triple of options X’, Y’, and 

Z’ with increasing reward amounts of 10, 20, and 30 dollars, 

and the same increasing delay lengths of 5, 10, and 15 days, 

ΩMS = 3.15, ΩLM = 2.30, but ΩLS = 4.14 < 7.26 = ΩMS × ΩLM. 

In the first triple, the differences between delay lengths are 

large relative to those between reward amounts, whereas in 

the second triple, the latter are large relative to the former. 

Besides accounting for major empirical regularities in 

choice, the dynamic tradeoff model can also accommodate 

the fast-and-extreme effect, one robust relationship between 

choices and responses in intertemporal choice (Dai & 

Busemeyer, 2014). According to the model, the more 

strongly the expected difference between effective 

compensation and effective interval differs from zero, the 

higher the probability of obtaining a difference large enough 

in each sample and the further away ratio of Φ(
μ−δ

𝜎
) to 

Φ(
−μ−δ

𝜎
) is from 1. The former leads to faster response 

times because fewer samples are required to trigger a 

decision, whereas the latter leads to more extreme choice 

proportions.  

In summary, the dynamic tradeoff model can qualitatively 

accommodate all the major findings in intertemporal choice 

that are captured by the static tradeoff model; in addition, it 

can also qualitatively accommodate the fast-and-extreme 

effect, a prominent relationship between choices and 

response times that eludes the static tradeoff model. In the 

next section, we show further that the dynamic model can 

also quantitatively fit empirical data better than promising 

competing models.  

Quantitative Model Comparisons 

We conducted two model-comparison analyses to show the 

power of the dynamic tradeoff model in quantitatively 

fitting empirical data. First, we compared it with the latest, 

full version of the static tradeoff model (Scholten et al., 

2014) in terms of their performance in fitting choice data 

only. Second, we compared the dynamic tradeoff model 

with the best-performing model in Dai and Busemeyer 

(2014)—which is built on Decision Field Theory (DFT; 

Busemeyer & Townsend, 1993)—with regard to their 

performance in fitting choice and response time data 

simultaneously. The DFT model assumes a sequential 

sampling approach and an attention shift mechanism for 

making intertemporal choices. Specifically, it suggests that a 

DM attends to either the money or the delay attribute at a 

time and evaluates the relevant difference between options 

to update his or her preference. This preference updating 

process continues over time as the DM switches attention 

between the two attributes until the preference level of one 

option reaches a preference threshold to trigger a decision. 

See Dai and Busemeyer for more details of the DFT model.  

Method 

We used data from three representative empirical studies to 

assess the performance of the models in accounting for 

individual-level data. The first data set came from Study 1 

in Dai (2014), in which half or all the choice questions for 

each individual had an immediate SS option. The second 

data set came from Dai (2016), which focused on the 

nonadditivity in delay discounting and involved only 

delayed SS and LL options. The third data set came from 
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Study 3 in Dai and Busemeyer (2014), which examined the 

magnitude effect, the common ratio effect, and the common 

difference effect, and again involved only delayed SS and 

LL options. All three data sets contained participants who 

showed the fast-and-extreme effect. A total of 138 

participants contributed data to the analysis: 61 from the 

first data set, 40 from the second, and 37 from the third. In 

all three studies, the choice questions for each participant 

were adjusted to suit the time preference level of the 

individual, and each question was presented multiple times. 

In this way, moderate choice proportions could be induced 

at an individual level to better distinguish probabilistic 

models from one another.  

The models were fitted to individual data from each data 

set using the predicted functions of choice probability or 

joint probability density functions of choices and response 

times. We used the SIMPLEX algorithm implemented in the 

fminsearch function of Matlab to find the maximum-

likelihood parameter estimates of each model, which was 

then used to calculate the Bayesian Information Criterion 

(BIC; Schwarz, 1978). The BIC is a common measure for 

relative model performance and expresses a model’s ability 

to capture the data, taking into account its complexity 

(based on the number of free parameters). A lower BIC 

indicates a better balance between goodness of fit and model 

complexity and thus a more desirable model.  

To evaluate the absolute performance of the dynamic 

tradeoff model, we compared its predictions with the 

observed data in terms of the fast-and-extreme effect. 

Specifically, we categorized all repeatedly presented 

questions into five equal-interval groups regarding observed 

choice proportions of the LL options and then calculated the 

mean observed and predicted response times for each 

question. The observed and predicted response times within 

each bin were then averaged to obtain overall measures of 

the observed and predicted results regarding response time. 

The fast-and-extreme effect suggests that mean response 

times associated with moderate choice proportions should 

be longer than those with extreme choice proportions. 

Results  

Table 1 presents the results of comparing the static and 

dynamic tradeoff models in terms of the numbers of 

participants whose data were better described by either 

model when fitting only choice data, whereas Table 2 shows 

the results of comparing the dynamic tradeoff model with 

the best-performing DFT model in Dai and Busemeyer 

(2014) when fitting both choice and response time data. In 

each comparison, the dynamic tradeoff model outperformed 

the other model both separately for each data set and 

aggregated across all data sets.
3
 Furthermore, Figure 2 

shows that the dynamic tradeoff model reproduces the 

observed fast-and-extreme effect, supporting the validity of 

the model as a descriptive account. The difference in mean 

response time between questions with extreme choice 

                                                           
3 Overall BICs across participants showed the same pattern. 

proportions (i.e., p < 0.2 or p > 0.8) and those with moderate 

choice proportions (i.e., 0.2 ≤ p ≤ 0.8) was statistically 

significant for both observed (t = -9.83, p < .001) and 

predicted data (t = -5.08, p < .001).  

 

Table 1: Number of Participants Whose Choice Data 

Were Better Described by the Static or Dynamic Tradeoff 

Model. 

 

Data Set Static model Dynamic model 

1 10 51 

2 1 39 

3 18 19 

Across 29 109 

 

Table 2: Number of Participants Whose Choice and 

Response Time Data Were Better Described by the Best-

Performing DFT Model in Dai and Busemeyer (2014) or the 

Dynamic Tradeoff Model. 

 

Data Set DFT model Dynamic tradeoff model 

1 18 43 

2 14 26 

3 15 22 

Across 47 91 

 
 

Figure 2. Average mean response times for questions with 

different observed choice proportions of the LL options. 

Error bars show 95% confidence intervals.  

Discussion 

The static tradeoff model (Scholten et al., 2014) represents 

one of the most successful cognitive models to describe 

intertemporal choice. However, up to now there have been 

no attempts to examine how this modeling approach could 

be extended to also account for the dynamics of the 

underlying decision process. Here we developed a dynamic 

modification of the tradeoff model, which can accommodate 

not only key choice regularities but also the response time 

data and prominent regularities therein (e.g., the fast-and-

extreme effect). We also showed that this modified model 

quantitatively outperforms the original static tradeoff model 

when fitting choice data and the best-performing DFT 

model in Dai and Busemeyer (2014) when fitting both 
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choice and response time data. The model’s ability to 

capture the data both qualitatively and quantitatively 

underlines the value of developing dynamic accounts of 

intertemporal choice for a better understanding of this 

central topic in both psychology and economics. 

A General Framework for Developing Dynamic 

Models of Choice 

When developing the dynamic tradeoff model, we invoked 

and combined two time-honored concepts: the notion of 

random utility in economics and the concept of 

discrimination thresholds in psychology. Combining these 

concepts seems to offer a promising, but so far neglected, 

approach to developing dynamic choice models, and we 

argue that it could be applied to transform existing static 

models of choice also in other domains. For example, it 

could be applied to extend static models of risky choice into 

dynamic ones as long as the corresponding models can 

reasonably offer a measurement of the relative attractiveness 

of each option and the variability thereof. With dynamic 

models, both choice and response time data from empirical 

studies can be utilized to compare competing models for a 

more powerful model selection. Dai, Pleskac, and Pachur 

(2016) conduct a more comprehensive development and 

analysis of such a random-utility-with-discrimination-

threshold (RUDT) framework, and compare it to other 

dynamic approaches to modeling intertemporal choice. 

Future Directions 

In addition to the fast-and-extreme effect discovered in Dai 

and Busemeyer (2014), recent studies (Dai, 2014) have 

suggested another striking but less common relationship 

between choices and response times in intertemporal choice. 

Specifically, it was found that, within each choice question, 

the option chosen more frequently also tended to be chosen 

more quickly than the other option. Unfortunately, this fast-

and-frequent effect poses a severe challenge to both the 

best-performing DFT model in Dai and Busemeyer and the 

dynamic tradeoff model developed here. Both models 

predict that the conditional response time distribution given 

choosing one option should be identical to that given 

choosing the other option. As a consequence, the option 

chosen more frequently is predicted to have the same mean 

response time as the other option, contradicting the fast-and-

frequent effect. It is possible, however, to modify the 

dynamic tradeoff model to accommodate this effect (Dai et 

al., 2016). Specifically, by assuming that the discrimination 

thresholds are not fixed across successive samples but 

converging, it is possible to account for the pattern. To put 

DFT models of intertemporal choice on equal footing, 

attempts should be made to improve them as well. Future 

research should explore alternative forms of the tradeoff 

model under the RUDT structure and compare them with 

appropriate competing models to examine the performance 

of the dynamic tradeoff model.  

Conclusion 

Most existing models of intertemporal choice, including the 

original tradeoff model, are static and thus lack a proper 

account of the dynamic processes leading to a choice. In this 

paper, we showed how the static tradeoff model can be 

modified into a dynamic one with a general structure built 

on the concepts of random utility and discrimination 

threshold. The advantages of the dynamic tradeoff model 

are demonstrated by its capability to qualitatively 

accommodate empirical findings and its better performance 

in quantitative model comparisons. Future studies should 

further explore the capacity of this approach for explaining 

more phenomena in intertemporal choice and beyond.  
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