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ABSTRACT

Az the field of embedded networked sensing matures, useful
abstractions are emerging to satisfy the nesds of increasingly
complex applications. This paper demonstrates StateSync,
an abstraction for reliable dissemination of application state
through a multi-hop wireleas network, Using StateSync, the
complexity of multihop wireless network applications and
services can be reduced to processing a gradually evolving
set of table entries, subject to minimal consistency checks.
The StateSync abatraction defines a data model based on
key-value pairs, a reliability model with a probabilistic la-
tency bound, and an event-driven publish/subscribe APL
We evaluate StateSync using three different applications.
We prezent performance measurements using simulation and
a wireless testhed,

1. THE STATESYNC ABSTRACTION

Ag the field of embedded networked sensing matures, use-
ful abstractions arse emerging to satisfy the needs of in-
creasingly complex applications. Thiz paper demonstrates
StateSyne, an abstraction for reliable dissemination of ap-
plication state through a multi-hop wireless network.,

The StateSync layer presents a publish/subscribe inter-
face to a set of application-defined tables. The contents of
these tables are reliably and efficiently broadcasted a spec-
ified number of hops away, using a protocol that iz robust
to changes to the network topology and changes in the re-
celver set. StateSync conforms to a minimal consistency
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model for received values publizshed by a single nods, but
does not attempt to guarantee consistency betweesn received
values published by different nedes. Using StateSvync, the
complexity of the multihop wireless network iz reduced to
processing a gradually evelving set of table entries, subject
to certain minimal consizstency checks.

1.1 Application Requirements

Embedded networked sensing applications inherit a long
list of application requirements that are more or less unique
among distributed systems. The main distinguishing char-
acteriztic iz a high degree of dependence on the environment,
in the face of dynamic conditions and a limited capability
to discover environmental properties with certainty. Proper-
ties of the environment often affect both system performance
and the application’s objectives, and thus must be estimated
to achieve the system®s poals. These issues are at the heart
of the design of successful aystem components for embedded
networked sensing applications.

We designed StateSync to extend the ideaz of previous
abstractions [16] and protocols [12] to support of a specific
class of applications. Thess applications have the following
propertisa:

e Reliable delivery greatly simplifies the design of the
application.

e A relatively larpe amount of data is shared, and fresh-
ness of the data iz important, including assurance that
the publisher of data iz still active.

e The data being shared exhibits low "churn®, meaning
that the expected lifespan of a data element iz long
compared with the system latency requirements.

One example of thiz type of application iz an acoustic
localization system. Such a system needs to disseminate
range estimates throughout the network in order to fuse
them into a coordinate system. These range estimates vary
slowly over time in responss to minor changes, occasion-
ally changing abruptly when nodes are moved. Reliabil-
ity iz important for this application, because inconsistent or
stale data can present problems for the multilateration al-
gorithm. The rangs data in this application tends to have
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Figure 1: Publisher applications push tables of key-
value pairs to StateSync, which disseminates them
and delivers the complete table of all received keys
to subscribers whenever a change occurs.

long lifespana, going perhaps as long as 10-30 minutes with-
out modification. When modifications do oceur, they tend
to affect only a small fraction of the data being publizshed
by a given nods. Despite thess long lifespans, low latency is
desirable, because additional latency in the propagation of
updates directly affects the application-leval performance of
the localization system by delaying position updates,

Building applications over the StateSync abstraction not
only greatly simplifies the implementation of applications,
but alzo provides opportunities for efficiently aggregating
application state changes into. Other examples of services
and applications that can benefit from this typs of layer
are routing protocols, configuration and calibration mecha-
nisms, and membership agresment protocols.

1.2 The StateSync Abstraction

The BtateSync abstraction defines the data model, the
AP, and the semantics of StateSync. StateSync imposes a
simple data model of typed key-value pairs. The data types
are uzer-defined and can either specify a fixed record and key
length, or usevariable record and key lengtha, The key-value
paira are implicitly annotated with a flow ID' that includes
a unigue address for the publisher and other user-definable
fieldz. This additional implicit key effectively assigns each
publizher an independent key-space. At most one valus iz
permitted per key: when a pair iz published with ths same
key, type, and flow ID ag an existing pair, the original pair
iz replaced.

The Statefync API presents a Publish/Subscribe inter-
face. A publisher provides StateSync with a complete =et
of keys for a given type and flow ID to replace all existing
keya for that type and flow ID. A subscriber will receive
events whenever there is any update in the data matching a
specified type. The complete data matching that type can
be retrieved from StateSyne, combined from all flows that
reach the subscriber. Each key-value pair is annotated with
the flow ID of the publisher of that data, az well as other
metadata such as the arrival time and the distance to the
publisher in hops. For fixed-length records, simple arrays of
records are passed to and from the API Figure 1 shows a
block diagram of the StateSync APL

The StateSync mechanism provides semantics that are de-
signed to be relaxed enough to be implemented efficiently in
a wireless network, while still maintaining useful propertiss.

The BtateSync subscribe interface presents only the most
recent state to a subscriber; it does not present each inter
mediate publizhed state, This policy eliminates the need to
retain a backlog or a complets history in the event of lengthy
disconnection. In addition, State3ync puarantees that each
state presented at a subscriber waa in fact an aciual prior
state of the publisher. That is, the view at the subscriber iz
never a partial state of the publisher (such as would occour
if & sequence of updates were played out of order). Third,
the latency with which a state propagates from publisher to
recelver conforms to a probabilistic latency bound that is
a function of the number of hops, the size of the transfer,
and timers in the implementation, StateSync deliberately
relaxes any guarantees of consistency across disparate pub-
lishers, Consistency is guarantesd across the set of receivers
of a given published state, after no change has occurred for
the expected latency bound for the farthest node.

1.3 Related Work

The design of StateSync builds on the observations and
experience of many past and present systems in sensor net-
worka, The importance and walue of a neighborhood ab-
straction was clearly laid out in the discussion of Hood [16].
Hood provides a way to approach several important concepta
about neighborhoods, and provides a best-sffort transport
layer. BtateSync provides a similar AFI to Hood, but ex-
tends its scope by defining a model that includes reliable
delivery over multiple hops. The Hood and StateSyne solu-
tionz in some ways address orthopgonal application proper-
ties, Whereas Hood iz designed to share ephemeral datain a
best-affort fashion, StateSync iz desipned to share lonp-lived
data with very low gquiescent cost., Fach of thsse solutions
advances a significant space of applications.

Relative to much prior work that present very generalized
solutions to problems in distributed systems, StateSync de-
fines a narrower set of propertiss, which nonsthsless repre-
sent a large application space. The StateSync API draws
upon priot experience with Publish/Subscribe interfaces in
the context of Directed Diffusion [11] and other early work in
Senzor Networks, However, Statedyne imposes more strue-
ture than a simple raw data interface, providing an inter-
face supporting application-defined fixed-lenpgth tables. The
StateSyne data model of typed key-value pairs draws on ex-
perience with Tuplespace systems such as Linda [6]. How-
aver, ShateSync relaxes most of the locking and group consis-
tency semantics, bacause group consistency iz generally too
heavy-weight for the wireless networka StateSync is designed
to support. The StateSync implementations build upon Dif-
fusion Trees and upon work in reliable multicast [5], but en-
capsulate most of the protocol details behind an interface
that iz fairly implementation-independent.

Btatelync’s focus on maintaining a low quisscent cost of

stabe synchronization bsars much resemblancs to the Trickle [12]

protocol for code update on TinyO3S motes. In implement-
ing our algorithma, we focused on low latency operation, ef-
ficlent support for many concurrent puklishers, and prompt
detection of the dizappsarance of a publisher. Trickle iz de-
sipned for higher latency tolerance, and while Trickle can
support multiple trees, the costs acale with the number of
trees. The "polite gossip” mechaniam of Trickle 1z a very
effective way to reduce quisscent cost of maintaining state,
but unfortunately the savings iz incompatible with detecting
gource dizsappearance.



2. VARIANTS OF STATESYNC

In our exploration of the State@ync abstraction, we ds-
veloped several variants of varying complexity and with dif-
ferent performance characteristics in terms of latency and
natwork traffic. Since sach variant conforms to a common
API, we can readily compare them in the context of different
applications.

In thiz section we present thres StateSyne variants, in in-
creasing order of sophistication: Soft&tate, LogFlood, and
LogTres, Soft8tate iz a very simple implementation based
on peariodic re-flooding of the complste state with no re-
tranzmission mechanism. LogFlood introduces a lop mecha-
nism to enable publication of updates to existing state and
implements a local retransmission protocol, while using a
flooding mechanism to push data with low latency. LogTres
introduces an overlay network consisting only of the most
reliable bi-directional links, and forms distribution trees via
that overlay. These variants are discussed in more detail in
the following ssctions.

2.1 SoftState

JoftStete implements a periodic refresh of the complets
state published by each node. Fach refresh iz transmitted
via a best-effort flooding service and iz recelved by nodes
a specified number of hops away. If the complete state iz
larger than a single MTU, the message iz fragmented and
reassembled across each hop. MNo other form of reliability i
implemented, 20 as the astate size grows the latency of Sofi-
State increases rapidly. The latency of updates iz a function
of the refresh interval and of the probability of messags loss,
which iz in turn a function of total state size.

SoftState iz a very simple variant of Statedync with nu-
merous drawbacks—for example, its quiescent cost is high
for most applications. However, it 43 sufficient for soms
applications, and it can be readily implemented on low-
end platforms. An application that publishes only small
amounts of data and can accept the bandwidth / latency
tradeoff can use this protocol. SeftSlaie iz also appropriats
for applications with high “churn” relative to latency re-
quirements. If the expected lifetime of the data being pub-
lizhed iz on the order of the required refresh interval, than
there iz little to be gained by transmitting only the portions
of the state that have changed.

2.2 LogFlood

The LogFlood wariant introduces two important mecha-
nisms that enable higher sfficiency and allow StateSync to
be applied to a much larger space of applications. The first
iz a log mechanism that stores and transmits published data
in the form of a log of additions and deletiona of key-value
paira. Thiz log enables the data to be broken dewn into
small ssgments and transmitted and re-transmitted pisce-
meal. The second iz a local retransmission protocol that can
request missing segments from a neighbor based on sequence
numbera In the following sections, we will show that these
two mechanisms enable much larger amounts of state to be
tranzmitted efficiently.

2.2.1  The StateSync Log Scheme

As we have described in Section 1, StateSync iz based
on a key-value data model and the API iz tuned to support
tables of fixed length key-value pairs. Thess desipn decisions
fit neatly into a log-based transport scheme, because they

enable the application to define the pranularity at which
changes typically occur, and specify precizely which parta of
the existing state need to be re-transmitted,

The Statefync log acheme iz designed to provide correct-
ness with low overhead and to support a continuous stream
of log entries. The StateSyne log iz composed of & sequence
of variable-length entries containing a 16-bit sequence num-
ber and a command field. The first entry iz alwayz an INIT
command, and hag sequence number 0. The INIT meszags
contains a 64-bit log sequence number that is chosen ran-
domly by each node on boot and is incremented whenever a
new log iz created. This sequence number iz used to protect
StateSyne apainst inconsistency from reboots or stale data.

Following the INIT command, a sequence of ADID and
DEL entries represent the addition and deletion of keys. An
ADD entry adds a new key and valus to the state publizshed
by a given node, replacing any previous entry with the same
key. A DEL entry removes an existing key and value from
the published state. Additional command types are used
to fragment large entries that might otherwizse estcesd the
network MTU,

Unlike protocels like TOP that use byte ranges, sequencs
numbers in a StateSync log are assigned at the granular-
ity of log entriss. The reason for thiz design choice iz two-
fold. First, sequencing at a larger granularity reduces the re-
quired size of the sequance numbers, and thus reduces proto-
col overhead. Jecond, by always transmitting wheole entries
rather than byte ranges, the log entries can be processed by
the application out of order, as in application layer fram-
ing [5]. The drawback of this scheme is that, unlike the cass
of IP fragmentation, StateSync log entries cannot be adap-
tively fragmented “in flight”. Instead, a predefined granu-
larity must be selected at design time, taking into account
the MTU of the networks in the system and the expeacted
size of the values published by the application. While the
choice of granularity can impact the utilization of packeta,
in practice we have besn able to uze a sinpgle default valus
for all of our development.

The other key design problem for the StateZync log mech-
anigm iz how to address the problem of an infinitely growing
log. While ADD and DEL commands often make a pre-
vious log entry redundant, those redundant log entriss can-
not be deleted without forfeiting the semantic requirement
that StateSync subscribers always see a valid past state of
the publisher. In addition, as state changes occur, an in-
creasing fraction of the sequence space will be consumed by
redundant entries. Given StateSync’s relatively small 16-bit
sequence numbers, thiz can lead to sequence number exhaus-
tion. To address thiz we apply a solution similar to the “new
page” abstraction implemented by the WB application[5].

Each StateSynclog maintains two sub-logs: a checkpoinied
log and an active log, as shown in Figure 2. New additions
to the log are always appended to the active lop. When
certain conditions are met—such as a maximum level of re-
dundancy in the log—the active log iz “checkpointed”. A
special TERM command iz appended to the active log,
and it iz rotated into the checkpoinied slot. A new active
log iz formed by incrementing the log ssquence number and
compressing the previous active log, renumbering the entriss
starting from sequence 0.

The checkpointing process addresses the problem of in-
finite loges at minimal cost. The only cost of the acheme
iz an additional TERM entry; once the terminated log is
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Figure 2: The StateSync Log Scheme maintains a
checkpointed and and an active log. In the diagram,
the first two ADD entries in the active log are car-
ried over from the checkpointed log after the redun-
dant entries have been compressed out.

received completely, the checkpointing process is a local op-
eration that does not require any additional network traffic.
Az an optimization, ZtateSync will queue out-oforder en-
tries that pertain to the new active log before checkpointing
iz complete,

2.2.2  The StateSync Retransmission Protocol

Unce the state data iz organized in a sequenced stream of
small blocks, wecan implement a local retransmission proto-
col. Similar to many reliable multicast protocols, StateSync’s

retransmission protocol isreceiver-driven with proactive broad-

cast as an optimization [5]. Receivers add received entries
to their logs and maintain state about which log entries are
missing based on sequence number paps. FReceivers then
scheduls NACK requests for specific missing sequence ranges,
with an initial delay followed by an exponential backoff. Op-
timizations such as NACK suppression and more sophisti-
cated timers such asin [5] are not currently implemented.

The wire protocel used by Statedync iz designed to be
efficient in terms of network usage and flexible in terms of
packet structure. The packet format does not have a pre-
defined header structure, but rather iz composed of a series
of variable-length entriss, similar to other proposed wire for-
mats [10][1][11]. As a result, this flexible structure exhibits
lowear overhead and iz also more amenable to pipgybacking
on other traffic. The wire protocol incorporates numerous
optimizations, such as the ability to define a length field
that applies to several subsequent log entries, or a sequence
number that applies to several subsequent NACKs, For ex-
ample, the overhead of sending 20 sequential range entries
in our acoustic localization application iz 25 bytes beyond
the 400 bytes of data,

2.2.3  LogFlood Multihop Implementation

Given the log and protocol mechanizms described above,
the LogFlood multihop implementation iz straightforward.
Firat, the retransmission protocol iz extended to include the
flow-id and the current hopeount of the successive data. The
flow-id identifiss the publisher-subscriber pair and any ad-
ditional de-multiplexing bits. In this case, the publisher iz
identified by a network-layer address and the subscriber iz
always “broadcast N-hops”. Because of the flexible struc-
ture of the wire protocol, entries from multiple flows can be

packed into a single message.

With thiz minor change, a simple state machine can im-
plement the multihop flooding protocel. Incoming meszages
are parsed to extract the flow they pertain to, the hopcount,
and the lop entries compriging the data. Any messapes that
are not already present in the log and that are not beyond
the maximum desired hopcount are acheduled for retrans-
mission. The hopcount of a flow iz determined by recording
the lowest hopeount of incoming messages on that flow, and
adding 1. When the next tranasmission is scheduled, any
outgoing entries are concatenated with their flow-id’s and
hopcounts into a single packet and broadcast out to neigh-
bors,

This simple state machine, in addition to the local retrans-
mission protecol, implements an efficlent many-to-many flood
that can piggyback floods from different sources onto the
same packets. However, it iz not guaranteed to be reliable;
if the last packet iz lost, the retransmission protocol can-
not discover that there iz a sequence number to NACTK, To
golve this izsue, LogFlood alzo floods a periodic refresh mes-
sage, beginning a fixed time after the last new log entry was
flocded. Thess messages are small and can be piggybacked
as described above, but still represent a significant quiss-
cent transmission overhead. They alzo place limits on join
latency. The quisscent cost scales rouphly as nk where n
iz the total number of nodes and % is the number of nodes
in the flood radius, The join latency iz determined by the
refrezh rate.

2.3 LogTree

The LogTree variant builds on the log acheme and local
retransmission protocol deseribed in Section 2.2, Howewer,
where LogFlood used a flooding protocol for proactive dis-
gsemination and end-to-end reliability, LogTree implements
a distribution tree for sach publisher in order to reduce re-
dundant transmissions without sipnificantly impacting la-
tency. LogTree also reduces the quisscent cost of the relia-
bility mechanism to 1 message per node per refresh interval,
comparad with & messages per node for Logllood To ac-
complish this, LogTree introduces an underlying layer called
ClusterSyne.

2.3.1  ClusterSync

The Clusterdync mechaniam serves two functions. Firat,
it estimates the topolegy of the network and constructs an
overlay network consisting only of links that meet certain cri-
teria. Second, it provides a single-hop version of StateSyne,
with the same AFPI and semantics.

To form the overlay, ClusterSync uses a link estimator
and periodic beacons to discover the topology of the net-
work and to continuously estimate link quality, It uses a
link estimator called RNV FPLite that consumes one additional
byte of overhead per packet and computes link estimates
based on the principles in [2]. ClusterSync uses the link
estimates to select links for the overlay that meet certain
criteria, including bi-directionality, a minimum link qual-
ity metric, and a connectivity metric that prefers neighbors
with distinet neighborsets.

The single-hop version of StateSync uses the zame log

schems and retransmission protocol asother versions of StateSyne.

End-to-end reliability iz achieved by each node periodically
including it latest ssquence number in the beacon meszages
it sends for link estimation. When other ClusterSync traf-
fic is present, beacon messages and sequence numbers ars
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four experiments in each grouping consist of two runs each of LogFlood and LogTree, first with 1 publisher

and then with 12 publishers.

piggybacked on existing traflic.

The ClusterSync mechanism has many advantages that
pertain to applications. Many applications benefit from
ClusterSync’s stable overlay network and prompt detection
of topology changes. While topology information is not al-
ways necessary to the correctness of an application, it often
simplifies the application and results in greater responsive-
ness (see Section 4.2 for such an application). The stable
overlay also presents a more stable definition for the hop-
count used to limit the scope of state dissemination. From
an application’s perspective, it is often more important that
the receiver set be stable than that they be a specific “dis-
tance” away. ClusterSync also provides an efficient way to
reliably disseminate state variables to immediate broadcast
neighbors.  ClusterSync will provide the greatest perfor-
mance improvement to applications that need to publish
keys with long lifespans, since the up-front cost of reliable
transfer is amortized by higher efficiency during quiescent
periods.

2.3.2 Loglree

LogTree is a multihop StateSvne variant that builds dis-
tribution trees to yield a performance improvement over
LogFlood. It builds its trees in the overlay topology con-
structed by ClusterSynec, and uses ClusterSync to publish
routing and flow metadata.

LogTree implements a distance vector algorithm that com-
putes a route and a number of hops hack to each publisher.
The route to each publisher iz used to select a peer for re-
questing local retransmissions and the hopcount to the pub-

lisher is used to determine whether or not to proactively
forward new data. Each node also advertises its “preferred”
upstream peer for transmission, which is used to prune the
proactive distribution tree. All of this routing metadata. (i.e.
flow 1D, hopcount, and preferred upsiream peer) is pub-
lished to adjacent nodes in the overlay network through the
ClusterSync mechanism. Because ClusterSyne is reliable,
LogTree only needs to process updates from ClusterSyne and
keep pushing its most recent routing state back to Clusier-
Syne. The ClusterSync layer handles all of the complexity
of message loss and of timing out stale data and stale neigh-
bors.

Log'Tree implements end-to-end reliability using a similar
mechanism. In addition to the other per-flow routing meta-
data, a log sequence number is published via ClusterSync.
This sequence number propagates along with the distance
vector messages to inform all nodes of the most recent se-
quence mumber published by the source node. In order to
limit the traffic pushed through ClusterSync, LogTree sets a
5 second holdoff timer after each new data element is pushed
before pushing a new sequence number out via ClusterSync.
This information enables nodes to request retransmissions
in the event that the most recent message of the log was
lost.

2.3.3 Optimizations to LogTree

Our experiments with LogTree show that it outperforms
LogFlood and SoftState in terms of total volume of data
transferred, and does not suffer that much in terms of la-
tency (see Section 3). However, in order to achieve these



results we implemented two optimizations: fooding mode
and Aou-ID) compression.

Flooding mode addresses the startup latency of Clustier
Sync and of building distribution trees. The original LogTres
implementation suffered latency problems in the event that
the overlay network had not yet formed, or when the dis-
tribution tree for a particular source had not yet been con-
structed. To address this, we modified fogTree to proac-
tively flood messapes in cases where hopoount was not yet
reached and neighbors were obgerved that did not report
an active tres. This optimization achieves similar latency
to Logflood, while only incurring the bandwidth penalty az
the distribution tres iz still being constructed.

Flow-ID compression is an optimization that allows the
routing metadata to scale better as the number of distri-
bution tress grows. BEach node defines a dictionary that
locally maps flow-IDg to amall integers, and publizhes this
dictionary through ClusterSync. This enables a full 12-byte
flow-ID to be replaced by a 1-byte nickname, reducing the
gize of publizshed route metadata and reducing the size of
headers on data messapes that pertain to a given flow. This
techniqus might be applied to other nicknaming problama,
although it can increase join latency as the complete dictio-
naty must be replayed to new neighbora.

3. EXPERIMENTAL DESIGN

In this section, we describe how we measurs the perfor-
mance of our StateSync variants, both in a sst of benchmark
testa, and in the context of running applicationa.

3.1 Metrics and Experimental Setup

Cur criteria are primarily focused on two metrics: the dis-
tribution of latency in state propagation, and the network
traffic incurred by our mechanisms. The latency iz deter-
mined by lopging the activities of the application or bench-
mark, matching up publish states with subscribe states, and
logging the time lag. Network traffic is determined by mea-
suring the number of bytes and packets that paszs through
the network interface, and in some cases by measuring stabis-
tics gathered directly from the meachanismas.

Cur measurements were taken from simulations and tests
on a wireless testbed., The testbed experiments wete run
from a centralized server with remote connsctions to a set of
12 802.11 radios hosted by Stargates distributed throughout
our building, as shown in Figure 3. The simulations were run
within the EmStar [7] environment on a typical workstation.
Jimulations of the Localization and 3Bink Tree applications
ware also run with alarger, 50-node topology, For validation
purposes, we also ran simulations using the same topology
ags the testbed experiments, and found that the differences
were negligible.

3.2 Benchmark Tests

In order to characterize the abstract performance of our
different mechanisms, we ran a series of benchmarks, The
results of those benchmarks are shown in Figurs 4.1 Thess

While LogTres sends less data than LogFlood, it sends a
larger number of packsta. This occurs because the cur-
rent implementation ClusterSynec sends ity own independent
packsets rather than piggybacking them on other traffic. Al-
though it iz not yet fully implemented, ClusterSync was
specifically designed with piggybacking in mind and support
for pigeybacking iz currently under development.

benchmarks are intended to measure the performance of
the LogFlood and LogTree variants when driven with simple
workloads, Each experiment lasted 20 minutes, and pub-
lished 64K of data via Statedync. The only difference from
one expeariment to the next waa the distribution of the data
in time {1.e. when it wag published) and the number of nodes
involved in publizhing,

In the first set of experiments, only one node published
data and we varied the number of “chunks” the data was
broken into. Each chunk was published at a uniform division
of the 20 minutes. From Figure 4, we can ses that LogTres
always gsends fewer bytes and generally achieves comparable
latency.

In the second set of experiments, all 12 nodss in the net-
work published at esach interval, dividing the same total
amount of data among them. With 12 senders, both vari-
ant@ incur greater traffic cost, but we see LogFlood deprade
mote rapidly than Logfres.

GDF of Publication Latency by hopoourt, using LogT ree
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Figure 5: The latency distribution by hopcount.

This benchmark data also provides us with some idea on
how to model latency as a function of the amount of data
being pushed and the number of hops. From Figure 4, we
ses that the latency scales roughly linearly with the sizs of
the input data. This result waa expected, given the various
forms of rate limiting implemented in the local retransmis-
sion protocol. In addition, Figure 5 shows that the distribu-
tion of latencies alsc increasss as a function of the number
of hops from the publisher. The bimodal distribution in
latency reflects the probability of a loss that results in ad-
ditional delay before the § second holdoff timer expires and
the new ssquence number iz pushed.

3.3 Determining Application Suitability

Latency and traffic consumed are a pood starting point
for determining whether StateSync iz helpful to an appli-
cation. Statedync iz most appropriate to applications that
need notification when state iz stale or when the source of
some data has disappeared. In cases such as these, epi-
demic protocols are not appropriate because they will mazk
stale data; the only possible zolution is some kind of refresh
mechanism. The advantage of StataeSync is that it defines a
reliable transport that can protect a largs collection of state
variables with a single aggregate refresh.

To quantify an application’s needs we characterize the ap-
plication using two metrics: the application’s specific la-
tency requirements, and the level of “churn” in the applica-



tion’s data, defined by the expected lifetime of a key-value
pair. If the expected lifespan of application data iz low
enough compared with the required latency bound, then a
simple pericdic refresh may be cheaper than the expected
cogh of a reliable transmission protoccl. However, if the
lifespan of application data iz likely to be much longer than
the latency with which stale data iz to be detected, then
the additional overhead of a reliable protocol iz justified.
Thig argument holds true to an even preater extent in cases
where the quantity of data being refreshed further increases
the cost of refresh. Figure 6 shows the distribution of key
lifetimes for the three applications we will discuss in the next
section.

4, APPLICATION PERFORMANCE

We developed thres embedded networked sensing appli-
cations that use StateSync so ag to ascertain the merits of
our abstractions and test our implementation. We then mea-
sured the performance of sach application and characterizad
their use of the Statedyne layer. While we do not claim that
this exhausts the space of possible applications, it does pro-
vide some Insight into application requirements that impact
the design of StateSync.

CDF of key lifetimes in seoonds
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Figure fi: The distribution of key lifetimes for all
three applications. The mean key lifetimes are: Lo-
calization: 1506 £+ 121; Mote Membership: 538 36 ;
Sink Tree: 388 + 07,

The next three subsections describe cur applications in
mote detail. In each cage, we first explain the intent of the
application and how it uses StateSyne, and then show the
results of tests in simulation and from a wireless testbed.

4,1 Acoustic Localization

Localization iz an important problem in embedded net-
worked sensing systems, which has been discussed exten-
sively [14][4][3][15][8]. Localization is an interesting problem
from a networking perspective because it iz an intrinsically
collaborative application. The data required to estimate
node locations are measured at many points in the network
and must be fused together to estimate a conaistent map of
locations, In addition, inconsistencies and gaps discoverad
in the data fusion process can be fed back to adaptively drive
the measurement process,

Because the signal processing and estimation components
of the localization system are already fairly complex, the
StateSync abstraction is a powerful tocl. Using StateSyne,

the complexity of the multihop wireless network is reduced
to processing a gradually evolving set of table entries, sub-
ject to certain minimal consistency checka

4.1.1  Application Characteristics

The acoustic localization application iz well suited to the
propertiss of StateSync. Typical large deployments of this
type of aystem yield betwesn 10 and 20 ranging records per
node [13], resulting in 400 bytes of published data per node.
The curve for Localization in the “churn™ graph in Figure 6
shows that these ranging records tend to have long lifes-
pana, meaning that simple soft-state refresh approaches will
be costly over time compared with mechanizms that can re-
liably cache the data. At the same tims, low latency iz de-
sirable because the latency in state update directly affects
the length of time that the system operates with incorrect
position information, which in turn could lead to zensing
and actuation based on inaccurate location estimates.

4.1.2 Mapping to the StateSync API

Dur acoustic localization application consista of two com-
ponents. Theranging component computes the physical dis-
tance and orientation of a node relative to a pesr by mea-
suring the time of flight of acoustic signals. Ranps and ori-
entation estimates are published via StateSync to all nodes
within a predefined hopcount. The multilateration compo-
nent subscribes to all published range satimates, and uses a
multilateration algorithm to fuse the range estimates into a
consigtent coordinate system.

4.1.3 Applving the StateSync Model

The reliability and consistency model of StateSync iz used
to ensure conalstency in the datasets that are fed to the mul-
tilateration algorithm. In the event that a node iz rotated or
moved, the ranges and direction estimates relating to that
node are no longer valid. Thiz in itself is not a serious prob-
lem, as it will only result in estimating the nods’s location
as its last location. However, if further ranging experiments
lead to a mixture of old and new range and orientation es-
timates, these inconsizstencies are likely to cause the multi-
lateration algeorithm to fail,

In our application, this problem is addressed using a per-
node “orientation sequence number” that iz incremented
aach time the node moves or otherwiss invalidates itz ranges.
The ranging compeonent indicates its current orientation se
quence number when it requests peers to rangs to it. This
enables nodes that receive acoustic rangs signals to anno-
tate their published estimates with the sequence number
that was in effect at the acoustic sender at the time that the
experiment occurred. Published estimates ars alzo anno-
tated with the publisher’s sequence number, indicating that
thoze estimates are relative to their current position. When-
ever a node increments its sequence number, it delstes all
ranges it had previously published, and then publishes its
new seguence number.

In spite of StateSync’s rel atively looss consistency seman-
tics, this protocol enables the multilateration component
to maintain a consistent dataset. To maintain consistency,
the multilateration component records the current sequence
number published by sach node, and all published data an-
notated with other sequence numbers is ignored. The only
estception s for range notification messages that arrive with
a subsequent sequence number: ag an optimization, these
messages are processed and published ahead of the arrival
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Figure 7: Results of tests of our Acoustic Localization application. The left pair of graphs are measurements

from our 12 node testbed, while the right pair are from a 50 node simulation.

The latency graphs show

a CDF of latency in seconds, demonstrating that LogTree achieves an expected latency about twice that of

LogFlood at lower scales, although with a higher fraction of long latencies at the higher scale.

The mean

latency for LogTree iz 31.54+ 0.58; for LogFlood is 1433+ 0.12. The “knee” at 5 seconds in the data from the
small network is caused by the 5 second holdoff on publishing a new sequence number in LogTree.

of a sequence number update from the source node. Ee-
cause Statedync’s semantics guarantes that states from an
individual publisher arrive in ssquence, the table received
from a node can never itself contain inconsistent sequence
numbers, and StateSync reliability guarantess that the table
update will occur within a probabiliztic time bound.

4.1.4 StateSync Performance

To test the performance of State3yne when uged in our
localization application, we ran several tests with different
variants of Statedync underneath our application. We ran
sach test for 1 hour on our wireless testbed, and for 1 hourin
the simulator, running a 50 node network., The ranging pro-
cess wag primarily driven by the multilateration algorithm,
which would cause 3 range requests in rapid succession, fol-
lowed by an exponential backoff. In addition, we simulated
thres of the nodes “moving” by forcing them to invalidate
their rangs information at three particular times. Thess in-
validations result in a burst of ranging activity and cause
the backoffz to be canceled.

Fipure 7 shows the results of testing our localization ap-
plication using different variants of StateSync. The graphs
show two types of information: the cumulative bytes trans-
mitted throughout the network as a function of time, and
the distribution of latency in a published state arriving at a
subscriber,

From the graphs we see that in terms of bytes tranamit-
ted, LogTres performs better than Logflood, both in terms
of the amount of overhead during transfers as well as in the
rate of traffic during quiescent periods. During transfers,
LogTred’s pruned distribution tree provides significant sav-
ings over flooding, especially az the size of the network grows
to reach the maximum hopecount of the published flows.
During quiescent periods, LogFlood’s periodic re-flocd of the
latest sequence number iz considerably more coatly than the
ClusterSync beacon traffic that refreshes the ClusterSyne se-
quence number (that in turn protects the LogTres per-flow
sequence numbers).

The latency praphs show that LogTree hag twice the e
pected latency of Logflood. Thiz can be explained by a
number of factors, including higher hopcounts on average
than in the flooding case, and lower redundancy when data
iz sent via the distribution tree. However, for many appli-
cations the latency cost is balanced ocut by the reduction in
traffic.

4,2 Sink Tree

Henzor network applications commonly exhibit stylized
communication patterns that can be described as many-to-
one, or one-to-many. As a result, the creation of sink and
gource trees are common tasks in sensor network applica-
tions. Bink trees are especially efficient for building for-



warding tables in situations where there are few consumers
of data relative to the number of potential producers. Simi-
larly, sourcs trees are ideal in the case of few producers with
many conasumers. e used StateSync to build a sink tree,
from which, a forwarding table can be provided to support
multihop communication.

4.2.1 Application Characteristics

The data required for creating and maintaining a sink
tres builds naturally on the communication abstraction pro-
vided by StateSync. Many of the decisions that must ke
made rely on having the latest awvailable information about
nodes within broadcast range, and not on historical infor-
mation, This memorylsss-like property, where the protocel
relies only on current state, iz one important attribute of
applications that are well suited to uze StateSyne.

MNeighbor attributes usually include a combination of local
information and cumulative information. Link quality, slesp
schedule [18], and geographic location are all examples of
local information that have been used in various tres-based
routing protocols. Hop-count, expected number of trans-
missions, and data interest [11] are examples of cumulative
information that have been similarly used in tree-based rout-
ing protocols. Usually there iz some data originating from
sinka that periodically propagate throughout the network to
maintain the sink tree, such as a sequence or epoch number.

Timeliness iz also important, as it can mean the difference
between a functioning and non-functioning routing proto-
col. The exact latency requirements depend on the expectad
characteristics of the application and environment. Suffi-
ciently late information i1z worae than no information, as it
can lead to oscillations or routing loops.

4.2.2 Mapping to the StateSync API

Chur sink tree implementation uses a distance-vector al-
gorithm. For illustrative purposes, we chose a simple hop-
count metric, though it would be easy to substitute thizs with
any other metric. To avold loops and the count-to-infinity
problem, nodes provide the exact path used to reach the
gink. By adwvertizing the path, in addition to a hop-count,
neighboring nodes can discard nesxt-hop candidates if they
ses themselves appear in the path. A similar technique i=
uzed in BGP for inter-domain routing,

Using Statedync allows us to concentrate our development
efforts on simpls operations over a tabls of key-valus ab-
tributes. In particular, we do not use the multi-hop features
of BtateSync for thiz application. Instead, we are only inter-
ested in the state of nodes that are within broadcast range.

MNodes publish a tabls that reflacts the path used to reach
the nearsst sink. Each entry in the table corresponds to a
hop along that path. The key for an entry iz the hop number,
and the date iz the Node ID at the hop number.

MNodses periodically publish tabls updates based on a timer,
This iz done to avoid correlated bursts of contrel traffic that
are trigppered by a single event, especially if it occurs near
the aink.

4.2.3  Applying the StateSync Mode!

The LogFresvariant of StateSyne provides a number of ad-
ditional features that ease the implementation of Sink Tres.
LogTree will only synchronize with a subset of well connected
neighbors. In particular, this means that data from nodes
with intermittent connectivity will never be seen by applica-
tions using LogTree over a single hop., Further more, LogTres

will proactively remove table entries from nodes that dis-
connect from the overlay. These properties relinquish ap-
plications like Bink Tree from the burden of identifying and
rejecting potentially large numbers of unsuitable candidates
due sub-par connectivity.

LogTree further provides applications with the benefit of
implicit liveness information. The resulting forwarding ta-
ble from Sink Treeis more stable and automatically provides
routes high hop-by-hop reliability. The trade-off iz that the
Sink Tres will be limited to a sub-graph of the overlay net-
work formed by LogTree

LogFlood and SoftState, in contrast to LogTree, oppor-
tunistically uses all data it over-hears from any node in order
to gather and update state. For some applications, such as
Zink Tres, thiz behavior may require that applications incor-
porate link-quality and liveness information through some
other means,

4.2.4 StateSync Performance

We tested different implementations of State Sink using
the Sink Tree application. Each test was run for 30 min-
utes on our wireleas testbed, and 30 minutes on a 50 nodse
simulated network. The 50 node network was evenly dis-
tributed within a square field at the same density as ths
testbed. In each of the tests, four randomly chosen nodes
ware confipured to advertise themselves as sinks throughout
the duration of the test. Dynamics in the aystem were thus
driven by the temporal variations of link quality.

Figure 8 shows the results of testing Sink Tree with dif-
ferent implementations of BtateSyne. Asg in Figure 7 for
Acoustic Ranging, we show the cumulative bytes tranamit-
ted over time, and the distribution of state update latency

Consider the top two cumulative traffic graphsin Figure 8.
We firat focus on the curves of LogTree and fogFlood The
difference in cumulative traffic hers can be attributed to a
number of things, First, the basic overhead in the quisscent
state for LogFlood iz strictly greater than LogTree The rea-
gon iz that LogTree iz eatablizhes session state with its neigh-
bors, which allows them to agres upon short nicknames that
only is meaningful within the context of the shared session
state. Conversely, LogFlood must always communicate state
uging longer, globally unique identifiers. ILogTres shares
state with a smaller number of neigphbors, which means that
the conssquences of a statechange at a singlenode iz smaller
in scope compared to LogFlood Therefore, given the same
amount of dynamics in the system, fewer state updates will
be tripgered in LogTree relative to Logfload.

We next consider the difference in cumulative traffic be-
tween LogFlood and SoftJiate in Figure 8 A node’s sphere
of influence in thess two schemes iz identical, go the primary
differentiator iz protocol overhead. LogFlood s sequence num-
ber incurs an overhead that iz constant with respect to the
table size, where az Sofi Stated’s overhesad grows linearly, In
the case of Sink Tres, howsever, the entire table publizshed
by a node iz typically smaller than than the globally unique
sequence number used by LogFlood, enabling SoftState to
perform better,

In Figure &, the latency praphs show that LogTree suffers
from having a higher fraction of long delays compared to
LogFlood, Thisis similar to the results found in Figure 7, but
the reazons are different. fogTree iz penalized heavily when
a node connects to a different neighbor due to a topology
change in the overlay network., All of the existing table
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Figure 8: Test results of our Sink Tree application. As in Figure 7, the left pair of graphs are measurements
from our 12 node testbed, and the right pair are from a 50 node simulation. The latency CDFs demonstrate
that the latencies observed with LogFlood tend to be a little lower than LogT'ree, though both scale similarly
with respect to the number of nodes. The upper two cumulative traffic CDFs attest to the advantage of using

LogTree over any of the other techniques.

entries available from the new neighbor are considered to be
delayed by the age of the table entries, rather than from the
time that the two neighbors connected to one another. Since
Sink Tree uses Statedync in single-hop mode, then anytime
a new edge iz added to the overlay network, a huge price
iz paid in terms of latency statistics. This iz not true for
Acoustic Ranging. Adding a new edge does not necessarily
connect two nodes that have no state about the other, since
Acoustic Ranging is using State Sync over multiple hopa.

4.3 Mote Membership

The Berkeley/Crosshow motes iz the most popular low-
power, resource-constrained wireless sensor network plat-
form. Since the radio range of the motes iz limited, the
vast majority of mote applications use a multthop tres-based
routing protocol (e.g. Surgs [17]) to send the data back to
the sink. A single multihop tres (rooted to a single sink)
iz sufficient when the network topology iz small. However,
in larger deployments, or when the network traffic iz sig-
nificant, it iz beneficial to hawve multiple trees, in order to
reduce latency and increase reliability. When multiple sinks
are prezent, the motes will pick the “best” one (based on a
routing metric, like ETX) to send thelr data to.

A zink, being the root of the mote multihop tres, has
information about all the motes that belong to that tree.
Howewer, it has no information about the rest of the motes
in the network; those motes report only to their correspond-

ing sinks. In order to acquire the complete membership
information, one nesds to quety each individual zink and
concatenate the results. For the purposes of systemn moni-
toring as well as sink-to-mots routing, it would be halpful
if each sink had the complete mote membership informa-
tion, consisting of ite local motes as well ag remote motes,
attached to the other sinka

Ths Mote Membership application iz designed to accom-
plish the aforementioned goal. Fach mote registers with its
sink when it joing that sink’s multihop tree. If the mote
changes multihop trees, it registers with its new sink. The
sinks keep track of their local motes through the mote mul-
tihop routing protocel and export that information to the
rest of the ginks, using StateSynec.

4.3.1 Mapping to the StateSync API

Each mote registers with its sink when it joins that sink’s
multihop tree. If the mote changes multihop trees, it rep-
isters with its new sink. FEach sink haz a membership o
ble that 1s comprized of local entries as well as synced en-
tries. The local entries are the motes that have joined this
sink’s multihop tres. Each sink periodically publishes the
part of its table that containg the local entries, using the
StateSync APL Upon receiving an exported table, the other
sinka merge those membership entries into their own tables.
Those entries appear ag synced entries and also contain the
ID of the publisher. This information is sufficient to creats
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Figure 9: Results of tests of our Mote Membership application, taken from our 12-node testbed. The graph
on the left depicts the cumulative network traffic as a function of time, for the three different variants of
StateSyne. LogTree incurs the lowest overhead, followed by LogFlood and SoftState. The graph on the right
depicts the CDF of latency. In this case, SoftState iz the fastest, while LogFlood performs marginally better
than LogTree. Again, the “knee” at 5 seconds in LogTree is attributed to the 5 second holdeff on publishing

a new sequence number,

a global membership wiew ab each of the sinks,

4.3.2  Applving the StateSync Model

The StateSync model guarantees that states from an in-
dividual publizher arrive in sequence. Howewer, since motes
don’t explicitly inform their previous sink when they changs
multihop trees, a possible inconsistency might occur inwhich
two or more sinks will consider the same mote as local. A se-
quence number scheme iz used to resolve this ambiguity. The
sequence number iz incremented whenever a mote changes
sinks; therefore, larger ssquence numbers indicate the most
recent cholce of the mote. By including the sequence number
in the data that each sink publishes, StateSync guarantess
that the ambipuity can be reliably resolved within a proba-
bilistic latency bound, As an example, sinks A and E both
consider mote 1 to be a local entry. The entry of sink A has
a larger sequence number than the entry of sink B, When
the information is publizhed via StateSync, sink B will mark
node 1 as a synced entry, thereby adhering to the sequencs
numbering scheme,

4.3.3 StateSync Performance

In order to test the performance of StateSyne, when usad
in the Mote Membership application we conducted a st of
experiments, similar to the other two applications. Each of
the experimental runs was conducted on ocur testhed, using
12 Btargate nodes. However, unlike Acoustic Localization
and Sink Tree, Mote Membership also included mote code,
The mote part of the Mote IMembership application was
written in EmTOS [9] and simulated using the EmStar mote
simulator model. Thus, the Mote Membership experiments
uzed a hybrid experimental environment, with the sink code
running on real hardware and the mote code running on
the simulator. This feature of EmStar enabkled us to run
experiments with 125 simulated motes.

Figure 9 presents the results of our experiments. Again,
wea are interested in measuring the performance of different
StateSync variants in terms of transmission overhead and
latency., As in the other two applications, we notice that
LogTree has the best performance in terms of traffic over-

head, while Soft3tate hag the highest overhead. In terms
of latency, Soft3State iz the fastest. Logflood and LogTres
while atill slower than SoftState still perform adequatel y—
more than 90% of the data has a latency of less than 1 sec-
ond, which, for the purposes of Mote IMembership, iz mors
than adequate. Therefors, based on the result, we can ascer-
tain that using the tree-bazed StateSync iz quite beneficial
to Mote Membership; it induces the least traffic overhead
while gtill maintaining a rather acceptable latency bound.

5. FUTURE WORK

We gee many opportunitiss for improvementsin our StateSync

implementations. Cur initial version of ClusterSync does
not pigeyback its messages on other traffic, resulting in low
channel utilization. Cur retransmission protocel may also
yvield some potential improvements, for example by imple-
menting NACK overhearing and suppression. We also ses
room for improvement in the algorithms that ClusterSync
uses to define its overlay (much of which is not described in
thiz paper). In fact, further experimentation iz required to
pet an improved understanding of the true costs and benefits
of the ClusterSync overlay.

We also have much to learn from an applications per-
spective., Our existing applications are still in the proto-
type stage and we continue to sevolve the StateSync AP to
mest their needs, There are a number of arsas that we have
vet to explore with applications, including transport types
other than distribution trees (e.g. reliable sink trees and re-
liable point-to-point connections). We also havs yst to fully
explore consistency issues and applications traditionally re-
lated to conaiztency such az leader election algorithms.
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