
UCLA
UCLA Electronic Theses and Dissertations

Title
Fractional Optimal Control Via Spectral Factorization

Permalink
https://escholarship.org/uc/item/9047d880

Author
Zhou, Bonan

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9047d880
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Fractional Optimal Control Via Spectral Factorization

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Aerospace Engineering

by

Bonan Zhou

2019





ABSTRACT OF THE DISSERTATION

Fractional Optimal Control Via Spectral Factorization

by

Bonan Zhou

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2019

Professor Jason L. Speyer, Chair

The spectral factorization solution for fractional order optimal control problems is provided. First, graphical

tools are used to obtain stabilizing controllers as well as derive properties of fractional polynomials. Second,

the spectral factorization solution to the output feedback H2 problem is extended to fractional systems, which

are permitted to be unstable, non-minimum phase, or incommensurate order. Third, spectral factorization

is used to solve the LQR problem of constructing the optimal full-state feedback law, which is shown to have

strong connections to the rational LQR.
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1 Introduction

This work is on the solution of fractional optimal control problems via spectral factorization. As the need

to model complex systems has arisen, interest in fractional differential equations has increased. Fractional

differential equations are now used to model memory phenomena such as viscoelasticity and fractances

[10, 14]. These phenomena share a common physical origin: a microscopic fractal structure, which manifests

macroscopically as hysteresis [10, 14]. While this description perhaps suggests the obscure or exotic, to the

contrary, fractional systems are mundane. Nature is replete with fractal structures, where small elements,

such as cells, pores, or grains, are embedded in a nested, self-similar hierarchy. Despite their ubiquity in

nature, fractional systems have only recently caught the attention of control theorists. This is likely due

to the desire to engineer artifical systems that are inspired by or directly incorporate nature. For instance,

fractional control has found applications in flexible structures and soft robotics [10, 14]. Moreover, even

when the dynamics of interest are Newtonian, there is often the need to reject noise processes generated by

fractional systems. A common example is flicker noise, with its signature 1/ω spectrum. Yet, despite the

commonality of fractional systems, fractional control theory is far from mature. Because fractional differential

equations have primarily been the purview of mathematicians, many problems that are of interest to control

theorists have received limited attention. One of the most significant of these problems is that of frequency

domain optimal control of fractional systems.

Linear time-invariant fractional differential equations have the form,

∑
aiD

αiy(t) =
∑

bjD
βju(t), (1)

where y(t) is the output, u(t) is the input, ai, bj ∈ R, and αi, βj ∈ R+. There are three definitions of

the fractional derivative [10, 14] which we briefly summarize. First, the Riemann-Liouville derivative is the

composition of the integer derivative and fractional integeral, which is a generalization of the formula for

repeated integrations,

Dα
Ry(t) =

dm

dtm
1

Γ(m− α)!

∫ t

0

(t− τ)m−α−1y(τ)dτ. (2)

where α ∈ [m − 1,m] and m ∈ Z +. Second, the Caputo derivative switches the order of the fractional
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integral and integer derivative,

Dα
Cy(t) =

1

Γ(m− α)!

∫ t

0

(t− τ)m−α−1 d
my

dtm

∣∣∣∣
t=τ

dτ. (3)

Third, the Grunwald-Letnikov derivative is the fractional generalization of the formula for repeated differ-

entiations,

Dα
Ly(t) = lim

∆t→0

∑∞
k=0

(
α
k

)
(−1)ky(t+ (α− k)dt)

∆tα
, (4)

where (
α

k

)
=

Γ(α+ 1)

k!Γ(α− k + 1)
. (5)

The difference between these fractional derivatives is most apparent when one considers their Laplace trans-

forms.

The Laplace transforms of these fractional derivatives [10, 14] are

L (Dα
Ry(t)) = sαY (s)−

m−1∑
k=0

sk[Dα−k−1
R y(t)]t=0, (6)

L (Dα
Cy(t)) = sαY (s)−

m−1∑
k=0

sα−k−1y(k)(0), (7)

L (Dα
Ly(t)) = sαY (s). (8)

The Riemann-Liouville derivative was the original definition of fractional differentiation, but is mostly of

interest to mathematicians due to its dependence on fractional order initial conditions. The Caputo derivative

is favored in applications due to its dependence on integer order initial conditions. The Grunwald-Letnikov

derivative assumes zero initial conditions, but is useful for constructing fractional difference equations in

discrete time.

In this work, we are interested in frequency domain optimal control, which concerns properties of the

steady-state. Thus, for our purposes, we do not distinguish between these definitions since the varying

treatment of the initial conditions is irrelevant. As indicated by their amenability to the Laplace transform,

the frequency domain is a natural setting for the study of fractional systems. Unlike rational systems,

fractional systems are infinite dimensional and do not possess a well-defined state-space [10]. Consequently,

one of the greatest advantages of the time-domain, the alebraic unification of single-input, single-output

systems and multiple-input, multiple-output systems, is lost when considering fractional systems. On the
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other hand, the input-output relationships themselves are perfectly well-defined. Therefore, we reduce our

study of fractional differential equations to the study of fractional transfer functions.

Fractional transfer functions are the mapping, P (s) = Y (s)/U(s),

P (s) =

∑
bjs

βj∑
aisαi

. (9)

The numerator and denominator of P (s) are termed fractional polynomials. Fractional polynomials are

polynomial-like functions that are multi-valued due to the non-integer exponents of s. Because they are multi-

valued, fractional polynomials are only analytically continuous for arg(s) ∈ (−π, π). In other words, each

term with a fractional exponent is discontinuous across the negative real-axis. To resolve the discontinuity,

we restrict the domain to s ∈ C /R−, which is a subset of the complex plane known as the primary Riemann

sheet or slit s-plane. This is equivalent to placing a branch cut along the negative real-axis, which forbids

any line of analytic continuity from crossing it. Fractional polynomials are thus imbued with singularities at

the origin known as branch points.

Figure 1: Contour ζ = ζa + ζb + ζc + ζd + ζe + ζf .

The branch cut and associated branch points have strong consequences for the inverse Laplace transform,

3



y(t) = L −1(Y (s)),

L −1(Y (s)) =
1

2πi

∫ i∞

−i∞
Y (s) exp(st)ds. (10)

Normally, the inverse Laplace transform is calculated with the Residue Theorem, which states that the

integral around around a closed contour evaluates to the sum of the residues of the poles, pj , within the

contour, ∮
Y (s) exp(st)ds = 2πi

∑
lim
s→pj

(s− pj)Y (s) exp(st). (11)

However, the branch cut prevents us from invoking any contour that crosses the negative real-axis. Thus,

we use the slit contour, ζ, as shown in Fig. 1. We then subdivide the contour integral as

Ii =

∫
ζi

Y (s) exp(st)ds. (12)

From the Residue Theorem,

Ia + Ib + Ic + Id + Ie + If = 2πi
∑

lim
s→pj

(s− pj)Y (s) exp(st). (13)

The integral we are interested in is

1

2πi
Ia = L −1(Y (s)). (14)

Along ζc and ζe, we use the respective parameterizations, s = ρ exp(iπ) and s = ρ exp(−iπ), where ρ > 0,

resulting in

1

2πi
(Ic + Ie) = − 1

π
=
[ ∫ ∞

0

Y (−ρ) exp(−ρt)dρ
]
. (15)

As |ζb|, |ζf | → ∞, Ib, If → 0. As |ζd| → 0, Id → 0. Hence,

L −1(Y (s)) =
1

π
=
[ ∫ ∞

0

Y (−ρ) exp(−ρt)dρ
]

+
∑

lim
s→pj

(s− pj)Y (s) exp(st). (16)

The term in square brackets is the unique contribution of the branch points to the time domain response.

Since the branch points correspond to a monotonically decreasing function of time [10], we refer to the branch

points of fractional polynomials and transfer functions as stable. Consequently, the stability properties of a

fractional system depend entirely on the poles. Just as for rational systems, fractional transfer functions are

stable if all poles are in the LHP (left-half plane) and unstable if there are any poles in the RHP (right-half

plane).
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Branch points complicate the application of Wiener-Hopf spectral factorization. Wiener-Hopf spectral

factorization or simply, spectral factorization, is a frequency domain technique for obtaining solutions to

integral minimization problems [4, 6, 7, 13, 15, 18]. The key step is a factorization of the form,

|f1|2 + |f2|2 = [|f1|2 + |f2|2]+[|f1|2 + |f2|2]−, (17)

where f1 and f2 are fractional polynomials related to the numerator and denominator of the plant, and [.]+

and [.]−, are the stable and unstable multiplicative factors of [.]. While the branch points of f1 = f1(s) and

f2 = f2(s) are stable, the branch points of f̄1 = f1(−s) and f̄2 = f2(−s) are unstable. Thus, |f1|2 + |f2|2

contains both stable and unstable branch points, which must be factored in addition to the roots.

The paucity of literature on fractional optimal control using spectral factorization is likely explained by

the difficulty of the desired factorization. The only prior work that has addressed fractional optimal control

using spectral factorization method is that of Vinagre and Feliu [16]. They studied factorizations satisfying

the following special condition: f1 and f2 share a common minimum-phase stable fractional factor, µ, such

that f1 = µz1, f2 = µz2, where z1 and z2 are polynomials formed by the product of the RHP roots of f1 and

f2, respectively. When this condition holds, the fractional factorization reduces to an elementary polynomial

factorization:

[|f1|2 + |f2|2]+ = [|µ|2]+[|z1|2 + |z2|2]+ = µ[|z1|2 + |z2|2]+. (18)

[|f1|2 + |f2|2]− = [|µ|2]−[|z1|2 + |z2|2]− = µ̄[|z1|2 + |z2|2]−. (19)

Since µ = f1/z1 = f2/z2, all the stable branch points are contained in µ, whereas all the unstable branch

points are contained in µ̄. However, the condition that f1 and f2 share this common factor, µ, is quite unusual.

Perhaps recognizing the narrowness of this special condition, Vinagre and Feliu provide two examples of a

tracking system where there is no penalty on the control effort, in which case f2 = 0. Thus, the desired

factorization assumes an especially simple form,

[|f1|2]+ = µz̄1, (20)

[|f1|2]− = µ̄z1. (21)

In the general case when f1 6= µz1, f2 6= µz2, the factorization is far more difficult. Counterintuitively,

knowledge of the roots of |f1|2 + |f2|2 is insufficient to perform the factorization. To illustrate, suppose we

5



define z to be the polynomial formed by the product of the RHP roots of |f1|2 + |f2|2. Consider an attempt

to factor |f1|2 + |f2|2 using z:

[|f1|2 + |f2|2]+ = [
|f1|2 + |f2|2

|z|2
|z|2]+ = [

|f1|2 + |f2|2

|z|2
]+z̄. (22)

[|f1|2 + |f2|2]− = [
|f1|2 + |f2|2

|z|2
|z|2]− = [

|f1|2 + |f2|2

|z|2
]−z. (23)

While the term, (|f1|2 + |f2|2)/|z|2, does not contain simple poles or zeros, it retains both its stable and

unstable branch points. Thus, an elementary decomposition of the branch points does not follow:

[
|f1|2 + |f2|2

|z|2
]+ 6= µ, (24)

[
|f1|2 + |f2|2

|z|2
]− 6= µ̄. (25)

Suffice it to say, the chief obstacle to frequency domain optimal control of fractional systems is treatment of

this general class of fractional product decompositions.

While the objective is to solve fractional optimal control problems with spectral factorization, a precursor

for optimality is stability. Thus, this work is organized as follows. We begin by deriving several results related

to the roots of fractional polynomials. Concurrently, we discuss the use of classical control techniques such as

the root locus to obtain stabilizing controllers for fractional systems. These tools will be useful when we solve

the fractional H2 problem of constructing the optimal output feedback controller, which requires knowledge of

a nominal stabilizing controller. It is here that we generalize the Wiener-Hopf spectral factorization technique

to fractional systems. Finally, we use this generalized factorization technique to solve the fractional LQR

(linear quadratic regulator) problem, which has a surpising symmetry with the rational LQR and elucidates

the meaning of the optimal output feedback controller.

6



2 Fractional Stability

Stability of fractional transfer functions depends on the location of the poles. Thus, we are interested in

the roots of fractional polynomials. In general, fractional polynomials are transcendental functions so the

roots cannot be calculated algebraically. However, if a fractional polynomial becomes a polynomial under

the transformation, s = νr, where r ∈ R+, then the roots can be solved for in the ν-plane. The roots that

appear in the s-plane are simply those in the sector, r arg(ν) ∈ (−π, π). This leads to the distinction between

fractional transfer functions of commensurate and incommensurate order [10]. Commensurate order transfer

functions can be transformed into rational transfer functions in a mapping plane, whereas incommensurate

order transfer functions cannot. Unsurprisingly, fractional systems research is often restricted to commen-

surate order systems because the poles and zeros can be calculated algebraically. Since fractional exponents

are ultimately approximated to finite precision on a digital computer, fractional systems are reducible to

commensurate order systems, in a practical sense.

Nevertheless, the relative algebraic facility of commensurate order systems is not as useful as one might

think. Consider the incommensurate order transfer function,

P (s) =
1

s
√

3 + s
√

2 + s+ 1
. (26)

The irrational exponents are meant to represent the results of a fitting procedure with high-precision. Suppose

one instead used the commensurate order approximation,

P (s) =
1

s1.73 + s1.41 + s+ 1
. (27)

With this approximation, the mapping s = ν100 results in a 173rd order rational transfer function in ν-plane.

While high order systems are not necessarily a problem for a computer, they are a problem for reasoning

about fractional systems qualitatively. Not all 173 ν-plane roots matter; in fact, only 2 of them actually

appear on the s-plane. Certainly, one could truncate the precision of the exponents further. However, a less

arbitrary approach is to analyze fractional transfer functions directly on the s-plane. In so doing, we gain

insights into fractional dynamics that would otherwise remain opaque.
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Figure 2: Contour Γ = Γa + Γb + Γc.

2.1 Argument Principle

Our starting point is the Argument Principle, and relatedly, the Nyquist stability criterion. The Argument

Principle may be applied to fractional systems almost exactly the same way that it is applied to rational

systems. The only difference is that the traditional contour enclosing the RHP must avoid the branch

points at the origin. Thus, to determine the stability of a fractional polynomial, f(s), we use the contour,

Γ = Γa + Γb + Γc (Fig. 2). The winding number,

W (f(Γ), 0) =
∆ arg f(Γ)

2π
, (28)

is the number of roots of f in the RHP of the slit s-plane [3]. To check the stability of an arbitrary fractional

polynomial, this graphical condition can always be examined. Of course, as |s| → ∞, f(s) → ∞. Thus, a

simple improvement is to use the Argument Principle with respect to the normalized function,

A(s) =
f(s)

(sδ + 1)m
, (29)

8



where δ ∈ [1, 2), m = bαc, and α = mδ. By construction, A(s) has no RHP poles. Hence, we may equate

the winding numbers,

W (f(Γ), 0) = W (A(Γ), 0). (30)

As |s| → ∞, A(s) is bounded. Thus, it is more convenient to consider W (A(Γ), 0). However, the following

theorem shows that in some cases, even this is unnecessary.

Theorem 2.1. If a fractional polynomial, f(s), satisfies α = maxi αi ≤ 2 and ai > 0, then f(s) is stable.

Proof. The winding number is

W (f(Γ), 0) =
∆ arg f(Γa)

2π
+

∆ arg f(Γb + Γc)

2π
. (31)

Along Γa, we use the parameterization s = ρ exp(iφ), where ρ→∞ and φ ∈ [−π/2, π/2], resulting in

∆ arg f(Γa)

2π
=

∆ arg f(ρ exp(iφ))

2π
=
α

2
≤ 1. (32)

To bound ∆ arg f(Γb + Γc), we note that because the image of f(Γc) is the reflection of the image of

f(Γb) about the real-axis, it suffices to examine the real-axis intercepts of f(Γb). Along Γb, we use the

parameterization, s = iω, where ω ∈ (0,∞). The number of real-axis intercepts (excluding the intercept at

ω = 0) is the number of positive real roots of =[f(iω)], where

=[f(iω)] =
∑

ai sin(
αiπ

2
)ωαi . (33)

If α ≤ 2 and ai > 0, then =[f(iω)] has no sign changes i.e. is strictly positive for ω > 0. Therefore, =[f(iω)]

has no positive real roots. Consequently, neither f(Γa) nor f(Γb + Γc) crosses the real-axis except when

ω = 0. Noting that the real-intercept is on the positive real-axis, that the image of f(Γ) is continuous, and

that ∆ arg(f(Γa)) > 0,

∆ arg f(Γb + Γc)

2π
< 0. (34)

Combining bounds,

W (f(Γ), 0) ≤ 1 +
∆ arg f(Γb + Γc)

2π
. (35)

Since the winding number of a function without poles is a non-negative integer,

W (f(Γ), 0) = 0. (36)
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Theorem 2.1 has an intuitive physical interpretation. Second-order fractional polynomials with positive

coefficients correspond to generalized Newtonian systems with only fractional friction forces. Since these

forces only dissipate energy, such systems must be stable. For example, examining the plants (26), (27), we

see without any calculation that these plants are stable.

The Nyquist stability criterion follows from the Argument Principle straightforwardly. To determine the

stabilty of the closed-loop denominator,

1 + kP, (37)

we examine the winding number,

W (kP (Γ),−1), (38)

which is equivalent to the number of closed-loop poles minus the number of open-loop poles. Of course, it is

possible to rely on the Argument Principle and Nyquist stability criterion to determine stability of the open

and closed-loop. However, it is often helpful in controller design to have a direct visualization of the location

of the closed-loop poles themselves. This is the technique of the root locus, which is the subject of the next

section.

2.2 Root Locus

The original purpose of the root locus was to serve as a graphical aid to design controllers for unstable or

neutrally stable systems where the loopshaping approach is difficult [8]. For fractional systems, the root

locus is more important than it normally is for rational systems due to the lack of general algebraic stability

criteria [10]. The root locus of P (s) is those values of s satisfying 1 + kP (s) = 0 as k ∈ R is varied.

In prior discussions, the assumption has always been to approximate the fractional transfer function with a

commensurate order one, and then construct the rational locus in the ν-plane, adjusting the interpretation of

the stability region accordingly [10]. However, if the equivalent rational function in ν is high-order, then this

defeats the purpose of the locus, which is to be an intuitive control design tool. In contrast, our approach

is to construct the fractional locus on the slit s-plane. As we will show, the advantage of this approach

is that no matter how many critical frequencies there are on the entire Riemann surface, the number of
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critical frequencies on the primary Riemann sheet is comparably small. Consequently, the fractional locus

on the primary Riemann sheet is not only easier to construct and interpret, but more useful for preliminary

controller design.

To construct the locus, we require knowledge of its features for both small and large k. This allows us to

estimate its overall structure from continuity. Because our goal is stability, rough knowledge of the locus is

sufficient to gauge the plausibility of a nominal stabilizing controller. We begin by deducing basic features

of the locus. We can see that as the magnitude of k increases, branches of the fractional locus still extend

from the open-loop poles to the open-loop zeros. Because we consider only fractional transfer functions with

real coefficients, the fractional locus is still symmetric about the real-axis, via the Reflection Principle [3].

On the other hand, the fractional locus cannot lie on the negative real-axis, as this is by definition, not on

the slit s-plane. However, the locus can still lie on the positive real-axis to the left of an odd number of poles

and zeros.

We now analyze the asymptotes of the locus. As |s| → ∞, P (s) → sβ−α, where α = maxi αi and

β = maxj βj . If k is positive, then for n = 1, 2, 3..., the asymptote angles, φ, are

φ = ± (2n− 1)π

α− β
. (39)

Then, since roots on the slit s-plane satisfy arg(s) ∈ (−π, π), the number of asymptotes that lie on the slit

s-plane, Na, is

Na = 2bα− β + 1

2
c. (40)

If k is negative, then for n = 1, 2, 3..., the asymptote angles are

φ = ± (2n− 2)π

α− β
. (41)

Thus, the number of asymptotes is instead

Na = 2bα− β
2
c+ 1. (42)

This case of negative k will be important in the next section, when we bound the number of roots of a

fractional polynomial on the slit s-plane.

From the number of zeros, nz, and number of asymptotes, Na, we can deduce the number of branches

of the locus, Nb, which we define as those branches that remain on the slit s-plane as k →∞. It must hold
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that for each open-loop zero, there will be an arriving pole as k → ∞. However, it must also hold that for

each asymptote, there will be a departing pole as k →∞. Therefore, to simultaneously satisfy both of these

requirements, the number of branches must be

Nb = nz +Na. (43)

For a rational transfer function, Na = np − nz, where np is the number of open-loop poles. Hence, for a

rational transfer function, Nb = nz+np−nz = np. However, for a fractional transfer function, Na 6= np−nz,

in general. Consequently,

Nb 6= np. (44)

Thus, if there is a discrepancy between Nb and np, then additional poles will either enter or leave the slit

s-plane by crossing the branch cut.

Lastly, we consider the departure angles (note that the arrival angles follow almost identically). We begin

with the case of a simple pole at −p of multiplicity m. From L’Hôpital’s rule,

g(−p) = lim
s→−p

arg

∑
ais

αi(s)

(s+ p)m
, (45)

is a non-zero constant. Hence, for n = 1, 2, 3..., the departure angles, ψ ∈ (−π, π), are

mψ = ±(2n− 1)π + arg
∑

bj(−p)βj − arg g(−p). (46)

We now consider the case of a fractional pole of the form (s+ ρ)η where ρ, η ∈ R+. Here, the numerator of

the plant can be written ∑
ais

αi = h(s)(s+ ρ)η. (47)

In this case, s = −ρ is technically not a pole as it lies on the branch cut, which is not part of the slit s-plane.

However, this fractional pole will still have departure angles, ψ ∈ (−π, π),

ηψ = ±(2n− 1)π + arg
∑

bj(−ρ)βj − arg h(−ρ), (48)

where h(−ρ) is a non-zero constant. These departure angles are especially relevant when analyzing neutrally

stable fractional systems.

12



In addition to assisting controller design, the locus may be more broadly construed as a tool for analyzing

the roots of fractional polynomials. In fact, the locus combined with the Argument principle can be used to

deduce helpful bounds on the number of roots of fractional polynomials.

2.3 Properties of Fractional Polynomials

Here we derive properties of fractional polynomials,

f(s) =
∑

ais
αi , (49)

where the exponents are ordered such that αi > αi−1. It is well-known for polynomials that the number of

positive real roots is bounded by the number of consecutive sign changes. This property obviously extends to

commensurate order fractional polynomials, because the slit s-plane and the ν-plane share the same positive

real-axis. However, we can use the locus to show that this rule of signs also extends to incommensurate

fractional polynomials.

Lemma 2.2. The number of positive real roots, Nr(f(s)), satisfies

Nr(f(s)) ≤ Ns(f(s)), (50)

where Ns(f(s)) is the number of consecutive sign changes between terms of f(s).

Proof. We recursively express f(s) as

fi(s) = ais
αi + fi−1(s). (51)

The roots of fi(s) are points on the root locus of

1 +
fi−1(s)

aisαi
= 1 +

ai−1s
αi−1 + fi−2(s)

aisαi
= 0, (52)

with respect to a−1
i . A necessary condition for a positive real root departing to +∞ is if there is an asymptote

with φ = 0. Comparing (39) and (41), we see that φ = 0 if and only if ai and ai−1 have opposite sign.

Consequently, the number of positive real roots, Nr(fi(s)), is at most one positive real root departing to

+∞ plus any positive real roots of fi−1(s). Therefore,

Nr(fi(s)) ≤ Nr(fi−1(s)) + Ii, (53)
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where Ii is an indicator function such that Ii = 0 if ai and ai−1 have the same sign and Ii = 1 if ai and ai−1

have opposite sign. This bound becomes sharp if ai is sufficiently small. Solving for the recursion,

Nr(f(s)) ≤
∑

Ii, (54)

where
∑
Ii = Ns(f(s)).

Lemma 2.2 is useful for bounding the total number of roots of a fractional polynomial on the slit s-plane. It

is well-known that for commensurate order fractional polynomials, that the roots satisfying r arg(ν) ∈ (−π, π)

in the ν-plane will be the roots that are mapped to the slit s-plane. The maximum number of roots in s is

achieved when all of the roots in ν lie in this sector. Thus, the maximum number of roots in s is the order

of the polynomial in ν. However, for incommensurate order fractional polynomials, this algebraic argument

cannot be made. Instead, we use the Argument Principle in conjunction with a contour that encloses the

slit s-plane, infinitesimally avoiding the branch cut. Thus, to bound the number of roots of a fractional

polynomial, f(s), we use the contour, τ = τa + τb + τc (Fig. 3). The winding number,

W (f(τ), 0) =
∆ arg f(τ)

2π
, (55)

is the number of roots on the slit s-plane.

Theorem 2.3. The number of roots of a fractional polynomial, f(s), on the primary Riemann sheet,

W (f(τ), 0), is bounded by

W (f(τ), 0) < α+Ns(=[f(−ρ)]) + 1, (56)

where ρ ∈ R+. If ai > 0, then

W (f(τ), 0) ≤ 2bαc. (57)

Proof. The winding number has the upper bound,

W (f(τ), 0) ≤
∣∣∣∣∆ arg f(τa)

2π

∣∣∣∣+

∣∣∣∣∆ arg f(τb + τc)

2π

∣∣∣∣, (58)

which becomes sharp if the changes in argument have the same sign. Along τa, we use the parameterization,

s = ρ exp(iφ), where ρ→∞ and φ ∈ (−π, π), resulting in

∆ arg f(τa)

2π
=

∆ arg f(ρ exp(iφ))

2π
= α− ε, (59)
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Figure 3: Contour τ = τa + τb + τc.

where α = maxi αi and ε→ 0+. We denote the unsigned whole number of encirclements of f(τb+τc) around

the origin as Nbc. The change in argument of f(τb + τc) is bounded by

∆ arg f(τb + τc)

2π
< Nbc + 1. (60)

We can bound Nbc with the number of real-axis intercepts of f(τb). We denote each of these intercepts as σi.

The image of f(τb) is a continuous curve passing through each σi once. The image of f(τc) is the reflection

of the image of f(τb) about the real axis and, consequently, also passes through each σi once. Therefore, we

can associate each encirclement counted in Nbc with a pair of intercepts σi, σi−1 where the last intercept,

σ0, corresponds to ρ = 0. Along τb, we use the parameterization, s = −ρ, where ρ ∈ (0,∞). The number of

intercepts (excluding σ0) is the number of positive real roots, Nr(=[f(−ρ)]). Noting that the intercepts do

not necessarily define concentric encirclements,

Nbc ≤ Nr(=[f(−ρ)]). (61)

Since =[f(−ρ)] is a fractional polynomial in ρ, we can apply Lemma 2.2 to obtain the bound

Nr(=[f(−ρ)]) ≤ Ns(=[f(−ρ)]). (62)
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Combining bounds, we obtain (56). This bound simplifies further if the coefficients of f(s) are positive. The

fractional polynomial, =[f(−ρ)], has the form

=[f(−ρ)] =
∑

ai sin(αiπ)ραi . (63)

From the periodicity of sin(αiπ),

Ns(=[f(−ρ)]) ≤ bαc. (64)

Hence, the bound becomes

W (f(τ), 0) < α+ bαc+ 1. (65)

Since f(s) is symmetric with respect to the real-axis, and has neither positive real roots (due to the positive

coefficients) nor negative real roots (due to the branch cut), W (f(τ), 0) must be an even number, resulting

in (57).

For fractional polynomials with only positive coefficients, one obtains a bound that depends only on the

order of the highest term, analogous to the Fundamental Theorem of Algebra for polynomials. Together,

(56) and (57) explain why the number of roots of a fractional polynomial on the slit s-plane is guaranteed

to be small compared to the number of roots in the ν-plane; the number of roots is related to the highest

order term and number of terms, not the finite precision of the exponents, which is an artifact of the ν-plane

approach.

2.4 Examples

In the following examples, we design stabilizing controllers for fractional plants. We estimate the fractional

locus by calculating the asymptote angles (39), number of asymptotes (40), number of branches (43), and

when relevant, departure angles (48). Note that the fractional loci depicted in the figures are obtained via

numerical solution of the roots of the closed-loop denominator. These require some effort to generate and

are presented only for the sake verifying the approximate loci one would construct using the aforementioned

rules.
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2.4.1 Example

Consider the plant

P (s) =
s
√

7 + 10s
√

2 + 50

s
√

14 + 5
, (66)

The poles are at s ≈ 1.0266± 1.1445i,−1.2489± 0.897i. The plant is unstable with

np = 4. (67)

The zeros are approximately at s ≈ −1.1643±3.5712i,−5.8887±1.0513i. The plant is minimum phase with

nz = 4. (68)

The number of asymptotes is

Na = 2b
√

14−
√

7 + 1

2
c = 2. (69)

The asymptote angles are

φ = ± π√
14−

√
7
≈ ±164.25◦. (70)

Thus, the number of branches is

Nb = 6. (71)

Since np = 4, we immediately see that, for sufficiently large k, two additional poles must enter the LHP by

crossing the branch cut. Moreover, because the locus has only LHP zeros and asymptotes, the two RHP

poles must eventually migrate to the LHP. Thus, (66) can be stabilized by proportional control alone. Note

that in this example, we do not calculate arrival/departure angles because they do not affect the stability

conclusions being drawn. The root locus is shown in Fig. 4.

Were we to approximate each exponent to the first decimal and apply the mapping s = ν10, the ν-plane

locus would contain 37 branches. However, on the slit s-plane, there are only 6 branches. This is because the

closed-loop denominator has only positive coefficients, and thus, from Theorem 2.3, has at most 2b
√

14c = 6

roots on the slit s-plane. This reduction in complexity is a clear advantage of constructing the locus directly

on the slit s-plane.
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Figure 4: Fractional locus for (66).

2.4.2 Example

Consider the plant

P (s) =
s− 1

s
√

2(s+ 2)
. (72)

The plant is neutrally stable. Noting the zero at s = 1, the plant is non-minimum phase with

nz = 1. (73)

The number of asymptotes is

Na = 2b
√

2 + 1

2
c = 2. (74)

The asymptote angles are

φ = ± π√
2
≈ 127.28◦ (75)

Thus, the number of branches is

Nb = 3. (76)

Because of the branch lying along the real-axis between the origin and RHP zero, proportional control cannot

stabilize this system. The root locus is shown in Fig. 5.

18



Examining Fig. 2, we see that the controller, C0,

C0(s) = k
s− 2

s+ 1
, (77)

will stabilize P for sufficiently small k. Because of the controller RHP zero, the locus can no longer lie on

the real-axis between the origin and the plant zero at s = 1. Furthermore, C0 does not affect the asymptotic

order of the loop gain, so the number of asymptotes remains unchanged. Consequently, the number of

branches is now

Nb = 4. (78)

The depature angles from s = −2 are

ψ = ±(2−
√

2)π ≈ ±105.44◦. (79)

Thus, these two poles depart toward the LHP asymptotes. The departure angles from s = −1 are

ψ = ±(3−
√

2)π ≈ ±285.44◦. (80)

Hence, these two poles immediately leave the slit s-plane. The departure angles from s = 0 are

ψ = ± π√
2
≈ ±127.28◦. (81)

Therefore, these two poles depart in the LHP. Consequently, C0 stabilizes P for sufficiently small k. The root

locus is shown in Fig. 6. To determine the actual value of the stabilizing k, the loop gain can be analyzed

with the Nyquist plot, shown in Fig. 7, which indicates that k = 0.1 is sufficiently small.
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Figure 5: Fractional locus for (72).

Figure 6: Fractional locus using (77) to control (72).
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Figure 7: Nyquist plot using (77) to control (72).

3 Fractional H2

The H2 problem is to design an output feedback controller that minimizes the square sum of weighted

transfer functions of the closed-loop. Because these transfer functions represent all potential input-output

relationships of the control system, this framework captures a wide variety of minimum energy problems in

optimal control and filtering. Moreover, while not directly concerned with robustness as in the H∞ problem,

the optimal H2 controller often has desirable robustness properties in practice. Of course, it should also be

emphasized that the Wiener-Hopf solution to the H2 problem is mechanistic and easy to understand. These

features make the H2 problem a useful paradigm for analytical controller design.

3.1 Youla Parameterization

We consider the H2 problem for scalar, fractional plants, P , of minimizing

min
C

∑
||WiTi||22, (82)
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where the Wi are stable and minimum-phase weighting functions, and the Ti are the closed-loop transfer

functions:

T1 =
P

1 + PC
, (83)

T2 =
PC

1 + PC
, (84)

T3 =
C

1 + PC
, (85)

T4 =
1

1 + PC
. (86)

Because the Ti are nonlinear in C, we seek a parameterization in which the Ti are affine to facilitate solution

via Wiener-Hopf spectral factorization.

A seemingly reasonable approach used by [16], inherited from [13], is to parameterize all controllers, C,

in terms of H,

C =
P −H
PH

. (87)

This transforms the Ti into affine functions of H:

T1 = H, (88)

T2 =
P −H
P

, (89)

T3 =
P −H
P 2

, (90)

T4 =
H

P
. (91)

Examining the Ti, one wonders if they are necessarily proper. Of course, for the H2 problem to be well-

posed, any WiTi appearing in the cost function must be proper, though from this it does not follow that each

Ti is itself proper. As noted in [6, 7], nothing in the Wiener-Hopf procedure guarantees the properness of

the Ti. Nevertheless, this is a minor issue as H may always be rolled-off ex post facto to recover properness

of the Ti. The true problem with this parameterization scheme is that if P is non-minimum-phase, then

T3 = P−1 − P−2H is unstable. Even if T3 does not describe an explicit input-output relationship of the

system, it still describes an internal signal or hidden mode of the closed-loop. Since the closed-loop must not

contain unstable hidden modes, we require that the parameterization ensure the stability of each Ti regardless
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of whether or not they appear in the cost function, that is to say, we require that the parameterization

preserve internal stability.

Internal stability is intimately connected to observability and controllability. Typically, fractional order

observability and controllability are discussed in the time-domain, and as such, rest on a tenuous notion of

pseudo state-spaces, defined only for commensurate order systems [10]. While fractional systems do not have

well-defined states, they possess a finite number of ordinary poles and zeros (see Theorem 2.3). It is through

this feature that fractional systems bear the strongest resemblance to rational systems. Hence, a more useful

definition of fractional order observability and controllability can be found by tracing the concept of unstable

hidden modes to the infamous RHP pole-zero cancellations between P and C. To illustrate, suppose P is

non-minimum phase. If C is parameterized in terms of H, then the term, PH, appears in the denominator

of C. Since H must be stable, no pole of H can cancel a non-minimum-phase zero of P . In other words, the

RHP zeros of P are preserved as RHP poles of C. Consequently, when P and C are in series, the unstable

controller poles are necessarily cancelled by non-minimum phase plant zeros. This cancellation renders those

controller modes unobservable, the effect of which is the instability of the internal signal, T3 = C(1+PC)−1.

Therefore, a parameterization satisfying internal stability is one that forbids RHP pole-zero cancellations

between P and C. Indeed, this was the original motivation behind the Youla parameterization for rational

plants [18], which has since been generalized to fractional plants [2, 12].

The fractional order Youla parameterization can be constructed as follows. Let F∞ denote the set of

fractional order, stable, and proper transfer functions. We factor P into the ratio of two transfer functions,

P =
B

A
, (92)

where A,B ∈ F∞. Suppose we find a nominal stabilizing controller, C0, which we similarly factor into

C0 =
Y0

X0
, (93)

where X0, Y0 ∈ F∞. We construct these factors to satisfy

AX0 +BY0 = F, (94)

where F, F−1 ∈ F∞. We then define

X =
X0

F
, (95)
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Y =
Y0

F
, (96)

where X,Y ∈ F∞. Consequently, A,B,X, Y satisfy Bezout’s identity,

AX +BY = 1. (97)

We then parameterize all controllers, C, in terms of Q,

C =
Y −AQ
X +BQ

. (98)

Using (92), (97), and (98), the Ti are affine in Q:

T1 = B(X +BQ), (99)

T2 = B(Y −AQ), (100)

T3 = A(Y −AQ), (101)

T4 = A(X +BQ). (102)

If Q is stable and proper, then the Ti are stable and proper. Thus, the H2 problem becomes

min
Q

∑
||WiTi||22, (103)

subject to the constraint that Q is stable and proper. Note that if P is rational, then Bezout’s identity can be

solved algebraically without knowledge of C0 to generate the factors X,Y [6]. However, if P is fractional, then

knowledge of C0 is required to generate the factors X,Y . Thus, classical control techniques are especially

important for fractional systems because of the need to know this nominal stabilizing controller.

Given the Youla parameterization, the cost function is quadratic in Q. We are now in a position to use

Wiener-Hopf spectral factorization. The optimal Q satisfies

Ω− =
∂

∂Q̄

∑
|WiTi|2, (104)

where Ω− is analytic in the LHP [4]. Because the sum is over the square modulus of affine functions of Q,

Ω− = M + V Q, (105)
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where M and V are mixed functions possessing singularities in both the RHP and LHP. In terms of the

weightings Wi, and factors, A,B,X, Y ,

M = |W1B|2B̄X − |W2B|2ĀY − |W3A|2ĀY + |W4A|2B̄X, (106)

V = |W1B
2|2 + |W2BA|2 + |W3A

2|2 + |W4AB|2. (107)

Suppose we know the product decomposition, V = V +V −, such that V +, V −, and their reciprocals are

analytic in the RHP and LHP, respectively. Further suppose we know the additive decomposition, M/V − =

{M/V −}+ + {M/V −}−, where {M/V −}+ and {M/V −}− are analytic in the RHP and LHP, respectively.

Given these decompositions,

Ω−

V −
−
{
M

V −

}
−

=

{
M

V −

}
+

+ V +Q. (108)

Since the LHS is purely unstable and the RHS is purely stable, equality holds if and only if both sides are

null. We may therefore argue from analytic continuity [11, 13] that the optimal stable Q is

Q = − 1

V +

{
M

V −

}
+

. (109)

Note that just as in the case of a rational plant, the Wiener-Hopf procedure does not necessarily result in a

proper Q. If the resulting Q is improper, then it is necessary to roll it off after a specified cut-off frequency,

ωc,

Q→ Q

(
ωc

s+ ωc

)ν
, (110)

where ν is chosen so that Q becomes proper. Thus, (103) is satisfied in a limiting sense as ωc →∞ [7].

Beginning with the product decomposition, V = V +V −, we immediately encounter a problem. When

the weightings, Wi, and factors, A,B,X, Y , are rational transfer functions, V is the square modulus sum

of rational transfer functions. In other words, V is itself a rational function and can be decomposed by

factoring polynomials. However, when the Wi and A,B,X, Y are fractional transfer functions, V is the

square modulus sum of fractional transfer functions and is not factorable through elementary methods. In

particular, the numerator of V cannot be decomposed by factoring polynomials. Expressing V as

V =
γ

χ
, (111)
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we see that because the Wi and A,B,X, Y are stable, χ has the form,

χ = |f |2, (112)

where f is a stable fractional polynomial. Thus, the factorization, χ = χ+χ−, is trivial:

χ+ = f, (113)

χ+ = f̄ . (114)

On the other hand, γ has the form,

γ =
∑
|fi|2, (115)

where each fi is a fractional polynomial. One might think that if the fi are commensurate order, that the

factorization of γ should reduce to a polynomial factorization under the transformation, s = νr. However,

even if fi = fi(s) is a single-valued polynomial in s = νr, f̄i = fi(−s) is not a single-valued polynomial in

s = νr, but rather, s = −νr. Thus, there does not exist a mapping plane where γ becomes a single-valued

polynomial. In other words, γ is not factorable through elementary methods even if each fi is commensurate

order. Consequently, we factor γ using an integral factorization technique.

3.2 Integral Factorization Technique

In the context of diffraction theory and partial differential equations, Noble discusses the product decom-

position of kernels with branch point singularities in great detail [11]. The key idea is to use the logarithm

to transform the product decomposition into the additive decomposition, for which there is a well-known

constructive formula [11], [13], [16]. We begin with a review of the integral factorization technique in [11].

Suppose we want the additive decomposition, Φ = Φ+ + Φ−. Assuming that Φ(t) = L −1[Φ(s)] exists, Φ

can be additively decomposed into its causal and anti-causal parts in the time-domain,

Φ(t) = θ(t)Φ(t) + (1− θ(t))Φ(t), (116)

where θ(t) is the Heaviside step function i.e. θ(t) = 1 for t ≥ 0 and θ(t) = 0 otherwise. Transforming back

to the the frequency domain,

Φ(s) = L {θ(t)Φ(t)}+ L {(1− θ(t))Φ(t)}. (117)
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We can associate Φ+ and Φ− with the first and second term in the sum, respectively:

Φ+(s) = L {θ(t)L −1[Φ(s)]}, (118)

Φ−(s) = L {(1− θ(t))L −1[Φ(s)]}. (119)

Now suppose we want the product decomposition, Ψ = Ψ+Ψ−. We can simply define

Φ = log Ψ. (120)

Again assuming that Φ(t) = L −1[Φ(s)] exists, the additive decomposition, Φ = Φ+ + Φ−, can be obtained,

resulting in

log Ψ = Φ+ + Φ−. (121)

After exponentiating,

Ψ = exp(Φ+ + Φ−) = exp Φ+ exp Φ−, (122)

we can associate Ψ+,Ψ− with the first and second term in the product, respectively:

Ψ+(s) = exp(L {θ(t)L −1[log Ψ(s)]}), (123)

Ψ+(s) = exp(L {(1− θ(t))L −1[log Ψ(s)]}). (124)

In light of this integral factorization technique, one might be tempted to directly inverse transform log γ

or perhaps log(1/γ). However, as |s| → ∞, both log γ and log(1/γ) diverge. Thus, we define

Φ = log
γ

λ
, (125)

where λ is an appropriate reference function. At the very least, λ must have the same leading order as γ to

ensure that at high-frequency, γ/λ→ 1, so that Φ = log(γ/λ)→ 0. This alone, however, does not guarantee

that Φ(t) = L −1[Φ(s)] exists. In particular, if Φ(s) decays too slowly at high-frequency, then Φ(t) near

t = 0 becomes unbounded, making time domain additive decomposition numerically fraught. This can be

seen from the initial value theorem for the inverse bilateral Laplace transform [5]:

lim
s→∞

sΦ = L −1(Φ(s))|t=0+ −L −1(Φ(s))|t=0− . (126)
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The terms on the RHS are the values of Φ(t) near t = 0. Since these need to be computable, we require that

as |s| → ∞,

O(Φ) ≤ O(s−1), (127)

where O(Φ) denotes the asymptotic growth rate of Φ(s) as |s| → ∞. In other words, we must choose a λ

that has a similar enough growth rate to γ, such that Φ decays superlinearly. Given this condition,

γ

λ
= exp Φ+ exp Φ−. (128)

Now we see that in order for λ to be useful, the factorization, λ = λ+λ−, must be known. Given this

factorization,

γ+ = λ+ exp Φ+, (129)

γ− = λ− exp Φ−. (130)

This is a constructive formula for the factorization of γ.

To obtain a suitable λ, we assume that for some n,

O(|fn|2) ≥ O(s
∑
i 6=n

|fi|2). (131)

The simplest choice of λ appears to be

λ = |fn|2. (132)

Examining Φ = log γ/λ,

Φ = log
|fn|2 +

∑
i6=n|fi|2

|fn|2
. (133)

Noting that for small x, log(1 + x)→ x,

Φ→
∑
i 6=n|fi|2

|fn|2
. (134)

Hence, O(Φ) ≤ O(s−1).

Now we simply need to factor λ = |fn|2. If fn is stable, then this factorization is trivial: λ+ = fn and

λ− = f̄n. However, if fn is unstable, then we need to factor both the roots and branch points of |fn|2.

Though the number of roots of a fractional polynomial on the primary Riemann sheet can be arbitrarily

large, the number of roots is still finite (see Theorem 2.3). Thus, for a given fn, there are only a finite
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number of roots with finite multiplicity. Hence, we can define z, the polynomial formed by the product of

the RHP roots of fn. We can use z to extract the stable part of fn, µ,

µ =
fn
z
. (135)

The function, µ, is well defined at the roots of z because these are removable singularities of µ [3]. Thus,

µ has neither poles nor zeros at any of the original roots of fn, implying that its only singularities are the

leftover branch points of fn, which are stable. Consequently, the factorization of λ is simply

λ+ = [fnf̄n]+ = [µzµ̄z̄]+ = µz̄, (136)

λ− = [fnf̄n]− = [µzµ̄z̄]− = µ̄z. (137)

If fn is commensurate order, then it is possible to obtain z analytically, in which case µ will also algebraically

reduce i.e. the poles will be explicitly canceled as in the method of [16]. The algebraic reduction of µ, however,

is immaterial to whether or not the factorization of λ is valid as a theoretical construct, and thus, applies

equally to incommensurate order fn. Therefore, the factorization, γ = γ+γ−, can always be obtained in

principle from (129), (130), (136), (137).

Nevertheless, choosing λ = |fn|2 is impractical. If fn is incommensurate order, then z must be obtained

numerically. Because of imperfect knowledge of z, there will be an imperfect cancellation between fn and

z, so µ will technically have an unstable pole with a small residue. Even if fn is commensurate order,

calculation of z in the mapping plane can be cumbersome if the fractional exponents have high precision.

Thus, we provide a method to factor γ that does not require root calculation.

Theorem 3.1. Consider γ =
∑
|fi|2. There exist fractional polynomials g, h, such that fn = g + h, g is

stable, and O(g) ≥ O(sh). Choosing λ = |g|2, we can additively decompose Φ = log γ/λ, which implies

γ+ = g exp Φ+, (138)

γ− = ḡ exp Φ−. (139)

Proof. We express fn as

fn = p+ q, (140)
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where O(p) ≥ O(sq). Consider a stable fractional polynomial, r, satisfying

O(s2r) > O(p) ≥ O(sr). (141)

We can construct the fractional polynomial, p+ kr, where k is a positive constant. The roots of p+ kr are

points on the root locus of

1 + k
r

p
= 0. (142)

The asymptotes angles (39) are

φ = ±π
δ

(143)

where δ ∈ [1, 2). Thus, the asymptotes of the locus are in the LHP. Because r is stable, the zeros of the

locus are also in the LHP. Therefore, there exists a finite, positive k such that all poles of the locus, or roots

of p+ kr, are in the LHP. In other words, p+ kr is stable.

Now, we can express fn as

fn = g + h (144)

where

g = p+ kr, (145)

h = −kr + q. (146)

By construction, g is stable and O(g) ≥ O(sh).

Choosing λ = |g|2, Φ = log γ/λ becomes

Φ = log
|g|2 + gh̄+ ḡh+ |h|2 +

∑
i 6=n|fi|2

|g|2
. (147)

Noting that for small x, log(1 + x)→ x,

Φ→
gh̄+ ḡh+ |h|2 +

∑
i6=n|fi|2

|g|2
. (148)

Thus, O(Φ) ≤ O(s−1). Since λ+ = g and λ− = ḡ, (129) and (130) reduce to (138) and (139).

An important step in Theorem 3.1 is constructing a stable g = p + kr, where O(p) ≥ O(sr). While

the locus can be used to accomplish this, Corollary 3.1.1 commonly yields a simpler way to construct g.

Likewise, if fn can be expressed as the product of fractional polynomials, then Corollary 3.1.2 is helpful

when constructing g.
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Corollary 3.1.1. Consider fn = p+q, where p contains the leading term and all other terms within one order

of the leading term (e.g. if fn(s) = 8s
√

8 +6s
√

6 +5s
√

5 +3s
√

3 +2s
√

2−1, then p(s) = 8s
√

8 +6s
√

6 +5s
√

5 and

q(s) = 3s
√

3 + 2s
√

2 − 1). Assume each term in p has positive coefficients. We denote the smallest exponent

in p as mδ, where δ ∈ [1, 2) and m is a positive integer. If we choose g as,

g(s) =
(sδ + 1)mp(s)

smδ
, (149)

then fn = g + h, where g is stable and O(g) ≥ O(sh).

Proof. By construction, O(p(s)/smδ) ≤ O(s). By assumption, the coefficients of p are positive. Hence, from

Theorem 2.1, p(s)/smδ is stable. Thus, g is stable. Expanding g,

g(s) =
(smδ +ms(m−1)δ + ...)p(s)

smδ
, (150)

g(s) = (1 +ms−δ + ...)p(s). (151)

If we define r(s) = (ms−δ + ...)p(s), then g = p + r, where O(g) ≥ O(sr). By construction, O(p) ≥ O(sq).

Therefore, O(g) ≥ O(sh), where h = −r + q.

Corollary 3.1.2. Consider fn =
∏
pj, where each pj is a fractional polynomial. If each pj = gj +hj, where

gj is stable and O(gj) ≥ O(shj), then fn = g + h, where g is stable and O(g) ≥ O(sh).

Proof. Expanding fn =
∏
pj = g + h,

g =
∏

gj , (152)

O(h) = O(
∏
j 6=m

gjhm). (153)

If each gj is stable, then g is stable. If each gj satisfies O(gj) ≥ O(shj), then O(g) ≥ O(sh).

Given the factorization, γ = γ+γ−, the product decomposition, V = V +V −, is

V + =
γ+

χ+
, (154)

V − =
γ−

χ−
. (155)

where V is given by (107). The stable term in the additive decomposition, M/V − = {M/V −}+ +{M/V −}−,

is {
M

V −

}
+

= L

[
θ(t)L −1

(
M

V −

)]
, (156)
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where M is given by (106). Therefore, the optimal Q (109) is solved. Once Q is known, the optimal controller,

C (98), is completely specified. Note that while Q is infinite dimensional, the integrals that define Q can be

computed efficiently and arbitrarily accurately over a specified bandwidth, for instance, with the standard

fast Fourier transform and inverse fast Fourier transform algorithms [10].

For implementation, the infinite-dimensional C can be approximated with a rational function. Of course,

it is possible to approximate the plant from the outset and then subsequently design a controller based on

the approximation. However, in so doing, the approximation error in the plant is indirectly transmitted to

the controller. Undoubtedly, there are cases where approximating the plant yields satisfactory results. Yet,

this misses the point that even in cases where a plant approximation suffices, the ability to directly construct

the infinite-dimensional controller enables one to gauge the validity of that plant approximation. In other

words, an implicit description of C is valuable even if the integral formalism is not used to implement it.

That is not to say that an implicit description of C should only be used for verification purposes. In fact,

direct construction of C and subsequently approximating it with a rational function is straightforward and

effective, which we demonstrate by example in the next section.

3.3 Examples

In the following examples, we use spectral factorization to construct the optimal H2 output feedback con-

troller for both a non-mimum phase neutrally stable plant and a minimum phase unstable plant.

3.3.1 Example

Consider the non-minimum phase, neutrally stable plant and nominal stabilizing controller in Example 2.4.2,

P (s) =
s− 1

s
√

2(s+ 2)
, C0(s) =

0.1(s− 2)

s+ 1
. (157)

Suppose we choose constant weightings, W1 = 1,W2 = 2,W3 = 0,W4 = 0.

To construct the fractional order Youla parameterization, we factor the plant as P = BA−1,

B(s) =
s− 1

(s
√

2 + 1)(s+ 2)
, (158)

A(s) =
s
√

2

s
√

2 + 1
, (159)
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where A,B ∈ F∞. We factor the nominal stabilizing controller as C0 = Y0X
−1
0 ,

Y0(s) =
0.1(s− 2)

s+ 1
, (160)

X0 = 1, (161)

where X0, Y0 ∈ F∞. Observe that AX0 +BY0 = F ,

F (s) =
s
√

2(s+ 2)(s+ 1) + 0.1(s− 1)(s− 2)

(s
√

2 + 1)(s+ 2)(s+ 1)
, (162)

where F, F−1 ∈ F∞. Thus, X = X0F
−1, Y = Y0F

−1 ∈ F∞.

We require the product decomposition, V = V +V −, where from (107),

V (s) =
γ(s)

χ(s)
=

|f2(s)|2 + |f1(s)|2

|((s
√

2 + 1)(s+ 2))2|2
, (163)

f2(s) = 2s
√

2(s+ 2)(s− 1), (164)

f1(s) = (s− 1)2. (165)

The factorization, χ = χ+χ−, can be performed by inspection:

χ+(s) = ((s
√

2 + 1)(s+ 2))2, (166)

χ−(−s) = (((−s)
√

2 + 1)(−s+ 2))2. (167)

The unstable fractional polynomials comprising f2 can be expressed as gj + hj , where gj is stable and

O(gj) ≥ O(shj):

s
√

2 = (s
√

2 + 1)− 1, (168)

s− 1 = (s+ 1)− 2. (169)

Hence, f2 = g + h,

g(s) = 2(s
√

2 + 1)(s+ 2)(s+ 1), (170)

O(h) = O(s
√

2+1), (171)

where g is stable and O(g) ≥ O(sh). Thus, the product decomposition, γ = γ+γ−, is given by Theorem 3.1.

From γ+, γ− and χ+, χ−, we construct V +, V −. From A,B,X, Y , we determine M (106), and compute

the additive decomposition, {M/V −} = {M/V −}+ + {M/V −}−. From V + and {M/V −}+, we compute Q
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(109). Since Q is improper, we roll it off choosing ωc = 100 in (110), as shown in Fig. 8. From A,B,X, Y and

Q, we construct C (98). For implementation, we use the tfest command in MATLAB [9] to approximate

the rolled-off C with the rational C̃,

C̃ =
−3.7719(s+ 76.21)(s+ 25.82)(s+ 7.282)(s+ 1.646)(s+ 0.2807)

(s+ 96.65)(s+ 41.66)(s+ 12.58)(s+ 3.187)(s+ 0.5704)
. (172)

The Bode plots of the improper C and the approximate rolled-off C̃ are shown in Fig. 9. The magnitude

plots of the resulting Ti are shown in Fig. 10. The closed-loop y(t) and u(t) are shown in Fig. 11.

Figure 8: Example 3.3.1: optimal Q (gray), rolled-off Q (dashed).

3.3.2 Example

Consider the plant,

P (s) =
s
√

3 + 1

s
√

13 + s3 − s
√

7 + 1
. (173)

Though the plant is minimum-phase, it is unstable, which can be seen from Fig. 12. Because the locus has

only LHP zeros and asymptotes, P can be stabilized by proportional control alone. A nominal stabilizing

controller is

C0 = 10, (174)
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Figure 9: Example 3.3.1: optimal controller, C (gray), approximate rolled-off controller, C̃ (dashed).

Figure 10: Example 3.3.1: optimal transfer functions, T1 (upper left), T2 (upper right), T3 (bottom left), T4

(bottom right), using C (gray), C̃ (dashed).
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Figure 11: Example 3.3.1: optimal output, y(t) (top), u(t) (bottom), using C0 (dotted), C (gray), C̃ (dashed).

which can be seen from Fig. 13. Suppose we choose constant weightings, W1 = 1,W2 = 0.5,W3 = 0,W4 = 0.

To construct the fractional order Youla parameterization, we factor the plant as P = BA−1,

B(s) =
s
√

3 + 1

(s
√

13/3 + 1)3
, (175)

A(s) =
s
√

13 + s3 − s
√

7 + 1

(s
√

13/3 + 1)3
, (176)

where A,B ∈ F∞. We factor the nominal controller as C0 = Y0X
−1
0 ,

Y0 = 10, (177)

X0 = 1, (178)

where X0, Y0 ∈ F∞. Observe that AX0 +BY0 = F ,

F (s) =
s
√

13 + s3 − s
√

7 + 10s
√

3 + 11

(s
√

13/3 + 1)3
, (179)

where F, F−1 ∈ F∞. Thus, X = X0F
−1, Y = Y0F

−1 ∈ F∞.

We require the product decomposition, V = V +V −, where from (107),

V (s) =
γ(s)

χ(s)
=
|f2(s)|2 + |f1(s)|2

|(s
√

13/3 + 1)6|2
, (180)
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f2(s) = 0.5(s
√

13 + s3 − s
√

7 + 1)(s
√

3 + 1), (181)

f1(s) = (s
√

3 + 1)2. (182)

The denominator factorization, χ = χ+χ−, can be performed by inspection:

χ+(s) = (s
√

13/3 + 1)6, (183)

χ−(−s) = ((−s)
√

13/3 + 1)6. (184)

The unstable fractional polynomial comprising f2 can be expressed as gj + hj , where gj is stable and

O(gj) ≥ O(shj):

s
√

13 + s3 − s
√

7 + 1 = (s
√

13 + s3 − s
√

7 + 10s
√

3 + 11)− 10(s
√

3 + 1). (185)

Hence, f2 = g + h,

g(s) = 0.5(s
√

13 + s3 − s
√

7 + 10s
√

3 + 11)(s
√

3 + 1), (186)

O(h) = O(s2
√

3), (187)

where g is stable and O(g) ≥ O(sh). Thus, the product decomposition, γ = γ+γ−, is given by Theorem 3.1.

From γ+, γ− and χ+, χ−, we construct V +, V −. From A,B,X, Y , we determine M (106), and compute

the additive decomposition, {M/V −} = {M/V −}+ + {M/V −}−. From V + and {M/V −}+, we compute Q

(109). Since Q is improper, we roll it off choosing ωc = 100 in (110), as shown in Fig. 14. From A,B,X, Y

and Q, we construct C (98). For implementation, we use the tfest command in MATLAB [9] to approximate

the rolled-off C with the rational C̃,

C̃ =
168.97(s+ 43.32)(s+ 11.11)(s+ 1.965)(s2 + 0.5236s+ 0.2289)

(s+ 94.36)(s+ 35.59)(s+ 8.017)(s2 + 0.5204s+ 0.9828)
(188)

The Bode plots of the improper C and the approximate rolled-off C̃ are shown in Fig. 15. The magnitude

plots of the resulting Ti are shown in Fig. 16. The closed-loop y(t) and u(t) are shown in Fig. 17.
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Figure 12: Example 3.3.2: W (A(Γ), 0) = 2.

Figure 13: Example 3.3.2: Nyquist plot, P .
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Figure 14: Example 3.3.2: optimal Q (gray), rolled-off Q.

Figure 15: Example 3.3.2: optimal controller, C (gray), approximate rolled-off controller, C̃ (dashed).

39



Figure 16: Example 3.3.2: optimal transfer functions, T1 (upper left), T2 (upper right), T3 (bottom left), T4

(bottom right), using C (gray), C̃ (dashed).

Figure 17: Example 3.3.2: optimal output, y(t) (top), u(t) (bottom), using C0 (dotted), C (gray), C̃ (dashed).
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4 Fractional LQR

The LQR is a benchmark problem commonly studied for its simple, elegant structure. Unlike the output

feedback controller, which must reckon with only partial knowledge of the state, the LQR assumes full state

feedback. Thus, the LQR describes the theoretically optimal behavior of a feedback control system when it

has access to perfect information. However, fractional systems are infinite dimensional, so the definition of

state feedback is ambiguous. For scalar fractional systems, we define a frequency domain analogy to state

feedback, from which we develop the concept of the optimal feedback law in an operator theoretic sense.

4.1 Derivation of Optimal Feedback Law

For a general fractional differential equation (1), we can express y(t) as a function of an internal state, x(t),

with input u(t):

y(t) =
∑

bjD
βjx(t), (189)

∑
aiD

αix(t) = u(t). (190)

In the frequency domain,

Y (s) = fβ(s)X(s) =
∑

bjs
βjX(s), (191)

fα(s)X(s) =
∑

ais
αiX(s) = U(s), (192)

where α = maxi αi and β = maxj βj . We assume we have feedback of X(s). We also assume D(s) is an

uncorrelated, impulsive disturbance. This configuration defines our notion of the fractional LQR with state

feedback, as shown in Fig. 18.

The LQR problem, usually posed in the time domain, is to minimize J ,

J =

∫ ∞
0

(
∑

qkD
σkx(t))2 +Ru(t)2dt, (193)

where qk ∈ R, σk ∈ R+, and R ∈ R+. From Parseval’s theorem [4],

J =
1

2πi

∫ i∞

−i∞
|q(s)X(s)|2 +R|U(s)|2ds, (194)

where q(s) is the fractional polynomial weighting the state,

q(s) =
∑

qks
σk . (195)

41



Figure 18: Block diagram of regulator problem.

For instance, if q(s) = 1, then we penalize the state, X(s), whereas if q(s) = fβ(s), then we penalize the

output, Y (s).

We seek the optimal feedback law,

U = −κX, (196)

where

X =
G

1 + κG
D, (197)

G =
1

fα
. (198)

We will assume |D|2 = 1 since the spectrum of an uncorrelated, impulsive disturbance is a constant, and a

constant will not affect the minimization procedure. This converts the LQR problem into a subset of the

H2 problem,

min
κ

∣∣∣∣∣∣∣∣ qG

1 + κG

∣∣∣∣∣∣∣∣2 +R

∣∣∣∣∣∣∣∣ κG

1 + κG

∣∣∣∣∣∣∣∣2. (199)

Because the assumption of state feedback circumvents the internal stability requirement, we are free to use

the substitution,

κ =
G−H
GH

. (200)

Thus, the cost function becomes

min
H
||qH||2 +R

∣∣∣∣∣∣∣∣H −GG

∣∣∣∣∣∣∣∣2. (201)

As we will show, the simplicity of this formulation grants a more explicit structure to the solution of the

fractional LQR problem than that of the fractional H2 problem.
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Because the cost function is quadratic in H, we can again use Wiener-Hopf spectral factorization. The

optimal, stable H satisfies

Ω− =
∂

∂H̄

(
|qH|2 +R

∣∣∣∣H −GG

∣∣∣∣2), (202)

where Ω− is unstable [4]. Hence,

Ω− = −Rf̄α + γH, (203)

where

γ = R|fα|2 + |q|2. (204)

Given the factorization, γ = γ+γ−, and decomposition, Rf̄α/γ
− = {Rf̄α/γ−}+ + {Rf̄α/γ−}−,

Ω−

γ−
+

{
Rf̄α
γ−

}
−

= −
{
Rf̄α
γ−

}
+

+ γH. (205)

From analytic continuity,

H =
1

γ+

{
Rf̄α
γ−

}
+

. (206)

Comparing this result and the expression for Q (109), the formal similarity of the solutions is apparent.

The factorization, γ = γ+γ−, can obtained with Theorem 3.1. We now require the stable part of

Rf̄α/γ
− = {Rf̄α/γ−}+ + {Rf̄α/γ−}−. Since all the roots and branch points of γ− are unstable, Rf̄α/γ

−

has no stable poles or branch points whatsoever. This does not imply, however, that {Rf̄α/γ−}+ = 0. As

s→∞,

Rf̄α
γ−
→ R(−s)α

R
1
2 (−s)α

= R
1
2 . (207)

In other words, L −1(Rf̄α/γ
−)(t) approaches a delta function at t = 0, which is contained in the stable part.

Thus, {
Rf̄α
γ−

}
+

= R
1
2 , (208){

Rf̄α
γ−

}
−

=
Rf̄α
γ−
−R 1

2 . (209)

Therefore, the optimal H is

H =
R

1
2

γ+
. (210)

Consequently, the optimal feedback law, κ, is

κ = R−
1
2 γ+ − fα. (211)
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4.2 Analysis of Optimal Feedback Law

We now analyze the meaning of the optimal feedback law, U = −κX. The loop gain resulting from this

feedback law is

L = κG =
R−

1
2 γ+ − fα
fα

. (212)

The square modulus of the return difference, 1 + L, satisfies

|1 + L|2 =
|γ+|2

R|fα|2
= 1 +

|q|2

R|fα|2
≥ 1. (213)

This implies that L obeys the circle criterion; in other words, L does not come within a unit circle centered

around the −1 point on the Nyquist plot. This guarantees a gain margin, 0.5 < GM < ∞, and phase

margin, |PM | ≥ π/3. This resemblance to the LQR is not accidental.

We restricted our design of the Wiener-Hopf regulator to impulsive plant disturbances, D(s), with state

penalty, |q(s)X(s)|2. These conditions can be recognized as a subset of the standard LQR problem, where for

a rational plant with state space representation, ~̇x(t) = A~x(t)+Bu(t), we use the initial condition, ~x(0) = B,

with state penalty, ~xT (t)Q~x(t), Q ≥ 0 [17]. The loop gain can be expressed in terms of the elements, Ki, of

the optimal gain matrix, K [17],

L(s) = K[sI −A]−1B =

∑n
i=1Kis

i−1

pn(s)
, (214)

where pn(s) is the characteristic polynomial. We can equate this expression to the loop gain that would be

obtained by spectral factorization, ∑n
i=1Kis

i−1

pn(s)
=
R−

1
2 γ+(s)− pn(s)

pn(s)
. (215)

Comparing the numerators, we see that the expression, R−
1
2 γ+ − pn, corresponds to a weighted sum of

integer derivatives of x(t), the coefficients of which are the optimal gains, Ki. Defining k as the optimal

feedback polynomial,

k = R−
1
2 γ+ − pn, (216)

the meaning of the optimal feedback fractional polynomial, κ, becomes clear.

The optimal feedback law, U(s) = −κ(s)X(s), is the fractional generalization of the notion of a weighted

sum over derivatives of x(t). Whereas the normal feedback law, u(t) = −K~x(t) = −L −1(k(s)X(s)), is a local
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operation that sums only integer derivatives of the state, the fractional feedback law, u(t) = −κ(t) ∗ x(t) =

−L −1(κ(s)X(s)), is a non-local operation that sums over continuum of fractional derivatives of the state.

Note that the optimal feedback law calculated in the time-domain does not depend on initial conditions.

Consequently, neither does that resulting from the Wiener-Hopf method. Thus, κ(s) is optimal for all initial

conditions of the fractional system.

Figure 19: Transformation of full-state feedback regulator (black) to equivalent output feedback regulator

(gray) for fractional system.

Figure 20: Transformation of equivalent output feedback regulator (gray) to full-state feedback regulator

(black) for rational approximation of fractional system.

Though κ does not have an explicit fractional polynomial description, it is completely specified by its

magnitude and phase. Nevertheless, one might wonder what the asymptotic growth rate of κ is. Comparing

k and κ,

k = [|pn|2 +R−1|q|2]+ − pn, (217)
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κ = [|fα|2 +R−1|q|2]+ − fα, (218)

we can at least reach an algebraic conclusion about the order of k. Because the sn term is eliminated, the

order of k depends on the second highest-order term in pn, the sn−1 term. Hence, one might expect the

order of κ to depend on the second highest-order term in fα. Surprisingly, this is not the case. To see this,

we recast the full-state feedback regulator problem as the fictitious output feedback problem shown in Fig.

19, with the internal stability requirement relaxed i.e. the output feedback controller may be improper or

contain RHP pole-zero cancellations with the plant. With this configuration, we consider YJ = qX as the

output and P as the transfer function:

P =
q

fα
. (219)

Examining Fig. 19, the optimal but not realizable controller, C, that generates the same optimal control as

the full-state feedback regulator is

C =
κ

q
. (220)

We can interpret C as the series connection of the optimal feedback fractional polynomial, κ, and an observer,

1/q, which perfectly reconstructs the internal state, X, from YJ . Now, we construct an approximation of

the fictitious output feedback system, shown in Fig. 20, by approximating P with an arbitrarily high order,

rational, strictly proper, transfer function,

P̃ =
pm
pn
, (221)

such that P̃ → P as n > m → ∞. Note that any approximation scheme such that P̃ → P is sufficient.

Examining Fig. 20, the optimal but not realizable controller for this approximation, C̃, that generates the

same optimal control as the full-state feedback regulator of the approximate system, is

C̃ =
k

pm
, (222)

where k = [|pn|2 + R−1|pm|2]+ − pn. As before, we can interpret C̃ as the series connection of the optimal

feedback polynomial, k, and an observer, 1/pm, which perfectly reconstructs the internal state of the approx-

imation, Z, from ỸJ . Since ỸJ → YJ as n > m→∞, the approximate loop gain asymptotically approaches

the fractional one,

P̃ C̃ → PC. (223)
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Consequently, the asymptotic order of κ can be related to that of k,

O

(
k

pn

)
= O

(
κ

fα

)
. (224)

Because n > m, k is a polynomial of order n− 1. Therefore, κ, must satisfy

O(κ) = O(sα−1). (225)

Evidently, the analogy between k and κ can be taken further. In the rational case, k sums over the first n−1

derivatives of the state and thus behaves as an n − 1 order differentiator. In the fractional case, κ behaves

as an α− 1 order differentiator. This property holds regardless of lower order terms in fα, which may even

come within one order of α.

The interpretation of κ yields a simple interpretation of the optimal H2 controller, C, when the plant,

P , is minimum phase. Using the parameterization, C = (P −H)(PH)−1, the H2 problem becomes

min
H
||H||2 +R

∣∣∣∣∣∣∣∣H − PP

∣∣∣∣∣∣∣∣2. (226)

Proceeding as before,

Ω− =
∂

∂H̄

(
|H|2 +R

∣∣∣∣H − PP

∣∣∣∣2), (227)

where Ω− is unstable. This yields

Ω− = −Rf̄α
f̄β

+
γ

|fβ |2
H. (228)

After obtaining the factorization, γ = γ+γ−,

Ω−f̄β
γ−

+

{
Rf̄α
γ−

}
−

= −
{
Rf̄α
γ−

}
+

+
γ+

fβ
H. (229)

Noting that the additive decomposition again reduces to a constant,

H =
R

1
2 fβ
γ+

. (230)

Thus, the optimal output feedback controller is,

C =
R−

1
2 γ+ − fα
fβ

=
κ

fβ
. (231)

Since X = f−1
β Y and U = −κX, the output feedback controller can be interpreted as the series connection

of an observer that perfectly reconstructs the state from the output and the optimal feedback fractional
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polynomial that operates on the state. While C is improper and must be rolled off in practice, the ideal C

can still be understood in this way.

4.3 Examples

In the following examples, we use spectral factorization to construct the optimal feedback law for fractional

differential equations given full-state feedback.

4.3.1 Example

Consider the fractional differential equation,

D
√

13x(t) + D3x(t)−D
√

7x(t) + x(t) = u(t). (232)

In the frequency domain, f√13(s)X(s) = U(s), where

f√13(s) = s
√

13 + s3 − s
√

7 + 1. (233)

We choose a control weighting R = 0.25 and penalize D
√

3x(t) + x(t) by choosing

q(s) = s
√

3 + 1. (234)

To calculate κ, we require the stable multiplicative factor of γ = γ+γ− where from (204),

γ = 0.25|f√13|
2 + |q|2. (235)

To effect this factorization, we require an appropriate reference function, λ = λ+λ−.

Noting that g(s) = 0.5(s
√

13 + s3 − s
√

7 + 10s
√

3 + 11) is stable (see Example 3.3.2), we choose λ = |g|2

and calculate γ+ with Theorem 3.1. From (211), the optimal feedback fractional polynomial is

κ(s) = [|f√13|
2 + 4|q|2]+ − f√13. (236)

From (212), the resulting loop gain is

L(s) =
[|f√13|2 + 4|q|2]+ − f√13

f√13

. (237)

The optimal feedback law satisfies O(κ) = O(s
√

13−1), as shown in Fig. 21. Moreover, L obeys the circle

criterion (213), as shown in Fig. 22.
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We compare the results here to the optimal output feedback controller, C, for the plant in Example

3.3.2. Because the plant is minimum phase, we can interpret C as the series connection of κ and an observer,

1/f√3:

C =
κ

f√3

. (238)

The state, X(s), is reconstructed from the output, Y (s), by the observer, 1/f√3. The optimal control is

then generated by fractionally differentiating X(s) with the optimal control law, κ. This interpretation is

verified in Fig. 23.

Figure 21: Example 4.3.1: optimal feedback fractional polynomial, κ (solid), s
√

13−1 (dotted).

4.3.2 Example

Consider the fractional differential equation,

8D
√

8x(t) + 6D
√

6x(t) + 5D
√

5x(t) + 3D
√

3x(t) + 2D
√

2x(t)− x(t) = u(t). (239)

In the frequency domain, f√8(s)X(s) = U(s), where

f√8(s) = 8s
√

8 + 6s
√

6 + 5s
√

5 + 3s
√

3 + 2s
√

2 − 1. (240)
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Figure 22: Example 4.3.1: loop gain, L (solid), unit circle centered on −1 (dotted).

Figure 23: Example 4.3.1: optimal controller, C (gray solid), κ/f√3 (dashed), s
√

13−1−
√

3 (dotted).
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Defining the normalized transfer function,

A(s) =
f√8(s)

(s
√

8/2 + 1)2
, (241)

we can see from Fig. 24 that f√8 is unstable.

We choose a control weighting R = 4 and penalize ẋ(t) + x(t) by choosing

q(s) = s+ 1. (242)

To calculate κ, we require the stable multiplicative factor of γ = γ+γ− where from (204),

γ = 4|f√8|
2 + |q|2. (243)

To effect this factorization, we require an appropriate reference function, λ = λ+λ−.

From Corollary 3.1.1,

g(s) =
2(s
√

5/2 + 1)2(8s
√

8 + 6s
√

6 + 5s
√

5)

s
√

5
, (244)

is stable. We choose λ = |g|2 and calculate γ+ with Theorem 3.1. From (211), the optimal feedback fractional

polynomial is

κ(s) = [|f√8|
2 + 0.25|q|2]+ − f√8. (245)

From (212), the resulting loop gain is

L(s) =
[|f√8|2 + 0.25|q|2]+ − f√8

f√8

. (246)

The optimal feedback law satisfies O(κ) = O(s
√

8−1), as shown in Fig. 25. Moreover, L obeys the circle

criterion (213), as shown in Fig. 26.

4.3.3 Example

Consider the fractional differential equation,

D
√

6x(t)−D
√

5x(t) + D2x(t)−D
√

3x(t) + D
√

2x(t) + 10x(t) = u(t). (247)

In the frequency domain, f√6(s)X(s) = U(s), where

f√6(s) = s
√

6 − s
√

5 + s2 − s
√

3 + s
√

2 + 10. (248)
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Figure 24: Example 4.3.2: W (A(Γ), 0) = 1.

Figure 25: Example 4.3.2: optimal feedback fractional polynomial, κ (solid), s
√

8−1 (dotted).
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Figure 26: Example 4.3.2: loop gain, L (solid), unit circle centered on −1 (dotted).

Defining the normalized transfer function,

A(s) =
f√6(s)

(s
√

6/2 + 1)2
, (249)

we can see from Fig. 24 that f√6 is unstable.

We choose a control weighting R = 0.25 and penalize ẋ(t) by choosing

q(s) = s. (250)

To calculate κ, we require the stable multiplicative factor of γ = γ+γ− where from (204),

γ = 0.25|f√6|
2 + |q|2. (251)

To effect this factorization, we require an appropriate reference function, λ = λ+λ−.

Picking the stable polynomial, r,

r(s) = s+ 1, (252)

we construct the stable fractional polynomial,

f√6 + 5r, (253)
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using the Nyquist plot, as shown in Fig. 28. We choose λ = |0.5(f√6 + 5r)|2 and calculate γ+ with Theorem

3.1. From (211), the optimal feedback fractional polynomial is

κ(s) = [|f√6|
2 + 4|q|2]+ − f√6. (254)

From (212), the resulting loop gain is

L(s) =
[|f√6|2 + 4|q|2]+ − f√6

f√6

. (255)

The optimal feedback law satisfies O(κ) = O(s
√

6−1), as shown in Fig. 29. Moreover, L obeys the circle

criterion (213), as shown in Fig. 30.

Figure 27: Example 4.3.3: W (A(Γ, 0) = 2.
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Figure 28: Example 4.3.3: Nyquist plot, r/f√6.

Figure 29: Example 4.3.3: optimal feedback fractional polynomial, κ (solid), s
√

6−1 (dotted).

55



Figure 30: Example 4.3.3: loop gain, L (solid), unit circle centered on −1 (dotted).

5 Conclusion

We have solved the scalar H2 and LQR problem for fractional systems with spectral factorization. To do

so, we derived several useful theorems regarding the location and number of roots of fractional polynomi-

als. We explained the use of the Argument Principle and root locus on the slit s-plane when obtaining

stabilizing controllers. We then constructed the fractional order Youla parameterization from knowledge of

a nominal stabilizing controller. This parameterization allowed us to linearize the closed-loop sensitivity

functions while preserving internal stability. We then reduced the fractional H2 problem to a Wiener-Hopf

spectral factorization problem. In order to obtain the key product decomposition, we used an integral fac-

torization technique, which required careful selection of a reference function to ensure convergence of the

relevant integrals. From this we constructed the optimal output feedback controller. Finally, we used the

integral factorization technique to solve the fractional LQR problem using a frequency domain notion of state

feedback. We found that the fractional optimal feedback law corresponded to an α − 1 order differentiator

operating on the state, analogous to interpreting the optimal gains for a rational system as a weighted sum

of n− 1 derivatives of the state.
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The extension to multiple-input, multiple-output fractional systems is non-trivial. Recall that in the

scalar case, we reduced the product decomposition to an additive decomposition using the logarithm (see

Section 3.2). To convert the additive decomposition back to the product decomposition, we relied on the

property that

exp(Φ+ + Φ−) = exp Φ+ exp Φ−. (256)

In the matrix case, however,

exp(Φ+ + Φ−) 6= exp Φ+ exp Φ−, (257)

unless Φ+ and Φ− commute. It has been proven for arbitrary matrix kernels that these commuting factors

do indeed exist [1]. However, it is unknown how to obtain these commuting factors except for certain

special matrix kernels occuring in partial differential equations [1]. Without a matrix integral factorization

technique, an element-wise plant approximation such as the Padé approximant used in [1] appears to be the

only resort.
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