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Theoretische Phystk — Lehrstuhl Professor Wess
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Abstract

Any deformation of a Weyl or Clifford algebra can be realized through a
change of generators in the undeformed algebra. g-Deformations of Weyl or
Clifford algebrae that were covariant under the action of a simple Lie algebra,
g are characterized by their being covariant under the action of the quantum
group Ug , g := e*. We present a systematic procedure for determining
all possible corresponding changes of generators, together with the corre-
sponding realizations of the Uxg -action. The intriguing relation between
g -invariants and U,g -invariants suggests that these changes of generators
might be employed to simplify the dynamics of some g-covariant quantum

physical systems.

*EU-fellow, TMR grant ERBFMBICT960921. e-mail: Gaetano.Fiore@physik.uni-muenchen.de



1 Introduction

Weyl and Clifford algébrae (respectively denoted by A,, A_ in the sequel, and
collectively as “Heisenberg algebrae”) are at the hearth of quantum physics. The
important question whether quantum mechanics is stable under deformation of

 Heisenberg algebrae (within the category of associative algebrae) was addressed in
the fundamental paper [1]. A general result [11] regarding the Hochschild cohomol-
ogy of the universal enveloping algebra associated to a nilpotent Lie group states in
particular that the first and second cohomology groups of any Weyl algebra A, are
trivial. This implies [17] that any deformation Ay, (h denoting the deformation
parameter) of the latter is trivial, in the sense that there exists an isomorphism
of topological algebrae over C[[h]] (a “deforming map”, in the terminology of Ref.
[36]), f : A4n — A4[[R]], reducing to the identity when A = 0 (a concise and
effective presentation of these results can be found in Sect.’s 1,2 of Ref. [28]). Prac-
tically this means that the generators A?, AQL of A4  can be realized as power series
in h with coefficients in A, A’ := f(A%), AF := f(A?), and the coefficients of the
h® term are generators a*,a;} of A,.

Given any automorphism g : Ai[[h]] — AL[[R]], ¢ = id + O(h), then g o f
is a new deforming map; conversely, given two deforming maps f, f, the map
f'o f~!is clearly an algebra automorphism. Now, by the vanishing of the first
cohomology group of A, all automorphisms of .A.[[h]] are ‘inner’, i.e. of the form
g(a) = aaa™!. Hence, all deforming maps can be obtained from one through the

formula

fal@) = af(a)a™! a=1+0(h) € Ayp. (1.1)

These results apply [28] in particular to so-called “g-deformations” (q := e”)
of Weyl algebrae which are covariant under the action of some simple Lie algebra
g; such deformations [29, 34, 4] are matched to the deformation of Ug into the
quantum group U,g , in the sense that for all ¢ the deformed algebrae are in fact
Ung -module algebrae'. We shall denote by A, g , the Weyl algebra with generators

1They should not be confused with the celebrated Biedenharn-Macfarlane g-oscillator (su-
per)algebrae [2], whose generators ai,a;?' fulfil ordinary (anti)commutation relations, except for
the g-(anti)commutation relations o’af ¥ ¢>afa’ = 1, and are not Uxg -covariant (in spite of
the fact that they are usually used to construct a generalized Jordan-Schwinger realization of
Ung ). It is of interest to note that, however, the generators oﬁ',a;r can bé tipically realized as
algebraic ‘functions’ of A?, A] [26], whereas the generators a’,a; can be tipically realized only as
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a’, a} belonging respectively to some representation p of g and to its contragradient
pY, and by Ai,g , its g-deformation. In the same way as the commutation relations
among a’,a; are compatible with the classical action > : Ug X At g, = Aq g p, 50
are the commutation relations among At, AF with the g-deformation of the latter,
the ‘quantum’ action 5, : Upg x AL g , = AL o .

At the representation-theoretic level one would be tempted to interpret deform-
ing maps f as “operator maps”. Whether this is actually possible depends however
not only on the explicit form of f, but also on the particuiar representation picked
up. In fact, the rigidity [11, 28] of Weyl algebrae is true only in the loose sense of
formal power series in h [technically speaking; in the socalled h-adic topology], in
general not in other (e.g. operator norm) topologies. In the case of Q-defbrmations,
the point e® = ¢ = 1 may yield various types of ‘singularities’ at the representation
level: the limit ¢ — 1 of a representation may be non-smooth2, or even ill-defined3.

In spite of the existence of algebra isomorphisms f : A} o , = Ay g ,[[h]], and
¢n : Ung — Ug|[h]][10]%, the Uyg -module algebra structure (Upg , AL g ,,54) is
however a non-trivial deformation of (Ug, A+ g ,,1), i.e. for no @4, f the equality
foBr =po(pn x f) holds. This is because Uyg itself as a Hopf algebra is a non-
trivial deformation of Ug, in other words all @n’s are algebra but not coalgebra
(and therefore not Hopf algebra) isomorphisms (this is related to the non-triviality
of the Gerstenhaber-Schack cohomology {18]).

transcendental ‘functions’ of A?, A7 .
%E.g. spectra of hermitean operators may switch from discrete into continuos {(and correspond-

ingly their eigenvectors may become non-normalizable) {21, 24].

31t was shown in Ref. [29] that the set of unitary irreducible representations of Aﬁ_, Su(N),park
[* denotes the natural *-structure of oscillators, (A")* = /ij‘] on separable Hilbert spaces splits
into more than one (actually infinitely-many) unitarily inequivalent classes, whereas there is just
one class when ¢ = 1, according to Von Neumann theorem [this is to be contrasted with the set
of unitary irreps of Upsu(V) itself: the latter are in one-to-one correspondence with the unitary
irreps of su(N)]. This is not in contradiction with the existence of a deforming map, since (as
we verified in Ref. [12], in the concrete case of .A’_:_’ su(2), pa)r 3t @ =1 the inverse f7! of the
g-deforming map becomes singular, as an operator map, on all but one of the Pusz-Woronowicz
unitary irreducible representations [29]. f~! is regular (as an operator map) on this particular
representation (the unique one possessing a ground state) and intertwines the latter with the

(standard) Fock space representation of the corresponding undeformed Weyl algebra.
The existence of the latter and its being defined up to inner automorphisms of Ug [[k]] again

is a consequence of the triviality of the first and second Hochschild cohomology groups of Ug .

[\



Using B, and any f we can draw the solid arrows in the following diagram:

Pr

Ug X A’;,g,p - A’;,g,p
}oidx f Vf (1.2)
Ung x Arg,llh]] — — == Acg Rl

In this paper we give a systematic procedure to construct all pairs (f, >y, ) such that
the above diagram commutes (in other words >, will realize 5, on Ay g ,[[h]]).
We start by showing (Sect. 3) that one particular >, can be naturally con-
structed in a (yp-dependent) ‘adjoint-like’ way. To determine the corresponding f
it is sufficient to identify in A g ,[[h]] appropriate images 4° = f(4%), A} = f(A}):
with this aim in mind, we first show [formula (3.3)] how to construct two classes of
objects A%, AT having the same transformation properties under >, as the genera-
tors A, flj of .A'i,g p under 5, ; these two classes turn out to be parametrized by
some g -invariants. The construction method is founded on the properties of the
“Drinfel’d twist” [10]. Then (Sect. 5) we try to restrict our choice by requiring
that the A, A} also have the same commutation rules as the A%, A}: this con-
dition can be translated into a system of equations (5.0.1-5.0.3) where the twist
appears only through the socalled “universal coassociator”; fortunately, the latter
is known rather explicitly in terms of solutions of the socalled universal Knizhnik-
Zamolodchikov [22] equation. Up to this point the whole formalism is completely g -

and p-independent. Then we solve case by case the system (5.0.1-5.0.3) for the most

5
Pad 7

(pg will denote the defining representations of either g ); the solutions A°, A} are

celebrated examples of g-deformed Heisenberg algebrae, i.e. AL vy ., A% oom)

determined up to an automorphism (1.1), with a g-invariant . Coming back to
the general results, in Sect. 6 we study the conditions under which x-structures of
A g , realize x-structures of A’i,g 3 imposing a *-structure constrains the choice
of the g -invariant c. The subalgebrae ALY [[R]], A’i’fg’fp [h]]) of As g ,[[R]] that are
invariant respectively under b, and the classical Ug action > coincide (Sect. 4),
but we find out that invariants in the form of polynomials in A%, A;-* are highly non-
polynomial (analytic) functions in o, a7, and conversely. Finally, in Sect. 7 we show
how to extend our previous results to all other isomorphisms f,; A’i’g 2 Arg,

[formula (1.1)], while giving an outlook of the whole construction.

®Actually, in order to realize A% so(N),ps ON€ Needs to slightly extend A, s,(n),p,[[h] With the

square root of the element representing the casimir of so(NV)



In Ref. [12] we started the program just sketched, by sticking to the cases
of arbitrary triangular deformations of the Hopf algebra Ug (this case is easily
recovered in the present setting by postulating a trivial coassociator) and of the
deformation AL 12,5, OF Az si(2),0.- We would like also to note that examples of
g-deforming maps (in the restricted sense of the first paragraph) for Heisenberg
algebrae have been explicitly determined “by hand” in past works [32, 26, 28, 24].

We are now in the conditions to give some motivations for the present work. A
systematic procedure for determining g-deforming maps can help in understanding
the relation (or contrast) between the representation theories of A+ g , and AL o .
Our construction procedure is applicable in particular to Heisenberg algebrae Ay ¢ ,
where p is a direct sum of many copies of p,;’s; these are physically the most inter-
esting cases (the different copies could correspond e.g. to different particles, crystal
sites or space(time)-points, respectively in quantum mechanics, condensed matter
physics or quantum field theory); solutions of the corresponding system (5.0.1-
5.0.3) will be searched elsewhere. In the particular case of a g-deformation A’:‘t’g »
of a oscillator x-algebra A+ g ,, knowledge of a (x-compatible) g-deforming map
would allow to identify one of the many unitary representations of A}i’g p With the

unitary Fock space representation of Ax g ,; correspondingly, a particle interpreta-
tion in terms of ordinary bosons and fermions would be possible [13], and Aj, A’
could be interpreted as “composite operators” creating and destroying some sort of
“dressed states”. In view of the mentioned relation between g and U,g invariants,
the change of generators a’,af — A’, Afcould be employed in order to simplify
the dynamics of a physical system based on some complicated g-invariant inter-
action Hamiltonian (similarly to what has been suggested in Ref. [33] for a 1-dim
toy-model), if the functional dependence of the latter on the g-deformed generators

A7, A® were of polynomial character.

2 Preliminaries and notation

Some general remarks before stafting. The fact that we will denote the generators
of the Heisenberg algebrae. by a¢, a], A%, AT, ... does not necessarily mean that we
have in mind creators/annihilators: only the choice of a *-structure may give the
generators the meaning of creators/annihilators, or coordinates/derivatives, etc. (a

few ones are considered in section 6). Given an algebra B, we will denote (with



a standard notation) by B[[h]] the algebra of formal power series in h € C with
coeflicients belonging to finite-dimensional subspaces of B, completed in the h-adic
topology. Tensor products like B[[h]] ® B[[h]] are also to be understood to be
completeted in the same topology. We shall use throughout the paper the symbol
Urg [9], to denote the algebra on the ring C[[h]] (completed in the h-adic topology)

underlying the quantum group.

2.1 Twisting groups into quantum groups

Let H = (Ug,m,A,¢,S) be the cocommutative Hopf algebra associated to the
universal enveloping (UE) algebra Ug of a Lie algebra g. The symbol m denotes
the multiplication (in the sequel it will be dropped in the obvious way m(a®b) = ab,
unless explicitly required), whereas A, €, S the comultiplication, counit and antipode
respectively.

Let F € Uglh]] ® Ug[[h]] (we will write F = F& @ F®_ in a Sweedler’s
notation with upper indices; in the RHS a sum Y, }'1(1) ® fz(?) of many terms is
implicitly understood) be a ‘twist’, i.e. an element satisfying the relations

[\

E®id)F=1=(d®e)F (

1.1)
F=1®1+O(h) (2.1

2)

N
Do —

(h € C is the ‘deformation parameter’, and 1 the unit in Ug; from the second
condition it follows that F is invertible as a power series). It is well known [8] that

if F also satisfies the relation
(Fe1[(A®Iid)(F)] =1 F)|(id® A)F), (2.1.3)

and ¢, is any automorphism of Ug [[h]] satisfying ¢, =id (mod k) (in particular,
¢p = id), then one can construct a triangular non-cocommutative Hopf algebra
Hy, = (Ug|[h]], m, A, €n, Sk, R) having an isomorphic (through ¢;) algebra struc-
ture (Ug [[h]], m), an isomorphic counit &, := g0y} *, comultiplication and antipode
defined by

An(a) = (o5 ® R DNFAlpr(a)]F 7Y, Sp(a) = 9021[7"15‘[%(0)]”/],
(2.1.4)
where A
5= SFTW . F1O), 7 =FO.5F, (2.1.5)



and (triangular) universal R-matrix
R = [on' ® oy (FuF ), | Fy = FO @ FO, (2.1.6)

Condition (2.1.3) ensures that A, is coassociative as A. The inverse of S, is given
by Si'(a) = &' [v'Slen(a)ly'!], where

N = FO . gFD yt = SFTIA) L F ), (2.1.7)

y~'4" € Centre(Ug ), and Sy = v~ L.

Conversely, given a h-deformation Hy, = (Uy, m, Ay, €, Sk, R ) of H in the form
of a triangular Hopf algebra, one can find [8] and an isomorphism ¢, : Uy, — Ug {[A]]
an invertible F satisfying conditions (2.1.1), (2.1.2), (2.1.3) such that H} can be
.obtained from H through formulae (2.1.4),(2.1.5),(2.1.7).

Examples of F’s satisfying conditions (2.1.3), (2.1.1), (2.1.2) are provided e.g. by
the socalled ‘Reshetikhin twists’ [31] |

. F = ehwiihi®hy (2.1.8)

where {h;} is a basis of the Cartan subalgebra of g and w;; = ~w;; € C.

A similar result to the above holds for genuine quantum groups. A well- known
theorem by Drinfel’d, Proposition 3.16 in Ref. [10] (whose results are partially
already implicit in preceding works l_)y Kohno [23]), proves, for any QUasitriangular
deformation Hy, = (Upg ,m, An,€n, Sk, R) [9, 15] of Ug, with ga simple finite-
dimensional Lie algebra, the existence of an algebra isomorphism ¢, : Upg —
Ug [[h]] and an invertible F satisfying condition (2.1.1) such that H} can be obtained
from H through formulae (2.1.4),(2.1.5),(2.1.7), as well, after identifying k = Ingq.
This F does not satisfy condition (2.1.16), however the (nontrivial) coassociator -

¢:=[(AQId)(F H(F '®1)(1® F)[(id ® A)(F) (2.1.9)
still commutes with A®(Ug),
(¢, A®(Ug)] = 0, (2.1.10)

thus explaining why A, is coassociative in this case, too. The corresponding uni-

versal (quasitriangular) R-matrix R is related to F by
R =07 @ o' (Fug? F7), (2.1.11)

6



where ¢ := A(C)—1®C—C®1 is the canonical invariant element in Ug ®Ug (C is the

quadratic Casimir)®. The twist F is defined (and unique) up to the transformation
F — FT, (2.1.12)

where T is a g-invariant [i.e. commuting with A(Ug )] element of Ug [[A]]®" such
that
T=1®1+0(h), (e®id)T=1=(d®e)T. (2.1.13)

Under this transformation
¢ = (AT HT'®1)p(1 ® T)[(id ® A)(T). (2.1.14)

A function
T=T1A®C,C1,AC;)) (2.1.15)

of the Casimirs C; € Ug of Ug and of their coproducts clearly is g -invariant. We
find it plausible that any g-invariant T must be of this form; although we have
found in the literature yet no proof of this conjecture, in the sequel we assume that
this is true.

We will often use a ‘tensor notation’ for our formulae: eq. (2.1.3) will read

FraF 123 = FozF123, (2.1.16)

and definition (2.1.9) ¢ = ¢03 = .7-"1"2173.7:1‘21]:23.7-'1,23, for instance; the commas
separate the tensor factors not stemming from the coproduct.

¢ satisfies the equations

t13+toa 1 ¢ toz
qg 2 = ¢2311q-§a¢132q%3¢1213
ztisa w2l (2.1.17)
q 2 = $31292 ¢51302 123

(they are equivalent resp. to (A ® id)R = R 13R 23, (id ® Ap)R =R 13R 12)-

To arrive at this result, Drinfel’d introduces the notion of quasitriangular quasi-Hopf algebra;
the latter essentially involves the weakening of coassociativity of the coproduct into a property
(“quasi-coassociativity”) valid only up to a similarity transformation through an element ¢ €
Ug [[h]]®3 (the “coassociator”). This notion is useful because quasitriangular quasi-Hopf algebra
are mapped into each other under twists [even if the latter do not satisfy condition (2.1.3)]. As an
intermediate result, he shows that Ug [[h]], beside the trivial quasitriangular quasi-Hopf structure
(Ug[h]],m,A,e,8,R = 19°,¢ = 1®%), has a non trivial one (Ug[[h)],m,A,e,8,R = ¢q%,¢ #
18°%).

-l



While for the twist JF, apart from its existence, very little explicit knowledge is
available, Kohno [23] and Drinfel’d [10] have proved that, up to the transformation
(2.1.14),6 is given by ’ '

Om = 6 (z)§(2), 0<z<l, (2.1.18)

where §, §(z) are Ug [[h]]®*-valued ‘analytic’” solutions of the first order linear dif-
ferential equation
dg {ti2 lo3
—=h(— ) , 0<z<l1 2.1.1
dz x + z—1)7 T ( 2

(h = 5&) with the following asymptotic behaviour near the poles:

-~

g-zhhe 22898 g+ (1 —x)htss 225 18°, (2.1.20)

Using eq. (2.1.19) it is straightforward to verify that the RHS of eq. (2.1.18) is
indeed independent of z. 8 Using eq. (2.1.20) we can take the limit of eq. (2.1.18):

_ﬁtt12 -~

¢m = lim z7"?g(z). (2.1.21)

z—0+

‘We can formally solve the previous equations (2.1.19), (2.1.20) by a path ordered

integral:
= 7 t t \
i Hz) = z,}i-?(}+ {xg"tl“’Pexp —h/dx (—;—2 +~ 3_31)} } (2.1.22)
Zo
« = . e t‘12 to3 .
g(z) = y(}l_r)r(}+ {Pexp —h x/ dz (_x_+ e 1)} Yo "’3} (2.1.23)

(PlA(z)B(y)] := A(z)B(y)d(y — z) + B(y)A(z)d(z — y)), so that we can give é

more explicit expression for ¢:

1-vo :
= t
ém = lim {:rgm”Pexp [—h / dz (EB + —%)} ygt'”}. (2.1.24)
o

z0,y0—01 x z

o0
"In the sense that the coefficients g, () appearing in the expansion g(z) = . gn(z)h™ of g in
n=0

. h-powers are analytic functions of z with values in a finite-dimensional subspace of Ug e’
8Kohno and Drinfel’d proved that ¢ can be obtained as the ‘monodromy’ of a system of three -

first order linear partial differential equations in three complex variables z; (the socalled universal

Knizhnik-Zamolodchikov [22] equations), with an Ug ®*_valued unknown f, 5‘9{; =h> i :—tf: f.

The system can be reduced to the equation (2.1.19) exploiting its invariance under linear tranfor-

mations z; = az; + b. For a review of these results see for instance Ref. [5].

8



Note that ¢p,, = 1%° + O(h?).

We will say that the twist F is ‘minimal’ if the corresponding ¢ (2.1.9) is equal
to ¢, or is trivial respectively in the case of H, = Uyg or Hp is a triangular
deformation of Ug.

The algebra isomorphism ¢, : Upg — Ug]|[h]] is defined up to an inner auto-

morphism (a ‘similarity transformation’) of Ug [[h]],
Pho(T) = vop(z)vT!, (2.1.25)

for any v = 14+ O(h) € Ug]|[h]] (we shall normalize it in such a way that e(v) = 1).
It is easy to check that Drinfel’d theorem [10] remains true provided one replaces
F by F, = (v®v)FA(v™!) and all the objects derived from F correspondingly; in
particular, it is easy to check that the coassociator ¢ remains unchanged, because
it is g-invariant

¢y = AP (0)pAP (v = 9. (2.1.26)

The freedom in choosing ¢y, (and F) is usually eliminated if one requires it to satisfy
additional properties, such as to lead to a specific *-structure for U,g .
The Lie algebra g = sl(2) is the only g for which explicit ;’s are known®.

gLet j07j+7j— € g,
[jo, j+] = £jx 4,31 = 2jo

be the classical generators, and Jy, J¥,J~ € Upsl(2)
q2Jo _ é—QJo

[Jo, J+] = £J4 ' [+, J-] = e (2.1.27)
the quantum ones. An entire class of algebra isomorphisms ¢y : Upsl(2) — Usl(2)[[h]] was given
in Ref. [7]. One is [the reader can easily check the commutation rules (2.1.27)}:
[J = JoJgld +jo + 1]qj__
(J—3do)(i +Jjo+1)
The %-structure (J+)* = J_, (Jo)* = Jo of Upsu(2), for instance, requires changing the preceding

isomorphism by the inner automorphism generated by

ve TG =do+ V(G +jo+1)
LG = do+ TG + jo +1)

wn(Jy) = j+ wn(Jo) = Jo on(J-) =

[T, is the deformation of Euler’s I-function defined in formula (A.4.14)], which leads to the new

algebra isomorphism ¢, [6]

[.7 :th]q[l +j ‘_’Fjo]q]-i.
(7 £30)(1 + J F Jo)

wr(Jo) = jo on(Jx) = \/

9



For practical purposes it will be often convenient in the sequel to use the
Sweedler’s notation with Jower indices A(z) = z(;) ® (o) for the cocommutative
- coproduct (in the RHS a sum ¥; z{;) ® 2}y of many terms is implicitly undersﬁood);
similarly, we will use the Sweedler’s notation AV (z) =z() ® ... ® () for the
(n—1)-fold coproduct. For the non-cocommutative coproducts Ay, instead, we will
use a Sweedler’s notation with barred indices: Ay(z) = z(1) ® 2(3).

To mantain a simple notation,'in the sequel we will drop the symbol ¢, unless

this may cause anibiguities.

2.2 Classical g-covariant Heisenberg algebrae

Let A+ g, be the unital algebra generated by 14 and elements {a} }ier and {a’}jer

satisfying the (anti)commutation relations

[ai , aj]i =0
laf ,afls = 0 (2.2.1)
[a*, a;']i = 5;-1A

(the + sign denotes commutators and anticommutators respectively), belonging
respectively to some representation p and to its contragradient p¥ = pT oS of H (¥

_is the transpose):

avaf = plz)al - -
zoa = pla)e reUg, pla)eC. (2.2.2)
z>a' = p(Sz)id

Equivalently, one says that a},a’ are “covariant”, or “tensors”, under b .
Asg, is a (left) module algebra of (H,»), if the action > is extended on the

whole A+ g , by means of the (cocommutative) coproduct:
z > (ab) = (z() > a)(z(2) > b). (2.2.3)

Setting , |
o(X) == p(X)}a}d : (2.2.4)

for all X € g, one finds that ¢ : g — A4 g, is a Lie algebra homomorphism, so

that o can be extended to all of Ug as an algebra homomorphism o : Ug — A g ,;

Here j is the positive root of the equation j(7 +1)—C =0, C = j—j+ + jo(Jo + 1) is the Casimir,

x -

[z], == 9:]9:, and we have used the ordinary I-function, as well as its g-partner 'y, defined in

formulae (A.4.9), (A.4.14) in the appendix.
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on the unit element we set o(lyg ) := 14. o can be seen as the geﬁeralization of

the Jordan-Schwinger realization of g = su(2) [3]
. . . 1
o(js) = atat, o(j-) = afd", o(jo) = 5 (e}
Then it is easy to check the following

Proposition 1 The (left) action > : Ug X Ar g, — Azg, can be realized in an

‘adjoint-like’ way:

z>a=0o(zq))ao(Szw), z €Ug, a€Azrg,, (2.2.6)

Let us introduce the notion of g-invariant subalgebra ALY , C Az g

im L ={lcArg, | avI=c)] VzeUg} (2.2.7)

(it is not difficult to see that the above is the natural definition of invariant subal-
gebrae in the Hopf algebraic language; in fact if x € g then e(z) = 0 and the RHS

vanishes). It is easy to show that
Proposition 2

Le,=1U€Asg, | [o(y),1]=0, yeUg} (2.2.8)

Proof. Given any I € ATy, y € Ug take z = y) in definition (2.2.7), where
Yoy ® y) = Ay:

Io(y) Te(yay)o(ye) = (v > Io(ye)

2.2.6
P2 oy Io(Sye - ye) = olyw)le(ye) = o). O (2.2.9)

The simplest nontrivial invariant is the ‘number of particle operator’ n := af @,

which satisfies

n,af] = of [7,a] = —d. (2.2.10)

~ . 2
. From the previous proposition it trivially follows that, for any 1,1 € Ai“ig ’p®

the objects
at:=T1Wg' [, af = [WaF [® (2.2.11)
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(we are using again a Sweedler’s notation) transform exactly as a’,a; under >. If
the decomposition of p into irreducible components reads p = @, p,, the game
remains true if we define the a° (resp. aj) belonging to the u-th component by
plugging in the previous formula some p-dependent invariants I,,, I u € A;"’”g ’p®2

In the rest of this work we will denote by the symbols o,p, ... also the linear
extensions of these operations to the corresponding algebrae of power series in A,
o : Ug [[]] = Asg lIH]], > : Ug[h]] x Asg pl[B]] = Asg ollB]]

Remark 1. Let us note finally that other ‘more exotic’ algebra homomorphisms

0% :Ug — Aig , can be introduced by
0%(z) := ao(z)a ™!, | (2.2.12)

where @ € Ax g ,[[h]] is of the form a = 1+ O(h) and therefore invertible. Propo-

sition 2 remains valid after the replacement o — ¢2.

2.3 Quantum U,g -covariant Heisenberg algebrae

Examples of U,g -covariant Heisenberg algebrae (denoted by .Ai’g , in the sequel)
were introduced in Ref. [29, 34, 30, 4], “gluing” together a U,g -covariant “quan-
tum space function algebra” [15] (whose generators we will call here Af) with its
“dual” (whose generators we will call here A?) with appropriate cross commutation
relations. These A% o are deformations of corresponding Az g , with generators
a}, a® belonging to certain representations p, p¥ of g (in the notation of the previous

subsection). The cases actually considered were A% v, ,[29, 34] A%y, ,[30]
h 10 ‘

. —,SP(}—;‘),pd ) - o ' ‘
The QCR (‘quantum commutation relations’) among A%, A}’s can be put in the

A% 03005 14]; one could consider also A

form
AtAT = +PpFl kAt (2.3.1)
AfAf = xPFATAF - (2.3.2)
A'AT = 1.+ PFATAR (2.3.3)

- where: =+ refers to the Weyl and Clifford case respectively; PF = ¢*'R and R is

10Together with the generalizations in which p, p" are direct sum of m > 1 copies of these pq, Py

[14], these are among the few sensible cases, for the reasons we recall below.



the (numerical) ‘braid matrix’ [15] associated to Uxg
1 .
Ri=cg P [(pag)® (R)] cg = { qv ifg = si(N) (2.3.4)
1 otherwise.
(the factor ¢¥ in the case g = sl(N) is the conventional normalization); P denotes
the permutation matrix; p;, denotes the defining representation of U,g ; P¥ is
a polynomial of degree one or two in R (usually it is chosen in such a way that
(PF)2 = 1). Both PF and PF reduce to P in the limit ¢ — 1. The choice
PF = gF1R~1 is also possible, but will not be considered explicitly in the sequel.
.A':‘E’g » 15 a left module algebra of Hy = (U,g,m, A, €, Sp) w.r.t. to the quan-

tum action 5, of the latter, namely

(zy)Sh a = x5, (yBh a) 4 x5y, (ab) = (z@)Br a) (2354 b)
Vz,y € Upg, a,b€ .A’jc,g » A, /ij span two quantum conjugate irreducible rep-
resentations pp, py = pf oS, of (H,B ):
x5, AT = pu(z)iAf

| wp A = pf(z)PA™ = pu(Shz)inA™.
Let ¢, be an algebra isomorphism ¢y, : Uyg — Ug|[[h]], and F a corresponding
twist; for any representation p;, of U,g , setting

pi=phoy;t

defines a representation p of Ug [[h]]*!. jFrom formula (2.1.11) and the polynomial
dependence of PF on R it follows that

PF = FUF™! (2.3.5)

PF = FVF™! (2.3.6)

2 2
where F := p§°(F), V = cg P¢# /2 and U, being a polynomial in P g?¢ ¢/?
such that (PF)? = 1, reduces to U = P.

If p is the direct sum of m copies of the (N-dimensional) defining representation

m
of g, p = @ pgy, one can consistently define [14] a U,g -covariant Heisenberg
p=1

algebra A’i’g , having the same Poincaré series as its classical counterpart A+ g ,,

following the rules of ‘braiding’'®. The generators z‘i#’i,x‘i:’i, satisfy:

In particular, it is well-known that the defining representations pyq, pa Of Ung ,g coincide,
in the sense that the matrix identity pa,(X;) = pa(X?), where X} are e.g. the Drinfel’d-Jimbo
generators of Upg and X; the corresponding Chevalley generator of g, holds.

2For an introduction to braiding see e.g. Ref. [25].
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e QCR of the form (2.3.1), (2.3.2), (2.3.3) with the same N x N matrices PF, PF

‘as before, within each subalgebra ”.A’;,g , generated by Amt /i;[’i;

e cross commutation relations which, up to a reordering of ”A’:lt,g 'S, read

A+ A+ — +1 Phk I+ A+
ALAL; = R RGADLAL
AV, A+ — +1 Pih A+ ~;J.k
Anidy, = tqPRBAY, Am

9 .
AmiAv = g R Awk Awd (2.3.7)

O
when y < v.

If we summarize these QCR in the form (2.3.1), (2.3.2), (2.3.3) (but now with.
- indices ¢, j, ... running over the values 1,2, ..., mN), it is immediate to realize that
the mN x mN matrices P¥, PF can be put again in the form (2.3.5), (2.3.6), where

now
F := p®(F), (2.3.8)

and U,V are suitable m N x m N matrices such that
V.67 (AUR))] = [V.r¥ (A(UE))] =0. (2.3.9)

Remark 2. Tt is not difficult to verify that, given an arbitrary (finite-dimensional)
representation p, of U,g , arbitrary T satisfying the condition (2.3.9) and V «
Pq/’®2(t/2), then relations (2.3.1), (2.3.2), (2.3.3) with PF, PF defined by (2.3.5),
(2.3.6), (2.3.8), (2.3.9) are still compatible with the (left) U,g - action 5. How-
ever, in general they don’t generate a left and right ideal alone, i.e. without in-
- troducing additional first, third or higher degree relations, which have no classical
counterpart; if, in order to define an algebra .A’i’g > one adds the latter, then the
Poincaré series of A% o , is smaller than that of A g ,, what makes A% o , physi-
cally non-interesting. This is the reason why these -A’i,g , have not been considered
in the literature. On the contrary, in the cases mentioned at the beginning of this
subsection the quantum and classical Poincaré series coincide. |

One can introduce the notion of U,g -invariant subalgebra A’i’fg’:p C AL g, by

- mimicing the classical definition (2.2.7):

Ay (e Ay, | t5l=cn(2)] VeelUsg). (2.3.10) -
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For later use we recall that from the projector decomposition and the properties
of R [15, 34, 4] it follows that the ‘g-number operator’ N := A A of AL (V)0

satisfies the relations
NAF = AF + ¢ AN NA = P2 (—Ai + AN, (2.3.11)

and the invariant elements A*CA*Y = AYCYA}, ACA := A'C; A of Al ),

satisfy the relations

(ACA) A —~ AL (ACA) = 0 (2.3.12)
(ATCAH AF — AF(ATCA*) = 0 (2.3.13)
(ACA) A} — FAH(ACA) = (1+¢@N)C,A (2.3.14)
AN(ATCAY) - (ATCANH A = (1+7N)C7AL (2.3.15)

3 Realization of the quantum action and of U,g -
covariant generators

Having learnt from Drinfel’d theorem that a quantum group U,g can be realized
essentially by Ug itself as an algebra (upon the introduction of the commuting
deformation parameter h = log¢) and, through a similarity transformation, also as
a coalgebra, it is natural to ask whether one can realize a U, g -covariant Heisenberg
algebra [29, 34] .A’j:’g  With generators 14, At fi}' by the corresponding Ay ¢ ,[[R]]
(as characterized in the previous section).

We begin by the obvious observation that the algebra U,g can be realized in

Az o[[h]] by the homomorphism
O, =00 @p: Ung — Asg o[[h]]- 3.1)
Inspired by Propostion 1, we are naturally led to
Definition-Proposition 1 The definition[12]
T Dy @ = 0y, (T(1))a0,, (Shz(3)) | (3.2)
allows to realize 54 as an action on the left module Ay g ,[[R]], in an ‘adjoint-like’

way.
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Note now that aq; * o are not covariant w.r.t. to 5,. One may ask whe_ther
there exist some objects A, A7 € A4 g , that are (and going to af,a’ in the limit
h — 0).

The answer comes from the crucial

Proposition 3 [12] Let ai,a} be defined as in formula (2.2.11), with I, = 132 +
O(h) (in particular, it may be a* = a* af = a} ), and let F be a twist associated to

@n- The elements

Af = 0(FV)afo(SFP) € Avg of[R])
A = o(YSF®)aig(FW) € Ay g [R]), (3.3)

are “covariant” under >y , more precisely belong respectively to the irreducible rep-
resentation p, and to its quantum contmgredzent one py = pk oSy, of (H,>4), and

go to af,a’ in the limit ¢ — 1.13

Proof. Due to relation (2.1.4), F is an intertwiner between A, and A (we drop the
symbol ¢p): ‘
x(il)f(l) ® .’L'(Q;)f(z) = f(l):l,‘(l/) ® .7:(2)18(2!). (34)

Applying id ® S on both sides of the equation and multiplying the result by 1 ®
from the right we find [with the help of relation (2.1.5)]

o FD @ (SFO)yShz @y = FDzpy ® (Sz(2)(SFD)1.

Applying o ® ¢ to both sides and sandwiching a} between the two tensor factors

we find

o(zay)Af o(Shz@)) = o(FD)o(zn)af o(Sz@n)o((SFP)),

which, together with equations (2.2.6), (2.2.2), (3.2) proves the U,g -covariance of
AF | |
To prove the covariance of 4%, let us note that relation (2.1.4) implies an anal-

ogous relation

An(a)F = FA(a), with F:=[y/SF 1 B @ ySF MA(Sy).

13The Ansatz (3.3) has some resemblance with the one in Ref. [19], prop. 3.3, which defines an
intertwiner o : Ug[[h]] = Urg of Ung -modules. : '
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This can be shown by applying in the order the following operationé to both sides
of eq. (2.1.4): multiplying by F = from the left and from the right, applying S® S,
multiplying by v/ ®+/ from the left and by A(S7) from the right, replacing a — Shz,
using the properties (2.1.4) and (S, ® Sp) o A, = 70 Ap0Sy. Next, we observe that

A? can be rewritten as
i =) o, - ity ~(2 ~(1) ~(2) Y
A1 = o[FVS(v ) wlaiol(v D SFP = o(F)ato (SEP ey 1) (3.5)

whence, reasoning as for the first relation,

w
;]
Rt

U(fC(i'))AiO'(th(éf)) g

—
[\*]

= e g

N
o

~(1) ~(2) v
F o(zan)a'o(Sz@))ol(SF " )vle(v™)i
~ (1 ~ (2 _ i
f: Nalo[(SF)ylp(r1S2);

1)

—_
N
'

~—

(
o
o (F)ala|(SE? )o(Shz -7
pn(Spz)i Al

—
w
[%,]

fl

which, together with equation (2.2.6),(2.2.6), proves the second relation. O
Remark 3. Under the right action ,< (a <z = (S; z)bs a with a € Ay g H[[A]],
z € Ug|[[R]]) the covariance properties of A*, Af read

Al paz = pu(z)id! Af waz = pa(STD)T AL,

Remark 4. For any invertible g-invariant elements Ny, N, € Ug|[h]] ® Ug [[h]]
the objects

at = o(NMafo(SNP) at = o(SN{)alo(NP) (3.6)

)

are still of the form (2.2.11). In fact, by eq. (2.1.15) Ny, N> can depend only on
C;®1, 1RC;, Ci1y®Cia), but o(Ci(l))a;*a(SCi(g)) = C'il>a2L = ca;*, a(SC,-(l))aia(Ci(g)) =
C; <y, a* = ca', where ¢ € C is the value of the Casimir C; in (the irreducible compo-
nent of) the representation p to which o] belongs; moreover o(C;), 0(SC;) € ALY -
Thus any transformation (2.1.12) in definitions (3.3) amounts to a replacement of
the type a;},a’ — a,*,a"". Therefore, without loss of generality, we can assume from
the starting F to be ‘minimal’ in definitions (3.3).

To conclude this section, let us give useful alternative expressions for A}, A* by
‘moving’ to the right/left past aj,a’ the expressions o(-) lying at their left/right in
definitions (3.3). In the appendix we prove the following
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Lemma 1 If F is a ‘minimal’, then

F o= yNSFTOFP @ F (3.7)

= F P @y (SF@)F P (3-8)

Flo_ ff1)®f( (SF®)y (3.9)

= FOSFINy e FG). (3.10).

Proposition 4 With a ‘minimal’ F = F', definitions (3;3) amount to

AF = af o(F 1) p(F1)y (3.11)

Af = p(SFOY)o(FP)af (312)

A = p(FD)ig(F@)a! (3.13)

A' = alo(F 1) p(y~1sF- 1) (3.14)

Remark 5. In spite of its original definition (3.2), from the latter expressions we
realize that only a ‘semiuniversal form’ of the type (p®id)F*! for F is involved in
the definition of A%, A}.

Proof of Prop. 4. Observmg that

o(z)a = o(z@))ac(Sze) - z@3) (3.15)
ao(z) = o(zgSz@m))es(zy) (3.16)
forall x € Ug, aE.Aig,,, we find
A7 2D o [FOSFO )] RN D apoFT )TV, (317)
Ar BROLEED p(fai(“)la [y (s771@) 7] e AFE)o(F)a. (318)

Similarly one proves the other relations. O

4 Classical versus quantum invariants

Having defined two actions >,>, on Aig ,[[h]], let us ask what is the relation
between their respective invariant subalgebrae ALY ,[[R]] C Asg ,[[P]] [see def.
(2.2.7)] and |

AL 1T := {1 € Asg Hl[R]] | xon I =en(2)}. (4.1)
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It is easy to show the
Proposition 5 A% [[A]] = i”é“’,,[[h]]

Proof. We have to show that definition (4.1) is equivalent to
Ags =T € Arg bl | [o(y),1]=0 y € Ugllh]}.

The proof goes exactly as for proposition 2 if we replace A by Ay and S by Si. O
Thus, given an element I € A;’;wg o= Aifg"p, we can express it as a function of

a',af or A, AT, I = f(a,a}) = fa(A%, AT). What is the relation between fs, f?
Since > (resp. >y ) acts in a linear homogeneous way on the generators a’ ,aj

(resp. A%, AT), we can choose a basis {I"},en (resp. {IF}nen) of the vector space

ﬁt"f’g Ll[P]] consisting of normal ordered homogeneous polynomials in a’,a; (resp.

A’ AT):
I" = af..af dl7Jngh gl (4.2)
r o= A+ A+ ij"';j‘nA’l Atrn (4.3)

(kn, hn € NU{0}); the coefficients d)*";*» (resp. D”""J"") make up classical (resp.

1. thy

quantum) g -isotropic tensors, i.e. satisfy

(" @p" &) (ACD@)] ) dif = el@)df: (4.4)
(68" @01 &) (AP V@) o DI = entw)DF: (45)

Vz € Ug[[h]],y € Ung . Here and in the rest of the section we use the collective-
index notation I, = (¢1....%4,), Jn = (j1.---Jk,) and the short-hand notation b, :=
hn+kn. Using formula (2.1.4) it is straightforward to verify that the d’s and D’s
are related to each other by

D{: o [(p®kn ®p @hn) ((1®’=n ® (’Y'_1)®hn)f12....bn)]

Inln

I,
andi (46

where Fi5_, € Ug[[h]]®" is an intertwiner between A®~1 and A%~V (symbolically,
Fon(Ap(a)) = A(pn(a))F), i.e. it is given, up to multiplication from the right by
a g -invariant tensor Q € Ug[[h]]®"", by

Fros = FpFoo,p-1)p--F1,2..b- (4.7)

‘The replacement F — F - T, with T € Ug|[]]®" and g-invariant, results also
in multiplication from the right by a related Q.
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Relation (4.6) guarantees the existence of D’S in one-to-one correspondence with
“the d’s, but from the practical viewpoint is not of much help for finding the D’s
(since the universal F is unknown and its matrix representations are known only
for few representations); the latter can be found more easily from the knowledge of
R and a direct study of 5.
Our question can be now reformulated as follows: what is the explicit depen-
dence of the I?’s on a*,a;'? and on I"? We answer here the first question.

Proposition 6

IP = (a*..a%)u, (2...2)E" x

kn hn _ _ - 1MnL™ JIn
| [(P® ®p' ¥ ®0 ) '(¢(bi—1)bn(bn+1)¢(b}.—2),(bn—1)bn,(bn+1)"‘¢1,;...bn,(bn+1))J Il dj,
where ¢1,2...m,m+1 = (Zd® A(m—2) ® id)¢123 and bn = hn+kn

The Proof is given in the appendix.
Remark 6. Note that in these equations F does not explicitly appear any more;
the whole effect of twisting is concentrated in the coassociator ¢ of gand in its

coproducts. Consequently, use of formula (2.1.24) allows the explicit determination

+
7

If Hy, is triangular then ¢~! and all its copruducts are trivial, and consequently

of the dependence of I¥’s on a', a

we find
n=1" (4.8)

But if Hy, is a genuine quasitriangular Hopf algebra as U,g , then
I AT (4.9)

The I} will be some nontrivial function of the I"™’s, generally speaking a highly
non-polynomial function of the latter and of the a’,a}’s. _
This can be already verified for the simplest invariants. To the g -isotropic tensor
d! = &/ there corresponds Uyg -isotropic tensor D! = &/ [by formulae (4.6), (2.1.5)],
whence we can construct the invariants I := afa’ = n and I := A A’, which
are necessarily different: we will show in next section that e.g. I = (n), in the
g = sl(2) case. In the g = so(NN), p = py case another basic isotropic tensor is the
classical metric matrix ¢;; = ¢j; (with inverse ¢/ = ¢/, to which there corresponds

the quantum metric matrix [15] C;;, and its inverse C¥:
CY = Filch* = pg(y~1)ich. Cij = cinpa(7); (4.10)
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the last two equalities follow from the so(V) property
pd(Sx)j~ = pa(2)]*emj zeUg. (4.11)

So one can build the invariants

I?® = gl¢;a? =aca 1% = afcia} =atcat

A 4.12
I’ = AC;A=ACA n? = A;*CUA;EA+¢A+; (4.12)

we will see in next section that I-° # 20, [2? o 20,

5 Fulfilling the QCR of A  within Ay, [[A]

In section 3 we have left some freedom in the definition of A%, A}: the g-invariants
I, T appearing in the definitions (2.2.11) of a*, aj have not been not specified. Can
we choose I,] in such a way that A%, A} fulfil the QCR (quantum commutation

relations) of A% , ? This question can be studied explicitly using the following
+,8.0°

Proposition 7 If we replace fii,fij — A', A] [with A*, A} defined as in formulae
(3.11), (3.13), with a minimal F], then equations (2.3.1), (2.8.2), (2.3.3) become

equivalent to

a'a = £ (M~ UM)“ ™ (5.0.1)

af af = =xafaf, (MT'UM)T (5.0.2)

a'al = &1, £ af (M7 V M)¥ 2™ (5.0.3)

where U = ||U|l, V = ||ViLl| are the (numerical) matrices introduced in equations
(2.8.9) and M = ||M5,|| is the o(Ug [[h]])-valued matriz defined by

M:=(p®p®07)(dm). (5.0.4)

(The proof is given in the appendix.) We recall that, if p = pg4, then simply U is
the permutation matrix P, and V Pq"d “4) ®14.

Remark 7. The above equatlons have to be understood as equations in the
unknown I, € ( "i"fig’p)@?. They can be studied explicitly because the whole
dependence on F is concentrated again in the coassociator ¢ of g.
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Remark 8. If Hy is a triangular deformation, then U = V = P, ¢ = 18°
(and consequently M = 1®3), and the eq. (5.0.1), (5.0.2)'are satisfied with trivial
invariants I, I, i.e. with a* = o, aj = af. This was already shown in Ref. [12].

To look for solutions of eq. (5.0.1), (5.0.2), (5.0.3) for genuine quasitriangular
deformations we have to treat the g ’s belonging to different classical series separatly.

; h h
We consider here ALy 5.0 AL so(v),0,-

5.1 The case of A’i,s,(N),pd

N
As a basis of gwe choose {E;j}ij=1,..~ with Y Ej; = 0 (so that there exist only
. =1
N2 —1 linearly independent E;;), satisfying
[Eij» Enk] = Eikdjn — Ejnbin (5.1.1)

-

The quadratic Casimir reads
C=E;Ej;, (5.1.2)

implying
t =2FE; ® Ej; (5.1.3)
- The matrix representation of E;; in the fundamental representation p takes the form 4

5
p(Ey) = — 371w, (5.1.4)

where e;; is the N x N matrix with all vanishing entries but a 1 in the i-th row
and j-th column, and 1y = ¥, e; is the NV X N unit matrix; whereas the Jordan-

Schwinger realization takes the form
6 ‘
o(Ey) =ala — ]—\?—n (5.1.5)

As a consequence o(C) =n(N+nF1)— "WZ
 From the previous three equations one finds

5
(P®P®U)‘(%z) = €;®€; Q14— F1y@1y®14 = P- 11,
(p®p®o)(%") = Iy®e;Qajd" — Iy Q1y Q@& = A—l}%z@%
'(p@p@a) (%3) = ¢;®1IyQajad' -~ 1y @Iy Q@2 = B—l}?ﬁ@%;
(5.1.6)

P denotes the permutation matrix on C¥ ® C¥, multiplied by 14.
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Aii";,(,v)’pd is generated by n := afa’. Using relations (2.2.10) we can thus

commute I® to the left of o and I) to the right of af in formula (2.2.11, and
look for at,a} directly in the form a' = Jat, aft = af I, with I = I(n) € ;"’:g >
I=1I(n)e 1“’g o oFromeq. (3.11), (3 13) it follows NV := A} A* = atai = nI(n—
1), where [(n) := I(n)I(n). In order that N, A}, A’ satisfies the commutatlons

relations (2.3.11), we therefore require [(n) = il)"ﬁ, ith (z), :=

¥l
up, we pick
at = Iat, I = I(n), (5.1.7)
+ o T _ (’ll"t‘l)qiz.
o = atl I = 17 ()

These ansatz can also be written in the equivalent form
a' = u(n)a'u"'(n), af = v(n)afv™}(n), (5.1.8)

where u, v are constrained by the relation
| il gy . D41
- y - ySl(N) = Pq'z(n-l- 1)
and I',T'y2 are the I'-functions defined in formulae (A.4.9), (A.4.12).
We have now the right ansatz to show that the QCR of N-dimensional Uy sl(N)-

covariant Heisenberg algebra are fulfilled. In the appendix we prove

(5.1.9)

Theorem 1 Wheng = sl(N), the objects A*, Af (i =1,2,...,N) defined in formu-
lae (8.11), (3.18), (5.1.7) satisfy the corresponding QCR (2.8.1), (2.58.2), (2.3.3).

In Ref. [12] the case g = sl(2) was worked out explicitly. Choosing v = v~! =

/Usiz), we found for the A%, A € A, g2),, (8 =1,1),

n 4
AF = /8D a4+ AF = /8D 4
o 2 ¢ n. 4 (5.1.10)

] 1) .
‘4T _ aT /("1322 qnl AJ, _ al’ /Q‘ﬁ
and for the A*, Af € A_ 3 ,,

+ _ -nbo+ + o o+
A7 = ¢"ad AT = qf

A gt P (5.1.11)

Here n; := afa* (no sum over 7).



5.2 The case of A’}r,so(N),pd

As a basis of g =so(IV) we choose {L;;}; j=1,.,.~ With L;; = —L;; (so that there exist
only M%_—Il linearly independent L;;), satisfying
(Lij, Lnk] = Likcjn + Lijcin — Lnjcik — Lincji; (5.2.1)

here ¢;; denotes the (classical) metric matrix on the N-dimensional Euclidean space
(€ij = c¢ji), which in the special case we choose real Cartesian coordinates takes
simply the form ¢;; = 4;;. In the rest of this subsection classically-covariant indices
‘will be lowered and raised by means of multiplication by c¢: v; = ¢;;v7 v* = V;,
etc., and v - w := vichij = y;wt = viw;

The quadratic Casimir reads

implying

The matrix rep.resentation of E;; in the fundamental representation p takes the form
p(Lij) = €inchj — €jnChi, , (5;2.4)

and the Jordan-Schwinger realization becomes
Lij := 0(Lij) = af a®cnj — of aPeni = aPaf c; — ataf e (5.2.5)

It is easy to work out

?:=c(C) +( —:];7-)2 = (n + —]2\—7 - 1) —(a*-a*)(a-a), (5.2.6)

and to check that, as expected,
[?,at-a*]=0=[a-ad (5.2.7)

A direct calculation also shows that
[?,0] = —a'2n+1+N)+2@-dafc” = —a'(2n—3+N)+ 2afc/@- o)
[%,af] = of (2n+3+ N)-2¢;a’@t-a*) = af(2n—1+N) - 2¢;a@*-a%)a’.

2

We look for “eigenvectors” of I2

Pa' =a') Poj = of p,



in the form of = a’y +af ¢’ (a-a) §, o = af o+ acj; (a*-at) B with “eigenvalues”
A, u and “coefficients” «, 3,, depending on n,/2. We find second order equations
for A\, u with solutions A\, = (I & 1)2, where formally | = V2. We can therefore
consistently extend Ay ,(n),, by the introduction of a new generator [ [whose

square is constrained to give the [*> defined in eq. (5.2.6)] such that

of = an+f-1xl)—c%f (a-a) = a'(n+5+1%l) - (a-a)c¥a],
ofy = af(n+X—1%1) - (a*-a¥) o’ = af(n+Z+1£1) — ¢ja? (a*-at)
(5.2.8)
satisfy
lojy = of L (1£1),
lal, = of (IF1). (5.2.9)

After these preliminaries, let us determine the right a%, a}’s for A%, A} to satisfy
the QCR. To satisfy at once eq.’s (2.3.12),(2.3.13) we make the ansatz:

a' = u(n, )a'u""(n,1), al = v(n,l)afv(n,1) (5.2.10)
This implies

At car GEO afatc™=vat-atv! (5.2.11)

ACA (5210 ada™cim =ua-au! (5.2.12)

The QCR determine only the product ¥ := v~'u; we are going to show now that
eq.’s (2.3.14), (2.3.15) completely determine the latter. It is immediate to check

that the former implies
y [2cijaj(a+ - a+)a’] y ' (n+2,1) — ¢Py(n—2,0)(a* - aT)a'y™ = (1+¢" " )ca].

Expressing af, c;;(a™ - a*)a’ as combinations of o+ we easily move y past the
“eigenvectors” oy of n,[; factoring out (from the right) 3¢ we end up with a LHS
being a combination of a; 4, ;. Therefore eq. (2.3.14) amounts to the condition

that the corresponding coefficients vanish:

N=2 N -1 2, N -1
(14¢7 %) = (n+—‘)—+1—l) y(n+1, 4+1)y~ (n+2, l)—q*(n—i—;—l—l) y(n-1,1-1)y~*(n,l)
N-2 N -1 2, N -1
(I+¢" %) = (n+7+1+l) y(n+1,+1)y (n+2,l)—q‘(n+7—1—l) y(n—1,1-1)y™ " (n,!)
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Similarly, from eq. (2.3.15) it follows

N N
(14+¢""?) = (nt—+1-0) y(n, Dy~ (041, 1-1) — ¢* (n——1-1) y(n—2, 1)y~ (n—1,1-1)
2 2

N N -
- (14¢77) = () y(n, Oy~ (0, ) = @ (b= 1) y(n=2, Dy ™ (=1, 141)

It is straightforward to check that the last four equations are solved by

1+qN—2)—“ [} (n+3+1-0)] T[4 (n+5+1+1)]
2 Tg [ (n+%+1=1)] T [§ (n+ S +141)]
(5.2.13)

uv Tl =y = Yooy 1= <

where I', T, are defined in formulae (A.4.9), (A.4.12).
We have now the right ansatz for the QCR of N-dimensional U,so(N)-covariant
Weyl algebra to be fulfilled. In the appendix we sketch the proof of

Theorem 2 Wheng = so(N), the objects A°, A} (i = 1,2, ..., N) defined in formu-
lae (8.11), (3.18), (5.2.10), (5.2.13) satisfy the corresponding QCR (2.8.1), (2.3.2),
(2.9.3).

6 *x-Structures

Given the Hopf x-algebra H, = (Ung ,m, Ah;ah,Sh,R,*h), we ask now whether
the =-structures 15 of A’i,g compatible with the action >, of Uxg ,i.e. such that

(z54 @)™ = Sy (z*)Bp al, (6.1)

can be naturally realized by the ones of As g ,. _
We stick to the case that Hj is the compact real section of Upg . Then U,g as
an algebra is isomorphic to Ug [[h]], where g€ is the compact section of g and h € R,

and the trivializing maps ¢y, intertwine between xp, and *
[on(z)]” = n(z™) (6.2)

where x is the classical x-structure in Ug having the elements of § as fixed points.

One can easily show [20] that there is a (unique) unitary twist F,

Fror=F ! (6.3)
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In fact, applying =, ® 5, to eq. (2.1.4) and using eq.’s 6.2, (x, ® *x5) 0 Ap = Ap 0%y,
(x®@x%)o A =Aocx wefind, Vz € U,g

FAlp(@™)|F ™ = F7U® Alpp(@™)|F *® = [F O F, Afpa(e™)]] = 0

so that F *®*F = 1 @ 1 + O(h) is g-invariant. Performing the transformation
(2.1.12) with T = (F *®* F)~7 one gets a unitary F.
If F is unitary then the corresponding 7,7, ¢ clearly satisfy

7/ — 7* ¢ *QrQ* — ¢—1‘ : (64)

On the other hand, it is evident that the ‘minimal’ coassociator ¢,, (2.1.18) is
also unitary (because'h € R); one could actually show that the unitary F is also
minimal. '

If p, is a *-representation of H, the x-structure (4%)* = A¥ is clearly compatible
with 5, [condition (6.1)]; the classical counterpart of pj is also a x-representation
pof H (i.e. p(z*) = p?(z)), and formula

(@)t = af | (6.5)

1

defines in Aig, a =-structure (‘hermitean conjugation’) T compatible with .
Correspondingly, it is immediate to check that o, o,,, become %, x,-homomorphisms

respectively,

cox=tfoo Oyp, 0% =100,,, (6.6)

and by, as defined in formula (3.2) also satisfies (6.1). Under } the RHS of relations
(3.11), (3.12) are mapped into the RHS of relations (3.13), (3.14), provided that

(ai)T = a?’; _ (6.7)
in this case we find, as requested
(AHT = AF. (6.8)

If g = sl(N), so(N) and p = p; condition (6.7) is satisfied by choosing

ol =y = { Vv  if g=sl(n) (6.9)
V/Yso(N) if g =so(n) o ‘

A so(ny,p, @dmits also an alternative x-structure compatible with >, namely
(Af)t = A} C7% [15] together with a nonlinear equation for (A?)t [27] which we omit
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here; in this case one usually denotes the generators by X;, 8" instead of fij’ , AL
because in the classical limit they become the Cartesian coordinates and partial
derivatives of the V-dim Euclidean space respectively. The classical limit of this {
is

(af) = afcji (@') = —¢;;07; (6.10)
using relations (6.10), (4.11), tr(py) =0, Sz = —z if € g, one finds again relations
(6.6). by as defined in formula (3.2) also satisfies (6.1). Under { the RHS of relation
(3.11) is mapped into the RHS of relations (3.12), provided that (a} ) = afcj, t.e.

v=1 U = Yso(N); (611)
in this case we find, as requested
(AF)T = AFCys, (6.12)

~and it is not difficult to show that (4%)! is the (nonlinear) function of A’, AF which
was found in Ref. [27].

7 Summary and conclusions

Given some solutions a‘,a} [in the form (2.2.11)] of equations (5.0.1-5.0.3), the
A", A} defined through formulae (3.3) (where we choose a minimal F) satisfy the
quantum commutation relations of A’i,g’p and are covariant under the U,g ac-
tion >, defined in formula (3.2). The basic algebra homomorphism f : .Aft,g =
Ay g ,l[h]] is defined iteratively starting from f(A?) := A?, f(AF) := AF. Explicit

solutions a*,a;} of equations (5.0.1-5.0.3) are given by
o formulae (5.1.8), (5.1.9) for A%}y 05
o formulae (5.2.10), (5.2.13) for A% ny .-

According to relation (1.1), all other elements of A+ g ,[[h]] satisfying the QCR

of A} ¢ , can be written in the form
A% = g Ala7! At =aAto™t, (7.1)

with @ = 14+ O(h) € Ay g o[[h]]. They are manifestly covariant under the Uyg -

action >p, , defined by
T by ga = og (M) aocy (T3), (7.2)
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where 0§ is the afgebra homomorphism U,g — A+ g ,[[h]] defined by

o5, (@) =0 o nl(e) “EY aolpn(@)]a (73)
In this way we have found all possible pairs (fs,>s o) making the diagrém (1.2) in
the introduction commutative.

Note that the change ¢, — @p, = vp(-) v~ [formula (2.1.25)] of the algebra
isomorphism U,g — Ug|[[h]] amounts to the particular transformation (f,>,) —
(farPha)s With a = o(v). »

In Sect 4 we have shown formula (4.3)] how to construct g-invariants I} €
Azxg ol[h]] in the form of homogeneous polynomials in A, AF. It is immediate
to verify that under a transformation (f,>r) — (fa,Dr o) these I} transform into
Ipr=alla™!.

In Sect. 6 we have shown (sticking to the explicit case of A% .y ,, and
A':‘t’s,(,v)’pd) that, if A’i’g,p is a module *-algebra [formula (6.1)] of the compact
section of Uxg (¢ > 1), then one can choose (f,>; ) so that f is a x-homorphism,
(o) = [F(B)]T, and >, also satisfies equation (6.1). It is straighforward to verify
that (fu,>ha) satisfy the same constraints provided that « is “unitary”:

ot = a7t (7.4)
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A Appendix

A.1 Proof of Lemma 1

We start by observing that

Lemma 2 [12] If T € Ug[[h]]®° is g-invariant (i.e. [T,Ug[[R]]®’] = 0) then
mi; ST, miS;T (i, =1,2,3, i # j) are g -invariants belonging to Ug ([R]]%°.

(Here S; denotes S acting on the i-th tensor factor, and m;; multiplication of the
i-th tensor factor by the j-th from the right.)

Proof. For instance,
7-(1).’13(1) & 7'(2):1:(2) ® T(3)x(3) ®xq) = x(l)T(l) b .’L'(Q)T(z) ® .’L"(3)7-(3) ® T(q) =

208. | ‘
koS 70z @ TPy 825 STz = 20 TV ® 20y T ST Sz3)314

for any 2 € Ug|[h]], whence (because of aq) Sap) = e(a) = Saq)a)
T(l)l‘(l) ® T<2)ST(3)$(2) = .’L‘(l)T(l) &® SC(Q)T(2)S7-(3), (A.l_.l)

so that T @ TASTG) € Ug [[A]]®° is g -invariant. O



We may apply the previous lemma to 7 = ¢, or T = ¢~ 1. Looking at the
definition (2.1.9) one finds in particular the following g -invariants

T, = mlelqb:(S}'(l)'y@l)f(}' ®J—' )

A12
Ty = mpuSip=(F 0 eF ).7-“‘ (1 ®7‘1S}"1(2) (A12)

alternative expressions for these 7; can be obtained by applying the same operations

to the identities

t12+43 t12 _

¢ T = ¢ FyFnRusFpFis, (A.1.3)
a4t . _ _ . _tz3

q _132_2.1¢ = .7:121’3?2117?, 3 FnFsiq 2, - (A.1.4)

which directly follow from relations (2.1.17), (2.1.9), (2.1.11) and the observation
that [¢, m] = 0. Applying m;2S5; to (A.1.4), mg3S; to (A.1.3) we get

T, = (Sf(") -1 ®1).'F21(.7:<1) ®F(1))
T = (FPer )Fia @fy'sar-l(l))

(A.1.5)

(From eq. (A.1.2), (A.1.5) we easily ﬁnd out that the inverse of T; take the form
T = FyiSFO)F P e F ) (A.1.6)
= Fi [Y(SFO)F P o F Y], (A.17)
Tyl = [ (B ®]:(1)(S]:(2)) ] F (A.1.8)
= [FD @ FRSFD)y ] Fu, (A.1.9)

since [T;, f(illm ® fé;(j)] =0, withz,j7=1,2.

If, by making a transformation (2.1.12), we arrive at a F reducing ¢ to the form
$m (2.1.18), then it is easy to verify that, according to their definitions (A.1.2),

T, = 1%°. In the latter case the last four relations are equivalent to relations
(3.7-dritto4).

A.2 Proof of Proposition 6

We start by expressing (A...A)’;‘ = AR A, (AY.LAY),, = AT, A] respectively
in the form (a...a)o(-), (at*...a%*)o(-). First note that

Al A2 (324) p(’y_lf_l(l)) ( —1]_—— (1 ))22 b (.7-'_1(2))31’20(.7-"1(2/))
-~ pv<f—1(1)71)i ( —1(1") /)12 i ( 1(2))3120_(}-—1(2’))
2.2.2) V(f—l(l) / l~1,0 (]_-—1('7)]:.—1(1) l)lzalla 0.( ;2;(2)}'—1(2'))
[(/)Vzlf ® P2 ® U) (-7:1_,'123]:53 v e 1))]

—
14
o

o
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whence, by repeated application, we find
(4.7) n hn\Ln _ hn .

(A A" = @)t [((07") i ©0) (Fi iy (Y @ 1))

similarly, starting from relation (3.11) we find
\ kn —
(At ANy, = (@t at)a [((0°7) ) ©0) (Fr )] -
Putting these results together we find
(2.2.2),(2.2.6)

(A% AT), (A..A)» P22

(@ )an - 2) [((F5)10 © (690" ) @ 0) (3 oy (1 ©7° @ 1)]

whence,

(4.6) | kn hn -
Ip ' (atat)u, (@)™ [((0%7)) @ (00" )in ® 0) Fry oty F 2. bt | A -
(A.2.1)
We prove now that
-1 — 41 -1 -1 -1 .
F o br1)F 125 = Do 1)o(o41) Dip2), ()t (041) P12, (61) T 12...m,mt 1 (A.2.2)

then the claim will follow from relation (A.2.1) and the observation that

MpLy

Mk gty A (70 F@glr PV gl (A.2.3)

[(p®kn ®p” G ®id) (f12...b,,,bn+1)]

To prove relation (A.2.2) we start from

1 (2.1.9

1 e ) el e 47 o1 o
9’51213-7:12,3 = fl,:lzsf231-7:12 = -7:1213-7'—12;

this is relation (A.2.2) for b = 2. Applying id ® A ® id and multiplying the result
from the left by ¢35, we find

G307 234 F 1—213,4 = ¢mmF 1_,%34-7: 2—:1%4-7: 123
2.1.10 1 -1 e
( = : F 1,:1434052314‘7: 2,§4f 1,23
O P FomFn FaFy
- 1,234Y 2,347 34 ¥ 231,23,
(4.7) -
= FizssFios,
i.e. relation (A.2.2) for b = 3. Applying to the latter relation id ® A® ® id and
multiplying the result from the left by ¢35 we find relation (A.2.2) for b = 4, and
so on O, ’
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A.3 Proof of Proposition 7

0 (2§1) At AT - PFji Ak AR
CDaF PP () PPN
(2.2.6),(2.2.2

2@ F POp(FOFNp(FOV o (FE FE))am

multiplying both sides from the left by (p® p ® d)(fl',%3.7:§31) and noting that

(2.3.5),(2.3.9) (

PF, P®P®0)F12F123)Un(p®p® U)}-l—zl,s]:le

we find

{1® + [(P ®U)-7:1—237:2—31-7:1‘>f12 3]U12[(/’ ®‘7)-7:1_2 3F 12 -7'—93-7:1 "3)]} al = 0,

i.e. relation (5.0.1), once we take definitions (5.0.4), (2.1.9) into account. Using
definition (3.11) one can prove in a similar way that relations (2.3.2), (5.0.2) are

equivalent. Similarly,

0o U2V A4 _gi1, T PP RAT A
(3.13),(3.11) (]_.(1)) (]—‘(2))a’a;a(}"1(2'))p(}‘“1(1'))7‘
—3i14 F aho(FT @) p(F OB fp(FW)fo(FP)a!

multiplying both sides by p(F )7 o (F~1?) from the left and by p(}'(ll));:,a(}"(y))
from the right, and noting that

~ 2.3.6),(2.3.9 p — _
PE E3OU3D ((,6% @ 6) F iy Frag]Vis[ (0% ® 0) Fiks Fril,
we get

az'a; - (5;'-/,1,4 T p(F 1) o(F10)at {[(p®2 ® 0)F} Fi Fizs]
Viol (b ® 0)Fis P Fusl) ) a'o(FU))o(FP)

o
i

6L a'al — 6514 F 3}, {[(0® ® 0)F13sF 15 FroFras)

i'm !

xVial(0®" ® 0)Fi3sF i FrsFral} , @

-
whence the equivalence between relations (2.3.3), (5.0.3) follows, once one recalls

the definition (2.1.9). O
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A.4 Some properties of special and g-special functions

- We collect here some properties of the hypergeometric, I' and § functions which
can be found in standard textbooks. If the parameters a,b,¢ € C are such that
none of the quantities c—1,a—b,a+b—c is a positive integer, the general solution

of the hypergeometric differential equation in the complex z-plane
v (1-2)z+9y[c— (a+b+1)z] —yab =0 (A.4.1)

. can be expressed as some combinations

y(2) = aFla,b,c;z) + B2 F(14+a—c,1+b—c,2—c; 2), (A.4.2)
= v Ka,b,a+b+1~c;1-2) '
+6(1-2)"*F(c—a,c—b,c+1—a—b;1—2z), (A.4.3)

where «, 8,7,6 € C and F(a,b,c; z) is the hypergeometric function
o0
F(a,bcz) == Mzk ($)k :=s(s+1)..(s+k—-1). (A.4.4)

iFrom this definition it follows that
F(a,b,c;0)=1. (A4.5)

The combinations (A.4.2), (A.4.3) explicitly display the singular and non-singular
part of the solution respectively around the poles x = 0, 1. From the above definition
it immediately follows the property
d ab
ZZ;F(a, bc;z) = 7F(a+1,b+1, c+1;2). (A.4.6)
An essential identity to determine the asymptotic behaviour of a solution y
around the pole x = 0 (resp. £ = 1), known its asymptotic behaviour around the
pole x =1 (resp. x = 0), is
B(c,c—a—b)
B(c—a,c—b)
B(c,a+b—c)
B(a,b)

F(a,b,¢;2) = F(a,b,a+b+1-c;1—2) (A.4.7)

(1-2)**F(c—a,c~b,c+1—a—b;1—2z);

Here B(a,b) is Euler’s S-function, which can be expressed as a ratio of Euler’s

I-functions as follows
I'(a)T'(b)

Tern | (A.4.8)

B(a,b) =
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I' can be defined by
T(a+1) / dte~'t?, (A.4.9)

whence it immediately follows that

T'(a+1) = al(a). (A.4.10)
A less obvious property is
T'(a)(=a) = ——0 (A.4.11)
~ asinma’ o

The g-gamma function I'; can be defined when |g| < 1 by {16]

s 1 — qH-l) 1 —-a n na
To(a) == (1-¢'~ H )Z . (A412)
i=o ( n=0 In ,
where (a;¢q), = H (1 — ag*); it satisfies the following modified version of the
property (A.4.10) =0
Fq(a+1) - (a)q Q(a)7 ’ (a)q T (q _ 1) : ( 4.1 )

We introduce also a different version of the ¢g-gamma function by
Ty(a) = Fg(a)g™ "7 0; (A.4.14)
the latter satisfies

Ty(a+1) = [a],[,(a), la]g := -(ia—_—q——-a—) (A.4.15)

A.5 Proof of Theorem 1

Proof. We need to show that equations (5.0.1-5.0.3) are fulfilled. To make com-
putations more expedite we get rid of indices by introducing the following vector

notation:
(aa)¥ = qaigf (a*at)y; = afal
(av)¥ = a? | (va)¥ = v'd (A5.1)
(a*w)y = afw; (wat)y = wiaf
w-a = w;a at v = afvl
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where v = (v) € CV, w = (w;) € CV denote arbitrary covariant and controvariant
vectors respectively. If we plug (5.1.7) into (5.0.1-5.0.3), factor out of (5.0.1) and
(5.0.2) I(n) I(n+1) and I(n) I(n+1) respectively and multiply eq. (5.0.3) by v/w;,

we find the equivalent system (in vector notation)

aa = + (M 'PM)aa (A.5.2)
a+a+ = + a+a+ (M-lPM) (A53)

The action of A4, B, P on av,va,aa,aw,wa™,a*a™ is easily found to be

Ava = x(n-1)va watA = *(n-1)wa*
Aaa = +(n—-2)aa atatA = £ (n—-2)a*et
Aav = —vaFav=aa(atv) atwA = —wat Fatw+ (w-a)atat
Bav = £ (n-1)av atwB = =+ (n-1)a*w
Baa = *(n—-2)aa ata* B = +(n-2)a*a*
Bva = —avFva+aa(atv) watB = —a*wFwaet £ (w-a)ata”
Pva = av wat P = atw
Pav = wa ' atwP = wat
Paa = Zaa atat* P = =a'at.
' (A.5.5)
As a consequence one finds, in particular,
afw (A+P)* = (F)*a*w + (in):z 4: iﬂ)k (w-a)aat =
= adwe™ = ¢*lafw + qq:n :_({:Fl (w-a) ata® (A.5.6)

Let us prove eq. (A.5.2), (A.5.3). The matrix M (5.0.4) takes the form

1-vo

(21.249) . -2hP 5 _ / £ __A | 2hA N
M = xo,ilorgw {xo ““Pexp |—2h dx (:z + 1) % (s (A.5.7)
Zo
3
the contributions of the central terms —21%-, —%1®3®n to the integral are cancelled
by the corresponding contributions from zg Rtz y[’)‘t”, in the limit zo, yo — 0%. Since

aa is an ‘eigenvector’ both of A and P, the path-order P becomes redundant and

we find that M acts trivially on M:

| 1-yo
1 -2 e
Maa = aa lim {xowﬁexp [_Qh / dz (i_in >] ySE?ﬁ( 2)}
T

$0:y0—*0+ - 1

Zo
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= aa lim (1—y)¥*(1 — 20)***? = qa. (A.5.8)
$07y0'_}0+

Therefore M PM aa = + aa, Q.E.D. Similarly one proves eq. (A.5.3).

In order to prove eq. (A.5.4) it is convenient to recast M “1V' M in a more
manageable form. Permuting the second and third tensor factor in eq. (2.1.17)(, -
we find

T tpFty _ta
$2139F D123 =¢q * P1q 2, (A.5.9)

whence

M—l VM= PMz—llqi1+-1%;+pd®2(-%)M (2'1-212(5-1'6) PqA+P 11%1+ .T—2Bf(1')q—A,
T
(A.5.10)
where f is the o(Usl(N))[[h]]-valued N? x N? matrix satisfying the differential

equation and asymptotic conditions

| fl=2n (E + A ) f lim f(z)(1-z)" 2 =1 (A.5.11)

xT r—1 =1

[the latter are obtained from eq. (2.1.19) by permuting the second and third tensor
factor and by getting rid of the central terms involved in (p® p ® 0)(t;;) (formulae
(5.1.6)) since, as in formula (A.5.7), the latter cancel with each other in the limit
z — 0. .

It is convenient to introduce in A+ g ,[[h]] a grading g, by setting g(b) =1 € Z iff )
[n,b] = 1b, b € Ay g ,[[R]]. Since g(fva) = —1, and fv'a’ is a doubly contravariant

tensor, its most general expansion is
f(z)va = av fi(x) + vafa(z) + aa(a™-v) f3(z), (A.5.12)
where f; are invariants with g(f;) = 0; therefore f; = f;(n). Thus we find

wat - (M V M)va

=0+
¢ —q*!
n+1

(A.5‘5)£(A.5.6) lim xq:Qﬁ(n_l) q¢1a+w +
z—0t

(w-a) e - (7(0)ve) 7
AR (F0) Jig ¥ | Flghy, 4 i bl (w-a)a’at] -
=0+ n+1
- [0vf1(2) +vafo(x) +aa(a*v)fs ()]
= ¢ lim 2™ {q¥ (w-v)(nfy F fo) + (w-a)(at0) [¢7 (nfs £ o)

T—0
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+nqi;—:ii (i fo+ (”"‘Ufs)} }
=g {(w-v) h+ (w-a)(a™v) |l2 + il | 13] } , (A.5.13)
) n+1
where we have defined
b= dim s (0 fi(2) F fo(2))
b = lim 27N (nfs(@) & fo(a))
I = lim ™MD [fi(2) £ fo(z) + (p+Dfes(e)] . (A519)

To evaluate the limits /; let us consider the linear system of first order differential

equations satisfied by f;. ;From (A.5.11) we find

fl = h J_r(lix+"_1)f1 fg] (A.5.15)
i ~1

f = h_lfx;(T_er;)fQ] (A.5.16)

K= afels e (Fo-0) <n—1)f3] (45.17)

and the asymptotic conditions
lim fi(z) =0=lim fy(z)  lim fo(e)(1 ~ &)™V = 1. (A.5.18)

The first two equations can be solved separatly, since f;3 doesn’t appear in them;
then the third will yield f; in terms of f, f just by an integration. Actually one
of the combination we are interested in, [f1(z) £ fo(z)+ (n+1)f3(z)], satisfies a

completely decoupled equation,

A@EREMH(+1) f5@)] = 220(0-1) [2 + —] (@)A1 A,
- (A.5.19)
which [taking conditions (A.5.18) into account] is easily integrated to '
filz)E folz)+(n41) fa(z) = £[z(1 — z)]F2RE-D, (A.5.20)
This will yield therefore f; in terms of fi, fo.
Dividing (A.5.15) by f1, (A.5.16) by f» we find
i n -1 1/
4 - [ ( - ) _Efl] (A.5.21)v
fr 1 f1 n—1_ 1\]
7= 25[( S (———-1 = +x)} (A.5.22)
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taking the difference of the two, one finds a Riccati equation in the unknwon u := %

_ f1 A f_ 1 1 “_1_ v 1.
1(f2) fI—E_Qh[in(x—i—l_x)—x 1_x], (A.5.23)

this should be supplemented with the condition v "' 0. To get rid of its nonlinear-

:I';L

ity one can transform it into a (linear) second order equation in an unknown y(z)

by a standard substitution, which in this case takes the form

y (1-x)
== . A.5.24
the new equation will read
y'(1 - z)x — y'(z £ n2h) + (28)*y = 0. (A.5.25)

We recognize the hypergeometric equation (see formula (A.4.1) in the\ Appendix)

with parameters
a==%2h b= F2h c = F2nh. (A.5.26)

Its general solution can be expressed in the form (A.4.3), in terms of the hypergeo-

metric function F'. Imposing the condition lim;_;; ¥0=2) _ ( one finds that it must

2hy
be 6 = 0, implying
f1 o 1-z d . ) )
7= U= o In [F(£2h, F2h,1£2kn; 1 —2)] . (A.5.27)
We can now replace this result in the RHS in eq. (A.5.22):

1
ad—ln(fg = —d—ln [F(£2h, F2k,1+2kn; 1—x)] F 2h (1 _; + ;) ; (A.5.28)

taking into account the condltlon (A.5.18), the latter is integrated to

fo(z) = ¥ (1 — )PV F(£2h, F25, 1£20n; 1 - ). (A.5.29)
Finally, we find

fi(z) = u(z) folz) = —%F'(:i:Zh, F2h, 14£2kn; 1—2)z T2 (1 — 2) £ (A 5.30)

(From properties (A.4.5),(A.4.6) we can easily read off the asymptotic behaviour
of fy, fi for z — 07:

(A4.7) — B(142hn, 1428
f2(z) = TF2h(1 — g)EM(-L) [ B(]ﬁ%( Ml’;;uﬁﬁzz_l))}"(ﬂﬁ;ﬁﬁ;?hn;x)

14+2hn B(X2An ,~112An) .
+z n Blaohgon)  FOE2AnHDh1F20(n-1) 242005) |

~ T TR () T (2R !
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fl@  UEY B F(1£2h, 1525, 24 2k0; 1 —2)zF (1 — g) E2k)
(A4.7) . B(242hn2kn
= (1 —:c)‘ﬁh('f 1) [B(mé( m)’tﬁh’&_l)) F(142h, 132h, F2hn;z)
4 gE2hn g((ﬁgg;ﬁgg)} F(1;);2(n+1)h,1¢2ﬁ(n—1)71i2ﬁn§$)] )
(4.4.5) 2h ;gh.[ B(242hnddhn) | ,.+2hn ngfm,#hn)]
~ 1x2rn T BOB2h(nH), 22h(n1)) T T B(1x2h,172R)

(A.4.10),(A.4.8) on [ 1 T(E2hn)I(1H2hn) +2hin T(142hn)T(F2hn)
= z* [iﬁr(u-zn(m))r(lﬁn(n—n)+2hx nr(uzn)r(mzn)]

For the combination nf, F f, we thus find

nfitfe

(1 £ 2R)T(1 F 2h)
(4.4.10) q:nxﬂh(n_l)l"(:fﬁhn)l“(:;:?hn)
T(£2h)(F2R)
(A4.11) g—gq° E2R(rD)
qn . q-n
— :F_l— I:t2h(n—1)‘
[nlg
The limits /; are thus given by
1
L = F—
[l
s = +1 (A.5.31)
n 1 n 1
I, = - L=+ 1
2 n-&—ll3 n+lt n+1 ( M [n]q)’

which plugged into eq. (A.5.13) give

-1 _zn | (wev) | IRV 1 2
wat - (M7'V M)va = ¢F L + (w-a)(a U)n+1 <_[n]q + gEr+ )H ,
Fl n 2 7
S (w.a)(af.v)q*l( +1) :

(n+1) ng’

(A.5.32)

nq;tz

eq. (A.5.4) is manifestly satisfied once we replace the latter result in it. O

A.6 Proof of Theorem 2

We need to show that equations (5.0.1-5.0.3) are fulfilled. To do the proof one
follows the same strategy adopted in the proof for g = sl(n).

To make computations more expedite we again get rid of indices by intro-
ducing an analogoﬁs vector notation. One can easily check that (ps} ® pdi ®
0)[tiz, ta3) a" aF =0, af aj(pdﬁ1®pd{;®a)[t12, t3] = O; this implies that the path order



P in the definition of ¢,, becomes ineffective, so that M aa = aa, atat M = atat -

and therefore M aa = aa, ata*™ M = ata*. Hence eq.’s (5.0.1), (5.0.2) are proved.
For the proof of eq. (5.0.3), which we omit, it is convenient to use the basis of

generators ai}, o, instead of a*.af. The following properties turn out to be useful.

The “eigenvectors” o, e} satisfy the ‘orthogonality relations’

afzdy = 0= diof;

afzafc? =0 = ol adcis; (A.6.1)

the above quantities indeed must vanish because they must have commutation re-
lations with [ which at the same time are trivial (since they are invariants) and
nontrivial [because of eq. (5.2.9)].

Moreover, a direct computation shows

: N
of oy = (ZZFI)(QZ:I:QZFN)(n—1+E *I) (A.6.2)
ofiafoc? = (at-a™)(IF1)(=NF2-2) (A.6.3)
oiodc; = —(1£1)[20F 2+ Nja-a (A.6.4)
Finally N
. . N
l,-jaft = c,Jai(—Z-:Fl) ZUOAJ + = C”O!ji( il) (A65)
+[a;a’oji1 ~ [a;a’ii’i]- - "2¢i7af+i (A.6.6)
[a*-a*,0fy] = 0 [a* -at,0y] = —2cYaj<
labad] = 0
[azi7 ], ] =0
[O‘:F7 ] 0
ol ,0l] = 2(1% —cl)a-a
-]

oy, 0 = 2017 ~ d])a* - a™. (A6.7)
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