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ABSTRACT OF THE DISSERTATION 

 

Increasing Understanding of Species Responses to Global Changes Through Modeling 

Plant Metapopulation Dynamics 

 

by 

Rebecca Marie Swab 

 

Doctor of Philosophy, Graduate Program in Evolution, Ecology, and Organismal 

Biology 

University of California, Riverside, March 2014 

Dr. Helen M. Regan, Chairperson 

 

 

Understanding species responses to climate change is a topic of increasing concern given 

climate change projections. Niche models evaluate species vulnerabilities to climate 

change using current locations to project future habitat suitability under climate 

scenarios. However, these models are simplified and ignore other factors such as life 

history traits, catastrophes, or variability of vital rates. Therefore, in these three studies, I 

have used spatially explicit metapopulation models to evaluate species responses to 

global changes and variability in vital rates. The first study linked metapopulation 

models including stochastic fire events with niche models to evaluate the response of an 

obligate fire seeding shrub to simultaneous altered fire frequencies and shifting habitat 

due to climate change. For this species, altered fire regimes greatly reduced expected 

minimum abundances (EMAs). Climate change, on the other hand, only negatively 
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affected the species under extreme scenarios. Therefore, altered fire regimes were the 

bigger threat to the species. The second study integrated fecundity and survival 

information from a translocation experiment into metapopulation models incorporating 

habitat suitability changes from a niche model. While the niche model projected overall 

increases in habitat for the species, the metapopulation model projected declining 

abundances within currently occupied patches due to declines in habitat suitability. 

Increased fecundity and survival rates sometimes mitigated the impact of these declines. 

The third study was an extensive sensitivity analyses of metapopulation models for two 

species, one obligate fire seeding shrub and one resprouter. Changes in the variability 

and means of vital rates, as well as changes in fire regime, dispersal, and variability of 

carrying capacity were integrated in separate scenarios. The obligate seeder was more 

vulnerable to altered fire regimes while the resprouter was more vulnerable to changes in 

vital rates. Both species were sensitive to increased variation of carrying capacity. 

Overall, all of the three studies indicate increasing the complexity of models can change 

the direction of results, and that different factors are influential for different species. 

Species were vulnerable to altered fire regimes and vital rates in particular, while habitat 

suitability changes caused by climate change sometimes affected minimum abundances. 
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Introduction: 

Global climate change is predicted to alter soil moisture, soil temperature, litter 

quality (Ayres 1993), fire regimes (Flannigan et al 2000), modify hydrology (Peterson et 

al 1997), temperature, and precipitation, (IPCC 2007), affecting plant growth and 

reproduction (Ayres 1993), permeability and infiltration rates of soil (Lavee et al 1998) 

and ecosystem biodiversity, function and resilience (Peterson et al 1997, Williams et al 

2008). Organisms may be affected by and respond to climate change in a number of 

ways (Hughes 2000), including persistence, migration, and extinction (Davis et al 2005). 

Climatic variability is also predicted to increase, with more extremes of temperature in 

particular (Easterling et al. 2000, Schär et al. 2004, IPCC 2007, Wigley 2009). These 

extremes could affect species at local levels, affecting fecundity (Davison et al. 2010, 

Evans et al. 2010), plant population dynamics (Marrero-Gomez et al. 2007), and 

population growth rates (Buckley et al. 2010, Torang et al. 2010, Evju et al. 2011).  

Thus even within areas projected to remain suitable habitat for a species under climate 

change, abundances could decline if climatic fluctuations affect vital rates. 

Ecologists have long sought to understand how vegetation relates to climate 

(Merriam 1898, McIntosh 1985, in Breshears 2008). Explanations range from the 

physiological to the community level (Andrewartha & Birch 1954, MacArthur 1972, 

Griffith & Watson 2006). At regional and global scales, climate defines the broad limits 

to the distribution of plant taxa and the dominance of plant life forms (Peters 1990, 

Vetaas 2002, Walther 2003, Witkowski & Lamont 2006, Williams et al 2007). Climate 

change is not a new occurrence, modern plant taxa have persisted through periods of 
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variable climate for at least the past 2.5 million years (Davis & Shaw 2001). Historic 

responses of plant species to climate change include migration, adaptation, and 

extinction (Davis et al 2005). Given current climate change, all three responses are 

expected, though extinction is of the highest concern.  

Under increasing temperature scenarios, species are predicted to generally shift 

their distributions poleward or upslope (Peters 1990, Breshears et al 2008, Loarie et al 

2008).   Over the past century, range margins of many species have already responded to 

warming in such a fashion (Hughes 2000, Parmesan 2006, Root et al 2003). Empirical 

examples of historic changes in geographic distribution resulting from climate change 

have been recorded for numerous taxa (Peters 1990, Loarie et al 2008), as evidenced by 

fossils, pollen, and pack rat middens (Davis & Shaw 2001). Most data indicate that 

species respond individually to climate change, as has been theorized for some time 

(Gleason 1926, Graham & Grimm 1990). Historically, the most exceptional examples of 

ranges shifts were 100 to 150 km per century; however, current climate projections may 

necessitate shifts of 300 to 500 km per century (Davis & Shaw 2001). Therefore, 

projecting future changes is crucial to planning for and mitigating the impacts of climate 

change on biodiversity (Loarie et al 2008).  

Species are not expected to respond to climate change as a whole; species 

experience environmental variation across broad spatial gradients and thus have evolved 

ecotypes in response to these differences (Clausen et al. 1948, Jain & Bradshaw 1966, 

Waser & Price 1985, Schmitt & Gamble 1990, Galen et al. 1991, Kindell et al. 1996; 

Nagy & Rice 1997). Additionally, climatic extremes are predicted to increase, and may 
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impact species viabilities. For example, temperature and precipitation extremes can 

decrease survival rates (Saccone et al. 2009, Torang et al. 2010, Andrello et al. 2012) 

and fecundity (Herrera 1991, Andrello et al. 2012). Thus it is difficult to capture a 

species response to climate change by simply mapping changes in habitat suitability.  

Climate change does not operate in isolation from other factors. For example, 

interactions of climate change with extinction drivers, disturbance regimes, species 

dispersal, diseases or pests, and nutrient and water availability jointly influence species 

(Peters 1990). The most severe impacts of climate change are likely to stem from 

associations with other stressors rather than climate acting in isolation (Peters 1990, 

Thomas et al 2004, Parmesan 2006, Williams et al 2007, Preston et al 2008). Whereas 

the primary risk to species under climate change is typically considered to be shifting 

ranges (Peters 1990, Pearson & Dawson 2003), climate is also predicted to affect natural 

processes such as fire regimes (Whelan 1995). Additionally, anthropogenic processes 

such as urbanization affect fire regimes (Keeley 2004) and increase the difficulty of 

species migrations (Brook et al 2008). Interactions between threats are expected to 

increase given anthropogenic disturbance and climate change (Brook et al 2008), and are 

predicted to have critical impacts on biodiversity (Pimm 1996).  

Most projections of species response to climate change ignore other global 

changes, varied responses of species across different parts of their range, and life history 

factors. The most common method of predicting species responses to climate change, 

bioclimatic modelling, uses knowledge of individual species responses to present climate 

conditions to predict future habitat (Vetaas 2002).  Projections derived from bioclimate 
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models have shown that species distributions may be altered dramatically under future 

climate regimes through range expansion, contraction, fragmentation, or shifts (Peterson 

et al 1997, McLaughlin et al 2002, Williams et al 2001, Beaumont et al 2007). These 

models have a number of limitations- they typically assume a linear relationship between 

abundance and range area (Ayres 1993); fail to account for  other processes that 

influence extinction risk (Keith et al 2008); discount biological interactions; 

underestimate the importance of species dispersal (Pearson & Dawson 2003); and 

assume static tolerance ranges of species (Davis & Shaw 2001, Thuiller et al 2005).  

These criticisms have been addressed in several ways, including using multiple models 

within an ensemble forecasting framework (Araujo & New 2007), and incorporating 

ecological theory along with statistical models (Austin 2002). Increasingly, models 

include previously ignored factors such as invasive species spread, biotic interactions, 

local adaptation, fragmentation, changing land use patterns (Loarie et al 2008), and 

changing fire regimes (Keith et al. 2008). In order to increase the realism of predictions, 

it is necessary to continue to incorporate important factors such as life history 

characteristics, variability in vital rates, and responses to other stressors or catastrophes 

in predictions of species responses to climate change. This dissertation attempts to 

address these issues through three different studies, which address the following 

questions. 
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Chapter 1: Which is a greater threat to an obligate fire seeding shrub- range shifts due to 

climate change or altered fire frequency, and how do they interact? 

Chapter 2: How do differences in vital rates across subpopulations interact with climate 

change to affect population viability? 

Chapter 3: How does variability in life history traits and processes such as fire affect the 

viability of obligate fire seeders and resprouters? 



6 

  

References  

Andrello M, Bizou J-P, Barbet-Massin M, Gaudeul M, Nicolè F, Till-Bottraud I (2012) 

Effects of management regimes and etreme climatic events on plant population 

viability in Eryngium alpinum. Biological Conservation, 147, 99–106. 

Andrewartha HG, Birch LC (1954) The distribution and abundance of animals 

University of Chicago Press. Chicago, Illinois, USA. 

Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in 

Ecology & Evolution, 22, 42–47. 

Austin MP (2002) Spatial prediction of species distribution: an interface between 

ecological theory and statistical modelling. Ecological Modelling, 157, 101–118. 

Ayres MP (1993) Plant defense, herbivory, and climate change. Biotic interactions and 

global change, 75–94. 

Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? 

Incorporating new advances in climate modelling into projections of species 

distributions. Global Change Biology, 13, 1368–1385. 

Breshears DD, Human TE, Adams HD, Zou CB, Davison JE (2008) Vegetation 

synchronously leans upslope as climate warms. Proceedings of the National 

Academy of Sciences, 105, 11591–11592. 

Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among etinction drivers under 

global change. Trends in Ecology & Evolution, 23, 453–460. 

Buckley YM, Ramula S, Blomberg SP et al. (2010) Causes and consequences of 

variation in plant population growth rate: a synthesis of matri population models in 



7 

  

a phylogenetic contet: Plant population dynamics in space and time. Ecology 

Letters, 13, 1182–1197. 

Clausen J, Keck DD, Hiesey WM (1948) Eperimental studies on the nature of species. 

III. Environmental responses of climatic races of Achillea. Publication of the 

Carnegie Institution of Washington 581, 114-133.Davis MB, Shaw RG (2001) 

Range shifts and adaptive responses to Quaternary climate change. Science, 292, 

673–679. 

Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. 

Ecology, 86, 1704–1714. 

Davison R, Jacquemyn H, Adriaens D, Honnay O, de Kroon H, Tuljapurkar S (2010) 

Demographic effects of etreme weather events on a short-lived calcareous grassland 

species: stochastic life table response eperiments. Journal of Ecology, 98, 255–267. 

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) 

Climate Etremes: Observations, Modeling, and Impacts. Science, 289, 2068–2074. 

Evans MEK, Holsinger KE, Menges ES (2010) Fire, vital rates, and population viability: 

a hierarchical Bayesian analysis of the endangered Florida scrub mint. Ecological 

Monographs, 80, 627–649. 

Evju M, Halvorsen R, Rydgren K, Austrheim G, Mysterud A (2011) Effects of sheep 

grazing and temporal variability on population dynamics of the clonal herb 

Geranium sylvaticum in an alpine habitat. Plant Ecology, 212, 1299–1312. 

Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. The 

Science of The Total Environment, 262, 221–229. 



8 

  

Galen C, Shore JS, Deyoe H (1991) Ecotypic divergence in alpine Polemonium 

viscosum: genetic structure, quantitative variation, and local adaptation. Evolution, 

1218–1228. 

Gleason HA (1939) The Individualistic Concept of the Plant Association. American 

Midland Naturalist, 21, 92–110. 

Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of 

terrestrial biological communities. Trends in Ecology & Evolution, 5, 289–292. 

Griffith TM, Watson MA (2006) Is Evolution Necessary for Range Epansion? 

Manipulating Reproductive Timing of a Weedy Annual Transplanted beyond Its 

Range. The American Naturalist, 167, 153–164. 

Herrera CM (1991) Dissecting factors responsible for individual variation in plant 

fecundity. Ecology, 72, 1436. 

Hughes L (2000) Biological consequences of global warming: is the signal already 

apparent? Trends in Ecology & Evolution, 15, 56–61. 

Ipcc (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, 

II and III to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change, Vol. 446. IPCC. 

Jain SK, Bradshaw AD (1966) Evolutionary divergence among adjacent plant 

populations. I. The evidence and its theoretical analysis. Heredity, 21, r441. 

Keeley, J.E. (2004). Impact of antecedent climate on fire regimes in coastal California. 

International Journal of Wildland Fire, 13, 173–182.  



9 

  

Keith DA, Akçakaya HR, Thuiller W et al. (2008) Predicting etinction risks under 

climate change: coupling stochastic population models with dynamic bioclimatic 

habitat models. Biology Letters, 4, 560–563. 

Kindell CE, Winn AA, Miller TE (1996) The effects of surrounding vegetation and 

transplant age on the detection of local adaptation in the perennial grass Aristida 

stricta. Journal of Ecology, 84, 745–754. 

Lavee H, Imeson AC, Sarah P (1998) The impact of climate change on geomorphology 

and desertification along a mediterranean-arid transect. Land Degradation & 

Development, 9, 407–422. 

Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) 

Climate Change and the Future of California’s Endemic Flora. PLoS ONE, 3, 

e2502. 

Marrero-Gómez MV, Oostermeijer JGB, Carqué-Álamo E, Bañares-Baudet Á (2007) 

Population viability of the narrow endemic Helianthemum juliae (CISTACEAE) in 

relation to climate variability. Biological Conservation, 136, 552–562. 

May RM, MacArthur RHM (1972) Niche Overlap as a Function of Environmental 

Variability. Proceedings of the National Academy of Sciences of the United States 

of America, 69, 1109–1113. 

 McIntosh RP (1985) The Background of Ecology: Concept and Theory (Cambridge 

Univ Press, Cambridge, UK) Merriam CH (1898) Life-Zones and Crop-Zones of 

the United States, US Department of Agriculture, Division of Biological Survey 

Bulletin 10 (Government Printing Office, Washington, DC). 



10 

  

McLaughlin, J.F., Hellmann, J.J., Boggs, C.L. & Ehrlich, P.R. (2002). Climate change 

hastens population etinctions. Proceedings of the National Academy of Sciences 

of the United States of America, 99, 6070-6074.  

Nagy ES, Rice KJ (1997) Local adaptation in two subspecies of an annual plant: 

implications for migration and gene flow. Evolution, 1079–1089. 

Parmesan C (2006) Ecological and Evolutionary Responses to Recent Climate Change. 

Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. 

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the 

distribution of species: are bioclimate envelope models useful? Global Ecology & 

Biogeography, 12, 361–371. 

Peters RL (1990) Effects of global warming on forests. Forest Ecology and 

Management, 35, 13–33. 

Peterson G, De Leo GA, Hellmann JJ et al. (1997) Uncertainty, climate change, and 

adaptive management. Conservation Ecology, 1, 4. 

Pimm SL (1996) Lessons from a kill. Biodiversity and Conservation, 5, 1059–1067. 

Preston KL, Rotenberry JT, Redak RA, Allen MF (2008) Habitat shifts of endangered 

species under altered climate conditions: importance of biotic interactions. Global 

Change Biology, 14, 2501–2515. 

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) 

Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60. 



11 

  

Saccone P, Delzon S, Pagès J-P, Brun J-J, Michalet R (2009) The role of biotic 

interactions in altering tree seedling responses to an etreme climatic event. Journal 

of Vegetation Science, 20, 403–414. 

Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The 

role of increasing temperature variability in European summer heatwaves. Nature, 

427, 332–336. 

Schmitt J, Gamble SE (1990) The effect of distance from the parental site on offspring 

performance and inbreeding depression in Impatiens capensis: a test of the local 

adaptation hypothesis. Evolution, 2022–2030. 

Thomas CD, Cameron A, Green RE et al. (2004) Etinction risk from climate change. 

Nature, 427, 145–148. 

Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change 

threats to plant diversity in Europe. Proceedings of the National Academy of 

Sciences of the United States of America, 102, 8245–8250. 

Toräng P, Ehrlén J, Ågren J (2010) Linking environmental and demographic data to 

predict future population viability of a perennial herb. Oecologia, 163, 99–109. 

Vetaas OR (2002) Realized and potential climate niches: a comparison of four 

Rhododendron tree species. Journal of Biogeography, 29, 545–554. 

Walther G-R (2003) Plants in a warmer world. Perspectives in Plant Ecology, Evolution 

and Systematics, 6, 169–185. 



12 

  

Waser NM, Price MV (1985) Reciprocal transplant eperiments with Delphinium nelsonii 

(Ranunculaceae): Evidence for local adaptation. American Journal of Botany, 72, 

1726–1732. 

Whelan RJ (1995) The ecology of fire. Cambridge University Press, 364 pp. 

Wigley TML (2009) The effect of changing climate on the frequency of absolute etreme 

events. Climatic Change, 97, 67–76. 

 Williams, A. A. J., Karoly, D. J., & Tapper, N. (2001). The Sensitivity of Australian 

Fire Danger to Climate Change. Climatic Change, 49(1), 171-191.  

Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and 

disappearing climates by 2100 AD. Proceedings of the National Academy of 

Sciences, 104, 5738–5742. 

Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an 

integrated framework for assessing the vulnerability of species to climate change. 

PLoS Biology, 6, 2621–2626. 

  



13 

  

Chapter 1- Niche models tell half the story: spatial context and life history traits 

influence species responses to global change 

Authors: Rebecca Marie Swab1, Helen M. Regan1, David A. Keith2,3, 

Tracey J. Regan4, Mark K.J. Ooi5,6 

1. Biology Department, University of California Riverside, 900 University Ave, 

Riverside, CA 92521, USA 

2. Australian Wetlands and Rivers Centre, University of New South Wales, Sydney 

2052, Australia 

3. NSW Office of Environment and Heritage, Hurstville, NSW 2220, Australia  

4. School of Botany, University of Melbourne, Parkville, 3010, Victoria, Australia 

5. Department of Animal & Plant Sciences, University of Sheffield, Sheffield 

S102TN, UK 

6. Institute for Conservation Biology, School of Biological Sciences, University of 

Wollongong, Wollongong NSW 2522, Australia. 

 

Abstract:   

Aim: While niche models are typically used to assess species vulnerability to climate 

change, they have been criticized for their limited assessment of threats other than 

climate change. We attempt to evaluate this limitation by combining niche models with 

life history models to investigate the relative influence of climate change and a range of 

fire regimes on the viability of a long-lived plant population. Specifically, we investigate 

whether range shift due to climate change is a greater threat to an obligate seeding fire-
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prone shrub than altered fire frequency and how these two threatening processes might 

interact. 

Methods: The study species is Leucopogon setiger, an obligate seeding fire-prone shrub. 

A spatially explicit stochastic matrix model was constructed for this species and linked 

with a dynamic niche model and fire risk functions representing a suite of average fire 

return intervals. We compared scenarios with a variety of hypothetical patches, a patch 

framework based upon current habitat suitability, and one with dynamic habitat 

suitability based on climate change scenarios A1fi and A2.  

Results: L. setiger was found to be sensitive to fire frequency, with shorter intervals 

reducing expected minimum abundances (EMAs). Spatial decoupling of fires across the 

landscape reduced the vulnerability of the species to shortened fire frequencies. Shifting 

habitat, while reducing EMAs, was less of a threat to the species than frequent fire.  

Main conclusions:  Altered fire regime, in particular more frequent fires relative to the 

historic regime, was predicted to be the main threat to this species, which may reflect a 

vulnerability of obligate seeders in general. Range shifts induced by climate change were 

a secondary threat when habitat reductions were predicted. Incorporating life history 

traits into habitat suitability models by linking species distribution models with 

population models allowed for the population-level evaluation of multiple stressors that 

affect population dynamics and habitat, ultimately providing a greater understanding of 

global change impacts than would be gained by niche models alone.  Further 

investigations of this type could elucidate how particular bioecological factors can affect 

certain types of species under global change. 
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Introduction: 

Anthropogenic climate change is projected to shift, fragment, contract or increase 

the distributions of many of species, likely leading to redistributions (Peterson et al., 

1997; Pearson & Dawson, 2003) and extinction for some species (Thomas et al., 2004). 

At the same time, fire frequency, size, and intensity are expected to interact with climate 

change, which in turn is expected to have serious consequences for species that have 

adapted to particular fire regimes (Keeley, 1995, Montenegro et al., 2004). This leads to 

important management questions: will preparing for range shifts driven by climate 

change outweigh fire management as a key mediator of species persistence of fire 

adapted species?   

The main method of investigating species vulnerability to range shifts due to 

climate change thus far has been niche modelling, also called habitat suitability or 

bioclimate envelope modelling (Pearson & Dawson, 2003). Niche models use present-

day species-climate relationships to project potential suitable habitat, which may be 

altered by changing climate (Williams et al., 2001; McLaughlin et al., 2002; Thomas et 

al., 2004; Beaumont et al., 2007). However, a species’ ability to track shifting habitat is 

potentially limited by natural and anthropogenic factors such as species dispersal 

capabilities, habitat fragmentation, and species interactions (Peters, 1990; Walther, 

2003), all of which are typically not included in niche models. Additionally, niche 

models often ignore factors such as disturbances and life history characteristics (Pearson 

& Dawson, 2003; Keith et al., 2008; Thuiller et al., 2008), and do not account for 

synergisms with other threats, which may drive extinction dynamics (Brook et al., 
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2008). In order to develop effective climate change adaptation strategies, it is necessary 

to assess species vulnerabilities to climate change and explore the implications of 

alternative management responses for population persistence. Given that climate change 

is expected to act in concert with other threats, which may interact synergistically to 

hasten extinction dynamics (Brook et al., 2008), considering the impact of climate alone 

will not adequately address conservation issues.  

Altered disturbance regimes (Salafsky et al., 2002; Regan et al., 2010) and 

climate change have been identified as important threats to biodiversity (Thomas et al., 

2004; Auld & Keith, 2009). Fire prone ecosystems in particular are expected to be 

highly sensitive to both global climate change and altered disturbance (fire) regimes 

(Moreno & Oechel, 1995, Tague et al., 2009). In these ecosystems, altered fire regimes 

have the potential to overshadow the importance of other more direct effects of global 

warming on species that are sensitive to the timing and intensity of fires (Pausas, 1999; 

Flannigan et al., 2000). In Australia in particular, the frequency of extreme fire weather 

is projected to increase as the climate warms (Lucas et al., 2006). In addition, many fire 

prone ecosystems have experienced high levels of habitat loss and fragmentation, 

pollution, and exotic species introductions, all of which may weaken the resilience of the 

species that are most sensitive to climate change and/or adverse fire regimes (Field et al., 

1999). In this paper we focus on a species within a plant functional type that is dominant 

in many fire-prone ecosystems and is sensitive to changes in fire regime—long-lived 

obligate seeding shrubs.  
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Obligate seeders, plant species that are killed by fire and rely only on seed for 

regeneration, have been shown to be particularly sensitive to shortened fire intervals 

(Bradstock et al., 1998; Pausas et al., 2004; Regan et al., 2010). However, it is unclear 

whether generalizations about fire regime in conjunction with climate change can be 

made for this plant functional type. While one study concludes that fire return interval is 

the main factor influencing viability of obligate seeders (Keith et al., 2008), another 

concludes that climate plays a larger role (Lawson et al., 2010), though each study 

shows that both fire and climate are likely to be important. There is also evidence that 

spatial structure of populations plays a large part in determining vulnerability of obligate 

seeders to changing fire return intervals (Regan et al., 2010). Furthermore, dispersal 

defines a species ability to reach suitable habitat, and thus can mitigate a species 

response to shifting habitat (Engler et al., 2009, Regan et al., 2011). Overall, it is 

uncertain how fire regime changes or range shifts will interact, and whether one will 

have greater influence than the other on species persistence. More case studies of 

obligate seeders under different spatial contexts are needed to further explore these 

questions.  

The existing studies on obligate seeders outlined above have built a foundation 

for explaining in greater detail the responses of functional types to climate change. 

However, there is much left that is unexplored. Therefore, we use the same 

methodologies in Keith et al. (2008) and Anderson et al. (2009) to delve further into 

explaining species responses to global change. Specifically, we incorporate life history 

traits into investigations of different climate, dispersal, and spatial structure scenarios. 
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We determine how these factors interact to impact species viability when faced with 

altered fire regimes and climate induced range shifts. We combine dynamic habitat 

suitability models with a spatially explicit age/stage-based model (hereafter referred to 

as spatially dynamic life history models) for an Australian obligate seeder, Leucopogon 

setiger. This species has been the subject of a number of field studies devoted to 

understanding and quantifying demography and responses to fire (Ooi, 2007, 2010; Ooi 

et al., 2004, 2006, 2007). Therefore it is an ideal species for this type of modelling 

approach.  

While niche models have been used to infer extinction rates by tallying species 

whose niches are projected to disappear (Thomas et al., 2004; Williams et al., 2007), 

spatially dynamic life history models can quantitatively compare the viability of 

populations in scenarios even where extinction risk is zero. These models can also be 

used to investigate the influence of habitat suitability thresholds, dispersal, and age 

specific survival rates and fecundities on species vulnerabilities, providing greater scope 

to address questions about global change and potential management responses. Other 

climate related feedbacks, in particular rising CO2 levels, may affect plant allocation and 

thus feedback into demographic function by impacting fecundity or maturation. Such 

feedbacks can only be addressed in this type of modelling through sensitivity analyses 

incorporating changes in demographic parameters.  

The response of species to threats in general (Pimm et al., 1988; Isaac & 

Cowlishaw, 2004; Henle et al., 2004), and fire in particular, has been shown to depend 

upon life history traits and species distributions (Keith et al., 2008; Lawson et al., 2010; 
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Regan et al., 2010). However, insights into how the response of species to climate 

change depends on demographics are still limited by the number and diversity of case 

studies. Currently, many recommendations for adaptation to climate change in 

conservation plans, such as increasing habitat connectivity and establishing reserves, are 

based primarily on projected species distributions (Beale et al., 2008, Heller & Zaveleta, 

2009). However, the cumulative and synergistic nature of multiple threats necessitates 

adaptation strategies based on life history characteristics in addition to species 

distributions. 

In this context, we set out to answer the following questions for Leucopogon 

setiger:  1) How do altered fire regimes impact this species and what role does spatial 

structure play in species vulnerability to fire? 2) What is the cumulative impact of 

species distribution shifts, contractions and fragmentation due to climate change and 

altered fire regimes?  3) How robust is the response of the species to changes in climate, 

dispersal, and spatial structure?  

 

Methods 

Study Species 

Leucopogon setiger R. Br. is a fleshy fruited endemic of New South Wales, in 

southeastern Australia. Its core habitat is in fire-prone dry sclerophyll forests (Harden, 

1992).  Leucopogon setiger is an obligate seeding woody shrub with a soil stored seed 

bank. Therefore, populations tend to grow as even-aged cohorts with germination and 

seedling establishment rarely occurring in the absence of fire.  The maximum life span is 
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uncertain but is thought to range from 40 to 60 years. Leucopogon setiger has been the 

focus of a demographic study (Ooi, 2007). The model was parameterized using 

published demographic data and from additional field data describing post fire response, 

collected for the purpose of this current study.  

Current and Future Spatial Distribution 

Projected future climate maps were obtained from the Australian National 

University. These were generated based on an ensemble of 23 global climate models that 

were used by the IPCC (2007), and derived for years 1990, 2030, 2050, and 2070 using 

projected climate scenarios interpolated using ANUCLIM 5.1 (Houlder et al., 2003) for 

two emissions scenarios, A1FI and A2. For each scenario, climate predictions were 

generated for 10th percentile, median, and 90th percentile climate values (hereafter 

referred to as pc10, pc50, and pc90, respectively). The advantage of composite climate 

models is that variations and uncertainties of individual models are reduced. For this 

composite, twenty-seven climatic variables were generated including a range of annual 

and quarterly statistics for temperature, precipitation, and solar radiation (variables 1-27 

in http://fennerschool.anu.edu.au/publications/software/anuclim/doc/params.html). The 

environmental data was rescaled to 30 second (app. 1 km) cells by interpolation. We also 

used a geology layer to model edaphic relationships.  

To evaluate the effects of projected climate change, habitat suitability for the 

current time was modeled using Maxent Version 3.3.3e (Phillips et al., 2006; Phillips & 

Dudik, 2008). Maxent has proven very effective for habitat suitability modelling and 

performs better with presence only data than most other available methods (Elith et al., 

http://fennerschool.anu.edu.au/publications/software/anuclim/doc/params.html
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2006). Using the above climatic projections, 278 presence locations from vegetation 

survey data and herbarium records (NSW Office of Environment & Heritage), current 

suitable habitat was predicted using Maxent and then projected for future conditions in 

years 2030, 2050, and 2070. Maxent was used to determine which climatic, topographic, 

and substrate variables were the best predictors of species presence. Non-influential 

factors (those below two percent contribution to modeled predictions), including 

multiple climate factors, were removed. The remaining variables were evaluated by 

species experts for their suitability in regards to L. setiger, and then used to predict 

current suitable habitat. A road layer was used as unsuitable habitat to separate the 

suitable habitat into multiple patches since average patch size was far larger than average 

fire size across the landscape. 

A minimum threshold of habitat suitability for occupancy of 0.249 was 

established using the equal training sensitivity and specificity parameter for L. setiger 

(Liu et al., 2005). For comparison, the minimum training presence value, 0.007, was 

used as an alternative threshold for occupancy. Future habitat suitability was determined 

using the same climatic factors and future climate projections, assuming the same 

relationship between species and climate. Model goodness of fit was evaluated using the 

area under the receiver operator characteristics curve (AUC). Linear interpolation 

between the four time slices created species distribution maps for annual time steps with 

changing habitat suitability. 
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Metapopulation model 

A stochastic matrix metapopulation model with four age classes and five stages 

was created in RAMAS GIS (Akcakaya, 2005). Seedlings were divided into four age 

classes, with survival rates available from previous field studies (Ooi, 2010). Field 

measurements assigned older plants to one of five stages, based on vertically projected 

canopy area assuming elliptical shape such that mean bud production varied by 

approximately an order of magnitude between stages (Figure 1). While populations are 

primarily age structured, given that fire induces germination, seed production varies 

depending upon the size of the individual, and thus a stage-structured population is more 

appropriate for mature plants. Both environmental and demographic stochasticity were 

incorporated into vital rates; the former via a lognormal distribution for each mean vital 

rate in the stage matrix and specified standard deviation, the latter via a Poisson 

distribution. 

Survival rates 

Background survival rates (in the absence of fire) for seedlings up to four years 

old were parameterized with data from a post-fire study (Ooi, 2010). The majority of L. 

setiger mortality (65%) occurs in the first year, leveling off to around 95% annual 

survival thereafter (Ooi, 2010). Thus our survival rate was set at 35% for the first year 

and 95% thereafter (Table 1.1). The 95% survival rate beyond age 4 was verified by 

estimating frequencies of recent deaths in field populations of ages 7-15 years. The 

coefficient of variation for survival rates was set at 15%, based on variability recorded 

by Ooi (2007).   
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Table 1.1 Age- and stage-based population matrix including fecundity and transition 

rates used in the metapopulation model of the Australian woody shrub Leucopogon 

setiger. 

 

Fecundity and seed survival 

The number of seeds produced per plant is a function of canopy area, which is an 

indirect function of plant age. To determine the fecundity for each stage, four stands 

aged seven and 15 years were sampled. Bud counts were recorded for 20-25 shrubs per 

stand, and used to determine seed production by stage (Figure 1.1). Previous work found 

approximately 11% of flowers developed into mature fruits (Ooi, unpubl. data)  and that  

83.88 % of seeds (one per fruit) produced by L. setiger shrubs in each year were viable 

(Ooi et al., 2007). Removal rates of seeds were up to 98% (Ooi, 2007), however not all 

of the seeds taken were lost to predation, as predators consume the fleshy fruit, while the 

seed itself tended to be dispersed by endozoochory. To estimate each individual’s 

contribution to the seed bank annually, the bud numbers determined through field work 

were reduced by the proportion of buds that become seeds, and further reduced by 

predation. The number of seeds entering the seed bank per year was drawn from a 
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Poisson distribution with these calculated means and standard deviations. The seed bank 

was estimated to decay exponentially at a rate of 0.156 (±0.070) annually (Ooi et al., 

2007), and an additional 6% of those remaining fail to germinate. Thus, annual seed 

survival was set at 79.3% with an estimated half life of 2.99 years.  

 

 

Figure 1.1. A) Canopy size and B) Seed production by stage for Leucopogon setiger. 
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Post-fire recruitment 

During a fire event 76.8% of seeds in the seed bank are killed by indirect heat or 

burning (Ooi, unpubl. data). When fire mortality and predation are accounted for, 

germination of the stored pre-fire seed bank occurs at a rate of 0.068. Seedlings 

emergence is delayed until autumn irrespective of the season in which the fire event 

occurred (Ooi et al., 2004). Therefore, the model is structured around a post-emergence 

census, with first year seedling death incorporated into the first year transition rate.  

Carrying capacity and self-thinning 

Density dependent effects on survival, growth and fecundity were implemented 

in the model to ensure that simulated population densities remained within biologically 

realistic bounds. Carrying capacity (K) was determined by calculating the maximum 

number of L. setiger individuals in a monospecific stand (size of one 30 second cell) 

based on the average canopy size of the largest size class. Field sampling of wild 

populations showed competitor species to occupy on average 9.5 times more space than 

conspecifics. Therefore, the threshold density was divided by 9.5 to account for 

unavailable space occupied by neighbours. Each stage was weighted by size (i.e. canopy 

area), so individuals of smaller stages occupied less space than those of larger stages. 

Weights were as follows: 0.043, 0.043, 0.053, 0.053, 0.063, 0.107, 0.18, 0.64, 1 for ages 

1 to 4 and stages 1 to 5, respectively. Seeds were not subject to carrying capacity. The 

carrying capacity (K) per cell (1200 individuals) was multiplied by the summed habitat 

suitability across each cell within a patch, which changed through time with climate. In 

each time step, if population size exceeded carrying capacity, due to natural fluctuations 
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or reduced suitable habitat caused by climate change, a density dependence function 

(adapted from Keith et al., 2008) reduced survival, growth and fecundity of particular 

life stages by a proportion varying from 0.9 (for seedlings) to 0.1 (for full sized plants), 

until population size was at or below K.  

Fire events 

To investigate the effects of changing fire regimes, we compared the impacts of 

seven different average fire return intervals (5, 10, 15, 20, 25, 30, 35 years) on 

abundances of L. setiger. Average fire return interval was implemented in the population 

model through a hazard function—an annual probability of fire as a function of time 

since last fire. The fire, in turn, resulted in mortality of all (in most simulations) or most 

(90, 95, and 99%, in sensitivity analyses) standing individuals, and triggered germination 

from the seed bank. To determine the annual fire probability, we used hazard functions 

based on McCarthy et al. (2001), 

 
 tc

h
th

exp1 


 

where h =1/mean fire interval, c is ‘skewness’ or a shape parameter affecting the slope 

of the curve (set to 1000), and t is time since last fire. Each time a fire occurred, the fire 

function was reset to h(0). Fixed fire intervals (i.e. fires occurring exactly every n years 

with no wildfires) were also implemented for some simulations (see below).  
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Dispersal 

L. setiger is dispersed by ants and birds (Keighery, 1996, Stansbury, 2001; Ooi, 

2007). Potential dispersal rates of seeds from L. setiger calculated based upon the 

average daily distance travelled by dispersers of the seeds predict that only 0.6% of 

seeds were estimated to reach distance of over 300 metres, 7% over 50 metres, 17% over 

15 metres, and 95% less than 15 metres. This means that no seeds would disperse 

between patches. However, given that dispersal is highly uncertain, and rare long 

distance events are thought to play a key role in species movement to new habitats 

(Higgins et. al. 2003, Engler et. al. 2009), we modeled extreme dispersal at ten times the 

amount predicted above to determine whether long distance dispersal would increase the 

species viability. The probability of a seed dispersing from one patch, i, to another patch, 

j, is given by the equation: 
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where a, b, c, are function parameters, Dij is the distance between the two populations, 

and Dmax is the maximum distance any individual can disperse in one time step 

(Akçakaya, 2005). For the simulations including dispersal, b was set to 0.88, c to 0.34 

and Dmax to 600. These values best simulate the ten times extended dispersal kernel 

expected for this species. Since dispersal estimates are uncertain, we varied the 

parameter a (which represents the maximum amount of dispersal between two patches) 

to take values between 1 and 0.1 to compare the effect of different rates of dispersal on 

minimum abundance. For a stable patch structure, the total amount of seeds dispersing 
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from each population averaged 43%, 21.9%, 6.1%, and 4.4% for a=1, 0.5, 0.25, and 0.1, 

respectively. 

Simulations 

Each simulation was run for 1500 replications with a 100 year time interval (i.e. 

2000-2099). Population viability was assessed using expected minimum abundance 

(EMA), or the smallest population size averaged across all 1500 population trajectories 

of 100 years (excluding population size at t = 0). EMA is useful for identifying threats to 

species which face population decline over time scales too short to observe extinction 

(McCarthy & Thompson, 2001). Multiple sensitivity analyses were carried out by 

individually perturbing germination, fecundity, transition, and survival rates (with and 

without fire) for each stage or age step. These identified the life history characteristics 

most influential on species viability under the effects of climate change and highlighted 

where uncertainties might affect model results (Regan et al., 2003).  

Experiment 1 

 Two experiments were conducted. First, a hypothetical landscape was developed 

under a stable climate. This allowed systematic investigation of spatial structure and 

dynamics through patch structure manipulation without the potentially confounding 

effects of variable patch size and patch size dynamics. A fixed initial population size was 

divided into one, two, four, eight, 16, and 32 patches to result in six separate landscapes. 

This simulates the effect of habitat fragmentation without habitat loss, or spatial 

separation of patches. Each simulation was run for the full range of average fire return 

intervals with both irregular (wildfires) and regular (exact) fire return intervals, 
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following methodology in Regan et al. (2010). In different simulations, fires were 

uncorrelated or correlated between patches, thus allowing a comparison of species 

responses to one large fire with multiple small uncorrelated fires. 

Experiment 2 

The second experiment utilized the more realistic spatial structure defined by habitat 

suitability. To investigate the effect of climate change, simulations were run for all 

average fire return intervals with seven different climate scenarios: a stable climate, and 

the 10th, median, and 90th percentiles for both A1FI and A2 scenarios, all for two 

different habitat suitability thresholds. Patch structure and size in each time step were 

established with the predicted suitable habitat for the current climate models using a 

patch separation threshold of 2.5 cells, meaning suitable habitat within a radius of 2.5 

cells of a cell were considered part of the same patch. The higher suitability threshold 

was used to investigate the effects of dispersal and fire refugia on population viability. 

 

Results: 

Experiment 1: Changing fire interval and spatial structure  

 For regular fire return intervals, models predict that 20 years is the optimal fire 

return for L. setiger. The expected minimum abundance (EMA) sharply declines when 

fire return intervals are small (<10 years) or increase above 20 years (Figure 1.2). 

However, while extremely short (5-10 years) fire return intervals result in high 

extirpation risk for a single patch, longer fire intervals do not increase extirpation risk 

(Figure 1.3). Increasing the number of patches has a negligible impact on the 
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vulnerability of L. setiger to fire return interval in this scenario, but when fires are 

uncorrelated between patches (i.e. have different initial time since last fire), EMAs are 

slightly increased when the number of patches increases (Figure 1.2).   

 When fires occur at irregular return intervals (wildfires), an optimal average fire 

return interval of 15-25 years is maintained across all spatial structures if fires are 

uncorrelated. EMA gradually declines with longer intervals, and declines more sharply 

with shorter intervals (Figure 1.2), however extirpation risk only increases as fire return 

interval reduces (Figure 1.3). Populations are more sensitive to spatial correlation of 

fires when intervals between fires are variable than if they were of regular length. 

Correlated fires result in much lower EMAs than for uncorrelated fires. As the number 

of patches increases the response of the species to shorter fire return intervals worsens, 

as does EMA overall- likely due to the fact that smaller patches are more susceptible to 

bad years. For the maximally fragmented landscape with correlated wildfires, EMA 

increases as fire return interval increases.  



 

  

 

Figure 1.2. Expected minimum abundance (EMA) versus fire return interval (in years) for Leucopogon setiger with a range of 

patch configurations, 1-32 (A-F). Fires occur at either 1) exact intervals, uncorrelated between patches, 2) exact intervals, 

correlated between patches, 3) average intervals, also referred to as ‘wildfires’, and uncorrelated between patches, or 4) 

wildfires, correlated between patches. 
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Figure 1.3. A) Exinction risk and B) Expected minimum abundance (EMA) versus fire 

return interval (in years) for Leucopogon setiger in one patch for a stable climate. Fires 

occur at exact intervals or at irregular intervals as for wildfires. 

 

When comparing EMAs from regular and irregular uncorrelated fire return 

intervals, increases or decreases in the EMAs are apparent depending on the number of 

patches and the average fire return intervals tested. EMAs are lower for irregular fire 

scenarios than they are for exact fire intervals when the average fire return interval is 

greater than 10 to 15 years for 1, 2, 4, and 8 patches. They are higher for irregular than 

regular fire intervals for all but the optimal range when there are 16 and 32 patches 
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(Figure 1.2). Decoupling fires across the landscape by increasing the number of patches 

while maintaining the same initial abundance, reduces the risk of decline of L. setiger for 

all average fire return intervals except 5 years (Figure 1.2). Thus, spatial decoupling of 

fire events and longer fire return intervals increase population persistence for 

Leucopogon setiger. 

Experiment 2: Climate change and changing fire interval 

The optimal average fire return interval remained 15-25 years when the 

population model was linked to the species distribution model, both with and without 

climate change and for both climate scenarios tested. This response curve was very 

similar to the response in experiment one incorporating wildfires. Extreme shortened fire 

return intervals (5 years) gave the lowest EMAs for the species in every model scenario, 

in some cases resulting in extinction.  L. setiger was not sensitive to shifting habitat 

under the pc50 or pc90 scenarios for both A1FI and A2 climate scenarios (Figure 1.4). 

However, the pc10 scenario dramatically reduced EMA. These responses to climate are 

consistent with expectations given the level of changes in habitat suitability, shown as 

change in carrying capacity (Figure 1.5).  
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Figure 1.4. Expected minimum abundance (EMA) versus fire return interval (in years) 

for Leucopogon setiger with A1FI and A2 climate scenarios as follows: current climate 

remaining stable, 10th, median, and 90th percentiles (Stable, pc10, pc50, pc90, 

respectively) for a composite of various climate models. 
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Figure 1.5. Carrying capacity, K for Leucopogon setiger by time step. K was calculated 

using the A2 climate scenario 10th, median, and 90th percentile (pc10, pc50, pc90, 

respectively) projections for a composite of various climate models. 

 

Dispersal, threshold, and fire refugia 

Dispersal of a small portion of seeds produced optimal EMA, but only slightly 

higher than no dispersal (Figure 1.6a). Dispersal of all seeds from a patch had a negative 

effects on EMA. This was true whether climate remained stable or changed (not 

pictured). Including fire refugia within patches by decreasing the percent of standing 

plants killed in fire increased EMAs, but maintained sensitivity to shortened fire 

intervals (Figure 1.6b). Lowering the habitat suitability threshold allowed more habitat 
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to be designated as suitable for the species, increasing EMA (Figure 1.7 cf. Figure 1.4). 

The general response of the species was similar to other scenarios, with fire return 

interval as the primary influence on EMA and climate change a secondary one. Under a 

low habitat suitability threshold only the pc10 scenarios impacted the EMA, and the 

impacts were less severe than scenarios with the higher threshold.   

 Sensitivity analyses 

The shape of the EMA curve (not shown) in response to fire interval was similar 

for 100 and 200 year scenarios for all climate scenarios (assuming climate change 

stopped after 100 years). Thus, the duration of the simulation did not affect the general 

trend of the results. The model was sensitive to changes in most survival parameters, and 

to changes in percentage of standing plant death during fire, but not sensitive to most 

changes in fecundity (Supplemental Material). The degree to which the model results 

were sensitive to changes in vital rates depended on the fire return interval. The model 

was substantially more sensitive to changes in germination rate, seedbank turnover, and 

survival rates under the 5 year return interval than any other.  

 



37 

  

 

Figure 1.6. Expected minimum abundance (EMA) versus fire return interval (in years) 

for Leucopogon setiger. a) Stable habitat and a variety of dispersal amounts. When a=1, 

the largest portion of each population’s seeds are dispersed. The proportion of seeds 

dispersing decreases as a decreases. b) Stable habitat and a ranging percent death with 

fire, allowing for unburned refugia in patches. 
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Figure 1.7. Expected minimum abundance (EMA) versus fire return interval (in years) 

for Leucopogon setiger with A1FI and A2 climate scenarios as follows: current climate 

remaining stable, 10th, median, and 90th percentiles (Stable, pc10, pc50, pc90, 

respectively) for a composite of various climate models. For these simulations, patch 

structure was created using minimum training presence value, 0.007, as a threshold for 

suitable habitat. 
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Discussion: 

 The results of this study predict that while obligate seeders may be vulnerable to 

both altered fire return intervals and climate change, fire is the primary influence. 

Appropriately timed fires are essential for population persistence; in all scenarios, the 

worst outcome for Leucopogon setiger occurred with the most frequent fires. This is 

consistent with other studies on fire obligate seeders which experience stand replacing 

fires. Regan et al. (2010) showed comparable results for the Californian obligate seeding 

shrub Ceanothus greggii—the worst scenario, under a variety of fragmentation levels, 

was the shortest fire return interval (10 years). However, this study used a hypothetical 

landscape and did not incorporate climate related range shifts. Lawson et al. (2010) 

showed that high fire frequency reduced EMAs for another obligate seeding shrub, 

Ceanothus verrocosus. They concluded that for this species, climate change may 

overshadow the risk of altered fire regime- though fire was still an important influence. 

Considering that they tested fire intervals starting at 20 years, the C. verrocosus study 

may not have captured the full vulnerability of the species to extreme shortened (<10 

year) fire return intervals. For a third California obligate seeder, Cupressus forbesii, 

model results also indicate vulnerability to short fire return intervals (Regan et al., in 

press). Keith et al. (2008) compared EMA for a number of South African obligate 

seeders under two different fire return intervals. For all simulations, the 14 year mean 

fire return interval resulted in higher EMAs than the shorter 8 year return interval. 

Multiple modelling studies conclude that short fire intervals are detrimental to obligate 

fire seeding species which experience stand replacing fires. 



40 

  

The impact of climate-related range shifts on obligate seeders are less clear cut. 

In Keith et al. (2008), whether climate impacted obligate seeding species depended on 

the patterns of distribution change—not surprisingly, for species with widespread 

contracting suitable habitat, climate was a significant factor, while for species with 

reduced habitat shifts and contractions, climate had a minimal impact. This aligns with 

the results for L. setiger. Under the pc50 and pc90 climate scenarios, L. setiger 

maintained a core habitat with restricted contractions and shifts (Figure 1.5), resulting in 

minimal to no (for lower habitat suitability threshold) reductions in EMA. Alternatively, 

the pc10 scenarios predicted major range contraction, and L. setiger was predicted to be 

extremely vulnerable to climate change in these scenarios. While dispersal ability has 

been predicted to be an important part of obligate seeders competitive strategy, and may 

help them respond to climate change (Higgins et al., 2008), in this case dispersal did not 

appear to have a mitigating effect for the species even under the pc10 scenario, most 

likely because range contractions rather than shifts were predicted. Keith et al (2008) 

also found dispersal to be inconsequential to the viability of fynbos shrubs. Thus the 

plausible bounds of dispersal kernels might be so low that small variations make little 

difference in model predictions. Overall, climatically induced habitat shifts do not 

appear to be a significant factor for Leucopogon setiger. However, the results predict 

that even when species are apparently climate winners (Hamer, 2010), that is, their 

available suitable habitat increases with climate change as in the pc90 climate scenario, 

they might still be vulnerable to reductions in population size due to habitat shifts 
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(Figure 4, 5). Thus, results from the niche model incorporated with the metapopulation 

model provide more nuanced and informed results than from niche models alone. 

 Fire influences L. setiger in a number of ways. The variability in fire return 

intervals is important; EMA was predicted to be more sensitive to non-optimal fire 

return intervals when fires returned at an exact interval (Figure 2, 3). Though models 

predict slight declines in EMA with longer fire intervals, extirpation risk is only 

increased for shortened intervals (Figure 1.3), indicating that the subpopulations are not 

vulnerable to long fire intervals. This decline occurs because the population inevitably 

declines, albeit at slow rates, due to low background mortality as plants age in the 

absence of fire.  

Fire extent is also important. It has previously been shown that spatial and 

temporal decoupling of fires can be beneficial to another obligate seeder, Ceanothus 

greggii (Regan et al., 2010). This appears to be true for Leucopogon setiger as well. 

Decoupling of fires across a landscape was predicted to reduce vulnerability to reduced 

fire return intervals; correlated fires across the landscape lowered EMAs dramatically. 

Thus, conservation strategies which decrease average fire size to produce a 

heterogeneous mosaic of different aged patches across a landscape might have a 

beneficial effect on the persistence of L. setiger, though there may be a limit to the 

benefits (Parr & Andersen, 2006), depending on how fire size interacts with dispersal, 

seedling predation, and recruitment (Bradstock et al., 1996; Regan et al., 2003; Keith, 

2012). A lack of data on these interactions in L. setiger precluded their inclusion in the 

model. Fire mosaics may have an additional benefit of increasing fitness; given that 
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obligate seeders tend to create even-aged cohorts (Keeley, 1977), all germinants of a 

particular patch are selected under the same climatic conditions. If this occurs over very 

large patches, it potentially increases the chance of maladaptation, particularly under 

climate change when weather conditions may be changing. When determining 

management priorities for fire obligate species, it is essential to consider both habitat 

shifts and fire regimes. However, the primary focus should be on avoiding frequent fires 

relative to the timing of critical life history events in the species' life cycle.  

There are a number of uncertainties involved with a modelling endeavour such as 

that undertaken here, and thus care should be taken in applying results. First, the 

modelling process itself highlighted gaps in knowledge, specifically a lack of 

information about vital rates across geography and through time. While data for the early 

years of development was plentiful, information on the species at later ages (10-15 

years) was sparse, and beyond 15 years information was primarily derived through 

interpolation. Thus, the predictions incorporating long (over 15 year) fire return intervals 

are much less certain than those for shorter intervals. The model was robust to 

uncertainties in adult fecundity, dispersal, and fire refugia, indicating that an increased 

understanding of adult survival is the most important area for further research. Second, 

the habitat suitability model assumes equilibrium with the current climate, ignores biotic 

interactions, and is limited by the accuracy of the climate projections.  Third, these types 

of models assume the influence of climate change will impact a species through changes 

in habitat suitability, which in turn affect vital rates through density dependent impacts.  

It is likely that climate change could also have direct effects on demographic rates. 
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Increased CO2 could alter growth rate and thus affect maturity, survival, and fecundity. 

Additionally, plasticity and adaptation may occur and affect the species responses to 

climate change and fire (Jump & Penuelas, 2005; Keith, 2012). Thus, changing climatic 

conditions may affect fecundities, germination, or survival rates, or select for more heat 

or drought tolerance. The model assumed that life history rates were constant under 

altered fire intervals, yet the results suggest that a five year fire interval was more 

sensitive to changes in life history parameters than other fire return intervals. This raises 

questions as to whether frequent fires could select for individuals with earlier 

maturation, thus offsetting the impact of increased fire frequency. Environmental 

stochasticity, phenotypic plasticity, and genetic variability may cause greater variability 

in patterns of survivorship during and after fire (Keith, 2012), allowing for selection to 

occur. The sensitivity analyses addressed some of these limitations by incorporating 

small changes in the demographic parameters. While the model is sensitive to changes in 

germination rate, changes in fecundities had minimal impact, indicating that small 

changes in fecundity due to increased CO2 or altered fire regime are unlikely to 

significantly alter the projections for this species. However, a more detailed investigation 

of larger changes to these factors, and whether selection could occur at a pace 

commensurate with climate change or mitigate the species response to shortened fire 

return intervals might prove insightful.  

 Despite the uncertainties involved in using spatially dynamic life history models 

to represent this system, it is a valuable extension which allows a richer and more 

relevant set of conservation questions to be addressed than with species distribution 
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modelling alone. Incorporating life history parameters and demographic processes into 

the models allows insights into which factors are most relevant for species responses to 

stressors. Without a spatially dynamic life history model structure, a projected habitat 

suitability model would be unable to incorporate the effects of fire regimes on 

population dynamics. Fire is known to be a crucial process influencing the population 

dynamics of L. setiger, as well as other obligate seeders that have previously been 

modeled, and this study predicts that frequent fire remains the most serious threat even 

under future climate change scenarios.  
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Abstract 

Organisms are projected to shift their distribution ranges under climate change. 

The typical way to assess range shifts is by species distribution models (SDMs), which 

predict species’ responses to climate based solely on projected climatic suitability. 

However, life history traits can impact species’ responses to shifting habitat suitability. 

Additionally, it remains unclear if differences in vital rates across populations within a 

species can offset or exacerbate the effects of predicted changes in climatic suitability on 

population viability. In order to obtain a fuller understanding of the response of one 
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species to projected climatic changes, we coupled demographic processes with predicted 

changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern 

Europe. We first developed a life history model with species-specific average fecundity 

and survival rates and linked it to a SDM that predicted changes in habitat suitability 

through time with changes in climatic variables. We then varied the demographic 

parameters based upon observed vital rates of local populations from a translocation 

experiment. Despite the fact that the SDM alone predicted C. vulgaris to be a climate 

“winner” overall, coupling it with a population model incorporating demography at 

smaller scales resulted in projections of declining populations throughout much of its 

projected range due to limited dispersal and declining habitat suitability in currently 

occupied patches. Additionally, results show that altered fecundity and survival rates can 

reverse projected population trends when compared with trends based on changes in 

habitat suitability alone. 

 

Introduction 

 Organisms may respond to climate change in a number of ways including 

persistence, migration, decline or extinction (Hughes 2000; Davis et al. 2005). 

Increasing understanding of species’ responses to climate change can assist in 

conserving biodiversity as it provides information on the species vulnerable to climate 

changes and the management strategies that are likely to succeed. Species distribution 

models (SDMs) have been an influential tool to predict species’ responses to climate 

change as they project distributional changes of species’ ranges under various climate 
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scenarios (Guisan & Thuiller 2005; Thuiller et al. 2005; Elith & Leathwick 2009; 

Franklin 2009, Dormann et al. 2012). They have been used to ask a number of predictive 

questions about distributional constraints, and are valuable tools to generate hypotheses 

(Dormann et al. 2012). However, they have a number of limitations, including a failure 

to incorporate demography (Keith et al. 2008; Lavergne et al. 2010) and assumptions 

that a species will respond similarly to climate change across its entire range (Pearson & 

Dawson 2003; Sinclair et al. 2010). Additionally, SDMs typically assume that climate is 

the only global change acting on a species, while in reality species’ responses to other 

changes might overshadow the impacts of shifting habitat, and life history traits have a 

strong influence on the magnitude of these impacts (Regan et al. 2012; Swab et al. 

2012). Recent studies integrating life history traits (Keith et al. 2008; Fordham et al. 

2012; Dullinger et al. 2012), demography and physiology (Fordham et al. 2013a), or 

intra-specific variability (Morin et al. 2008; Bennie et al. 2010; Wang et al. 2010; 

Garzón et al. 2011, Fordham et al. 2013b) with SDMs have shown that increasing the 

complexity of models can alter predicted responses to climate change, and that 

populations may react differently to climatic changes in different parts of their range.  

There is strong evidence that plant species may have considerable differences in 

vital rates across populations and have evolved ecotypes in response to environmental 

variation across broader gradients or even at small scales (Clausen et al. 1948, Jain & 

Bradshaw 1966, Waser & Price 1985, Schmitt & Gamble 1990, Galen et al. 1991, 

Kindell et al. 1996; Nagy & Rice 1997). Translocation experiments have shown that 

offspring fitness may vary among sites (Schmitt & Gable 1990, Galen et al. 1991, 
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Kindell et al. 1996; Nagy & Rice 1997) and that populations within a species may 

respond differently to climate. Etterson (2007) used information from translocation 

experiments as a proxy for the temporal trend of Chamaecrista fasciculata (Fabaceae) 

traits in response to changing climate, and thus projected evolutionary trajectories which 

suggest that the rate of evolutionary response would be slower than the predicted rate of 

climate change. Garzón et al. (2011) predicted the effect of local adaptation on two 

Pinus species’ responses to climate change by incorporating translocation data on 

survivorship into SDMs. They concluded that SDM results were significantly altered by 

this information. Thus, there is evidence that integrating demographic information from 

translocation experiments and spatial information from SDMs can provide a more in-

depth evaluation of the response of species to climate change. Demographic response 

functions have been used to link variation in environment to variation of demographic 

rates (Schurr et al. 2012). However, few studies have incorporated demographic 

variability into models that predict the vulnerability of species to future climate changes. 

In this study, we use the observed variation in fecundity and survival across a broad 

geographical expanse (much of western Europe) to test potential effects of climate 

change on the demography and consequent population dynamics of a plant.  

  Spatially explicit metapopulation models can be used to make predictions of 

population viability under various scenarios (Akçakaya 2000). They have lately been 

used to incorporate life history dynamics into predictions of species’ responses to 

shifting habitat (Keith et al. 2008; Regan et al. 2012; Swab et al. 2012). This increases 

the realism of predictions through integrating factors such as fecundity, life span and 
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dispersal with shifting patch structures. Metapopulation models can also incorporate 

intra-specific variability of life history traits. These advantages make this model type 

useful for conservation purposes and predicting vulnerabilities of species to global 

change (Fordham et al 2013b). However, models typically assume the same average 

rates across all populations, thus ignoring differences between populations. Including 

empirically-based differences in average vital rates across populations adds a further 

level of realism to spatially-explicit population models that could shed a different light 

on the effects of global change on population persistence. 

 Information suitable for generating a spatially explicit metapopulation model was 

available from a reciprocal transplant experiment using Carlina vulgaris (Becker et al. 

2006), making this species an ideal candidate for studying the effects of intra-specific 

variation on the response of a species to climate change. C. vulgaris is a monocarpic 

perennial which has been the subject of a number of studies (summarized in Becker 

2005). From the translocation experiment, information was available on fecundity and 

survival at five different provenances, thus providing information on how vital rates 

changed when individuals (seeds) of each provenance were introduced to new locations. 

Becker et al. (2006) concluded that performance traits and individual fitness decreased 

with transplant distance, and attributed their findings to regional adaptation. We ask the 

following questions:  
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1. How would Carlina vulgaris respond to projected changes in habitat suitability 

due to climate change? 

2. How does information on between-population variation in fecundity and survival 

affect predictions of the response of Carlina vulgaris to climate change? 

3. Can intra-specific variation in demographic rates offset or exacerbate the effects 

of predicted changes in habitat suitability on population viability? 

 

Materials and Methods 

Study species 

 Carlina vulgaris L. (Asteraceae) is a monocarpic perennial forb inhabiting sand 

dunes, dry grasslands, and semi-natural pastures. It is distributed across Europe and 

western Asia (Meusel, Jäger & Weinert 1992). As a monocarpic perennial, individuals 

flower most commonly in the second year or later, and die after flowering (Klinkhamer 

et al. 1991). For C. vulgaris, there is a tradeoff between reproduction and survival; 

waiting another year to reproduce increases fecundity, but also increases the probability 

of death before reproduction (Metcalf et al. 2003). Flowering occurs between June and 

August, and achenes, hereafter called seeds, are dispersed during dry sunny days in late 

autumn, winter, or spring (Rose et al. 2002). Disturbance is important for seedling 

recruitment and, therefore, population dynamics (Löfgren et al. 2000). Grasslands with 

constant management regimes, such as grazing, have been observed to support stable C. 

vulgaris populations (Löfgren et al. 2000; Jakobsson & Eriksson 2005).  
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Current and future spatial distribution 

 To answer the question of how Carlina vulgaris might respond to projected 

changes in habitat suitability due to climate change, species distribution models were 

created for this species across the entire study area, western Europe. For the purpose of 

this study, habitat suitability refers to climatically suitable cells within areas of suitable 

land use, e.g. grasslands, pasture, and sand dunes. Current climate layers with a 

resolution of 10 arc-minutes were obtained from WorldClim (Hijmans et al. 2005). 

Future climate projections with a resolution of 10 arc-minutes were obtained from the 

International Center for Tropical Agriculture (Ramirez & Jarvis 2008) for A1B 

CCCMA-CGCM31 and A2 HadCM3 for intervals ranging from 2020 through 2080. The 

A1B scenario is of an integrated world with rapid economic growth, and thus high 

energy requirements balanced across a variety of fuel sources. The A2 scenario 

represents a more divided world with regionally oriented economic development. These 

two scenarios were chosen as moderate representatives from the range of future climate 

scenarios still considered plausible. 

To evaluate the change in predicted suitable habitat for Carlina vulgaris under 

climate change, current habitat suitability was modeled using Maxent Version 3.3.3f 

(Phillips et al. 2006; Phillips & Dudik, 2008) in the Dismo package for R (Hijmans et al. 

2011). Maxent has been shown to perform better than most other species distribution 

modeling methods for predicting suitable habitat with presence only data (Elith et al. 

2006). Occurrence only data at 24,417 locations were obtained on 7/15/2011 from 

Global Biodiversity Information Facility (GBIF 2011). Data were cleaned to remove 
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Table 2.1. The climate factors used for the species distribution model for Carlina 

vulgaris. Factors are ordered by relative contribution to the Maxent model. Percent 

contribution refers to the increase in regularized gain due to a variable. Permutation 

importance is the drop in AUC (percentage) when a variable is removed.  

Bioclim variable Percent 

contribution 

Permutation 

importance 

Temperature seasonality (standard deviation) 50.3 63.2 

Max temperature warmest month 18 12.3 

Precipitation seasonality 16.9 8.5 

Min temperature coldest month 8.9 10.4 

Annual mean temperature 4.7 1.8 

Mean temperature driest quarter 1.2 3.8 

 

erroneous entries. To reduce geographic bias and match the scale of the climate data, 

occurrence locations were reduced to one record per 10 arc-minute grid cell, leaving 

3,907 occurrences. Pseudo-absences of 1000 random points were drawn from the climate 

area bounded by land masses within -10 to 38° longitude and 39 to 66° latitude.  

Nineteen bioclimatic (bioclim) factors were evaluated for their correlation at 

presence locations. These factors were evaluated for their suitability to predict the 

occurrence of C. vulgaris. If two factors had correlation coefficients >0.90, one was 

removed. This left 13 bioclim factors which were used to predict current suitable habitat. 

Non-influential factors (those with less than 1% contribution to modeled predictions) 

were removed from the predictive models, leaving six influential climate factors (Table 

2.1) with an AUC of 0.822. In particular, sufficient soil moisture (explained by climate 

factor precipitation seasonality) is considered to be important for seed germination and 

thus for the distribution of C. vulgaris (Klinkhamer et al. 1996; Löfgren et al. 2000), and 
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dry summers (Max temperature warmest month) should benefit the species (H.H. Bruun, 

pers. obs). Suitable habitat was projected using 10 degree grid cells for “current” 

(interpolations of observed data, representative of 1950-2000, Hijmans et al. 2005) and 

future conditions between years 2020 and 2080 using available climate projections (10 

year intervals for climate scenario A1B and 30 year intervals for climate scenario A2). 

Linear interpolation between time periods and projection to the year 2100 created an 

annual time series of habitat suitability maps for each scenario. Two minimum 

thresholds of habitat suitability were compared, equal training sensitivity and specificity 

(ET; threshold = 0.492; Liu et al. 2005; Freeman & Moisen 2008) and minimum training 

presence (MT; threshold = 0.002; Swab et al. 2012). The equal training threshold is 

higher, thus decreasing the amount of available suitable habitat across the landscape. 

The habitat suitability results were linearly interpolated from 10 arc-minutes into 62500 

m2 sized cells using the ArcMap v. 10.0 interpolation function. 

Available suitable habitat in each landscape was identified by using the Corine 

land-use map from the year 2000, with a resolution of 250m x 250m to only include cells 

designated as grassland, pasture, or sand dunes, all appropriate habitat types for Carlina 

vulgaris. This land use map was overlaid on the habitat suitability maps. For all cells 

outside the appropriate land-use types habitat suitability was reduced to zero, otherwise 

cells were left unchanged.  
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Table 2.2. Stage matrix with average values and standard deviations for transition 

between three life stages of  Carlina vulgaris under averaged home conditions.  

 Seeds Juveniles  Rosettes 

Seeds 0.3 ± 0.03 0 9.941 ± 8.483 

Juveniles 0.0685 ± 0.0575 0 2.269 ± 1.937 

Rosettes 0 0.632 ± 0.114 0.6109 ± 0.1392 

 

Metapopulation model 

 A stochastic matrix model with seed, juveniles, and rosettes was developed for 

Carlina vulgaris (Table 2.2). See Supplementary material Appendix 1 for a detailed 

description of the parameters in the metapopulation model. Survival, fecundity, and 

transition values were primarily based on data from Becker et al. (2006), but amended 

with additional unpublished data. Fecundity was defined as the average number of  

offspring per individual in the reproductive stage alive at a given time step (Akçakaya 

2005). Survival, germination, and transition values were supplemented with data from 

the published literature. Standard deviations were calculated from the variation in these 

data across years. Initial abundances and carrying capacity per cell were estimated using 

information from Jakobsson & Eriksson (2005). Stages were weighted based upon 

differences between the maximum observed seedling abundances (Rees et al. 2006) and 

the maximum observed for rosettes (Klinkhamer et al. 1996). 

Translocation data and region 

To study how variation in fecundity and survival could affect projections of the 

response of C. vulgaris to climate change, we used demographic data collected from a 

translocation experiment that was performed to investigate regional adaptation in 
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Carlina vulgaris (Becker 2005; Becker et al. 2006). In this experiment, individuals were 

reciprocally transplanted between Sweden, Germany, the Czech Republic, Luxembourg, 

and Switzerland, resulting in 25 combinations of origin (or home site) and growing site, 

including ‘translocation’ to the home site. Each of the 25 combinations are hereafter 

referred to as “translocation scenario”. To evaluate whether variation in vital rates was 

due to variation in climate conditions, we compared vital rates with climate at the 

location grown in multiple ways: we regressed (a) average fecundity per translocation 

scenario with bioclim factors (Figure 2.1) (b) average population growth rate (finite rate 

of increase, or lambda) per translocation scenario versus habitat suitability value 

(Supporting Figure 2.1) (c) seed production per reproducing individual versus bioclim 

factor at the growing site (Supporting Figure 2.2) and (d) seed production per 

reproducing individuals, separated by origin versus bioclim factor at the growing site 

(Supporting Figure 2.3). Results from these comparisons showed that subpopulations of 

Carlina vulgaris responded differently to translocation to different sites (Supporting 

Figure 2.4), but that these differences were not correlated with habitat suitability. Becker 

(2005) and Becker et al. (2006) concluded that differences in lambda and survival rates 

for this species were due to regional adaptation since rosette size and other traits 

decreased with distance from the site of origin. However, our analysis of the 

translocation data indicates that, while there was variation in fecundities in response to 

translocation across sites, predicted fecundity (which incorporates rosette size and 

number of reproducing individuals) was only slightly correlated (r2=0.44) with  
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Figure 2.1. Predicted fecundity, i.e. mean number of seeds per rosette (average seed 

production per reproducing individual multiplied by proportion of rosettes flowering 

annually) per translocation scenario versus bioclim factors at the location grown. Colors 

and shapes indicate location of origin.  

 

maximum temperature of the warmest month, and not correlated with the other three 

main climate factors predicted to be important for the species distribution (Figure 2.1). 

Another translocation experiment using populations within Sweden found no evidence 

of native superiority, but did find juvenile survival, a component not tested in Becker et 
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al. (2005), to be 6% higher for natives at their home sites (Jakobsson and Dinnetz 2005). 

Though there seems to be no adaptation to climate, the translocation experiment data 

show that life history traits of C. vulgaris individuals can vary considerably when moved 

to different locations. Therefore, there is reason to expect variability of these traits under 

changing conditions. 

Matrix model scenarios were developed to encompass the range of fecundities 

and survival rates observed in the translocation experiment. The ‘home’ scenario 

represented fecundity and survival values for Carlina vulgaris when individuals were 

planted in their country of origin, i.e. the location of provenance; metapopulation models 

would normally have vital rates based on this information alone. Initially, we created 25 

different matrix models, one each for plants from each of the five regions when planted 

in each of the other regions. Given the range of intra-population variability and the lack 

of correlation of fecundity with climate variables, we tested the entire range of fecundity 

in all regions.  

Results and growth rates associated with matrix models for many translocation 

scenarios were similar. Thus, we reduced the number of matrix models to fall into 

categories representative of the range of lambda values observed. Using observed 

clusters, or breaks, across the 25 lambda values of the matrices, we placed each 

translocation scenario into a category (Table 2.3). Though in most cases these 

differences in lambda were due to differences in seed production, for the F5 category 

differences in survival rates were the main driver instead. Standard deviations were 

calculated from the variation in individuals from each category across years (Table 2.3).  
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Table 2.3. Vital rates and their standard deviations for Carlina vulgaris rosettes for five 

fecundity categories. Seed and juvenile production numbers are the average amount of 

seeds or juveniles produced by any living individual per year, calculated by multiplying 

the proportion of individuals producing seeds or juveniles by the average number of 

seeds or juveniles produced by a flowering plant. Categories were delineated by 

expected minimum abundances.  

Fecundity 

category 

Seed 

Production 

Juvenile 

Production 

Adult 

Survival 

rate 

Average 

lambda 

F1 1.17±1.46 0.27±0.33 0.590±0.004 0.88 

F2 9.22±0.75 2.11±0.17 0.536±0.051 1.58 

F3 11.32±3.69 2.59±0.84 0.566±0.049 1.72 

F4 12.81±4.17 2.92±0.95 0.534±0.013 1.78 

F5 11.34±4.52 2.59±1.03 0.645±0.147 1.76 

 

Averaging life history values into these five categories allows for a simpler analysis of 

the data than comparing 25 matrices, while still allowing for comparison between 

different values of fecundity and survival across their full range of variability.  

The spatial distribution of Carlina vulgaris was divided into five separate 

‘regions’, Germany, Switzerland, the Czech Republic, Sweden & Denmark, and 

Luxembourg & France, each representing an area of origin for the translocation study. 

Some regions included an adjacent sovereign nation in order to ensure comparable 

amounts of suitable habitat across the regions, e.g. Luxembourg & France. The current 

habitat suitability for each region was used to develop two patch structures (static ET 

and MT), thus linking the SDM results with the translocation results, thereby allowing us 

to run a model with each of the five matrices for each region. Within each region, we 
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also developed dynamic patch structures based on changing climate scenarios: A1B ET, 

A1B MT, A2 ET, and A2 MT (described above). Changes in habitat suitability (due to 

climate) were integrated into matrix metapopulation models via a dynamic carrying 

capacity. As habitat suitability predictions changed through time, the carrying capacity 

(K) per patch was recalculated. If the abundances were greater than K, vital rates were 

reduced until abundances were at or below K, in a manner similar to that described by 

Keith et al. (2008) and Swab et al. (2012).  

 

Simulations and scenarios 

We used RAMAS GIS 5.0 (Akçakaya 2005) to link the metapopulation models 

with the time series of dynamic habitat suitability maps. Static patch structures, in which 

habitat suitability of patches remained constant through time, were used as a baseline for 

comparison. For each region, six habitat suitability scenarios were run with each of the 

five matrices, for a total of 30 different climate x matrix combinations for each region 

(Figure 2.2). This enabled us to investigate the impact of dynamic habitat suitability 

versus altered vital rates, and evaluate how the two changing simultaneously would 

affect projected population trends. 

For each simulation, environmental and demographic stochasticity were 

incorporated through Monte Carlo simulations for 1500 replications over a 100 year time 

period. Vital rates were uncorrelated between patches except in a sensitivity analysis. 

Population viability was assessed using expected minimum abundance (EMA) as a 

proportion of initial abundance (IA) for consistent comparison across regions. EMA is 
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 Figure 2.2. Coupling of habitat suitability model and stochastic population model 

(which integrates vital rates from translocation data). Each simulation runs for 100 years, 

with K varying for each patch in each year but other core elements (including matrix) 

remaining the same. In different simulations, matrices F1 to F5 are substituted. Numbers 

within the translocation data table indicate matrix category. Each of the 5 regions has a 

total of 30 simulations, i.e. all combinations of 6 habitat suitability scenarios and 5 

different matrices. Modified from Keith et al. (2008). 
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the average of the smallest population size occurring within the 100 year time period 

across each of the 1500 simulations (McCarthy & Thompson 2001). The initial 10 years 

of the simulation were excluded from risk calculations to allow stabilization of 

population dynamics. Sensitivity analyses were performed by separately perturbing 

initial abundances, germination, transition and survival rates, dispersal, and duration of 

scenario in order to determine how influential these were on species viability. 

 

Results 

Habitat suitability 

Climate change predictions calculated with Species Distribution Models (SDMs) for 

Carlina vulgaris suggest that habitat suitability will shift northward, and might increase 

overall depending upon the climate scenario (Figure 2.3). However, most of the 

projected increases are in northern locations currently unsuitable and unoccupied by C. 

vulgaris. For three of the five translocation sites, habitat suitability is predicted to 

decrease, especially under the more dramatic A2 scenario (Supporting Figure 2.5). 

Additionally, most of the climate factors considered to be the most influential on the 

species’ distribution (Temperature Seasonality, Max Temperature of the Warmest 

Month, Precipitation Seasonality) are predicted to change at these locations (Supporting 

Figure 2.6). 

 Results from habitat suitability maps show that threshold selection can have a 

large impact on projections of the amount of suitable habitat, as reflected in changes in 

carrying capacity (K) through time (Supporting Figure 2.5). Particularly for populations  
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Figure 2.3. Predicted habitat suitability for Carlina vulgaris with (a) current climate 

(b) predicted climate in 2050 under scenario A1B (c) predicted climate in 2080 under 

scenario A1B. Greener colors indicate increasing suitability of habitat. Plus symbols 

indicate translocation sites. 
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Figure 2.4. Expected minimum abundance (EMA)/Initial abundance for Carlina vulgaris 

metapopulations in (a) the Czech Republic, (b) Germany, (c) Sweden & Denmark, (d) 

Luxembourg & France, and (e) Switzerland for various threshold selections and under a 

static climate and changing climate using A1B and A2 predictions. The solid black line 

indicates the point at which EMA equals initial abundance.  

 

 



72 

  

in Sweden and Denmark, suitable initial habitat is significantly lower when the threshold 

for habitat suitability is based upon the higher Equal Training sensitivity and specificity 

value.  

Intra-specific variability and habitat suitability 

As fecundity (and therefore lambda) increases, from category F1 to F4, the 

expected minimum abundance (EMA) relative to initial abundance (IA) also increases 

(Figure 2.4). Populations with the lowest fecundities (F1) are predicted to become 

extirpated under all climate scenarios. However, fecundity increases above the F2 

category do not increase the EMA/IA ratio, and for these categories variability seems to 

be the main driver of minimum population abundances (Figure 2.4). When comparing 

results from fecundity categories with the home fecundity (i.e. fecundity of plants when 

grown in their home location), EMAs can increase or decrease depending on the climate 

scenario. When both fecundity and habitat suitability decrease, EMAs decrease 100% of 

the time (Table 2.4). However, even when fecundity and HS both increase, EMA is 

lower 37.5% of the time. When one factor increases and the other decreases, results are 

mixed (Table 2.4). 

The A2 climate scenario is generally bad for the species, the population model 

coupled with habitat suitability under the A2 climate scenario predicts declines to, or 

close to, extirpation for most regions except Sweden and Switzerland under the MT 

threshold, regardless of the fecundity (Figure 2.4). For the A1B scenario, when habitat 

declines are proportionally small, as predicted for Germany and Switzerland (Supporting 

Figure 2.5), or habitat increases are predicted to be in new areas unpopulated currently  
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Table 2.4. Percentage of scenarios with increases (+) or decreases (-) in EMA for 

Carlina vulgaris metapopulation model results given increases (+) or decreases (-) in 

fecundity and habitat suitability (HS). Increases or decreases in EMA are as compared 

with the EMA for a similar scenario, but with stable habitat and home fecundity values.  

       Fecundity 

 

HS 

+ - 

+           62.5%+ 

 

37.5%-   

        25%+ 

 

75%- 

-              57%+ 

 

43%- 

              0%+ 

 

100%- 

 

by C. vulgaris, and unreachable by dispersal as in Sweden, EMA/IA ratios are fairly 

unaffected by climate scenario or threshold for occupancy (Figure 2.4). However, when 

habitat declines are predicted to be dramatic, as for Luxembourg and France (Supporting 

Figure 2.5), we predict population declines under climate change, i.e. decreases in EMA 

and the proportion of EMA/IA (Figure 2.4). For the Czech Republic, where increases in 

habitat suitability are predicted in currently occupied patches, climate change is 

predicted to increase EMAs dramatically under the high threshold A1B scenario. 

Sensitivity analysis of life history traits shows that the model is most sensitive to 

changes in scenario duration, production of juveniles by rosettes, and transition between 

juvenile and rosette stages (Supporting Table 2.1). It is less sensitive to changes in 

survival rates for the rosette stage, and insensitive to changes in other parameters such as 

seed production. Varying the initial abundance to K ratio only affects EMA when the IA 

is reduced to 10% of the baseline IA, and has a greater impact on models with lower 
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fecundities (Supporting Table 2.1). Seed production for higher fecundity categories is so 

high that after 10 years there is minimal difference in abundances between scenarios 

with lower initial abundances and those with higher initial abundances, indicating that 

this species is limited more by available sites than by seed supply. Dispersal makes no 

difference for most scenarios, including all minimum threshold models. Five landscape 

configurations resulted in a positive influence of dispersal (Supporting Figure 2.7). 

Sweden & Denmark for A1B or A2 ET scenarios, and Switzerland under the A1 ET 

scenario showed the largest increases in EMA/IA, due to colonization of newly available 

patches when dispersal occurred. Correlation of environmental stochasticity in vital rates 

between patches did not affect results. 

  

Discussion 

 Species Distribution Models (SDMs) project increases, declines, or shifts in 

suitable habitat for species under climate change (Franklin 2009). For Carlina vulgaris, 

SDMs project an increase in the overall amount of suitable habitat under climate change 

(Figure 2.3). When this is translated into changes in carrying capacity for specific 

locations, however, some locations are projected to experience large declines in 

abundances, while increases are projected for other locations (Supporting Figure 2.5). 

Incorporating variability of vital rates into predictions of the species´ response to climate 

change complicates matters even further. When life history variables such as fecundity 

or survival rates change, this sometimes results in increases in population viability even 

in the face of decreasing habitat suitability (Table 2.4). Overall, the results of this study 
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indicate that for Carlina vulgaris, population models provide different insights into 

species’ responses to climate change than SDMs alone. This is not surprising, because 

the fact that SDMS ignore life history traits, adaptation, and plasticity of individuals has 

often been considered a limitation of SDMs (Pearson and Dawson 2003, Dormann 2007, 

Keith et al. 2008, Elith and Leathwick 2009). It is necessary to integrate studies 

investigating potential plasticity and adaptation of species with SDMs, as in this paper, 

in order to fully understand the potential responses of species to climate change. 

Several main findings emerge from the research, discussed in more detail below: 

1) Projected increases or decreases in habitat suitability do not always correspond 

with increases or decreases in expected minimum abundances.  

2) Habitat suitability thresholding decisions can affect predictions of species 

viability.  

3) Carlina vulgaris is sensitive to extreme declines in fecundity, but not to 

increases.  

Projected increases or decreases in habitat suitability do not always correspond with 

increases or decreases in expected minimum abundances.  

When projected habitat suitability increases, Expected Minimum Abundance 

(EMA) sometimes increases and sometimes decreases as compared with scenarios with 

stable habitat (Table 2.4, Figure 2.4). This is sometimes due to changes in fecundity, as 

the effects of decreased fecundity outweigh the effects of increases in habitat suitability, 

especially if the increases are in previously unoccupied patches. In some cases (for one, 

where both fecundity and habitat suitability increase), decreases in EMA are due to low 
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habitat suitability at some point over the hundred year period. These lows are followed 

by increases in habitat suitability (often in new patches), but due to poor dispersal the 

population cannot capitalize on these increases. Most studies look at habitat suitability in 

30 year intervals (Pearson and Dawson 2003). Results with low EMAs despite overall 

increases in habitat suitability indicate that simply looking at habitat suitability at a few 

time periods can be an oversimplification resulting in an underestimate of the 

vulnerability of the species to climate change. Additionally, increases in fecundity can 

compensate for decreases in habitat suitability—for example, in 57% of the model 

scenarios EMA increased when habitat suitability decreased and fecundity increased 

(Table 2.4). Since the results show that changes in habitat suitability and fecundity 

interact to affect the species’ response to climate change, this indicates that adding 

complexity by coupling population models with SDMs can change direction and 

magnitude of predictions. 

Habitat suitability thresholding decisions can affect predictions of species viability 

Expected Minimum Abundance values were influenced by the choice of threshold 

for habitat suitability. However, while threshold was important to absolute numbers of 

projected population declines, it only occasionally affected results when using 

EMA/Initial Abundance (Figure 2.4). This suggests that habitat suitability threshold 

decisions can affect predictions of species viability if absolute values of population 

declines are of interest, whereas the ranking of scenarios (in this case regions and 

fecundity classes) appear to be robust to training thresholds. 
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Carlina vulgaris is sensitive to extreme declines in fecundity, but not to increases 

In populations with high fecundity (fecundity categories F2-F5), the Expected 

Minimum Abundance for the focal species seemed to be driven primarily by the 

coefficient of variation than by average fecundity (Figure 2.4). The most likely 

explanation for this result is that, for Carlina vulgaris, seed production is very high and 

availability of microsites is the main driver of population size within viable patches. In 

the model, this was reflected by the fact that for the F2-F5 fecundity categories, average 

population abundances were at carrying capacity for most simulations. Thus, minimum 

abundances were driven by years of low seed production and thus lower minimum 

abundances. The results indicate that variable fecundity will minimally impact this 

species, typically only if fecundity is low enough that growth rates are below 1. 

For the study species, changes in fecundity and survival rates were not correlated 

with changes in habitat suitability as predicted by SDMs or with changes in 

environmental variables predicted to be important by SDMs. This indicates that the two 

evaluations of species’ responses to climate change—translocation experiments and 

SDMs—either are capturing different processes or that the SDMs are incorrect in their 

predictions. Species distribution models tend to take into account processes affecting 

species at large scales (Elith and Leathwick 2009), using the entire species distribution 

to predict changes in habitat suitability (but see Sork et al. 2009). Translocation studies 

generally evaluate life history trait responses to environmental properties at local scales 

(Bischoff et al. 2006, Becker et al. 2006), focusing on how individual plants will 

perform in novel climates within the species range (Becker et al. 2006). Thus while 
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predictions of the SDMs provide insight into the effects of climate change on a species’ 

distribution at the larger scale, translocation experiments capture responses of 

individuals at local scales where plants may respond more directly. This study integrates 

both scales, and results show that factors at both scales can influence results. Current 

difficulties in dealing with scale disparities when fitting SDMs (Elith and Leathwick 

2009) can potentially be addressed using this methodology.  

Because we did not find a strong correlation of fecundity with climate variables, 

the results of the translocation experiment coupled with the population models merely 

provide bounds on plausible population responses to novel climate and habitat shifts. 

However, given that the variability of life history characters influenced results, this study 

shows that translocation studies can increase understanding of species responses to 

climate change. If projected future climate conditions at some locations are similar to 

current climate at translocation sites, information from the translocations can be used to 

predict how populations will respond to climate change. Even if projected future climatic 

conditions are novel, information from the translocation experiment can still reveal 

when, or why, the species might not respond to climate change as a whole. However, 

given the amount of work required for these experiments, this would best be done for 

representatives of functional groups to determine which vital rates are most significant 

and/or most likely to be affected by climate change. Combining these experiments with 

models as done in this study can be an effective means of determining how and to what 

extent changes in vital rates will affect populations.  
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The limitations of species distribution models have been well studied in the 

literature (Pearson & Dawson 2003; Franklin 2009; Lavergne et al. 2010), and the 

limitations of combining SDMs with metapopulation models have also been addressed 

(Keith et al. 2008; Lawson et al. 2010; Regan et al. 2012; Swab et al. 2012). Adding 

new components to this modeling platform compounds uncertainty in results. 

Uncertainty in the model parameters is high given that the translocation experiment 

followed one cohort for three years in each of the translocation scenarios, and thus year-

to-year environmental variability in vital rates is based on only two years for the larger 

life stages. If the annual environmental variation in survival rates was under-estimated 

due to the short duration of the experiment, survival rates could have a larger influence 

on the population viability overall. Fecundity and germination rate, however, are 

unlikely to affect the species unless they are low enough that population growth rates are 

below one. Furthermore, the translocation study did not capture viable population 

dynamics for plants from Sweden, whether at home or away, and therefore in 

simulations the Swedish-based matrices resulted in extirpation under all scenarios 

including static habitat suitability. Since there are currently Carlina vulgaris populations 

persisting in Sweden, it is clear that there is a missing factor. Dispersal is another 

limitation of the model. Since dispersal for this species is thought to be only tens of 

meters (Rees et al. 2006), baseline simulations did not include dispersal despite the fact 

that rare long distance dispersal is thought to be important to plant population dynamics 

(Nathan 2006). However, for this species, it is unlikely that new patches will be 

occupied within a short time and model results including dispersal reflected this. 
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Overall, the results were fairly robust to perturbations in the demographic parameters as 

demonstrated in the sensitivity analyses (Supporting Table 2.1), indicating that the 

general trends of the results are likely to be the same even if there are small changes in 

life history parameters.  

Though the number of climate model scenarios was limited to two, the SDM 

provided a useful platform for comparing the response of the species to climate changes 

under various scenarios of decreasing, increasing, and shifting habitat suitability. Land 

use change will likely also occur with climate change, potentially further reducing 

habitat availability, resulting in overly optimistic projections of habitat (Thomas et al. 

2004, Pressey et al. 2007). Overall, this study should be taken as an attempt to increase 

our understanding of species vulnerabilities to climate change rather than one predicting 

the outcome for C. vulgaris.  

Species distribution models capture part of the response of species to climate 

change, but do not reflect all potential responses to climate change (Keith et al. 2008, 

Lawson et al. 2010, Swab et al. 2012). Coupling life history traits and spatially explicit 

population dynamics with SDMs allows us to see when changes in habitat suitability will 

result in changes in abundance across the landscape for the species — not all declines in 

habitat suitability necessarily lead to declines in populations because they may be 

accompanied by positive changes in a vital rate. However, if habitat suitability were to 

continue to decline, it is likely that the beneficial effects of increases in fecundity will 

ultimately be outweighed by the reduction in suitable habitat in the long run, provided 

suitable habitat predictions are a good reflection of carrying capacity and hence 
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population survival. Translocation studies often attempt to capture differences between 

populations in life history traits (Kawecki and Ebert 2004). This study shows these 

differences may indeed impact species responses to climate. Changes in fecundity, 

because of plasticity or adaptation, might result in a tempering of the effect of climate 

change on population predictions if areas with predicted declines in habitat suitability 

experience increases in fecundity. This is an indication that while species distribution 

modeling is a valuable tool for predicting species’ responses to climate change, 

integrating these with population models parameterized with information from 

translocation studies can provide a fuller picture of overall projected trends.  
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Abstract 

 Population viability is affected by a number of factors, including variability of 

vital rates, catastrophes, and fluctuations in habitat suitability.  Species responses to 

these factors are rarely captured in field experiments, thus for many species little is 

known about the impact of variability on population viability.  In this study, we focus on 

a number of sources of change- altered variability in vital rates, directional change in 

means of vital rates, changes in fire regimes, dispersal, and altered variability in carrying 

capacity.  We used spatially explicit metapopulation models for two different species, a 

fire obligate seeder Ceanothus greggii and a resprouter Quercus engelmanii to explore 

this concept.  These species responded differently to change- the obligate fire seeder was 

more sensitive to changes in fire regime, while the resprouter was more senitive to 

changes in vital rates, particularly directional changes in means of fecundity.  For both 

species, increased variability in rates caused declines in minimum abundances, while  

directional changes in means caused similar directional changes in Expected Minimum 

Abundances (EMAs).  Increased variability of carrying capacity of patches, which could 
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be caused by increasing climatic variability, caused declines in expected minimum 

abundances.  Overall, results show that vulnerability to change depends on functional 

type, and that viability predictions not including variability could be underestimating 

species vulnerabilities to global changes. 

 

Introduction 

Variability is inherent in natural systems, and resides at all levels of biological 

organization from genes to individuals to populations, communities, and ecosystems. 

Population viability, for instance, is dependent upon population size, demographic and 

environmental stochasticity (Melbourne & Hastings 2008), and random catastrophes 

(Verboom et al. 2010).  Climatic variability has been shown to affect fecundity of plants 

(Davison et al. 2010, Evans et al. 2010), plant population dynamics (Marrero-Gomez et 

al. 2007), and population growth rates (Buckley et al. 2010, Torang et al. 2010, Evju et 

al. 2011).  Extremes in temperatures and precipitation can decrease survival rates 

(Saccone et al. 2009, Torang et al. 2010, Andrello et al. 2012) and fecundity (Herrera 

1991, Andrello et al. 2012).   But variation in the environment (hereafter termed 

environmental variability) can also lead to episodes of high recruitment (Higgins et al. 

2000), promoting coexistence by benefiting some species over others (Levine and Rees 

2004, Adler et al. 2006).  Environmental variability can cause fluctuations in the means 

of vital rates (increased variability of these rates) or directional changes in means.  

Understanding how vital rate changes affect populations is fundamental to predicting 

species’, and ultimately community, responses to environmental changes (Gotelli & 



91 

  

Ellison 2006, Morris et al. 2008, Buckley et al. 2010). The effect of environmental and 

demographic variability on population growth rates and persistence has been well 

studied (Boyce et al. 2006, Melbourne & Hastings 2008), yet the direct effects of abiotic 

or biotic factors on plant demography and population dynamics have been rarely 

examined (Dahlgren & Ehrlen 2009).  Additionally, few studies compare and contrast 

the impact of environmental variability on population dynamics between species 

(Forcada et al. 2008, Morris et al. 2008, Dalgleish et al. 2010). 

 Historical evidence indicates that fluctuations in climate contribute to changes in 

vital rates. For example, tree ring studies show that species have responded historically 

to climate variability with changes in the rate of biomass growth (Jackson et al. 2009).  

Under climate change projections, environmental fluctuations are expected to increase 

(Katz and Brown 1992, Morris et al. 2006).  Temperatures in particular are projected to 

have more extremes- particularly higher highs (Easterling et al. 2000, Schär et al. 2004, 

IPCC 2007, Wigley 2009).  These extremes are predicted to drive species responses to 

climatic trends (Parmesan et al. 2000), affect species’ fitness and population dynamics 

(Easterling et al. 2000), and select for species with wider physiological tolerances 

(Compton et al. 2007). Environmental fluctuations, if large enough, can lead to 

subpopulation extirpation or recolonization (Jackson et al. 2009).  

Plants in particular are exposed to a wider range of climatic variability than 

mobile animals which can burrow or migrate to avoid climatic extremes (Hirzel & Le 

Lay 2008).  While plants tend to be adapted to a certain amount of climatic variability, 

fecundity, survival rates, and germination rates vary about a mean from year to year, 
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often in correlation with variation in climate (Evans et al. 2010).  Even short term 

variations in vital rates can increase extinction risk (Chirakkal & Gerber 2010), and 

weak associations of environmental factors with vital rates can have long term effects on 

population growth (Dahlgren & Ehrlen 2009). Despite this fact, in studies of the effects 

of climate change on population persistence thus far, ecologists have paid more attention 

to the responses of plant populations to changes in climatic averages than changes in 

variability (Parmesan & Yohe 2003, Thomas et al. 2004, Morris et al. 2006), though 

some studies have considered the effect of altered climatic variability (Knapp et al. 

2002, Adler et al. 2006, Dagleish et al. 2010).  Ideally, ecologists would predict 

population response to climate change using knowledge of the relationship between vital 

rates and climate (Morris et al. 2006). However, a lack of data on this relationship for 

most species makes this difficult. For this study we instead analyze the impact of 

changes in vital rates, dispersal, and disturbance on species viability.   

Simulating population dynamics through modeling is a central tool for evaluating 

species viability in dynamically changing environments (McKelvey 1996). Matrix 

population models are a common method of linking vital rates to metapopulation 

dynamics, and they have been widely used to quantify population dynamics across 

species with different functional types (Silvertown et al. 1993, 1996, Buckley et al. 

2010).  A variety of techniques exist to incorporate changes in vital rates into population 

growth rate estimates (Caswell 2000, Fieberg & Ellner 2001, Kaye & Pyke 2003, 

Tuljapurkar et al. 2003, Doak et al. 2005, Dahlgren & Ehrlen 2009). Variability, as an 

inherent feature of dynamic systems, is typically represented in population modeling 
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simulations through probability distributions encompassing a range of plausible values 

(Regan et al. 2003).  Since models for plants tend to be based on a few years of data 

across only a few subpopulations (Menges 2000, Crone et al. 2011), changes in future 

demographic rates are likely to be underestimated, leading to a potential overestimate in 

the viability of populations with models that ignore projections of increased climatic 

variability (Verboom et al. 2010).  

Catastrophes are another source of variability in vital rates, however species’ 

responses to catastrophes differ from their response to year-to-year environmental 

variation—catastrophes are defined as small probability events that cause large changes 

in vital rates beyond the scope of environmental variation.   As with annual variation in 

abiotic and biotic factors, many species have adaptations to catastrophes. For instance, 

many plant functional types are characterized according to their life history responses to 

fire (Syphard & Franklin 2009).  Some projections show resprouting shrubs to benefit 

from more frequent fires, increasing in abundances over other functional groups 

(Syphard et al. 2006), though for specific species, models project abundances to 

decrease given more frequent fires (Conlisk et al. 2012).  Obligate fire seeding species 

are particularly at risk from shortened fire return intervals (Syphard et al. 2007) and in 

many cases more frequent fires are a more significant threat than range shifts due to 

climate change (Keith et al. 2008, Lawson et al. 2010, Swab et al. 2012, Syphard et al. 

2013). Changes in precipitation and maximum temperatures, as well as anthropogenic 

changes such as increased ignitions or fire suppression, are all predicted to alter fire 

regimes, i.e. the intensity, frequency and size of fires (Whelan 1995).  Overall, shortened 
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fire return intervals are projected to negatively impact population persistence, negatively 

impact vital rates, and cause extinctions.  Therefore, incorporating these into projections 

of fire adapted species responses to global changes is essential for accurate assessments 

of these species viabilities.   

 Given the likelihood of increased environmental variability under global change, 

a fuller understanding of the vulnerabilities of species with different life history traits 

will inform prioritization of species and actions for conservation management.  In this 

study we look at two different types of changes in vital rates- changes in means and 

changes in the amount of variability.  We analyze the impact of these changes in vital 

rates as well as alterations in dispersal, carrying capacity, or fire size and frequency on 

species viability in an extensive sensitivity analysis for two species with two different 

responses to fire.  Ceanothus greggii is an obligate seeding shrub which is projected to 

be vulnerable to shortened fire return intervals (Regan et al. 2010, Syphard et al. 2011).  

Quercus engelmenii is a resprouting tree species which is projected to have a lesser 

response to altered fire regime (Conlisk et al. 2012).  Our overall research questions 

were: 

1) What source of change had the greatest impact on EMAs? 

2) Were changes in means or changes in variability more important? 

3) How might differences in responses across the plant functional types highlight 

how different life history traits could mitigate or exacerbate increased 

environmental variability? 
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We use spatially explicit metapopulation models for this task, as they include 

detailed life history characteristics such as fecundity, survival rates, germination rates, 

and response to fire events while allowing for manipulation of these characteristics and 

incorporation of global changes such as climate change, habitat fragmentation, or altered 

fire regimes. Comparison of results between simulations allows for analysis of the 

impact of various scenarios on population viability (Regan et al. 2010).  Investigating 

the vulnerabilities of these species to various changes is a start to understanding 

vulnerabilities of other species in these functional types. In particular, we are interested 

in shedding light on whether one plant functional type (long-lived resprouters or long-

lived obligate seeding shrubs) is more vulnerable to changes in vital rates (increased 

variability or directional changes) and which sources of change each functional type is 

most sensitive to. The contribution of survival rate and fecundity to population growth 

rates can differ by functional type (de Kroon et al. 2000, Buckley et al. 2010), and thus 

comparative analyses across different types of plant species can use life history theory to 

help predict which species will be most vulnerable to increased climatic variability 

(Dalgleish et al. 2010), and how they are vulnerable. As climate parameters increase in 

means and become more variable, which change will have the biggest effect on 

population viability? 

 

Methods 

Ceanothus greggii- Ceanothus greggii var perplexans (Trel.) Jepson is a fire 

obligate seeding evergreen shrub that occurs in the chaparral of the California Floristic 
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Province (Hickman 1993).  The species requires fire to stimulate germination; in fire 

events, standing plants die and germination occurs, resulting in even-aged cohorts with 

rare germination between fires (Keeley 1992).  A metapopulation model for this species 

was described in detail in Regan et al. (2010) and updated in Syphard et al. (2013).  

These studies modeled the species using RAMAS Metapop (Akçakaya & Root 2005).  

For the present study, the model described in Syphard et al. (2013) was used as the 

baseline model. 

Quercus engelmanii- Quercus engelmanii Greene is a small tree native to 

California and Baja California.  It typically occurs in chaparral, grasslands, or foothill 

woodlands. It is classified as vulnerable on the IUCN Red list (IUCN 2011).  This 

species responds to fire by resprouting from canopy or basal root crowns (Conlisk et al. 

2012).  Germination from acorns is the primary means of reproduction for the species.  

A metapopulation model for this species created in RAMAS Metapop was described in 

detail in Conlisk et al. (2012). This model was used as the baseline model for this study. 

Scenarios 

For both species, sequential changes, or treatments, were made to the baseline 

models to understand how changes in vital rates and processes affect species viability 

and how this might change as some sources of variability increase with climate change. 

The parameters targeted for sensitivity analysis in this study were survival rates, 

germination rates, fecundities, fire frequency and spread, environmental correlation 

between populations, dispersal, and carrying capacity (Supplemental Table 3.1).  These 

parameters were chosen because they are likely to be affected by climate change.  
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Survival rates (Young et al.1981), germination rates (Levine & Rees 2004), fecundity 

(Herrera 1991), and spread of fire (Flannigan et al. 2000) have already been shown to be 

altered by climatic variability for some species.  Environmental correlation between 

populations may increase or decrease with climate change. Although dispersal is not 

likely to be directly altered by climate change, it is considered to be an important factor 

in facilitating species’ distribution shifts (Thomas et al. 2004).  Therefore, understanding 

the influence of dispersal on population persistence is a key component of understanding 

how species might respond to climate change. Changes in carrying capacity have been 

used as a proxy for changes in habitat suitability due to climate change for a number of 

metapopulation models (Larson et al. 2003, Keith et al. 2008, Anderson et al. 2009, 

Swab et al. 2012).  Though many studies only focus on climate-induced changes in 

habitat suitability, all of the above factors could influence a species’ response to climate 

change.  Therefore, understanding species responses to variability and shifts in these 

characteristics is paramount in understanding species’ responses to climate change. 

In order to evaluate the importance of the above parameters to species’ viability 

under climate change, we perturbed the mean values of these parameters and/or their 

coefficients of variation (CV) across scenarios and gauged the effect on expected 

minimum abundances (EMAs). The spatial arrangement of patches for our models was 

generated via species distribution models (SDMs) constructed with MaxEnt.  The SDMs 

incorporated presence data, current climate layers, and environmental predictors such as 

soil and terrain variables (Conlisk et al. 2012, Syphard et al. 2013).  Occupied patches 

were identified using maps of current distribution. 
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Survival rates 

For this study, we changed the CVs for survival rates (described in Syphard et al. 

2013 and Conlisk et al. 2012) to evaluate the impact of increased or decreased variability 

in these rates on the species viability.  We investigated CVs between 0.001 and 0.75 

(Supplemental Table 3.1).  A previous sensitivity analysis by Conlisk et al. (2012) found 

Quercus engelmanii to be sensitive to changes in mean sapling and adult survival rates, 

but not to changes in other survival or transition variables. For Ceanothus greggii, a 

sensitivity analysis by Regan et al. (2010) found the species to be slightly sensitive to 

changes in mean survival rate of individuals up to 26 years of age. Since changes in the 

survival rates were analyzed for both species in sensitivity analyses in the previous 

studies, we did not include these in our study. 

 Germination rates 

Ceanothus greggii- Baseline germination rate (GR) in the event of a fire was set 

to 1.8%, which includes first year seedling mortality, in keeping with the 2-year time 

step established for this model (Syphard et al. 2013).  However, germination is uncertain 

and could be affected by climate change. Therefore, for this study we also changed the 

GR by 20% to 300% of the baseline value at specified intervals (Supplemental Table 

3.1).   

Quercus engelmanii- The annual germination rate (GR) for Q. engelmanii was 

set at 1.6% with a standard deviation of 2.6%. This included seed predation and first 

year seedling mortality, since, like C. greggii, the stages in the matrix model were based 

on a 2-year time step (Conlisk et al. 2012). For this study, separate scenarios changed 
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the germination rate by 20% to 300% of the baseline value at specified intervals 

(Supplemental Table 3.1).   

Fecundity 

The average values and coefficients of variation of fecundity (described in 

Syphard et al. 2013 and Conlisk et al. 2012) were decreased by 50% and increased by 

150% to 350% of the baseline values at 50% intervals for both species.  The primary 

objectives of this were to determine whether increased fecundity could mitigate the 

impact of more frequent fire intervals and to ascertain whether population viability (as 

measured via EMA) is sensitive to variability in fecundity. Three different types of 

scenarios were implemented: a) average fecundity only was increased, b) both the 

average and the standard deviation were increased, and c) only the standard deviation of 

the fecundity was increased. This enabled us to separate the impacts of changes in 

average fecundity from changes in variation in fecundity. 

Fire 

Hazard functions based on Wiebull distributions specified the probability of an 

unplanned fire under a range of fire regimes; these probabilities were identical to those 

used in Syphard et al. (2013).  We examined the impacts of eight different average fire 

return intervals (10, 20, 30, 40, 50, 60, 70, and 80 years) on species viability.  We also 

investigated a variety of fire spread scenarios.  Baseline scenarios assumed fires could 

not spread between distinct patches.  Other scenarios compared different amounts of fire 

spread scenarios. For these scenarios, fire spread was modeled using the following 

dispersal equation: 
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M𝑖𝑗 = a exp (−D𝑖𝑗

𝑐
𝑏) , if D𝑖𝑗  <  D𝑚𝑎𝑥or D𝑖𝑗 = D𝑚𝑎𝑥 

where Mij is the probability of fire spread from populations i to j,  Dij is the distance 

between the two populations, b=0.88, c=0.34, Dmax=600, and a varied by fire spread 

scenario between 0.05, 0.1, 0.25, and 1. For comparison, we also included scenarios with 

regional fires (fires occur in all patches simultaneously) and with exact fire intervals (for 

each patch a fire occurs exactly once every x years, as opposed to using a random fire 

occurrence averaging an x-year fire return interval).   

Dispersal 

Ceanothus greggii:  C. greggii has been shown to have highly restricted dispersal 

with rare recolonization of extirpated patches (Holl et al. 2000).  Therefore, inter-patch 

seed dispersal was not included in the baseline models (Regan et al. 2010; Syphard et al. 

2013).  However, given that dispersal might be a key component of population 

persistence under shifting ranges in response to climate change, and long distance 

dispersal events can be difficult to document, we compared scenarios with various rates 

of dispersal, in part to gauge the amount of dispersal necessary to establish viable 

populations.   Dispersal was modeled using the following equation (identical to the fire 

dispersal equation, above): 

M𝑖𝑗 = a exp (−D𝑖𝑗

𝑐
𝑏) , if D𝑖𝑗  <  D𝑚𝑎𝑥or D𝑖𝑗 = D𝑚𝑎𝑥 

where Mij is the dispersal rate between populations i and j,  Dij is the distance between 

the two populations, b=0.88, c=0.34, Dmax=600, and a varied by dispersal scenario 

between 0.05, 0.1, and 0.25 (Supplemental Table 3.1).  Total dispersal from a patch 
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averaged 0.4%, 0.8%, and 2.5% for the three a scenarios, respectively; dispersal 

amounts varied by patch depending on its distance from other patches.  These 

parameters were chosen to be identical to those in the fire spread equation because they 

exhibit a curved dispersal function that allows for larger amounts of short distance 

dispersal and minimal long distance dispersal (Swab et al. 2012), and the varied a values 

present a variety of scenarios. These scenarios allow us to determine if a small level of 

seed dispersal might mitigate the impacts of variability for this species.  

Quercus engelmanii:  Dispersal of acorns between patches is primarily attributed 

to birds, in particular jays (Gomez 2003, Conlisk et al. 2012).  In baseline models, 

dispersal was incorporated using the above equation, where a=0.01, b=4, c=1, and 

Dmax=10.  This resulted in a dispersal rate averaging 6.9% of seeds from each patch.  

Although this dispersal rate is realistic, we wanted to determine if higher amounts of 

dispersal increase species viability.  Therefore, different dispersal scenarios were 

evaluated by increasing dispersal rates using the above equation and b=0.88, c=0.34, and 

Dmax=10.  The parameter a was varied across the values 0.05, 0.1, and 0.25 

(Supplemental Table 3.1).  Total dispersal from a patch averaged 17.8%, 35.6%, and 

76.8% for these three a scenarios, respectively.  Maximum dispersal was limited by 

patch size; less seeds dispersed to smaller patches.   

Carrying capacity variation 

We set the annual coefficient of variation of K to 10%, 25%, 50%, and 75% of 

the average carrying capacity for each patch (Supplemental Table 3.1).   Carrying 

capacity reflected the maximum density of plants in the largest-sized/older stages, and 
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were specific to a particular patch (sum of habitat suitability for all cells in the patch 

multiplied by the carrying capacity for one cell). Carrying capacity was scaled for 

younger/smaller sized stages with weights based on the sizes of these stages relative to 

the largest-sized stage (see Conlisk et al. 2012 and Syphard et al. 2013 for details).  

Conlisk et al. (2012) and Syphard et al. (2013) allowed carrying capacity to change 

deterministically in response to climate projections.  We use the same patches as in the 

initial timestep for those studies, but vary K around a stable mean. Allowing K to 

fluctuate annually provides one mechanism for studying how the population persistence 

might be affected by variation in climate, as it pertains to habitat suitability. 

Correlation of environmental stochasticity 

For Ceanothus greggii, Regan et al. (2010) found no impact of spatial correlation 

in variability of environmental stochasticity in fecundities and survival rates 

(environmental correlation) on the viability of the species. No similar analyses were 

performed for Q. engelmanii.  However, there is the potential for spatial environmental 

correlation of vital rates, in concert with variability in carrying capacity or dispersal, to 

have cumulative effects on population persistence.  Climate change could potentially 

impact species on micro or macro scales (Adger et al. 2005), and therefore it is 

worthwhile to determine the effect of aligned changes in variability.  We ran a number 

of scenarios with 100%, 50%, and 25% spatial correlation of environmental stochasticity 

(Supplemental Table 3.1).  These percentages represent the similarity of environmental 

fluctuations of fecundity, survival rates, and carrying capacity between patches within a 

year. For all scenarios, environmental stochasticity was positively correlated to the same 
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degree across all patches regardless of distance.  Different scenarios evaluated the 

impact of spatial correlation in environmental stochasticity alone, and correlated with 

with variation in dispersal and carrying capacity (Supplemental Table 3.1).  

Simulations and scenarios 

We used RAMAS GIS 5.0 (Akçakaya 2005) to link the metapopulation models 

with the habitat suitability maps for current species distribution.  For each simulation, 

environmental and demographic stochasticity were incorporated through Monte Carlo 

simulations for 1500 replications over a 100 year time period. Vital rates were 

uncorrelated between patches except when noted. Population viability was assessed 

using expected minimum abundance (EMA) as a proportion of initial abundance (IA) for 

consistent comparison across regions. EMA is the average of the smallest population 

size occurring within the 100 year time period across each of the 1500 simulations 

(McCarthy & Thompson 2001). 

 

Results: 

Survival, Germination, and Fecundity 

Ceanothus greggii:  Increasing variability in survival rates results in decreased in EMA 

(Figure 3.1a, Supplemental Table 3.1). Interestingly, the EMA reduced substantially (to 

between 48 and 75% of baseline values) when the coefficient of variation for survival 

rates increased by 0.5%. Further decreases in EMA as the CV increased did not go 

beyond 36%.  Changes in EMA as a function of germination rate were small until post-

fire germination rate decreased to around 40% of the baseline rate (Figure 3.1c). This 
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resulted in decreased EMA; this effect was greater for optimal fire return intervals (FRI) 

of 30 to 50 years, with EMAs decreasing to 20-38% of the baseline for the 10% 

germination rate, as compared with 44-53% for longer fire intervals, for example.  

Increases in germination rate did not impact EMA.  

EMA increased as fecundity increased (Figure 3.2a), irrespective of whether the 

coefficient of variation (CV) in fecundity increases as well (Figure 3.2c); differences in 

EMA with and without increases in CV of fecundity alone are negligible, varying 96-

106% for most scenarios (Figure 3.2e).  Increases in EMA were larger for shorter fire 

return intervals with the largest range of EMAs  (varying 113-121% from baseline) 

observed for 20 year fire return intervals and smaller differences (between 102 and 

107%) for 70-80 year fire return intervals.  Increased variability in fecundity (in the 

absence of a concomitant increase in average fecundity) resulted in a slight decrease in 

EMA for all average fire return intervals, with a slightly larger range of EMAs when 

FRIs were 20-40 years.  Changes were similar for all fire return intervals except 10 year 

intervals, which was dominated by extinction.   
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 Figure 3.1 Expected minimum abundance (EMA)/Initial abundance for Ceanothus 

greggi (first column) and Quercus engelmannii (second column) scenarios for fire return 

intervals ranging from 10 to 80 years. Initial abundances is the number of individuals at 

the beginning of the scenarios. A & B- Varied coefficient of variation for survival rates.  

Treatment labels “CV #” refer to the set coefficient of variation, ranging from 0.001 to 

0.75. C & D- Varied germination rate. Treatment labels “GR #” refer to the amount the 

germination rate is varied by in each simulation.  This varies from 10% to 300% of the 

original value. 
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 Figure 3.2 Expected minimum abundance (EMA)/Initial abundance for Ceanothus 

greggii (first column) and Quercus engelmanii (second column) scenarios for fire return 

intervals ranging from 10 to 80 years.  A & B- Increased fecundity scenarios. C& D- 

Increased fecundity and annual variation in fecundity.   E & F- Increased annual 

variation in fecundity.  Treatment labels “Fec #”, “F&CV #”, and “CV #” refer to the 

percentage from baseline fecundity or the coefficient of variation was altered, 50% to 

300%. 
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Quercus engelmanii:  For Quercus engelmanii, lower CV’s in survival rates 

(from baseline conditions) resulted in higher EMAs; as CV’s increased the EMA 

decreased (Figure 3.1b). Changes in the germination rate resulted in substantial increases 

(165 to 327% for germination rates increasing by 300%) and decreases (17.9 to 28% for 

germination rates decreasing to 10% of the baseline) in EMAs following the direction of 

change in the average rate (Figure 3.1d).  Fire return interval influenced the species 

response to altered germination rate; scenarios with 10 year FRIs were less negatively 

influenced by reductions in germination rate with a maximum of 29% of baseline as 

compared with 18% of baseline for most other intervals.  Ten year FRIs were also more 

positively influenced by increases when compared with longer intervals (with a max of 

328% increase in EMA as compared with 166-225% increases for the other FRIs).  

Unlike C. greggii, changes in average fecundity for Q. engelmannii had dramatic 

effects on EMAs with EMA increasing to 162-281% or decreasing to 54-51%with 

increases or decreases in average fecundity, respectively (Figure 3.2b). Changes in the 

coefficient of variation in fecundity had negligible effects on EMAs (Figure 3.2d, 3.2f), 

EMAs were between 94-102% of baseline EMAs.  The amount of change in EMA 

observed with changes in fecundity was similar for all fire return intervals. 

Fire, Environmental Correlation 

Ceanothus greggii:  For all C. greggii scenarios, EMA was nearly zero for the 10 

year fire return interval (FRI), irrespective of any changes in parameter values.  Thus, 

the results reported here are limited to 20-80 year FRI.  Results for all scenarios except 

exact fire intervals and the lowest germination rates had the same shape of curve in 
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response to fire, with 10 year intervals resulting in extinction and optimal intervals 

between 30-50 years. 

Expected minimum abundance (EMA) decreased (Figure 3.3a) as the spatial 

correlation of fires increased (i.e. as the spatial arrangement of fires transitioned from 

patchy spatially-independent fires to very large regional fires with high fire spread 

across patches).  Exact, or uniform, fire return intervals resulted in higher EMAs for the 

20-40 year FRIs than scenarios with stochastic fires (e.g. wildfires or unplanned fires).  

There was minimal (90-113%) difference in EMAs between scenarios with wildfires or 

exact fire intervals when intervals were longer than 40 years. Changes in correlation 

rates of environmental stochasticity of survival, fecundity, and K caused EMAs to vary 

only between 98-103% of baseline values (Supplemental Table 3.1).  

Quercus engelmanii:  Changes in fire interval affected Q. engelmanii similarly 

for all scenarios—longer FRIs resulted in higher EMAs. When fire was strongly 

spatially correlated (fire dispersion rates of 1.0 or 0.5) EMAs were lower than when fires 

were patchy (i.e. spatially independent or with dispersion rates of 0.25 or 0.1) (Figures 

3b).  Unlike C. greggii, exact, or uniform, fire return intervals made little (81-100% of 

baseline) difference to EMA compared with stochastic fire return intervals, for all 

average FRIs. Increasing correlation of environmental stochasticity of survival, 

fecundity and carrying capacity, had a larger affect on EMAs, with lower EMAs (to 65% 

of baseline) exhibited as spatial correlation of environmental stochasticity in 

demographic rates increased (Supplemental Table 1). Increasing spread of fire between). 
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Figure 3.3  Expected minimum abundance (EMA)/Initial abundance for Ceanothus 

greggii (first column) and Quercus engelmanii (second column) scenarios for fire return 

intervals ranging from 10 to 80 years. A & B- Varied fire scenarios. Treatment labels 

“Fires disp #” refer to the a value from equation 1, determining the dispersal of fire 

between patches.  A higher value means a larger spread of fire.  C & D- Varied amounts 

of correlation of environmental stochasticity of fecundity, survival rates, and carrying 

capacity between patches.  All patches have equal correlation within each scenario.   

Treatment labels “Corre #” refer to the amount of correlation between patches.   
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patches minimally impacted EMAs (to 71-97% of baseline) until spread was larger 

(Disp=0.5 or 1, Figure 3.3b  

Dispersal, Environmental correlation, and varying carrying capacity 

Ceanothus greggii: Correlation in environmental stochasticity of fecundity, 

survival rates, and carrying capacity had no effect (to 99-103% of baseline) on EMA 

(Figure 3.3c).  Since the species is considered to have no long distance dispersal, we 

only included small amounts of dispersal in the dispersal scenarios.  Increasing seed 

dispersal increased EMAs up to 131%, but most were only increased to 104-113% 

(Figure 3.4).  This species benefitted more from dispersal when experiencing shorter 

FRIs (20-40 years, EMAs were 109-131% as compared with baseline) than longer 

intervals (EMAs were 104-113%).  Spatial correlation in fecundity across patches did 

not affect these results (Supplemental Figure 3.1) 

Annual variability in carrying capacity had a large impact on results (Figure 

3.5a).  Even including a 10% annual variation in carrying capacity resulted in declines to 

between 95-82% when compared with baseline EMA.   25% or higher variation resulted 

in EMAs of 64-72% of baseline EMAs.  Spatial correlation in variability in carrying 

capacity (indicating synchronous fluctuations in K across patches) did not affect these 

results (Supplemental Figure 3.3).  When carrying capacity was set with a ceiling density 

dependence function instead of a density dependence function where population size 

gradually decreased to K whenever K was exceeded, the impact of variability in carrying 

capacity was increased (Figure 3.5c), but correlated fluctuations in K still had no impact 

on results (Supplemental Figure 3.4).   
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Figure 3.4  Expected minimum abundance (EMA)/Initial abundance for A) Ceanothus 

greggii and B) Quercus engelmanii scenarios for fire return intervals ranging from 10 to 

80 years Treatment labels “Disp #” refer to the a value from the seed dispersal equation.  

A higher value means a larger amount of seed dispersal between populations. “Baseline” 

has a small amount of dispersal for Quercus engelmanii, and no dispersal for Ceanothus 

greggii. 

Quercus engelmanii: Increasing correlation of environmental stochasticity 

lowered EMAs up to 65% of baseline EMAs (Figure 3.3d, Supplemental Table 3.1), and 

dispersal seemed to have little impact on this (Supplemental Figure 3.2).  Dispersal is 

considered to be part of the life cycle for Q. engelmanii, and so was included in all 

models.  However, for the dispersal scenarios the amount of dispersal was increased.  

Increasing dispersal appeared to have no impact on EMAs (with EMAs between 99-

103% of baseline) until a was set to 0.25 in the equation governing dispersal rates, 

resulting in lower EMAs (79-96% of baseline EMAs, Figure 3.4). This impact increased 

with increasing fire return interval.   
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Figure 3.5  Expected minimum abundance (EMA)/Initial abundance for Ceanothus 

greggii (first column) and Quercus engelmanii (second column) scenarios for fire return 

intervals ranging from 10 to 80 years. A & B- with user defined density dependence. C 

& D- with ceiling carrying capacity.  Treatment labels ‘CVK #” refer to the percentage 

of variation designated for the carrying capacities of the scenarios.  The “Base” scenario 

has no environmental correlation or CVK. 
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Table 3.1 Summary of results for Ceanothus greggii (CEGR) and Quercus engelmanii 

(QUEN) for various scenarios. (+) indicates an increase in expected minimum 

abundances given changes in the parameter, (-) indicates a decrease, and (0) indicates no 

change in EMAs. 

Change CEGR QUEN 

Survival variability - - 

Germination 

change 

0/- +/- 

Fecundity change 0 + 

Fecundity 

variability 

0 0 

Fire spread - 0/- 

Env Corr 0 - 

Carrying capacity 

variability 

- - 

 

When annual variability in carrying capacity increased, EMAs declined; larger increases 

in variability in K resulted in larger decreases in EMA up to 0.02-003% of baseline 

EMAs (Figure 3.5b, Supplemental Table 1). Even a 10% annual variation in carrying 

capacity (K) reduced EMAs to 85-90% of baseline, while 50 and 75% variation in K 

resulted in near extinction.  The impact of variability in K was increased when a ceiling 

density dependence function was used instead of a density dependence function where 

population size gradually decreased to K whenever K was exceeded (Figure 3.5d).  With 

a ceiling carrying capacity, even 10% variability in K resulted in dramatic declines in 
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EMA (to 16-23%) over scenarios without variability. Spatial correlation in variability in 

carrying capacity had no impact on these results, whether a user defined density 

dependence function was used (Supplemental Figure 3.5) or ceiling (Supplemental 

Figure 3.6). 

 

Discussion 

What source of change had the greatest impact on EMAs? 

The results of this study provided insights into the response of the species to change 

in life history traits, carrying capacity, dispersal, and fire (Table 3.1).  Overall, the 

influence of change on the species depended on the source of variation; for instance 

changes in spatial correlation of environmental stochasticity had little to no impact on 

expected minimum abundances (EMAs), while variability in carrying capacity had a 

large impact for both species.  

Vital rates (survival, germination rate, fecundity):  

As expected, both species experience declines in EMA when averages of vital rates 

decline or variability increases. For C. greggii in particular, changes in vital rate 

parameters did not have a large impact on expected minimum abundances.  Since the 

baseline model for C. greggii has high seed production, the species was robust to 

changes in mean and variation of fecundity.  Regan et al. (2010) showed C. greggii to be 

sensitive to changes in survival rates of individuals up to 26 years of age. In this study, 

the low variability in survival rates of the baseline Ceanothus greggii model meant that 

changes in survival rate variability were all increases in variability and thus resulted in 
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lower EMAs.   Given the high rates of survival and fecundity for this species, plasticity 

of vital rates is unlikely to mitigate the impact of more frequent fires for this species  

Changes in vital rates, particularly changes in averages of germination rate and 

fecundity, had a greater impact on the Q. engelmanii. indicating that plasticity in 

fecundity could potentially mitigate the negative influence of stressors such as climate 

change or altered fire regimes. Conlisk et.al (2012) showed that Q. engelmanii was 

sensitive to changes in sapling survival rates, but not to changes in other survival rates.  

However, results from this study show the oak to be affected by variability in survival 

rate, which is likely in part due to the stage based model- for instance, variability in the 

survival rate of all adults affects more individuals than variability in survival rate of 

individuals of one age.      

Processes (Fire, Environmental correlation, dispersal, carrying capacity):  

Changes in average fire interval and spread had a greater impact on Ceanothus 

greggii, though Quercus engelmanii was affected by changes in fire return interval as 

well.   For both species, EMAs were lower with increased spread of fire, i.e. larger fires.  

Despite differences in response to fire, for both species EMAs are reduced when fires are 

larger. This corroborates results for C. greggii on an artificial spatial arrangement of 

patches on a smaller scale (Regan et al. 2010).  This finding could be important to 

conservation efforts, as extreme fire weather is the dominant influence on area burned 

and fire severity (McKenzie et al. 2004).  Larger and more frequent fires are also 

increasingly likely given increases in invasive grasses (Keane et al. 2008) and climate 

change (Driscoll et al. 2010).  However, reductions in EMA from larger fires only occur 
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when fire spread occurs at a high degree across the landscape.  Therefore, average fire 

return interval is likely to be the primary influence of fire because fires are unlikely to 

reach the size that triggered declines in EMA in our models.   

. Overall, results suggest changes in vital rates and fire regime can have a large 

influence on both of these species.  The type of change with the greatest impact on 

expected minimum abundances differs between species, with vital rate changes having a 

larger impact on the resprouter and changes in fire regime having a larger impact on the 

obligate seeder.   

 

Were changes in means or changes in variability more important? 

 Both directional changes in means and changes in the amount of variability 

impacted the species, and neither had a clearly more significant impact on species 

viability.  However, it was clear that variability of fire and carrying capacity impacted 

both species, and therefore variability of processes has the potential to be more 

important than direct changes in vital rates. Variability is inherent in the environment, 

and understanding and predicting fluctuations in populations is a central focus of many 

ecology studies (Morris and Doak 2004, Evans et al. 2010). Climate change is predicted 

to increase environmental variability (Katz and Brown 1992) and may also result in 

selection for different vital rates, although this prospect is unlikely given the rapid pace 

of current climate change (Davis and Shaw 2001).  If environmental variability translates 

into changes in variability or means of life history parameters, carrying capacity, or 

altered fire return intervals, viability analyses ignoring the variability of population 
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responses could seriously underestimate species vulnerabilities to climate change. 

Predictions of species responses to climate change for conservation purposes typically 

use associations between current climate and spatial distribution to predict future 

distributions (Thomas et al. 2004, Elith et al. 2006). More detailed models link life 

history characteristics with bioclimatic habitat models, and include other global changes 

such as fire and urban growth (Keith et al. 2008, Lawson et al. 2010, Swab et al. 2012, 

Fordham et al. 2012, Syphard et al. 2013). Though these studies often include 

directional changes in carrying capacity (K) based on predicted changes in habitat 

suitability, annual variability in K is typically ignored.  Our results show that even for 

populations with no directional trend in carrying capacity, annual variability in K can be 

a driver affecting EMAs (Figure 3.5), with bad years adversely affecting overall species 

viability (Roughgarden 1974).  Longer lived species are generally thought to be less 

sensitive to increasing interannual variation in vital rates (Morris et al. 2006, Dalgleish 

et al. 2010).  Long lived species also tend to have lower maximum growth rates and thus 

may take longer to recover from bad years.  This could be somewhat mitigated by a 

slower response to declines in K; scenarios with a ceiling carrying capacity and thus an 

immediate drastic response to decreases in carrying capacity resulted in lower expected 

minimum abundances than scenarios with a tempered response to population exceedance 

of  K (Figure 3.5).  However, in this study even in simulations without directional 

changes in carrying capacity in response to climate change, large annual variability in 

carrying capacity caused near extinction for some scenarios, and reduced expected 

minimum abundances for both species (Figure 3.5).  Changes in means also impacted the 
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species, though it was increases variability which tended to cause more dramatic 

reductions, with EMAs as low as 2-12% of baseline scenarios (Supplemental Table 1).  

Thus, increased variability should be considered a bigger threat in most situations. 

 

How might differences in responses across the plant functional types highlight how 

different life history traits could mitigate or exacerbate increased variability? 

Much of the difference in responses of the two species to changes in variability 

and means can be attributed to differences in functional type, based here on response to 

fire.  For all scenarios tested in this study, fire return interval was the most significant 

factor for the obligate seeder, Ceanothus greggii.  This corroborates with other studies 

indicating that fire return interval is a key component to long-lived obligate seeders’ 

viability (Regan et al. 2010, Lawson et al. 2012, Syphard et al. 2013). The main concern 

for this species (and other obligate seeders) under global changes is frequent fire (Regan 

et al. 2010, Swab et al. 2012, Syphard et al. 2013).  The obligate seeder was only 

affected by changes in mean germination rate when they were dramatically reduced, and 

was not greatly impacted by changes in fecundity.  C. greggii tends to have large 

underground seedbanks of up to 2000 seeds per m2 (Zammit & Zedler 1988), and thus it 

is likely more limited by carrying capacity after emergence than by germination rate or 

fecundity itself, especially since germination tends to occur directly post fire.  

Developing a large seedbank is an essential characteristic for obligate seeders who 

experience germination only in fire years.  Obligate seeders therefore are unlikely to be 

mitigated from the impacts of fire or climate change through adaptive differentiation of 
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vital rates across a changing landscape, even if time scales of such environmental 

changes were congruent with the time scale that adaptation occurs on. Increases in 

fecundity in particular are unlikely to bolster species viability in response to frequent 

fire.  Even increasing mean fecundity by 350% did not increase EMA for C. greggii 

when average fire return intervals were 10 years (Figure 3.2). Increased mean fecundity 

did improve results for the 20 year fire return intervals somewhat, however increases 

were relatively small. 

Viability of the resprouter, Quercus engelmanii, is more robust to fire frequency 

than it is for C. greggii—the 10 year fire return interval does not always cause 

extinction, and though EMAs increase with fire return interval, differences between 

average fire return interval length is often negligible.  The resprouter responded more 

negatively to high levels of fire spread than regional fires, indicating that fire frequency 

has more of an impact than spatial correlation of fires.  Quercus engelmanii was more 

sensitive to changes in life history parameters than the obligate seeder.  Futhermore, its 

population vital rates exhibit greater variation than those of C. greggii (Conlisk et al. 

2012, Syphard et al. 2013).  In particular, oaks are known for masting events which 

dramatically increase fecundity in some years (Espelta et al. 2008).  Conlisk et al. (2012) 

modeled the response of the species to various masting scenarios, and found that 

increased masting when coupled with decreased predation of seeds resulted in higher 

expected minimum abundances. This aligns with our results, indicating that EMA is 

raised by increases in the amounts of seedlings through any route—increased fecundity, 

germination, or reduced predation.   Since EMAs of Q. engelmanii were particularly 
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sensitive to changes in germination rates, studies on the effect of climate change and 

other threats on the germination rate of this species would provide insight into the 

species’ overall response to climate change. Changes in germination rate might allow the 

species to mitigate other negative impacts of climate change or altered fire regimes.  

 

Conclusions 

 Typically, the impact of global change processes on species viability is 

considered on large scales.  At local scales, however, population dynamics are influenced 

by vital rates. Therefore, it is important to consider how changes in vital rates and 

changes in processes affect species.     For instance, species might be threatened by 

climate even if the spatial distribution of the species does not change..  Additionally, 

functional type can impact species responses to global changes, and species could be 

vulnerable to other threats alongside climate change.  This has implications for 

conservation planning- if different functional types have different vulnerabilities to 

global changes, then plans must adapt accordingly.  Focusing on the development of 

reserves to protect land projected to have suitable habitat under climate change while 

ignoring the potential threat of altered fire regimes could result in species loss.   Thus in 

order to conserve species, it is necessary to incorporate multiple threats, life history 

traits, and potential responses of vital rates and processes to climate changes in 

projections of species responses to climate change. 
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Supplemental Material from Chapter 1                                                                            

Appendix A- Table of sensitivity analyses results 

Supplemental Table 1.1 Results of sensitivity analyses for a spatially explicit 

demographic metapopulation model for the Australian shrub Leucopogon setiger. 

Numbers indicate proportion of change from baseline (the vital rates used for the model 

in all other simulations) for parameters that induced a greater than 0.10 proportional 

change in expected minimum abundance (EMA), when the parameter was perturbed by 

10%. No value indicates that the proportional change in EMA was less than the change 

in the parameter. A “+” sign indicates that the parameter was increased by 10%, “-” sign 

indicates it was decreased by 10%. “Survival” refers to the diagonal within the matrix, 

when individuals stay in the same stage. “Transition” refers to sub diagonals within the 

matrix, when individuals are transitioning between stages. “Fecundity” refers to seed 

production. For example Stage 3 Transition Stage 5+ means that the transition rate from 

stage 3 to stage 5 was increased by 10%. 

 

Parameter change Fire return interval 

 5 10 15 20 25 30 35 

Seed Survival+ 1.834 0.825 0.420 0.371 0.359 0.356 0.429 

Seed Survival- 0.625 0.542 0.447 0.393 0.376 0.371 0.345 

Year1 Transition+ 0.642 0.347 0.189 0.159 0.129 0.120 0.159 

Year1 Transition - 0.478 0.315 0.223 0.169 0.150 0.170 0.130 

Year2 Transition - 0.491 0.319 0.209 0.184 0.177 0.165 0.135 

Year2 Transition + 0.341 0.234 0.135    0.115 

Year3 Transition  - 0.451 0.307 0.216 0.178 0.169 0.175 0.121 

Year3 Transition + 0.369 0.246 0.127     

Year4 Transition Stage 1+        

Year4 Transition Stage 2+ 0.118       

Year4 Transition Stage 3+ 0.154 0.123      
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Year4 Transition Stage 1- 0.171       

Year4 Transition Stage 2- 0.216 0.108      

Year4 Transition Stage 3- 0.290 0.117      

Stage1 Survival- 0.313 0.279 0.267 0.270 0.278 0.297 0.277 

Stage1 Transition Stage 2-        

Stage1 Transition  Stage 3-  0.129      

Stage1 Survival+ 0.199 0.210 0.195 0.216 0.211 0.225 0.301 

Stage1 Transition Stage 2+        

Stage1 Transition Stage 3+        

Stage2 Survival- 0.482 0.463 0.421 0.401 0.416 0.422 0.407 

Stage2 Transition Stage 3- 0.229 0.130 0.122 0.111 0.114 0.111  

Stage2 Transition Stage 4- 0.110       

Stage2 Survival + 0.383 0.430 0.378 0.372 0.387 0.400 0.459 

Stage2 Transition Stage 3+ 0.105 0.127     0.133 

Stage2 Transition Stage 4+        

Stage3 Survival - 0.341 0.196 0.163 0.135 0.131 0.141 0.120 

Stage3 Transition Stage 4- 0.722 0.673 0.630 0.601 0.609 0.619 0.609 

Stage3 Transition Stage 5-        

Stage3 Survival + 0.722 0.626 0.480 0.461 0.470 0.519 0.627 

Stage3 Transition Stage 4+ 0.262 0.206 0.143 0.120   0.136 

Stage3 Transition Stage 5+        

Stage4 Survival - 0.678 0.700 0.699 0.705 0.716 0.730 0.740 

Stage4 Transition Stage 5-        

Stage4 Survival + 0.611 0.627 0.420 0.406 0.435 0.508 0.677 

Stage4 Transition Stage 5+        

Stage5 Survival + 0.112 0.247 0.167 0.149 0.183 0.209 0.313 

Stage5 Survival - 0.210 0.209 0.195 0.201 0.221 0.242 0.251 

Stage1 Fecundity+        

Stage1 Fecundity - 0.184       

Stage2 Fecundity +        

Stage2 Fecundity -        

Stage3 Fecundity + 0.205       

Stage3 Fecundity - 0.184       

Stage4 Fecundity+ 0.276 0.153      

Stage4 Fecundity- 0.247 0.172 0.118     

Stage5 Fecundity+        

Stage5 Fecundity-        
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Supplemental Material from Chapter 2                                                                    

Appendix B-Metapopulation model methods 

Survival rates 

 A stochastic matrix model with seed, juveniles, and rosettes was developed for 

Carlina vulgaris. Probability of flowering is generally a function of the size of the 

individual rosette in the previous year (Klinkhamer et al. 1991, 1996; de Jong et al. 

2000; Rose et al. 2002). Within one year, seeds are integrated into the seedbank or 

emerge as seedlings and become juveniles, which do not produce seeds (Klinkhamer et 

al. 1996; de Jong et al. 2000). Survival of juveniles (first-year, non-flowering plants) 

was calculated by averaging the survival probabilities reported in Klinkhamer et al. 

(1996), who provided data for seedling survival over a number of years for Dutch 

populations. At the onset of the second year, juveniles become adult rosettes, hereafter 

termed “rosettes”. In subsequent years, rosettes may flower and die or stay as rosettes. 

Rosette survival and transition values were based on data from Becker et al. (2006) and 

additional unpublished data from Becker (pers. comm.). Standard deviations were 

calculated from the variation in these data across years. 

 Disturbance, typically in the form of grazing, is associated with increased growth 

of Carlina vulgaris populations (Löfgren et al. 2000); without disturbance, population 

growth rates tend to be less than one. Several studies found declining populations of C. 

vulgaris in the landscape (Klinkhamer et al. 1991, 1996; Löfgren et al. 2000; Rose et al. 

2002). However, they also found persisting or increasing populations, and the formation 

of new populations. Since disturbance is required to achieve positive population growth, 
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it is thought that C. vulgaris is characterized by short term dispersal and frequent new 

establishment of populations rather than stable population dynamics (Klinkhamer et al. 

1996). For our model, patches (clusters of adjacent cells of suitable habitat, described 

above) are at least one kilometer square; thus, local extinction, short-distance dispersal 

and local recolonization events all take place within the patch. However, using a 

metapopulation model with multiple patches allows us to evaluate how changing habitat 

suitability due to climate change impacts the species at the landscape scale.  

 Juvenile survival differed among studies. In Sweden, juveniles were found to 

have >95% survival during their first season (Löfgren et al. 2000). However, 

Klinkhamer et al. (1996) found that in the Netherlands 30-80% of juveniles survived to 

June of the year after germination. Since survival rate seems to depend on characteristics 

within microsites and the cell size for the matrix model will encompass a variety of 

microsites, we averaged these values to determine a transition rate of (0.63±0.11, Table 

3) for juveniles to rosettes, which encompasses survival of juveniles. A survival rate for 

rosettes (0.61±0.14, Table 3) was determined using data on individuals from 5 locations 

across Europe (unpublished data, Becker, pers. comm). 

 

Seed Production and Emergence 

Carlina vulgaris generally does not flower or produce seeds in the first year after 

germination, and many plants will delay flowering to a third or later year (Klinkhamer et 

al. 1991, 1996; Rose et al. 2002). Mean age at flowering in a British study was 3.04 

years with a maximum of 8 years (Rees et al. 2006). Optimal size for flowering is a 
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tradeoff between increase in seed production and mortality risk (de Jong et al. 2000). 

Probability of flowering increases with rosette diameter and weight, and seed production 

is proportional to plant biomass (Klinkhamer et al. 1991, 1996; de Jong et al. 2000; Rees 

et al. 2006). Individuals generally die after producing seed. Thus, the effect of age is 

indirect: older plants are larger and, thus, more likely to flower. Since the matrix model 

uses stages rather than ages, this results in a high annual mortality rate for the rosette 

stage with fecundity averaged between non reproducing and reproducing individuals on 

a yearly basis. 

In the matrix model, fecundity was represented using unpublished data from 

Becker. Rather than have a separate stage for flowering plants, this model averaged seed 

production across all living individuals. The average number of seeds produced by a 

flowering individual was multiplied by the proportion of reproductive rosettes, and 

divided by the total number of rosettes. This resulted in average fecundity per individual 

per year of 33.13. Seeds of C. vulgaris are produced in September to December, and 

seedlings emerge from April to June (Klinkhammer et al. 1996; de Jong 2000; Rose et 

al. 2002). Carlina vulgaris tends to accrue only small and transient seedbanks (van 

Tooren and Pons 1988; Eriksson and Eriksson 1997; Thompson et al. 1997; de Jong et 

al. 2000; Rees et al. 2006), with disappearance of seeds from the seedbank mainly due to 

germination (Pons 1991). De Jong et al. (2000) retrieved 15% of seeds sown as juveniles 

the first year after sowing, and 2% the second and third year after sowing. Therefore, 

within a year some seeds will enter the seedbank while others will emerge as juveniles.  
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Establishment of seedlings can be limited by available microsites (Klinkhamer et 

al. 1996; Löfgren et al. 2000; Rose et al. 2002), or by seed availability (Greig-Smith and 

Sagar 1981; Löfgren et al. 2000). The percentage of seeds that germinate varied among 

studies. In lab trials, 60-100% of Carlina vulgaris seeds germinated (van Tooren and 

Pons 1988). Greig-Smith and Sagar (1981) found 10-17% emergence in open plots, and 

63-65% in plots protected from predators (survival March-June). Few seedlings survive 

to the end of the first year. Klinkhamer et al. (1996) found that 9.4 ±1.9% of seeds 

survived to seedling establishment one year later in a stable population in good habitat, 

while a declining population had 0.5±0.3% survival. De Jong et al. (2000) found 15% of 

seeds survived as seedlings the following year. Becker (2005) found that 2.5% of sown 

seeds produced seedlings which survived until summer. Since the model incorporated 

both declining and growing areas within each patch and included survival through the 

first year, we used an average of the four values which included seed and seedling 

mortality over a year (6.85% ± 0.57485, Table 3), and multiplied this by the number of 

seeds produced to estimate the transition rate between rosettes and juveniles 

(2.269±1.937, Table 3).  

Transition from rosettes to seeds in the seedbank included 30% of the fecundity 

(9.941±8.483 seeds per individual per year, Table 3). In subsequent years, seeds in the 

seed bank had a 0.3±0.03 annual survival rate. Seedbank survival combined with a 

6.85% germination rate results in 2% emergence of the original seedbank in the second 

year and less than 1% of the seed cohort remaining by the 5th year. This aligns with 

results from de Jong et al. (2000). 
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Most seed dispersal occurs within a 10 m radius of the parent plant (Greig-Smith 

& Sagar 1981; Löfgren et al. 2000), and is generally limited to tens of meters (Rees et 

al. 2006). Seeds are equipped with a pappus and may be dispersed by wind, but the 

pappus easily detaches and seeds are heavy, so few seeds are dispersed over long 

distances (Greig-Smith and Sagar 1981; Rees et al. 2006). Thus dispersal was excluded 

except in a sensitivity analysis as the distance between patches is beyond 1 km. 

 

Initial abundance  

 Initial abundance was estimated using information from Jakobsson & Eriksson 

(2005), who found the number of flowering individuals in a 3.14 km2 circle to average 

1029.28 (or 327.8 per km2) over two different Swedish counties. The percentage of 

individuals flowering per year averaged 20% (Klinkhamer et al. 1996), so after 

including non-flowering individuals the density per 1 km2 would be 1639 individuals. 

Since the cell size used for the models was 0.0625km2, the actual density per cell was set 

at 102. The number of flowering individuals varied greatly between 2 km2 circles 

(Jakobsson & Eriksson 2005), so for comparison we ran simulations with a range of 

initial abundances: 10%, 50%, 150%, and 170% of the above density (spanning the 

minimum and maximum densities found by Jakobsson & Eriksson 2005). In some places 

abundances may be much higher than this (Matthies personal observation), so these 

numbers are likely not an accurate estimation of total population size. However, since 

the numbers are kept the same between simulations, comparing results from different 
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scenarios reflects relative performance of the scenarios. The total initial population was 

distributed across stages in the model according to the stable stage distribution.  

 

Carrying capacity and density dependence 

Limitation by carrying capacity, K, means that all suitable habitats in the 

landscape are occupied (Münzbergová & Herben 2005). At a local scale (e.g. within 

each patch), the population is limited by microsite availability (Münzbergová & Herben 

2005). Thus, while each patch in the model is climatically suitable for Carlina vulgaris, 

in reality within each patch the distribution would be limited to recently disturbed 

grasslands. To provide a plausible estimate for carrying capacity the maximum observed 

density (1710 flowering individuals per 3.14 km2 circle) was scaled to account for the 

availability of suitable microsites; K was set at 2723 rosettes per km2, or 170 individuals 

per cell. Total K for each patch is the sum of K across all cells within the patch. 

The carrying capacity (defined here as the maximum number of individuals that 

can be accommodated per habitat patch) was based on available space and thus depends 

on the size of plants. Carrying capacity could potentially be greater for smaller plants 

than for larger plants. Since juveniles take up proportionally less space per plant than 

rosettes, the carrying capacity for juveniles could reasonably be expected to be larger 

than the carrying capacity for rosettes; thus we set the carrying capacity for rosettes to be 

9.5% the carrying capacity for juveniles. In this way the plants in each stage are 

weighted, relative to the largest-sized rosette stage, to calculate a “stage equivalent” total 

abundance for comparison to the rosette-specific carrying capacity. These calculations 
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were based upon the difference between the maximum observed seedling abundance per 

1 m2, (400, Rees et al. 2006) and the maximum observed for rosettes (34, Klinkhamer et 

al. 1996). Density dependence is primarily exhibited during recruitment (Rees et al. 

2000; Rose et al. 2002); however, adult density can impact plant growth (Rose et al. 

2002). When populations exceed carrying capacity, it is likely that mortality would be 

increased as well. Within the model, a ceiling density dependence function reduced the 

population to K by the following time step whenever the population exceeded K.  
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Appendix C- Table of Sensitivity analysis results 

Supporting Table 2.1. Sensitivity analysis for life history parameters. Each matrix 

parameter was perturbed by + or – 10%. The resulting expected minimum abundance 

(EMA) was compared with the ‘baseline’ EMA (home matrix with no changes in 

parameters). A positive change in transition values between stages is indicated by 

“Stage1+Stage2”, with three possible stages: seeds, juveniles, and rosettes. When the 

change in the resulting EMA is more than 10%, the model is considered to be sensitive 

to that parameter. The model is somewhat sensitive to those parameters highlighted in 

light orange, and more sensitive to those highlighted in darker orange.  

Scenario 

Percent change 

from Baseline 

Duration 50 0.249 

Duration 250 0.228 

Juvenile+Rosettes 0.131 

Duration 150 0.125 

Rosette+Juvenile 0.115 

Rosette-Juvenile 0.108 

Juvenile-Rosette 0.104 

Rosette- 0.074 

Rosette+ 0.060 

Seeds+Juveniles 0.039 

Seeds-Juveniles 0.034 

Rosette+Seeds 0.031 

IA -70% 0.017 

IA -10% 0.014 

Juvenile- 0.010 

IA -90% 0.010 

IA +90% 0.008 

IA -50% 0.008 

Rosette-Seeds 0.005 

Initial abundance +10 0.004 

Juvenile+ 0.003 

IA +70% 0.002 

IA +50% 0.001 
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Appendix D- Supplemental Figures 

 

Supporting Figure 2.1. Habitat suitability factor versus lambda (average population 

growth rate) for the 25 various translocations performed on Carlina vulgaris individuals. 

Colors and shapes indicate origin of the individuals. Lambda values are the dominant 

eigenvalues of matrices developed for each translocation scenario with survival rates, 

fecundity, and transition values calculated using data from the translocation experiment. 
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Supporting Figure 2.2. Seed production of reproducing individuals (based on rosette 

size) versus bioclim factors at the location grown (colors and shapes indicate location of 

origin). 
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Supporting Figure 2.3. Climate factor Bio 4, precipitation seasonality versus predicted 

seed production (based on rosette size) for reproducing Carlina vugaris individuals. 

Each Figure shows individuals originating at each of the five different translocation 

sources. 
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Supporting Figure 2.4. Expected average seed production per reproducing individual of 

Carlina vulgaris (grouped by site of planting), when planted at home and translocated to 

other sites. 
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Supporting Figure 2.5. Carrying capacity through time for Carlina vulgaris 

metapopulations based on habitat suitability in (a) the Czech Republic, (b) Germany, (c) 

Sweden & Denmark, (d) Luxembourg & France, and (e) Switzerland 
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Supporting Figure 2.6. Predictions of a) Habitat suitability for Carlina vulgaris through 

time b) Temperature Seasonality  c) Max Temperature of the Warmest month and d) 

Precipitation Seasonality. Values are taken from the grid cell containing the 

translocation site within each country. 
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Supporting Figure 2.7. EMA/IA and fecundity category for scenarios with increasing 

proportions of seed dispersal. Only scenarios in which dispersal affected EMAs are 

shown. 
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Supplemental Material from Chapter 3                                                                    

 Appendix E-Table of Scenarios and Results 

 

Supporting Table 3.1 Scenarios implemented and the impact of the scenario on expected 

minimum abundances (EMA) for a) Ceanothus greggii (CEGR) and b) Quercus 

engelmanii (QUEN) when compared with baseline results. Numbers above one represent 

increases above baseline, numbers below one represent decreases. CV stands for 

coefficient of variation. 

a) Ceanothus greggii 

Scenario Fire Return Interval 

Varied CV of 

survival 
10 

20 30 40 50 60 70 80 

CV 0.001 0.71 0.70 0.73 0.74 0.72 0.74 0.74 0.73 

CV 0.005 0.55 0.69 0.71 0.73 0.73 0.73 0.74 0.75 

CV 0.01 0.56 0.69 0.72 0.73 0.72 0.73 0.74 0.73 

CV 0.05 0.48 0.64 0.66 0.66 0.65 0.63 0.66 0.64 

CV 0.1 0.51 0.62 0.63 0.61 0.60 0.60 0.59 0.58 

CV 0.25 0.47 0.54 0.54 0.53 0.51 0.51 0.53 0.50 

CV 0.5 0.40 0.44 0.45 0.44 0.42 0.42 0.42 0.43 

CV 0.75 0.37 0.38 0.38 0.37 0.36 0.36 0.38 0.36 

         

Germination 

Rate 

        GR 10% 0.00 0.08 0.20 0.31 0.38 0.44 0.49 0.53 

GR 20% 0.03 0.29 0.50 0.63 0.69 0.74 0.79 0.81 

GR 30% 0.12 0.50 0.70 0.80 0.83 0.87 0.92 0.92 

GR 40% 0.16 0.66 0.81 0.88 0.90 0.93 0.95 0.96 

GR 50% 0.34 0.77 0.88 0.93 0.90 0.95 0.95 0.97 

GR 60% 0.60 0.86 0.92 0.95 0.93 0.97 0.98 0.97 

GR 70% 0.56 0.89 0.93 0.96 0.96 0.99 1.02 1.01 

GR 80% 0.68 0.94 0.97 1.00 0.97 1.00 1.01 1.01 
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GR 90% 0.65 0.97 0.98 1.00 0.98 0.99 1.00 1.00 

GR 110% 1.11 1.06 1.01 1.01 0.99 1.01 1.03 1.02 

GR 120% 0.76 1.03 1.03 1.03 0.99 1.02 1.04 1.04 

GR 150% 1.09 1.07 1.03 1.02 0.98 1.01 1.00 1.01 

GR 200% 1.02 1.05 1.02 1.02 0.99 1.01 1.01 1.05 

GR 250% 1.30 1.07 1.03 1.02 1.00 1.02 1.03 1.02 

GR 300% 1.11 1.05 1.03 1.02 1.01 1.02 1.04 1.00 

 
        Fecundity 

        Fec 50 1.12 1.13 1.07 1.05 1.02 1.01 1.03 1.02 

Fec 150 1.55 1.15 1.11 1.09 1.02 1.04 1.03 1.04 

Fec 200 1.55 0.85 1.13 1.11 1.05 1.05 1.06 1.06 

Fec 250 1.82 1.27 1.17 1.13 1.07 1.06 1.08 1.07 

Fec 300 1.98 1.37 1.21 1.12 1.08 1.09 1.08 1.07 

Fec 50, CV 1.20 1.20 1.10 1.04 0.99 1.02 1.02 1.02 

Fec 150, CV 1.62 1.28 1.13 1.09 1.04 1.05 1.04 1.06 

Fec 200, CV 0.54 0.93 1.14 0.97 0.96 0.98 1.01 1.01 

Fec 250, CV 2.25 1.39 1.17 1.13 1.06 1.07 1.08 1.05 

Fec 300, CV 2.18 1.40 1.23 1.15 1.10 1.09 1.09 1.09 

CV Fec 50 0.74 0.93 0.96 0.99 0.97 0.99 1.01 1.01 

CV Fec 150 0.53 0.87 0.93 0.98 0.95 0.97 1.00 0.99 

CV Fec 200 0.56 0.83 0.91 0.95 0.96 0.98 1.01 0.99 

CV Fec 250 0.44 0.79 0.89 0.93 0.93 0.97 0.99 0.98 

CV Fec 300 0.33 0.86 0.92 0.95 0.95 0.98 1.01 1.01 

         

Fire 

        Regional 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Exact 0.00 3.30 1.64 1.30 1.13 1.11 1.10 0.90 

Disp 0.1 0.51 0.77 0.89 0.96 0.96 1.02 1.04 1.06 

Disp 0.25 0.13 0.45 0.64 0.82 0.91 1.00 1.08 1.11 

Disp 0.5 0.00 0.10 0.20 0.32 0.39 0.49 0.58 0.71 

Disp 1 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04 

         

Environmental 

Correlation 

        Corre 100 1.07 1.03 0.99 1.00 1.00 0.99 1.01 0.99 



153 

  

Corre 50 0.86 0.99 1.00 1.02 0.99 0.98 1.03 1.00 

Corre 25 0.97 1.00 1.01 0.99 0.99 0.99 1.03 1.02 

Seed Dispersal         

Disp 0.1 1.08 1.11 1.08 1.09 1.04 1.06 1.07 1.06 

Disp 0.25 1.44 1.18 1.13 1.09 1.08 1.09 1.09 1.08 

Disp 0.5 1.81 1.31 1.18 1.16 1.13 1.11 1.14 1.11 

         

CV Carrying 

capacity (K) 

        
CVK 10 

0.86 0.95 0.89 0.85 0.82 0.82 0.84 0.82 

CVK 25 0.82 0.72 0.71 0.67 0.65 0.64 0.64 0.65 

CVK 50 0.34 0.44 0.42 0.37 0.36 0.34 0.34 0.32 

CVK 75 0.12 0.19 0.20 0.19 0.18 0.17 0.16 0.16 

CVK 10, cdd 0.47 0.60 0.65 0.66 0.66 0.66 0.71 0.71 

CVK 25, cdd 0.32 0.43 0.45 0.46 0.45 0.46 0.47 0.48 

CVK 50, cdd 0.05 0.08 0.09 0.09 0.09 0.10 0.10 0.09 

CVK 75, cdd 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

 

b) Quercus engelmanii 

Scenario Fire Return Interval 

 10 20 30 40 50 60 70 80 

Varied CV of 

survival 

        

CV 0.001 2.37 2.00 1.72 1.58 1.49 1.43 1.39 1.27 

CV 0.005 2.34 1.98 1.72 1.59 1.52 1.45 1.43 1.12 

CV 0.01 2.26 1.96 1.70 1.58 1.51 1.46 1.42 0.88 

CV 0.05 1.71 1.60 1.47 1.40 1.35 1.31 1.30 0.71 

CV 0.1 1.29 1.28 1.22 1.19 1.16 1.14 1.13 0.18 

CV 0.25 0.83 0.90 0.90 0.89 0.89 0.88 0.87 0.27 

CV 0.5 0.66 0.69 0.71 0.70 0.71 0.71 0.70 0.36 

CV 0.75 0.57 0.59 0.61 0.61 0.61 0.61 0.61 0.61 

         

Germination 

Rate 

        

GR 10% 0.29 0.20 0.18 0.18 0.18 0.18 0.18 0.18 

GR 20% 0.35 0.27 0.26 0.26 0.26 0.26 0.26 0.27 

GR 30% 0.41 0.34 0.34 0.34 0.35 0.35 0.35 0.36 
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GR 40% 0.49 0.42 0.43 0.44 0.45 0.45 0.46 0.46 

GR 50% 0.56 0.51 0.52 0.54 0.55 0.55 0.56 0.56 

GR 60% 0.64 0.60 0.62 0.63 0.64 0.65 0.66 0.66 

GR 70% 0.72 0.70 0.72 0.73 0.75 0.75 0.76 0.76 

GR 80% 0.81 0.80 0.82 0.83 0.84 0.84 0.84 0.86 

GR 90% 0.90 0.90 0.92 0.92 0.92 0.92 0.92 0.92 

GR 110% 1.11 1.09 1.09 1.08 1.07 1.07 1.07 1.07 

GR 120% 1.21 1.18 1.17 1.16 1.14 1.13 1.12 1.12 

GR 150% 1.55 1.44 1.38 1.34 1.30 1.28 1.27 1.26 

GR 200% 2.13 1.78 1.63 1.55 1.51 1.47 1.45 1.44 

GR 250% 2.75 2.05 1.81 1.71 1.65 1.61 1.57 1.56 

GR 300% 3.28 2.25 1.95 1.83 1.77 1.70 1.68 1.66 

         

Fecundity         

Fec 50 0.58 0.55 0.56 0.58 0.59 0.59 0.60 0.61 

Fec 150 1.46 1.38 1.32 1.29 1.26 1.24 1.23 1.23 

Fec 200 1.95 1.65 1.53 1.48 1.45 1.41 1.40 1.39 

Fec 250 2.36 1.89 1.71 1.63 1.58 1.55 1.52 1.52 

Fec 300 2.81 2.06 1.84 1.75 1.70 1.66 1.63 1.62 

Fec 50, CV 1.02 1.01 1.02 1.02 1.02 1.02 1.02 1.02 

Fec 150, CV 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.99 

Fec 200, CV 0.98 0.98 0.97 0.98 0.97 0.96 0.97 0.97 

Fec 250, CV 0.98 0.96 0.96 0.97 0.95 0.96 0.95 0.96 

Fec 300, CV 0.98 0.95 0.95 0.96 0.95 0.94 0.94 0.94 

CV Fec 50 0.58 0.55 0.57 0.59 0.61 0.61 0.61 0.62 

CV Fec 150 1.46 1.34 1.29 1.27 1.24 1.23 1.21 1.22 

CV Fec 200 1.93 1.62 1.50 1.45 1.41 1.38 1.36 1.37 

CV Fec 250 2.36 1.84 1.65 1.57 1.54 1.50 1.47 1.46 

CV Fec 300 2.73 1.99 1.78 1.69 1.63 1.59 1.57 1.56 

         

Fire         

Exact 0.81 0.86 0.97 0.99 1.00 0.98 1.01 0.99 

Disp 0.1 0.88 0.93 0.97 0.99 0.99 0.98 0.98 1.00 

Disp 0.25 0.71 0.82 0.89 0.93 0.94 0.94 0.96 0.97 

Disp 0.5 0.40 0.53 0.61 0.68 0.72 0.74 0.77 0.79 

Disp 1 0.09 0.10 0.12 0.13 0.14 0.15 0.16 0.17 
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Environmental 

Correlation 

        

Corre 100 0.76 0.68 0.66 0.66 0.65 0.65 0.66 0.66 

Corre 50 0.87 0.80 0.80 0.79 0.79 0.78 0.78 0.79 

Corre 25 0.92 0.88 0.88 0.88 0.88 0.88 0.87 0.88 

Seed dispersal         

Disp 0.1 1.02 1.02 1.03 1.03 1.02 1.02 1.02 1.03 

Disp 0.25 1.04 0.99 1.00 1.01 1.01 1.00 1.00 1.01 

Disp 0.5 0.96 0.82 0.80 0.80 0.80 0.80 0.79 0.80 

         

CV Carrying 

capacity (K) 

        

CVK 10 0.90 0.87 0.87 0.87 0.86 0.86 0.85 0.85 

CVK 25 0.63 0.56 0.56 0.56 0.56 0.55 0.56 0.56 

CVK 50 0.15 0.14 0.15 0.16 0.16 0.16 0.16 0.17 

CVK 75 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 

CVK 10, cdd 0.23 0.18 0.17 0.16 0.16 0.16 0.16 0.16 

CVK 25, cdd 0.23 0.19 0.18 0.17 0.17 0.17 0.17 0.17 

CVK 50, cdd 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

CVK 75, cdd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix F-Supplemental Figures   

 

Supplemental Figure 3.1. Expected minimum abundance (EMA)/Initial abundance for 

Ceanothus greggii for fire return intervals ranging from 10 to 80 years. A) Varied amounts 

of seed dispersal. B) 100% Correlation of environmental stochasticity of fecundity, survival 

rates, and variation in carrying capacity and varied seed dispersal. C) 50% Correlation of 

environmental stochasticity and varied seed dispersal. D) 25% Correlation of environmental 

stochasticity and varied seed dispersal. Treatment labels “Disp #” refer to the a value from 

equation #.#. A higher value means a larger amount of seed dispersal between populations. 

“No disp” has no dispersal, and correlation of environmental stochasticity matching the 

other scenarios in the Figure. “Baseline” has no correlation of environmental stochasticity. 
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Supplemental Figure 3.2. Expected minimum abundance (EMA)/Initial abundance for 

Quercus engelmanii scenarios for fire return intervals ranging from 10 to 80 years.   A) 

Varied amounts of seed dispersal. B) 100% Correlation of environmental stochasticity of 

fecundity, survival rates, and variation in carrying capacity and varied seed dispersal. C) 

50% Correlation of environmental stochasticity and varied seed dispersal. D) 25% 

Correlation of environmental stochasticity and varied seed dispersal. Treatment labels “Disp 

#” refer to the a value from equation #.#. A higher value means a larger amount of seed 

dispersal between populations. “Base disp” has the baseline dispersal equation for Quercus 

engelmanii and correlation of environmental stochasticity matching the other scenarios in 

the Figure. “Baseline” has no correlation of environmental stochasticity. 
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Supplemental Figure 3.3. Expected minimum abundance (EMA)/Initial abundance for 

Ceanothus greggii scenarios for fire return intervals ranging from 10 to 80 years with user 

defined density dependence. A) Annual variation in carrying capacity (K). B) 100% 

Correlation of annual variation in K between patches. C) 50% Correlation of annual 

variation in K between patches. D) 25 Correlation of annual variation in K between patches. 

Treatment labels ‘CVK #” refer to the percentage of variation designated for the carrying 

capacities of the scenarios. Scenario “No CVK” had the specified amount of correlation of 

environmental stochasticity, but no variability in carrying capacity. 
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Supplemental Figure 3.4. Expected minimum abundance (EMA)/Initial abundance for 

Ceanothus greggii scenarios for fire return intervals ranging from 10 to 80 years with ceiling 

carrying capacity.  A) Annual variation in carrying capacity (K). B) 100% Correlation of 

annual variation in K between patches. C) 50% Correlation of annual variation in K between 

patches. D) 25 Correlation of annual variation in K between patches. Treatment labels ‘CVK 

#” refer to the percentage of variation designated for the carrying capacities of the scenarios. 

Scenario “No CVK” had the specified amount of correlation of environmental stochasticity, 

but no variability in carrying capacity. 
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Supplemental Figure 3.5. Expected minimum abundance (EMA)/Initial abundance for 

Quercus engelmanii scenarios for fire return intervals ranging from 10 to 80 years  with user 

defined density dependence. A) Annual variation in carrying capacity (K). B) 100% 

Correlation of annual variation in K between patches. C) 50% Correlation of annual 

variation in K between patches. D) 25 Correlation of annual variation in K between patches. 

Treatment labels ‘CVK #” refer to the percentage of variation designated for the carrying 

capacities of the scenarios. Scenario “No CVK” had the specified amount of correlation of 

environmental stochasticity, but no variability in carrying capacity. 
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Supplemental Figure 3.6. Expected minimum abundance (EMA)/Initial abundance for 

Quercus engelmanii scenarios for fire return intervals ranging from 10 to 80 years with 

ceiling carrying capacity.  A) Annual variation in carrying capacity (K). B) 100% 

Correlation of annual variation in K between patches. C) 50% Correlation of annual 

variation in K between patches. D) 25 Correlation of annual variation in K between patches. 

Treatment labels ‘CVK #” refer to the percentage of variation designated for the carrying 

capacities of the scenarios. Scenario “No CVK” had the specified amount of correlation of 

environmental stochasticity, but no variability in carrying capacity. 




