UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
An AMR All-Speed Projection Algorithm in Proto

Permalink
https://escholarship.org/uc/item/90359041

Author
Gebhart, Christopher Lee

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/90359041
https://escholarship.org
http://www.cdlib.org/

An AMR All-Speed Projection Algorithm in Proto

by

Christopher Lee Gebhart

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Mechanical Engineering
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Phillip Colella, Co-chair
Professor Panayiotis Papadopoulos, Co-chair
Professor Oliver O’Reilly
Professor Per-Olof Persson

Spring 2021

An AMR All-Speed Projection Algorithm in Proto

Copyright 2021
by
Christopher Lee Gebhart

Abstract
An AMR All-Speed Projection Algorithm in Proto
by
Christopher Lee Gebhart
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley
Professor Phillip Colella, Co-chair

Professor Panayiotis Papadopoulos, Co-chair

In this study, we examine the all-speed projection approach to computational gas dynamics
in the low-Mach limit. This limit is characterized by slow, non-stiff advective flow accom-
panied by fast, stiff acoustic motions. The all-speed projection method uses a Helmholtz
projection to derive redundant equations in the stiff variables: pressure and potential ve-
locity. The resulting equations are discretized using a high-order finite-volume method and
integrated in time using a method of lines formulation and an implicit-explicit (IMEX) ad-
ditive Runge-Kutta (ARK) method. The all-speed projection approach differs from the
“zero-Mach” approach of deriving equations of motion in the asymptotic limit as the Mach
number becomes small. The zero-Mach strategy yields a differential /algebraic system which
is difficult to manage and also explicitly forbids simulation of acoustic waves.

We introduce adaptive mesh refinement (AMR) to the existing all-speed projection algo-
rithm. In so doing, we needed to address a number of challenges. Previous AMR multigrid
methods took advantage of simplifications in order to make use of residual correction multi-
grid. We have instead used the Full Approximation Scheme (FAS) version of multigrid in
our AMR framework. Doing so gives the framework more flexibility, allowing us to solve
more complicated operators with inhomogeneous boundary conditions.

Previous AMR frameworks have been written using C'++ for high level abstractions, and
with Fortran used to implement single patch operators. This approach is not productive
because Fortran is not an expressive language for representing high-level mathematics and
manually programming with low-level abstractions does not scale well with current trends
in scientific computing. In light of these observations, we have written our AMR framework
mostly from the ground up using Proto, a new C++ embedded domain-specific language for
high-performance computing. This study represents the first AMR application written using
Proto.

For Kina
You believed in me like no one else has, or likely ever will

For Leona and her siblings
I hope you are inspired to go out and do what you believe is worth doing

i

Contents

Contents ii
[List of Figures| iv
[List_of Tables v
I__Introductionl 1
2 All-Speed Projection Formulation| 3
2.1 All-Speed Equations of Motion| 3
2.2 Acoustic Equations| 6
2.3 Low-Mach Methodsl 7
[3 Single Level Discretization| 8
3.1 Finite Volume Discretizationl o000 8
B2 Time Discretizationl 9
[3.3 Spatial Discretization|o oo 10
B4 _Solvers 13
[3.5 Operator Definitions| 16
4 AMR and Multigrid| 19
4.1 Terminology for Multi-Level Algorithms 19
4.2 Multi Level Discretizationl, 20
(4.3 AMR Operators| 21
[4.4 Multigrid] 25
(4.5 AMR Algorithms|o 29
4.6 A Review of High-Order AMR Finite-Volume Methods| 34
[65_Protdl 35
[>.1 Trends in High Performance Computingl 35
[>.2 Proto Design and Goals| 36
[>.3 Proto Syntaxl 37

[>.4 Proto Efficiency| 40

(Bibliography|

A Defiitions

iii

43
43
47
48

53

56

60

v

List of Figures

|4.1 Nested grid relationships between U¢, U*, and U’~! used to interpolate boundary |
| conditions in a nested grid hierarchy| 00 22
4.2 Computing the coarse-level divergence at three points near the coarse-fine boundary| 24
4.3 Structures of AMR verusus multigrid grid layouts. Only AMR (right) implements |

| local refinement. Both of the layouts shown use a refinement ratio of 2.[. 29
4.4 AMR-Multigrid grid structure. rapyyg =4 and ryya =20 o Lo 31
4.5 Performance of AMR FAS-Multigrid for solving Poisson’s Equation with r4y,r = |
| dand ryg=2on 2 AMRlevelso 33
[6.1 This 1s the initial condition for the stratified vortex problem. The black line |
| designates the region of refinement.|o 44
6.2 Comparision of density fields between the single level algorithm in |12] and the |
| AMR algorithm.| 46
[6.3 Comparision ot divergence-iree velocity fields between the single level algorithm |

in [12] and the AMR algorithm.| 46
6.4 Computation of vorticity roll-up in a lightly perturbed shear layer|. 47
6.5 A description of the dual vortex mnitial condition and relevant parameters. v, 1s |

plotted as a function of x in the cross section of the two vortices.| 49
[6.6 Vortex pair pressure initial condition. Black outlines designate coarse-fine bound- |
L____aries between the 4 levels of AMR refinement. 50

[6.7 Pressure distribution of the emitted sound wave at ¢ = 47. The left figure is the |
| 2-dimensional distribution and the right figure is the cross section y = 80. Note |
| that in the 1-dimensional cross section, the deep pressure well at the center has |
been thresholded for clarity.| oo 51
6.8 Pressure distribution of the emitted sound wave at ¢ = 27/3. Waves can clearly |
be seen reflecting off the coarse-fine boundary] 51

List of Tables

(5.1 Proto stencil and pointwise operator performance as compared with matrix mul-

| tiplication using DGEMM|o oo 40
6.1 Low Mach error for the stratified vortex problem. (M =0.004). 45
6.2 Low Mach Convergence for the stratified vortex problem. (M = 0.004) 45
6.3 Low Mach error for shear layer: Ma =0.004 48
6.4 Low Mach Convergence for shear layer: Ma =0.004f. 48
[A.1 Symbols related to discretization and local reinement.| 61
[A.2 Operators| e 61

[A.3 Physical quantities| 62

vi

Acknowledgments

It is with genuine pleasure that I express my boundless gratitude to my mentor Dr.
Phillip Colella. During the course of the past five and a half years, he has provided
support for my endeavors in the form of sage guidance and meticulous scrutiny, not to
mention an incomprehensible degree of patience. If it weren’t for Phil, not only would this
piece of research not exist, but I would not be the quality of person that I am today. For
that I will eternally be grateful.

This work is the product of many others as well. Practically every member of the Ad-
vanced Numerical Algorithms Group at Lawrence Berkeley Laboratory has made
an impact, either personally or academically. In particular I would like to thank Brian Van
Straalen and Daniel Graves for not only their merciless propensity for code-slinging, but
also their grounding realism which is a trait sometimes absent in the field of academia.

I am thankful for a long line of educators for their contributions not only to my instruc-
tion, but to the quality of my character. It is because of Dr. Panos Papadopoulos that
I considered graduate education as an option at a time when I was truly at a loss for what
path I should take. Dr. Oliver O’Reilly was the first to impress upon me the utility
of mathematics, but more importantly he taught me the power of learning to teach others.
Leigh-Anne Gobel, Lissa Loeffler Jones, and Pete Simoncini taught me how to laugh
at myself and think for myself when others would rather do both of those things for me. I
have been unbelievably lucky to have had the pleasure of knowing and learning from each
these wonderful people.

My personal life is also filled with exemplary humans without which this accomplish-
ment would not have been tractable. My mother Rose Gebhart; my acquired family, the
Bosmans; David and other various Eliahus; my friends Avi Hecht and Conrad Park;
the good people in Panazea, and many others both near and far have always believed in
me and been able to find an encouraging word when necessary. I wish I had the space to
thank all of you, but I think this dissertation has enough reading material as it is.

Of course, no one has been more irritatingly supportive of me than Kina Bosman,
the woman who made the questionable decision to marry me. Through the agonizing days,
weeks, and months lost to the COVID-19 epidemic, she alone was able keep me pressing
on. A sizable percentage of the effort detailed herein can be traced back to her obstinate
support of me and everything I do. I am and always will be indescribably grateful for her; I
could not be a luckier man.

Chapter 1

Introduction

In this study we examine a computational fluid dynamics algorithm which operates in the
low-Mach limit. This limit is typically defined by M < 0.1 and is characterized by very
fast, low amplitude acoustic waves which accompany the advective motion. Here M is the
Mach number M = ||v||/c where v is the characteristic advective velocity and c is the
sound speed. In this regime, both acoustic and compressible phenomena may be considered
important, though the weak acoustic waves have vanishingly small impact on the advective
dynamics. The inherent challenge in simulating this limit is that these two dynamic ranges
occur at very different spatial and temporal scales. Stability of an explicit time discretization
restricts the time step to At < Auz/c according to the acoustic CFL (Courant-Friedrich-
Lewy) condition. In order to accurately simulate the advective motions, the time step is
only constrained by the advective CFL condition At < Auz/||v|| which is an order of 1/M
less restrictive.

A proven strategy for simulating the low-Mach regime is to derive new equations of motion
for the zero-Mach limit. These new systems are derived by writing the state variables as
asymptotic expansions in powers of M in the limit M — 0. The result is a different set
of evolution equations which are accompanied by constraints on the velocity divergence. An
example of this limit is incompressible flow which has the simple constraint V -v = 0.

The approach we take in this work is based on the all-speed projection approach first
introduced by Colella and Pao [16]. In the original version, the velocity field was split into
its stiff potential component and its non-stiff solenoidal component using a Helmholtz pro-
jection. The stiff variables were then treated implicitly while the remaining variables were
treated explicitly. In [12], the approach was refined by opting instead to retain the full
compressible equations of motion and introduce redundant equations for the stiff pressure
and potential velocity variables. The resulting method is a consistent discretization of the
compressible flow equations that is valid for all Mach numbers in the absence of shocks. Evo-
lution in time is computed using an implicit-explicit (IMEX) additive Runge-Kutta (ARK)
method with the full compressible equations treated explicitly and the redundant equations
treated implicitly. The resulting method has no acoustic CFL limitation on the time step and
successfully captures the M — 0 limits for a variety of applications including both viscous

CHAPTER 1. INTRODUCTION 2

and reacting flows.

In the present work we extend this all-speed projection method to include adaptive mesh
refinement (AMR) in space using nested block-structured grids. Advective dynamics can
have multiple length scales (e.g. mixing or combustion). Additionally, small scale advective
processes can generate low-amplitude long-wavelength acoustic waves in the low-Mach limit.
Adaptive refinement allows the algorithm to resolve all of these processes in an economical
fashion.

In the process of carrying out this endeavor, we have needed to address a number of
difficulties. Finite volume methods, particularly at high-order (> 2) require complicated
stencil operators at refinement boundaries [31]. Using a formulation in which averaging be-
tween levels is exact makes these complications manageable but at the expense of requiring
a different iterative solver implementation than what has been typically used. Specifically,
we have abandoned the residual-correction formulation of multigrid that has been used in
AMR methods for unsteady incompressible flow in favor of the more general Full Approx-
imation Scheme (FAS) version. This alteration introduces some additional complexity to
the algorithm, but allows us to solve very general operators with inhomogeneous boundary
conditions.

Implementation of structured-grid AMR methods has been carried out using frameworks
based on MPI distributed-memory parallelization of serial single-patch physics code written
in Fortran. Current trends in scientific computing have rendered this strategy less and less
effective at abstracting away the tedious implementation details that are necessary for high
performance. Mixed-language programming is not ideal, and Fortran is not an expressive
language for representing the mathematical algorithms which arise in high-order methods.
As hardware targets become more sophisticated, additional execution parameters must be
specified regarding threading, data layout, and so on. From a productivity standpoint, this
is not a scalable programming model.

Our approach uses a different model implemented through Proto, a new high-performance
computing library written in C++. Proto’s principle design goals are to furnish an expres-
sive “math-like” syntax which hides the details of high-performance implementation from
the application developer. In our AMR framework, Proto replaces the single-patch imple-
mentation of problem specific mathematics previously encoded in Fortran with convenient
high-level abstractions that dramatically enhance productivity.

The outline of this thesis will proceed as follows. In Chapter 2 we will discuss the
specification of the all-speed projection algorithm and in Chapter 3 we present the associated
discretizations on a single level. In Chapter 4 we will provide the preliminaries for discussing
AMR algorithms as well as our novel implementations of AMR and multigrid. Finally,
Chapter 5 briefly discusses Proto and Chapter 6 summarizes our progress with applying the
all-speed projection algorithm to a variety of relevant problems.

Chapter 2

All-Speed Projection Formulation

In this section we derive the system of equations that we will later discretize in our imple-
mentation of the all-speed projection algorithm. We start with the inviscid, non-reacting
compressible Euler equations and augment them with redundant evolution equations for the
pressure and potential velocity. The new system has the same solution as the compress-
ible Euler equations assuming a set of initial condition constraints are satisfied. Finally, we
motivate this strategy by examining the properties of the stiff variables in the acoustic limit.

2.1 All-Speed Equations of Motion

Our starting point for deriving the equations of motion for the all-speed projection algorithm
is the compressible Euler equations,

%_‘t’ = —(v-V)v-— %Vp, (2.1)
% = =V - (pv), (2.2)
% = —V - (phv) — p(V -v), (2.3)

where p is the density, v is the velocity vector, p is the pressure, h is the enthalpy, and ¢
is the speed of sound. To complete the compressible Euler equations we need to add an
equation of state,

p = pph), (2.4)
here written in terms of p, p, and h. The speed of sound based on Equation (2.4)) is
9p
= (2.5)
p Oh

Together, Equations (2.1)) to (2.5)) form a closed system for v, p, h, p, and c.

CHAPTER 2. ALL-SPEED PROJECTION FORMULATION 4

We consider the case of a closed domain €2 with solid walls on 9€2 such that the normal
velocity at the boundary is zero as shown in Equation ({2.6])

v-n =0 on 0NQ. (2.6)

Periodic boundary conditions will also be used as needed, and the initial conditions will be
functions of space defined later on:

ph(x,t =0) = Ey(x).

In order to isolate the stiff and non-stiff terms in the equations of motion, we make use
of the Helmholtz decomposition [19]. This decomposition splits smooth vector fields that
satisfy appropriate boundary conditions into their solenoidal and potential components as

shown in Equation ({2.10]),
u=u,;+ (Vo =u,), (2.10)

where we represent the potential component of u as the gradient of a scalar as is customary.
We can show that the solenoidal and potential components are orthogonal by

/(ud-ng) dx = /V-(udgb) dx = pug-ndA = 0, (2.11)
Q Q)

where we have assumed periodic boundary conditions. Noting that u; by definition has zero
divergence, we solve for ¢ using

Ap = V-u on L (2.12)
The boundary condition given by

do
n 0 on 09, (2.13)

represents a solid wall, but in principle other boundaries could be considered. Combining

Equations (2.10) and (2.12)) allows us to form an expression for the the solenoidal and
potential projection operators P and Q respectively:

Qu) = V(A™H)V - u, (2.14)

P=1-Q. (2.15)

The P and Q operators are symmetric and idempotent i.e.,

Q=0Q", P="P, (2.16)
Q*=Q P =P (2.17)

CHAPTER 2. ALL-SPEED PROJECTION FORMULATION 5

from which it follows that,

Q[= [[P]} = 1. (2.18)

We derive an equation for the potential velocity v, by applying Q to the full momentum
equation,

ov, ov 1
:Q[} :—Q[V-VV-F—VP]. 2.19
T 5 (v-V) p) (2.19)
We also need an evolution equation for the pressure,
dp 9
% —(v-V)p — pc*(V - v,). (2.20)

The pressure equation is easy to derive using Equations (2.3) and ([2.4]).
We add Equations (2.19)) and (2.20)) to a modified version of the original compressible

Euler equations ({2.1)) through (2.3)) to obtain

ov 1
= = —A, - -V, 2.21
T pr (2.21)
9 _ g (pva) (2.22)
at - p als .
dph
% = V- (phva) — p(V - v,), (2.23)
ov, 1 1
—P _ PV A,| — A, — =Vp, 2.24
P [p p+ } L (2.24)
o _ _y Y (v 2.25
g =~V (vap) +p(V-vp) = pei (V- vy). (2.25)
The term A, is defined as
A, = V.- (vvy) —v(V-v,), (2.26)
and the advection velocity v, is
Ve = P(v)+v,. (2.27)

It is important to emphasize that v, and p are evolved variables; they are not obtained from
the projection and the equation of state.

We have made some conscious decisions in how we have written these equations. We
have written the velocity advection term (v, - V)v as A, which decomposes the term into
the divergence of a flux and a source term. The (v, - V)p term in the pressure equation has
gotten a similar treatment. Finally, we have chosen to write the equation for v, in terms of
P instead of Q. These choices will facilitate adapting our discretization for the IMEX ARK
and AMR frameworks later on.

The system defined by Equations through is distinct from the original system
of Equations through . However, the solutions to the new system are the same as

CHAPTER 2. ALL-SPEED PROJECTION FORMULATION 6

the solutions to the compressible Euler equations assuming the initial conditions satisfy the
constraints

Qv) = v, (2.29)

This restriction arises due to the presence of the two new redundant evolution equations for
p and v,. Because these are initial value constraints, they are analytically satisfied for all
time if they are satisfied at t = 0. We will see that we must keep these constraints in mind
when the time comes to write down our discretization of the algorithm.

2.2 Acoustic Equations

We may gain some insight into how Equations (2.21) through (2.25) may be solved by
examining their form in the absence of advection and stratification. Removing these effects
and focusing on the pressure and potential velocity equations yields

ov, 1

_ - 2.
dp
i —pc*(V - v,). (2.31)

We can combine these statements to eliminate v, resulting in

0%p

5 = ¢ Ap, (2.32)

which is a wave equation in p. We can get some idea of how this system will behave
when solved implicitly by discretizing Equations (2.30) and (2.31)) in time using the implicit
backward Euler method. The semi-discrete equations are

n n 1 n
vt = vl — (575);Vp + (2.33)
Pt = p" = (6t)pPV vt (2.34)

where n refers to the discrete time and 0t is the time step. Combining these results to
eliminate v'*! yields

[[— (6t)’A] ™t = p* — (8t)pc®V - V", (2.35)

which is in the form of an elliptic Helmholtz equation. This is a perfectly tractable equation
to solve, and this simple result motivates our decision to treat these variables implicitly.

CHAPTER 2. ALL-SPEED PROJECTION FORMULATION 7

2.3 Low-Mach Methods

By way of providing additional context for the all-speed projection algorithm, we briefly
examine other methods that have been used to simulate time-dependent low-Mach flows.
Chiefly among these are a category of methods which are derived through expanding the
state variables in powers of M and deriving a new set of equations in the limit as M — 0.
We refer to these methods collectively as “zero-Mach” methods. Much of the progress in
using this kind of approach has been made in the field of combustion starting with [40] and
[26] and elaborated on by [22] and [17]. Other versions of these methods have been applied
to atmospheric flows [4] and astrophysical processes [5].

There are various forms of zero-Mach methods including the incompressible Euler equa-
tions, the anelastic equations, and various configurations that have been derived for reacting
fluid flow (see for example [26], equations 1.18a-d). In each of these applications, a sys-
tem is formed which amounts to a set of differential/algebraic equations containing a set
of evolution equations for the state variables and a constraint of the form V - (¢v) = ..
which serves to eliminate acoustic waves. The differential /algebraic formulation constitutes
a major difficulty. These systems are fundamentally different from systems of pure evolution
equations and it is difficult to evolve them in time using traditional methods if it is possible
to do so at all [37, |6, [10]. It is sometimes possible to use a projection to eliminate the
constraint yielding a system of evolution equations |14} 8], but this approach only works if
the constraint is homogeneous and independent of time, e.g. V -v = 0. Constraints also
cause problems when combined with AMR refinement in time |2, 28] 29].

The all-speed projection method first formulated in [16], elaborated on in |12], and fur-
ther improved upon herein is an alternative to the zero-Mach approach. This method still
produces a set of evolution equations and initial value constraints (Equations and
(2.29)) which are fundamentally different from the constraints required of zero-Mach meth-
ods. These constraints are analytically satisfied for all time if they are satisfied at ¢ = 0
and are relatively simple to enforce numerically. The all-speed method also makes use of a
projection, but here it is used to split the compressible dynamics instead of eliminate them.
Even in the presence of stiff physics, the system generated in the all-speed formulation is
simply better understood than the differential /algebraic specification of zero-Mach methods.

Chapter 3

Single Level Discretization

This chapter contains the details for implementing the all-speed projection algorithm de-
scribed in the previous chapter on a single level. The definitions in this chapter will need to
be expanded upon when we introduce local refinement in the following chapter, but most of
the discretizations used herein will still be used in the AMR formulation.

3.1 Finite Volume Discretization

Our general approach in discretizing Equations (2.21]) through ([2.25)) is very similar to the
fourth-order finite-volume method outlined in [31]. On the domain €2, the control volumes
V; and the faces Aif%ed which bound them are defined as

Vi = [ih, (i +e)h] icZP,
Ay 1.0 = [ih, (i +e — eh)h] icZP. (3.2)

’L—Ee
Here e is the unit vector in the direction d and
e=[1,1,...,1]. (3.3)

Note that despite the syntax ¢z — %ed in Equation (3.2)), our discretization includes both the
upper and lower faces of each control volume in the domain. That is to say for every control
volume, there are 2D faces with each internal face being shared by two control volumes.

Our state variables will be represented as averages over control volumes with the exception
of v, which is specified by averages over faces,

@) = 75 [olx.dx, (3.4
<“d>i_;ed (t) = % /A ul(x, t)dA. (3.5)

i—%ed

(3.6)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 9

In the exposition to follow, we use the notation (¢), to designate the vector [(¢), 1.4] d €
2

[1,D]. In the case of a vector-valued variable, (u), is understood to refer to the vector
<ud> ! d d € [1, D] which is composed of the d-directional components averaged over the

faces normal to d. In the case where we want to refer to only the d component of (¢), or
(u), we write (¢), or (u), respectively.

There are two desirable properties of finite-volume methods when combined with the
discrete divergence operator. First, advective transport of thermodynamic quantities is lo-
cally conservative; the flux out of one cell is automatically the same as the flux into the
adjacent cell. Without this property, grid-based methods can give unphysical results even in
the low-Mach number limit [36]. The second convenient property of these methods is that
elliptic problems with solvability conditions have natural discrete analogues.

3.2 Time Discretization

In order to achieve the desired splitting of the stiff and non-stiff dynamics, we use a semi-
discrete approach to advance the state. In space, we use second or fourth-order finite volume
discretizations. Time integration is achieved using a method of lines formulation and an
Implicit-Explicit (IMEX) Additive Runge-Kutta (ARK) method. Specifically, we elect to
use the fourth-order, 6 stage ARK4(3)6L[2]SA scheme detailed in [20].
To integrate a system of differential equations using an IMEX ARK method, the equations
must be written in the form
o(U)
ot

This form designates implicit and explicit contributions to the right-hand side (F! and F¥
respectively).

Based on the insights gained from the acoustic limiting case, we choose to treat the pres-
sure gradient and velocity divergence terms in the pressure and velocity equations implicitly.
The forms of F¥ and F/ are

— FP((U)) + F'((U)). (3.7)

v —A, —%Vp

0 _ V- (pva) 0

§< pph >_< -V (phva) ppCQ(V Vi) >+< 0 > (3:8)
p =V (vap) + (V- vq) —pcA(V - vy)

0 1 1
" f
The first set of terms on the right-hand side make up F¥ and the second set form FZ.
The time update is defined by

Uy = (U)”+At§:bk [FE((U) + F/(UY)] (3.10)
k=1

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 10

where we assume an s-stage Runge-Kutta method. The states are defined at each time step
as (U)" = (U) (t =t,) and (U)""" = (U) (t = t" + At). The intermediate states for each
Runge-Kutta stage are given by

(U)F = (U)" + At | Y o FP((UY) + af, F'((U)) | (3.11)

j=1

and are equivalent to (U) (t = t" + ¢, At). All of the coefficients af}, aly, by, and ¢, are given
by the implicit and explicit Butcher tableaus of the IMEX ARK method.

In general, Equation is implicit with respect to (U)". In practice, because we
choose a diagonally implicit scheme for the implicit half of the IMEX ARK method, there is
only one implicit term on the right hand side of Equation (3.11)): namely, the term involving
al,. In light of this observation, we split Equation (3.11]) into

(U) = (U)" + X" + Ataf, FT((U)Y), (3.12)
o= Ay [akEjFE((U)j)+a£jFI((U>j)]. (3.13)

Three pieces of information must be provided to the IMEX ARK method to advance (U).

The first two are the forms of F¥ and F! (see Equations (3.8)) and (3.9)), and the third is a
strategy for computing the implicit solve in Equation (3.12)).

3.3 Spatial Discretization

With the time discretization specified, we now turn our attention to the spatial terms. In
this section we specify how to compute F¥ and F! while in the next section we discuss the
implicit solve in Equation (3.12)) and address the constraints.

Operators

First we must define a number of operators to facilitate the exposition. Our discretization
consistently expresses variables either as averages over cells or faces. Occasionally we will
need to explicitly convert between averaged and non-averaged quantities. We do so through
a convolution operators C and Cg defined as

(¢) = C(9), (3.14)
(@)g = Calda), (3.15)
(0)r = Ce(dr) = [Calea)] Vd. (3.16)

Likewise, we also find ourselves needing to convert between cell and face averaged quanti-

ties. We do this using the interpolation operators Z%,, and I?ace. Zeey and Lgqce are convenient

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 11

definitions that also take into account the mappings between R' and RP. These operators
are defined:

(@) = Zeu((9)a), (3.17)
<¢>d = I;lace(<¢>)7 (318)
(@) = Zal(0)) = T (Bas), (3.19)
(@ = Traeel(8) = [T (@))] Ve (3.20)
(W) = Zoa((ly) = [Zhy ((ua)y)| Ve (3.21)
(W = Tpueel(W) = [T, (wa)] v (3:22)

In addition to the above, we make use of a third-order upwind interpolation operator,

(@) = Zu((e)), (3.23)

when computing the advection terms.

Products and quotients are another area where a disciplined approach must be used. At
second order, the product of averages is equal to the average of the product, but for higher-
order implementations there are additional correction terms. In light of this complication,
we explicitly define product and quotient operations in terms of the P and O operators
respectively:

(pp) = P (), (1), (3.24)
(B0)g = Pa((D)g: (¥)g) (3.25)
<§ — Q(¢).). (3.26)

<E>d = Qu((0)a: (¥)a) (3.27)

An assortment of derivative operators are needed. As we will see, in this particular
finite-volume discretization it is natural for differentiation to be coupled with interpolation
between cell averages and face averages and wice versa. The derivative of a cell-averaged
quantity evaluated as a face average is written as

¢
- =D . 3.28
(5=) = Dallo) (3.25)
Using D we can define the gradient operator

(V(¢)) =6((¢) = [Du((0))] Vd. (3.29)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 12

In our discretization, the gradient naturally maps cell-averaged scalars to face-averaged
fluxes. The divergence,
(V-u) = D((u)g), (3.30)

also has a natural mapping: from face-averaged fluxes to a cell-averaged scalar.
Finally, we examine the projection operators P and Q. <@(uf)> is computed in three
steps:

(9) = D({u)g), (3.31)
W) = (A7H(9)), (3.32)
(Q(ur)) = G((¥). (3.33)

We have already defined D and G. The A operator is the constant coefficient Laplace
operator which we discretize as

(a(0) = DG (9))]. (334)

We defer the discussion of inverting this operator until the next chapter. With Q defined, P
follows easily as

<]P)(u)> = []I _IcellQIface] (<u>), (335)
(P(ug)) = [I—Q]((u)). (3.36)
When discretized in this manner, the projection operator in Equation (3.35)) no longer has
the properties described in Equations (2.16|) through (2.18) because of the additional in-

terpolation steps. Nevertheless, the efficacy of this approximate projection has been well
documented [2, 23, 28].

Computing All Speed Terms

Now that each of our individual operators have been defined, we can use them to piece
together the definition of each of the terms in F¥ and F!. We start with the advective
terms. The advective velocity v,

V¢ = Lpace ((v)) (3.37)
(Va)e = P((v)g) + (vp); (3.38)

is discretized on cell faces. In the second-order case, we compute (¢), with

(@) =T, ({9)) (3.39)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 13

for the advection terms. Note that here the upwind interpolation operator is used. Using
the advection velocity and interpolated scalars, we can compute the advective terms:

(V- (¢va)) = D [Pf (<¢>f,(va>f)], (3.40)
(V- (vVa) = lD [Pf(<vdf>f,<va>f)H vd, (3.41)
<¢(V'Vp)> = P(<¢>,D(<vp>f)), (3.42)

(v(Vev)) = |P ((vd/> D <<vp>f>)] v, (3.43)

Turning our attention to the pressure gradient term, it is simplest to compute on cell faces,

<%Vp>f = (G (1) Tpaee (19))) - (3.44)

Finally we have the projection

<IP’ [%Vp + Avl > _ P [<%Vp>f + <Av>f] , (3.45)

and the remaining terms can be computed by interpolation:

(Ay) = (V- (vvy)) — <V (V- Vp)> , (3.46)
(Av)e = Trace ((AV)), (3.47)

<%Vp> = Zeeu (<%Vp>f> : (3.48)

f

3.4 Solvers

We have specified how we are to compute all of the terms in FZ and F!. All that remains
are to discuss how we implicitly solve for the stiff terms and how we enforce the constraints.
Each of these procedures involves either a Poisson or Helmholtz solve.

Pressure Solve

First we discuss the pressure solve. We start with Equation (3.12]) and reorganize yielding,
(@) = (&) + Atag F'((9)"), (3.49)
@) = ()" +(xo) (3.50)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 14

where X, is the component of x (Equation (3.13))) associated with ¢. Since x is completely
known at the time of the implicit solve and F! and F;h are identically zero, we can conclude
that p* = p* and (ph)¥ = (ph)* are also known. The implicit update function F! for v, v,,,
and p does not depend implicitly on v, hence we can focus on the equations

ko ©_ Atal 1
Wiy = iy = A ’“’“<pvpk>’ (3.51)
() = (p)" — Aafy (pcV - vh).

alone and compute the update for v through back substitution. This is precisely the logic
we developed in Chapter [2] when analyzing the acoustic limit.
Eliminating all references to v’; in Equations (3.51)) yields

1) - s,)t = @) -2 ().

© = s, (o)

where everything in sight is known (or easily computed) except for (p)*. The operator A,
is the variable coefficient Laplacian given by

(3.52)

1

(D (0)) =D | P <<E>f’g(<¢>)> : (3.53)

Equations (3.52)) are the final form that will be solved inside of the IMEX ARK method.
This is a convenient point to discuss why we have elected to use a staggered approach in
our discretization. To this end, consider

Ad; Gi—a — 20 + Pita] (3.54)

1
=12 [
which is a one-dimensional second-order discretization of the A operator with variables
discretized purely on cell centers. When this operator is inverted using an iterative method,
points with even values of ¢ will be updated based on other even values of ¢ and similarly
for the odd values. No information flows between these two components of the solution,
and hence they can diverge from one another as numerical error accumulates. This is a well
documented phenomenon related to iterative solution of Poisson’s Equation [38]. On the
other hand, if we write the same operator using face-centered gradients we arrive at

Ag; = % [Pi1 — 20 + Pita] - (3.55)

which clearly does not exhibit the same problem as Equation ((3.54]).

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 15

Constraints

The constraints defined by the velocity projection and equation of state (Equations
and) are initial value constraints and are satisfied for all time if they are satisfied by
the initial data. However, numerical error will cause the state to drift and the constraints
will cease to be satisfied. to prevent this, we reimpose the constraints at the end of each
time step.

First we consider how to enforce the pressure constraint. The goal is to adjust the full
pressure field such that p is the same as the pressure obtained from the equation of state
(referred to in this section as py). We must also be careful to adjust the potential velocity
to reflect any changes made to p.

This logic motivates us to return to the acoustic Equations (2.30)) and (2.31)). We rewrite
this system as

dp

o e (V- Vp) =&(po—p), (3.56)
vy B
o Vp 0, (3.57)

where we have added a penalty term Wthh forces p towards py. Here the parameter ¢ is
positive and scales inversely with At. Next, we transform Equations (3.56]) and (into
the difference equations

(0p) = At&(po — (p)) — At (p?V - (6v,)) , (3.58)
(0v,) = —At <;V§p> , (3.59)

where dp and 0v, are the increments that we will use to enforce the constraint. Reiterating
the same logic that we used to derive the pressure solve in the previous section, we can
eliminate references to dv, and produce the elliptic Helmholtz equation,

[<pi2>11— (A1)A,

Once dp is known, the correction to v, can be computed using Equation (3.59)). Using these
increments, we update the state variables using

(&) = (¢) + (09). (3.61)

In addition to the constraint implied by the equation of state, we must also ensure that v,
is truly the potential component of v. This constraint is easy to enforce using the Helmholtz
projection,

((op)) = At¢ <(p%p)> . (3.60)

G =@ (o)) (3.62)

<v>”+1 = Tfoee (<vp>”“) T P((V)). (3.63)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 16

Note that for these projections to have the desired effects, the velocity constraints must be
enforced after the pressure constraints. Otherwise, v, may not be a discrete gradient due to
baroclinic variations in p.

3.5 Operator Definitions

At this point the only details that remain unaccounted for are how we discretize the convo-
lution, interpolation, multiplication, division, and differentiation operators.

Finite Volume Averages

As discussed above, we take special care to distinguish between cell-averaged quantities (e.g.
(¢);) and cell-centered quantities (e.g. ¢;). Cell-centered quantities are defined at points x;
in the center of a control volume V;,

¢ = o(xi) x5 = hi+ge. (3.64)

Cell-averaged quantities are defined as the average of the quantity over V;,
1 Xh .)
(9); = h—D/ p(x)dx x = hi x, = h(i+e). (3.65)
X

We use the convolution operator C to convert between cell-centered and cell-averaged
values. This operator is defined by

(h?), (3.66)

)
7) = (¢); + O (h"), (3.67)

C (9)), = (60— oy D (g—) = 6+ O(1"). (3.68)

Similar expressions hold for face-averaged data:

Ca(0); 100 = Gi_ter = (0); 100 + O (1?) | (3.69)
W~ [0
Cd (¢)i*%ed = ¢if%ed + ﬁ Z (ﬁg) = <¢>i*%ed + 0O (h4) , (3.70)
d'#d imled
h? o [02
Co' (0)e); 100 = (D)ises — o7 %:11 (%) bt O(h"). (3.71)

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 17

Cell-Face Interpolation

To convert between cell- and face-averaged quantities, we use the interpolation stencils

Thee ()i yes = 3 Ohiea+ 300 =)i yoa + O, (372)
I}iace (<¢>>i—%ed = 1_72 <<¢>i—ed + <¢>1,> (3 73)
2 ()i sen + Biren) = (D sea + OU)
T8 (0)e), = 3 (@i seat g Ohssser = (0 + O, (370
13
Idll f = 91 i—~ed it+led
L ((0)), : (400100 + (@i 100) -
— 57 (@i gor + (Disgen) = (0 + OB,

In addition to the operators above, we define the third-order upwind interpolation operator
7Z,. This operator is discretized

1 5 1
o ((0))i gen = —5 Dhicger + 5 (B)icea + 5 (0 (o), >0, (376)
1 5 1
= 3 (O)iert 5 (0)i — 5 (Dhiyes <vg>i_éed <0, (3.77)
Derivatives

The appropriate stencils for computing derivatives of cell-averaged data as face-averages are

D () = 35 (0= @iar) = (52) +OU), (3.78)
D (6)); g0 = 77 ({0 — ($)i-cs)

) 96 (3.79)

BETTA <<¢>i+ed - <¢>i—2ed> - <5_33d>'_1 J + O,

The face-averaged derivatives above are used to compute the components of the gradient
operator G. The divergence D is defined

SRS

D ((u),), = Z [y — Wy raa] (3.80)

which is the standard discretization used in finite-volume methods to achieve discrete con-
servation.

CHAPTER 3. SINGLE LEVEL DISCRETIZATION 18

Product and Quotient Rules

Second order finite volume discretizations lack any need for product or quotient rules. At
second-order, the cell average of a product or quotient is the product or quotient of the
averages respectively. At higher-order we must be a bit more careful. The appropriate
expressions for the product and quotient rules are:

P ((9),(0)); = (0); (0); = (¢>9>~ +O(1?), (3.81)
P((6).), = 3 [() (5] = (o), + (1), 3:52)
Q (). 0)), = % = (6/6),+ O(12), (3.59)
. Y — 0 00 i| 00 4
Q ((¢),(0)), = % - W; [(a—gi) (a_xd) L |9s] = (6/0), + O(h"). (3.84)
Similar relations hold for face-averaged quantities:
Pe (<¢>f) <9>f)i_%ed = <¢>i—%ed <0>i—%ed = <¢0>i—%ed + O(hQ)v (3.85)
_ s~ | (09 06
Pe (e O00) i yor = Oy Ohicgont 57 2 [(ax) (ax)} (3.56)

O ((B)e+ 0)e); soa = g7 = (0/0), s+ D), (3.87)

(0);1 I d 00 .
% e Oy =0, 1292{({?)(@)?

d @144

<¢/9> 1o+ O().

00

_j

8xd/

(3.88)

In the fourth-order corrections in the above relations, the multiplication by h? allows us to
substitute centered quantities for averaged ones as well as the use of simple second-order
finite differences to compute the necessary derivatives.

19

Chapter 4
AMR and Multigrid

Up until this point, we have presented a single-level approach to discretizing the all-speed
projection algorithm. One of our key contributions in this study, however, is the addition of
local refinement. We have also deferred our discussion of how we compute the solves for the
projection, pressure, and pressure constraint.

In this chapter we will introduce the fundamentals for discussing both multigrid and AMR
and discuss how the discretizations from the previous chapter will need to be adapted to
suit the needs of these multi-level algorithms. We will discuss multigrid in both it’s residual-
correction and full approximation forms, and motivate our use of the latter. Finally, we will
present our full AMR FAS-Multigrid algorithm and some details regarding its performance.

4.1 Terminology for Multi-Level Algorithms

Before we discuss the AMR and multigrid algorithms, we must introduce some definitions
that are useful for discussing algorithms which employ multiple levels of data. We start by
discussing the levels themselves. Each level ¢ consists of a grid I'Y which covers the entire
problem domain. The grid I' ¢ ZP” has associated with it a grid spacing h’. The region
QOf C T* defines the part of the grid that contains data on level £. Grids associated with
different levels have different spacings with smaller values of ¢ associated with coarser grids.
Two successive grids’ spacings are related by a refinement ratio r = h*/h**!. For the sake
of practicality, we limit r to be a power of 2, and generally it takes the value of 2, 4, or 8.
r is the same between all levels in the same algorithm, but as we will see r can and often
will be different in the context of different algorithms. In particular, in this study we refer
to rye and T4 g as the refinement ratios used in multigrid and AMR respectively. Points ¢
in a domain Qf can be represented on coarser grids through the use of a coarsening operator
C, (i) = [%]. In practice, we often use this operator to refer to the region Qf represents on
1. We write this as C, (QZ) C Q-1

Up to this point we have introduced terminology that is germane to both AMR and
multigrid. To this we add definitions used to describe locally refined grids which only apply

CHAPTER 4. AMR AND MULTIGRID 20

to AMR. Each point ¢ in Q° has an associated cell Q. (These domains are essentially the
same the control volumes V; that we defined in the previous chapter). We restrict the manner
in which finer levels are built such that each control volume €)% is either completely refined
by cells in Q! or not refined at all. We also stipulate that no cell in level £ + 1 represents
a region in space directly adjacent to a cell in level £ — 1. That is to say, at least one cell on
level ¢ lies in between. This collection of constraints on locally refined grids we refer to as
proper nesting |1, 9].

We refer to the entire array of locally refined grids as an AMR hierarchy. Data defined
on an AMR hierarchy is defined on all of Qf for each level £. Data that is defined on the
region of Q¢ that is not covered by Q! is said to be valid because it is the highest resolution
data for that region of the problem domain. Data which lies in C (Q”l) C O is termed
wnwvalid. These terms apply both to cell-averaged quantities and face-averaged ones. The
composite value of data defined on an AMR hierarchy is the union of all valid data with all
redundancies resolved by choosing the finest resolution available. In contrast, the level value
of a variable is the union of all data on a given level.

4.2 Multi Level Discretization

Our general approach in discretizing Equations (2.21)) through (2.25)) is essentially the same
as it was for the single level case. The finite-volumes V; and areas A; 1.4 are defined the
same way by

Vi = [ih, (i+ e)h] ie, (4.1)
Aj rou= [ih, (i+e— ed)h]] ieq (4.2)

Averages over control volumes and faces are computed by

(@) = 75 | olx.t)dx Ve, .0 (43)
1

<Ud>i_led (t) - pD-1 /A ud(x,t)dA Ai_%ed € QO, ...,Qem‘”, (44)
2

i—5e

and are likewise unchanged in this paradigm except that now we have multiple levels worth
of data. In refined regions, the area covered by one coarse cell V¥ with side length h* will be
covered by rP finer volumes [V5™...] with side length h**! = h’/r. Similarly a coarse level
surface A’ is covered on the finer level by 7P~ finer surfaces [Affléed] Both the coarse and

fine data are maintained and will be used in further computations as needed.

In terms of notation, we refer to a variable on an AMR hierarchy as U“" where we
allude to the hierarchy representing a composite variable as previously described. A variable
defined on a single level is written U?. In this chapter, all variables are assumed to be cell
or face averaged, and hence the (-) will be omitted except when it is needed for clarity.

CHAPTER 4. AMR AND MULTIGRID 21

The temporal discretization of the problem is completely unchanged when multiple levels
are involved. We still elect to use a semi-implicit solver and a method of lines formulation
to advance the solution and as such we must provide definitions for the implicit and explicit
spatial terms F! and F¥ respectively as well as the implicit solve and the constraints. The
only difference is that we must compute these quantities for each ¢ in the hierarchy.

4.3 AMR Operators

Now that our discretization includes multiple levels of data, we must rethink how spatial
operators are computed. On a given level the operators defined in Chapter [3| continue to be
valid. However, additional steps must be taken which add dependencies on possible coarse
data below and fine data above. Some of these considerations only apply to the case of local
refinement, and others are valid for all data hierarchies.

Averaging and Interpolation

We first define new operators for transferring both cell-averaged and face-averaged data
between levels. The fine-to-coarse operators,

@) = A (o)) on (), (4.5)
(@5 = Aar ((0)1) o € (), (4:6)

are simple arithmetic averages. These operators have the very useful property of contributing
no additional truncation error when operating on averaged data.

Moving in the other direction, we now define a set of interpolation operators. The first
of these,

@ =20 (@) on o (4.7
is piecewise-constant. We will also need a higher-order interpolation operator,

@ =2 (@) on (48)

(@) =Tio (@) on O (49)

for transferring boundary condition data from coarse to fine levels. The stencils for these
operators are much more involved, and are derived at the start of the computation using the
least-squares methodology outlined in [31].

General Multi Level Operators

We refer to a general operator £ acting on an AMR hierarchy as an AMR or com-
posite operator. The composite operator is computed from a series of level operators

CHAPTER 4. AMR AND MULTIGRID 22

Figure 4.1: Nested grid relationships between U’, ﬂe; and U used to interpolate bound-
ary conditions in a nested grid hierarchy

L0, U1 U, These operators are written

EE(UE, Ug_l, Ué-l—l) _ j(ﬂ@) + R(UZ’ UZ—H) on Q@

. . 4.10
o=z, (U)o O -0, (410

LU U UM = 7 (T) + Re(U, U on Qf
(4.11)

U = IijR (Uz_l) on Q' —Q.
Here U’ is U’ evaluated on Qf, an extension of) that includes a region of “ghost” or
“halo” cells on all sides. The region Q¢ satisfies

QfcQf, cHcQAtone>0 Q=00 (4.12)

These relationships are illustrated by Figure

The operator £ executes a uniform-grid operator 7 on level ¢ using input data on level ¢
as well as the levels above and below if available. The U‘~! dependence arises from the need
to furnish boundary conditions on levels with £ > 0. Boundary conditions are interpolated
from the next coarser level into the “ghost” cells of Q! for refined regions or computed based
on the problem domain boundary as in the single level case on the coarsest level. The R
operators account for a coarse-fine boundary correction which we will discuss in the following
section.

CHAPTER 4. AMR AND MULTIGRID 23

The operators J or J¢ represent a fairly general single-level function that conforms with
the structure of

J (ﬂf) 70~ [D (f (ﬂf)) +S (ﬂf)] on O (4.13)
ﬂ@@:F@@ on Q. (4.14)

These forms decompose the function into a diagonal term Z, a divergence of a flux DF and
source term S for J and a pure flux for J;. All of the operators that we used to compute
FZ and F! in the previous chapter as well as the pressure solve and the constraints have
been consciously written in this form.

Refluxing

We now turn our attention to the operators R and R in Equations and .
Part of the need for developing the special form for 7 in Equation (4.13)) stems from the
special treatment needed by fluxes in the presence of a coarse-fine boundary Q¢ in an AMR
hierarchy.

Physically, flux terms represent the flow of mass, momentum, energy, etc. to or from
adjacent cells. If the flux used to compute the divergence is different on each side of the
boundary than a non-physical amount of information is added or lost resulting in an error.
In other words, the finite-volume method will cease to be conservative. On a single grid,
this never happens because there is no ambiguity in choosing the correct flux. However, on
a coarse-fine boundary fluxes are multiply defined.

To motivate this special treatment, consider the computation of the a flux on the coarse
and fine sides of a coarse-fine boundary as illustrated in Figure[d.2 Here we have a coarse grid
half covered by a fine grid with a refinement ratio of 2. We seek to compute the horizontal
contribution to the divergence of a flux F which is defined at each surface.

First consider the divergence at point A. The divergence can be written as

1
D(F)a = E[}E—]:l], (4.15)
or as 1
D(F)a = 1 |[A(Fio Faa) = A(Fro. Foa) | (4.16)

where h¢ is the coarse-level grid spacing. Because the fine-level fluxes are presumably more
accurate, we elect to compute the divergence at A using Equation .

At point C things are simpler. the only fluxes available are F3 and F, so the answer is
simply
1

D(F)e = 73

[Fi— F3). (4.17)

CHAPTER 4. AMR AND MULTIGRID 24

For T F0i 701 7

9—.0,0 ’7:1,0 "}—2,0 ”7:3,0 g:4,0

A
5o 3. 7. 75 7,

Figure 4.2: Computing the coarse-level divergence at three points mear the coarse-fine
boundary

The divergence at point B is where the ambiguity arises. The only option for the high
side is F3, but the low-side flux is multiply defined. What should be done? The answer is
that to maintain the conservation property of the finite-volume method on the coarse level,
the flux used on the high side of point A must be the same as the flux used on the low side
of point B. Hence we must be sure that the divergence at B is

D(F)p = e [}—3 A(f4,0,F4,1)] - (4.18)

In practice, we often do not have knowledge of the locations of the coarse-fine boundary
locations when computing J. Because of this, we compute D(F) assuming there is no finer
level and then add a correction in the form of R. These corrections are

R (Ue, U”l) - % {A (f(U”l)) - f(U’f)] on 99, €< b, (4.19)
Re (Uf, U“l) — A (]-"(U”l)) CFUY on 9, < by (4.20)

These corrections have the effect of replacing coarse fluxes with the average of overlying fine
fluxes on the coarse-fine boundary. Note the factor of 1/h‘ which is absent in R¢. This
difference stems from the lack of a divergence operator in J¢. Note also that because R uses
the flux function F, R also implicitly depends on J.

CHAPTER 4. AMR AND MULTIGRID 25

Finest and Coarsest Level Cases

Lt (fJZ, U1 U) is the most general version of the level operator, but we must consider
the cases where ¢ = 0 and ¢ = {,,,.. The first case corresponds to the coarsest level in the
hierarchy. The boundaries of Q° are the boundaries of the problem domain, so the boundary
conditions are computed using whichever method would be used in the case of a single-level
problem. This version of £¢ we write as £¢(U*, Ut1).

The case where ¢ = /,,,, corresponds to the finest level in the hierarchy. There are no
coarse-fine boundaries on the interior of Q= and hence there is no refluxing to be done
and R is identically zero. This version of £f we write as £/(U?, U1,

Both of these corner cases apply to the face-averaged operator £ as well.

In the pseudocode and discussion of these algorithms below, £/(UY) is understood to
mean the operator defined in Equation or with the appropriate coarse and fine
level arguments depending on the value of /.

4.4 Multigrid

Up until this point, we have said nothing at all about solvers for either single-level or multi-
level problems. Here we finally introduce multigrid, a multi-level solver that complements
the local refinement structure of AMR. We discuss the general approach of multigrid as well
as two different implementations: the residual-correction scheme and the full approximation
scheme.

Multigrid is a framework that leverages data defined recursively on Njy;o grids refined
with respect to one another by a ratio ry;. As we will see, one critical difference between
a multigrid hierarchy and an AMR hierarchy is that the former has no local refinement;
each grid in the hierarchy covers the same region of space. That is to say, Qf = I' for all
¢. Multigrid takes advantage of the error smoothing properties that are innate to iterative
relaxation methods like point-Jacobi or Gauss-Seidel to solve for U in the problem £(U) = G
(38, [11].

The general approach of the multigrid algorithm is as follows. After smoothing the
solution error with an iterative scheme for Ny, iterations (typically 2-4) on the finest grid,
the problem is then transferred to a coarser grid using the averaging operator A,;g. Because
relaxation damps high frequency modes in the error, the data is smooth and the coarse
problem is a good approximation of the fine one [11]. The critical notion of multigrid is that
smooth discrete Fourier modes become more oscillatory when expressed on a coarser grid.
This phenomenon means that on the coarser grid, relaxation will be effective in problems
where the convergence of the same iterative solver may have stalled on the finer grid. What’s
more, there is little need to be concerned about aliased high frequency modes because, again,
these modes are preferentially damped by the iterative method |11} 3§].

Once the problem is coarsened down to Q° U is relaxed for Nytrom (= 20) iterations
and interpolated back to the previous fine grid where it is used to correct the value of U!.

CHAPTER 4. AMR AND MULTIGRID 26

Interpolation tends to reintroduce high frequency modes, but this side effect is easily reme-
died with Ny, (&= Ngown) more relaxation steps. This process continues until the algorithm
returns to UNMG—! where it terminates with the final solution. This whole cycle from the
finest level, down to the coarsest level, and back up again is termed a v-cycle after the pat-
tern of recursive calls. It is usually the case that more than one v-cycle is needed to obtain
the desired accuracy.

We introduce one more piece of context before we examine concrete multigrid implemen-
tations. Namely, we must discuss the role of the residual. If U* is an approximation to the
true solution U to LU = G, then we can write the error in U* as

E=U-U", (4.21)
and the residual in U* as
R=G - £(U". (4.22)

If we assume L is linear, we can derive an auxiliary problem,
L(E) =R, (4.23)

which is in terms of E instead of U. If we solve the residual equation for E, then we can
trivially determine U = U* + E.

We now examine two specific implementations of multigrid. The first is the residual-
correction formulation detailed in Algorithm [I} This is the formulation of multigrid that has
been used for systems of equations arising in AMR computations since the 1990s [3], 33| 27].

Algorithm 1 Residual Correction Scheme Multigrid

1: procedure RCSMULTIGRIDVCYCLE(U?, G, ¢)
2 if ¢ > 0 then

3 U’ «+ RELAX(UY G, Nyoun)

4: U‘E_1 ~—0

5: Gl AM(;(GE — ,C(Ué)) on CMG(QZ)
6:

7

8

9

FASMULTIGRIDVCYCLE(U* !, G 7 — 1)
Ue —+= IMc,(UZ_l)
U’ + RELAX(UY, GY, N,,)
else
10 U’ «+ RELAX(UY, G, Nyostom)
11: end if
12: end procedure

The inputs to RCSMULTIGRIDVCYCLE on a given level are the level solution U, the
right hand side forcing G*, and the level itself /. An important feature of residual-correction
multigrid is that only on the finest level do U’ and G* represent the solution and forcing

CHAPTER 4. AMR AND MULTIGRID 27

of the problem L£(U) = G. At all coarser levels, these values are the error and residual
respectively of the problem on the next finer level.

Starting on level ¢, the algorithm first relaxes the error in the input U* (line 3). The
error on the next coarser level is then initialized as zero (line 4) and the coarse level residual
is computed (line 5). The function is then called recursively. After the recursive call, U*!
actually holds E“~!, the error in U resolved on the coarser grid. To update U?, the error is
interpolated and added to U’ (line 7). Finally, the error on level / is relaxed again to remove
the high frequency error introduced by the interpolation operation (line 8). On the coarsest
level where there is no recursive call to make, multigrid simply relaxes the error for a longer
time, usually for about 20-30 iterations, before passing the result back up to the finer level.

There are two limitations to this algorithm as posed. The first is that £ must be lin-
ear because the residual equation is used. Additionally, the problem must be posed with
homogeneous boundary conditions because the initial value of the error is uniformly zero.

Algorithm 2 Full Approximation Scheme Multigrid

1: procedure FASMULTIGRIDVCYCLE(U?, Upe, G, /)
2 if £ > 0 then

3 U’ «+ RELAX(UY G, Nypun)

4: Ul AMg(UK>

5: Uj™ « Ut
6

7

8

9

G Ana(G' — L(U", Uge)) on Cuc()
Gé—l 4= EZ—I(UZ—17UBC) on Qé—l
FASMULTIGRIDVCYCLE(U* !, G710 — 1)

: U 4= Tyc (U’f—l - Ug—l)
10: U’ + RELAX(UY, G%, N,,)

11: else
12: U’ + RELAX(UY, G*, Nyortom)
13: end if

14: end procedure

As an alternative, we examine the implementation of FAS-multigrid detailed in Algorithm
. The inputs are the level solution U?, the level forcing G¥, and optionally Upgc, which is
a coarse grid representation of U used to interpolate boundary conditions. This is different
from the residual-correction version which assumes homogeneous boundary conditions, and
only comes into play when this algorithm is used in tandem with AMR as we will see in the
next section.

The FAS algorithm also departs from the residual-correction one at lines 4 and 5 where
U ! is computed explicitly using averaging, and a copy of this quantity is saved in Ug_l.
The coarse level forcing is also different. Instead of computing the residual, the algorithm

CHAPTER 4. AMR AND MULTIGRID 28

computes a new forcing by setting the residual on levels £ and ¢ — 1 to be equal,

A(Rf> ~ R, (4.24)
A (G,Z - ﬁf(Uf)> — G oty uty, (4.25)
Gl = A (G- L) + LU, (4.26)

as shown on lines 6 and 7. With U! and G’~! computed, the function can be called
recursively on the next coarser level. The output of the recursive call is not an error in U*
like in the residual-correction formulation, but is instead an updated value of U’ itself on the
coarser grid. Hence, the algorithm must explicitly compute the error with which to update
U’ (line 8). This is the reason why a copy of U*~! needed to be stored before the recursive
call.

The key takeaway from this comparision is that FAS-multigrid does not solve a residual
equation nor does it place any restriction on the boundary conditions of the operator L.
Removing this restriction provides a more flexible algorithm which can solve affine or even
non-linear operators with inhomogeneous boundary conditions [11].

In all of the above, no mention has been made of a specific relaxation routine to implement
RELAX in Algorithms [I] and [2 Our implementation uses point-Jacobi iteration, but in
principle any routine with the high-frequency smoothing properties described above would
suffice.

Optimizing Helmholtz Convergence

There are two Helmholtz solves present in our implementation of the all-speed projection
algorithm, namely Equations and ([3.60). There is a potential problem in both of
these formulations in that the diagonal coefficient of the Helmholtz operator scales like 1/p.
This value can be quite small, especially in the low-Mach limit since M? ~ 1/p. As written,
the eigenvalue corresponding to the constant eigenmode will likewise become very small and
hence the convergence of iterative methods will tend to stall for that mode. There is also
no clear way to scale the equation which will not retain a large scale difference between the
constant and non-constant eigenmodes.

We rectify this problem by making the bottom-most iterative solve of FAS-Multigrid
semi-analytic. To do this, we wrap Algorithm [2] in Algrithm [3] as shown below.

Here we use the (7) operator to denote the average value over the whole domain as opposed
to the average over a cell. Line 3 of Algorithm (3| is the key to the fix; here we factor out
the constant eigenmode of the problem £(U) = G yielding a well conditioned Helmholtz
solve in all the other eigenmodes (line 4). Finally, in line 5 we analytically solve the constant
eigenmode problem and update the solution accordingly.

Using this method, we solve for the constant eigenmode directly while separately solving
for the non-constant modes iteratively.

CHAPTER 4. AMR AND MULTIGRID 29

Algorithm 3 Helmholtz Modification to FAS-Multigrid

1: procedure HELMHOLTZSOLVE(UM¢, G*MG (110, Lang)
2 if (o =0 and L4 g =0 and Z # 0 then

3 GME Give 4 (I — T)Utme

4 RELAX on [ZI — B (DF + 8)] Utme = Gve

5 Utve 4= LGhe _ Giwe

6 else

7 FASMULTIGRIDVCYCLE(U™¢ GG f)/4)

8 end if

9: end procedure

Grid Layouts for AMR and Multigrid

<

L2

Li41

Multigrid AMR.

Figure 4.3: Structures of AMR verusus multigrid grid layouts. Only AMR (right) imple-
ments local refinement. Both of the layouts shown use a refinement ratio of 2.

4.5 AMR Algorithms

We now have established all the fundamentals needed to evaluate L£©™?(U“™?) as well as
to solve the problem L©mP(U®“™?) = G™ where G®™ is a known forcing and U®“™ is
unknown.

We have already spoken about multigrid, which makes use of successively refined versions
of the same domain. The grid layout of AMR is distinct from multigrid in that more refined
domains cover less and less of the problem domain Q°. This is where local refinement enters
the picture. Figure [4.3]illustrates the distinction between AMR and multigrid grid layouts.

CHAPTER 4. AMR AND MULTIGRID 30

AMR Apply

First we present Algorithm [} the procedure for evaluating £, Here the terminology
Aamr and Cayr are used to represent inter-level operators which use 7435 as their refine-
ment ratio. The averaging operations are there to make sure that the most precise value of
U‘! is used to compute £7! and the boundary conditions for £°.

Algorithm 4 AMR Operator Apply

1: procedure AMRAPppLY (L U“™? ()
2 if /=0 then

3 L¢ « EZ(UZ’U€+1)

4 elseif ¢/ =/¢,,,, then

5: Ul AAMR(UE) on CAMR(QE)
6

7

8

9

AMRAPPLY (L™ Uemp (— 1)
L’ «+ £Y(Uf, U

else
: Ul .AAMR(UE) on CAMR(QZ)
10: AMRAPPLY (L™ U™ (— 1)
11: L¢ « YUY Ut Ut
12: end if

13: end procedure

AMR FAS-Multigrid

Solving LmP(U“?) = G using AMR is a bit more involved. AMR itself is not a
solver, and so we will need access to a subroutine that provides this utility. We choose to
use FAS-multigrid as our solver.

Algorithm [5| describes the solution process. AMRVCYCLE is a subroutine which takes
an initial guess for U™ and the right hand side G and improves upon the guess. The
improvement is executed as follows. Starting at the finest level £,,4,, the level solution U*
is relaxed using FAS-multigrid. Boundary conditions are provided using interpolated data
from the next coarser level U~'. A coarsened copy of the relaxed solution is then saved
and an updated forcing G for the next coarser level is computed using the same logic as
in Equations through . This updated forcing accounts for the progress that has
been made by relaxing on this level. AMRVCYCLE is then called recursively on the next
coarser level with G* ! as the forcing. On the coarsest level, the problem £0(U% = GO is
solved outright using FAS-multigrid.

After the recursive call on level ¢, the coarse level error can be computed as U1 — Ué_l
where Ué’l is the copy that was saved prior to the recursive call. U’ can be updated using
the interpolated value of this error. Finally, one last smoothing is done using FAS-multigrid

CHAPTER 4. AMR AND MULTIGRID 31

AMR Multigrid Grid Structure

Taom =4 | Iye =2

AMR Level 1
MG Level 1

MG Level 0

AMR Level 0
MG Level 2

MG Level 1

MG Level 0

Figure 4.4: AMR-Multigrid grid structure. rapgp = 4 and ryg = 2

before U’ is passed back up to the next finer level. This process continues until the algorithm
returns to the finest level.

This pattern of relaxation, averaging down, interpolation, and correction is almost iden-
tical to what is done in FAS-Multigrid. The salient differences are that AMRVCYCLE uses
FASMULTIGRIDVCYCLE as it’s relaxation routine and that additional steps must be taken
when computing the coarse level forcing to account for local refinement. Finally, each call
to the level operator £ is making use of the refluxing correction R at coarse-fine boundaries,
a step which is unnecessary in the pure FAS-multigrid algorithm.

At the end of the v-cycle, the solution may or may not be good enough. The AMRSOLVE
function checks the solution using the norm of the residual, and repeatedly calls AMRV-
CYCLE until the norm of the residual is smaller than a provided tolerance. This iterative
application of v-cycles to improve the solution is how all problems of the form U = £L7!1G
are solved. As a final note, we make the observation that if ¢,,,, = 1 then AMRVCYCLE
simply reduces to solving a single level problem using FAS-multigrid.

Multigrid Subcycling

We must elaborate on a few points pertaining to AMR and FAS-multigrid operate together.
As shown in Algorithm 5] FAS-multigrid is called by AMR in very much the same way that
RELAX is called by FAS-multigrid. On the coarsest AMR level, the process is fairly obvious.
However we have not yet explained how multigrid should function on the finer AMR levels.

CHAPTER 4. AMR AND MULTIGRID 32

Algorithm 5 Full AMR algorithm using FAS-Multigrid

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

procedure AMRSOLVE(U“™ G Ny, T)
Rcomp — Gcomp _ ﬁcomp(Ucomp)
Ro = [Re7|
for n € [1, Nyoppe| do

AMRVCYCLE(U®m, Geomp Glmas ¢,)
Rcomp — Gcomp _ Ecamp(Ucomp)
R |[Rm7]|
if RZ/RO < 7 then
return success
end if

end for
return failure
end procedure

14: procedure AMRVCyCLE(U®“" G™mP, G,)

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:

29:
30:

if / =0 then

U’ « FASMULTIGRIDVCYCLE(UY, G, N¢,, — 1)

else

U’ « FASMULTIGRIDVCYCLE(U?, U1 GY N, — 1)
Ut AAMR(UE)
Ug_l — Uffl
Géfl — fol
if ¢ < {,,,, then
G += Aaur (G = LU UL UMY on Canr(9)
else
G 4= Aamr (G = LYULUY)) on Camr(QY)
end if
AMRVCYCLE(UAME GAMR Gt-1 ¢ 1)

U += IS&MR (Ueil - U€_1>
U’ + FASMULTIGRIDVCYCLE(U!, Ut GY NE,, — 1)

end if

31: end procedure

CHAPTER 4. AMR AND MULTIGRID 33

Solving Poisson's Equation
AMR Levels: 2
AMR Refinement Ratio: 4
Multigrid Refinement Ratio:

Solving Poisson's Equation
Grid Size: 32~DIM
Initial Residual: 0©.999598
Final Residual: 6.89877e-09
Converged in 12 iterations.
Error: 1.44211e-05

Solving Poisson's Equation
Grid Size: 64"DIM
Initial Residual: ©.9999
Final Residual: 3.21736e-09
Converged in 13 iterations.
! 9.17657e-07

Solving Poisson's Equation
Grid Size: 128°DIM
Initial Residual: ©.999975
Final Residual: 6.6777e-09
Converged in 13 iterations.
Error: 5.7602e-08
Convergence Rate: 3.97408
Convergence Rate: 3.99377

Figure 4.5: Performance of AMR FAS-Multigrid for solving Poisson’s FEquation with
ramr =4 and rye =2 on 2 AMR levels

The answer to this question depends on the relative refinement ratios of the AMR and
multigrid algorithms. When working in tandem, we enforce the restriction rayr > rya-
When rayr = rug, then the calls to multigrid on the mid-levels of AMR have only a
single multigrid level, and hence reduce down to calls to RELAX. However, if r4pr > ryva
then multigrid levels can exist at refinements between AMR levels. We disallow multigrid
to have levels as coarse or coarser than the next coarsest AMR level, so there will only be
logy(ranr/Tme) + 1 multigrid sublevels for the calls on AMR levels greater than 0. This
hybrid grid structure is illustrated by Figure [4.4]

These multigrid subcycles also obtain their boundary conditions in a different way. In-
stead of averaging the boundary conditions down from the input state, multigrid subcycles
have access to the next coarsest AMR level and can interpolate boundary conditions from
that data. This is what the argument Upgc in Algorithm [2]is used for.

AMR FAS-Multigrid Performance

Using FAS-multigrid in place of residual-correction multigrid represents a significant de-
parture from previous AMR solver implementations. Figure provides some results that
illustrate the performance of our implementation. Here we use AMR FAS-multigrid to solve
Poisson’s equation on three different grid hierarchies of increasing resolution. Each hierarchy

CHAPTER 4. AMR AND MULTIGRID 34

consists of two AMR levels with rayr = 4 and ry ¢ = 2, the same configuration as that
illustrated in Figure [£.4]

From these results we note that the residual is decreased in magnitude by about an order
of magnitude by each v-cycle. The number of iterations required for the solver to converge
is also essentially independent of the grid spacing. Finally, the Poisson solver furnishes a
fourth-order accurate solution. These results are excellent and underscore our confidence in
the decision to use FAS-multigrid for our AMR framework solver.

4.6 A Review of High-Order AMR Finite-Volume
Methods

Block-structured AMR on uniform nested grids was first formulated in 1989 by Berger and
Colella |9]. That study included a finite-volume discretization and implemented the refluxing
procedure discussed herein, however only explicit methods were used to advance the system
in time. Thompson and Ferziger introduced the idea of using multigrid to solve elliptic
equations for AMR as applied to the steady Navier-Stokes equations in [42]. Implicit solver
methods using residual-correction AMR multigrid were elaborated on by [3] who applied the
paradigm to a nodal-point discretization for a vortex method, and later by [33] and [27] who
applied it to a second-order finite-volume discretization.

High-order finite-volume methods for AMR are a relatively new idea. They were first
examined by Barad and Colella in [7] using Mehrstellen stencils to solve Poisson’s equation.
These ideas were elaborated on by McCorquodale and Colella in [31] where they were used
to simulate explicit gas dynamics in an AMR framework.

Our method uses the ideas of [31], though we have not implemented local refinement
in time. We have replaced residual-correction multigrid with FAS-multigrid as our im-
plicit solver. The impact of this choice is a modest amount of additional complexity in
the implementation and greatly increased flexibility. The formulations in [33] and [27] use
very specific stencils to put the single-level problem in residual-correction form. With FAS-
multigrid, concerns like this are completely eliminated. Boundary conditions are factored
out of the multigrid structure entirely and we can now apply AMR-multigrid to affine or
even non-linear operators in a way not available in the residual-correction paradigm.

35

Chapter 5

Proto

In this chapter we take a detour away from the scientific computing component of this study
to discuss software development. To the practiced reader this may feel like an unusual
transition, but that sense of strangeness only serves to underscore a larger problem. For
many years, the field of scientific computing has been able to proceed incrementally thanks
to relatively stable hardware targets running well-implemented Fortran. However, current
trends suggest that the composition of high-performance computers is rapidly changing in
exotic ways, and software development will have adapt to keep up.

5.1 Trends in High Performance Computing

For many years prior to the time of writing, scientific computing has been a booming field.
Between June 1993 and June 2001, the performance leaders in high-performance computing
jumped from 59.7 GFlops to 7.23 TFlops. Perhaps even more surprising, the rank 500
machine in June 2001 also outpaced the rank 1 machine in 1993. As of November 2020,
the industry leaders are clocking in at hundreds of TFlops with the number 1 machine -
Supercomputer Fugaku - putting up numbers north of 0.5 FxaFlops and the number 500
machine reporting over 1 PetaFlops [35] 41].

Much of this dramatic growth was fueled by the advent of the manycore paradigm.
Between June 1993 and June 2001, the number of cores used in the top machines jumped
from a few hundred to a few thousand. Since then, that number has reached well into the
millions or even tens of millions [41]. Cores themselves didn’t change all that much, often
remaining very similar to Intel X86 systems. New systems simply added more and more of
them. Meanwhile, the software running on these systems was able to become increasingly
tuned to the stationary target. Codes became very well optimized, but also increasingly
reliant on the manycore model.

The last decade has seen a shift from the manycore mentality. We now see exotic archi-
tectures like Intel’s Many Integrated Core (MIC) nodes, ARM chips, Graphical Procesing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs). These technologies are hardly

CHAPTER 5. PROTO 36

theoretical; Oak Ridge National Laboratory’s Summit computer embraces the heterogenous
computing model including 2 IBM POWER9 CPUs and 6 Nvidia Tesla GPUs in each of it’s
4,608 nodes [30].

There are several causes for this shift. Physical limitations preclude the annual increases
in CPU clock speed observed in the past. Thermodynamics also play a role; the current
fastest machines consume power at a staggering rate of 10s of MW. Memory is also a concern,
with more and more complex hierarchies of “fast” and “slow” memory in evidence in new
technologies |25].

As it stands, programmers of simulation software must fill the role of “full stack” develop-
ers. They must have intimate knowledge of the relevant physics and mathematics and of the
hardware layout of the machine on which their code will run. Deploying an application on a
different hardware configuration often requires an entirely different implementation to take
advantage of potential performance gains. Using GPU targets as an example, the developer
must keep in mind software prefetching, register planning, CUDA streams, scatter stencil
loops, texture memory directives, optimal shared memory use, and the list goes on and on
[21]. All the while, the physical problems that we would like to solve are growing in scope
and complexity.

5.2 Proto Design and Goals

Proto was designed with three traits in mind: performance, expressiveness, and portability.
Of these, performance is the most self explanatory. We want to avoid the same kind of
performance gap that existed after the transition to the manycore paradigm. The goal
for Proto is at least 50% of theoretical peak algorithmic performance based on a faithful
performance model for the algorithm and platform.

Expressiveness refers to how easy an algorithm can be translated from its defining math-
ematical expressions into high-level application code. This quality can be quantified in the
expansion factor between lines of mathematics and lines of code. The languages used in
most scientific computing applications today are not very expressive, and the ones that are
either sacrifice performance or generality |24} [39]. With the tools available in C++11 and
C++14 - variadic templates and move semantics to name a few - we believe that performant,
expressive code is within reach. Our goal for Proto is a no more than a ten-fold expansion
between algorithm specification and implementation.

Portability refers to the ability of an application to be run on different computing archi-
tectures without reimplementation. As demonstrated above, portability is likely going to be
a much more important feature in the future than it has been. Algorithms will likely outlive
several computer architectures now, and multiple architectures are already being developed
in parallel. It is already the case that nearly every high-performance application needs to
be rewritten to some degree. With Proto we would like to do the best we can to make sure
we do it right the first time by providing a simple build path through a C++ header-only
library and a single-source multiple-target implementation.

19

CHAPTER 5. PROTO 37

5.3 Proto Syntax

One of the core design principle of Proto is to provide an expressive syntax for implementing
operators on a single data patch. This is achieved through a framework for implementing
pointwise and stencil functions. Following is a brief description of the elementary objects in
Proto accompanied by examples which illustrate the framework’s expressiveness.

Basic Objects

Listing 5.1 Usage of basic Proto objects
#include "Proto.H"

int main(int argc, char*x* argv)
{

int domainSize = 16;

// Define the points (0, O, ...) and (15, 15, ...)
Point p0 = Point::Zeros();
Point pl = Point::0nes(domainSize - 1);

// Build a Box from two Points:
Box domain (p0, pl);

// Build a BoxData with 3 components from a Box:
BoxData<double, 3> phi(domain);

// Initalize the data in phi to O
phi.setVal (0);

First we must very briefly describe the atomic elements of Proto: POINT, BOX, and
BOXDATA. A POINT represents an element p € Z”. Two POINT objects which satisfy
pl <=pd Vd € [0,D) define a BOX, a rectangular region in Z?. BoxDATA<T,C,D,E> is
the principal data holder object in Proto and defines a multidimensional array with values
given by a CxDxzE component tensor of T-type data at each point. Usually D and E are
equal to 1, leaving C' to define the number of components. C' = 1 corresponds to a scalar
valued variable. Listing demonstrates how these objects work together.

CHAPTER 5. PROTO

38

Listing 5.2 A simple Proto FORALL example
#include "Proto.H"

void f_initPhi(Point& a_p, Var<double, 2>& a_phi,

{
// Assume DIM >= 2
double x = a_p[O0]l*a_h + a_h/2.0;
double y = a_pl[ill*a_h + a_h/2.0;
a_phi(0) = sin(x)*sin(y);
a_phi (1) = cos(x)*cos(y);
}
int main(int argc, char** argv)
{
int domainSize = 16;
double L = 2.0xM_PI;
double dx = L/domainSize;
Box domain = Box::Cube(domainSize);
BoxData<double, 2> phi(domain);
forallInPlace_p(f_initPhi, phi, dx);
+

double a_h)

Pointwise Operations

Pointwise functions account for any operators of the form

wi = F<aiaﬂi77i7 "'7a7b7 C,)7

where «; etc are patches of data evaluated at a point ¢ and a, b, ¢ etc. are constants. This is
a very general class of operators. The only restriction is that all array inputs are evaluated

at the same point.

Proto implements pointwise functions with a set of variadic functions named FORALL*
which accept user-defined functions as inputs. There are versions of FORALL which return a
BoxDATA or operate in place. The POINT at which the function is being evaluated is also

available. See Listing for an example of application.

We must make special mention of the VAR<T,C,D,E> data type which appears in
Listing This object is associated with a BoxDATA<T,C,D,E> input to FORALL and

facilitates the pointwise execution.

CHAPTER 5. PROTO 39

Listing 5.3 A simple Proto STENCIL example
#include "Proto.H"

int main(int argc, char*x* argv)

{
// Inputs
int domainSize = 16;
Box domain = Box::Cube(domainSize);
BoxData<double, 4> phi(domain);
phi.setVal (1);
double dx = 0.1,
// Create the Stencil
Stencil <double> S = (-2.0%DIM)*Shift::Zeros ();
for (int dir = 0; dir < DIM; dir++)
{
S += 1.0*xShift::Basis(dir, +1);
S += 1.0*xShift::Basis(dir, -1);
}
S %= 1.0/(dx*dx) ;
// Apply the Stencil
BoxData<double, 4> psi = S(phi);
}
Stencils

A stencil is an operator,

l/Ji - Z(ws¢i+s) S € ZD7
S
that computes an output value at i from a linear combination of input values near i. Both
1 and ¢ are allowed to be arrays so long as they have the same number of components.
STENCIL covers the principle use case that FORALL misses, and together they represent the
vast majority of operations that an application developer would want to execute on a patch.
Stencil operators are first-class objects in Proto, so they can be built once and executed as
many times as desired. The syntax for creating and applying a STENCIL is demonstrated in

Listing 5.3}

CHAPTER 5. PROTO 40

| N | Proto (GFlops) DGEMM (GFlops) ||

64 1.4 3.0
128 1.9 24
256 2.3 2.0
512 24 2.0

Table 5.1: Proto stencil and pointwise operator performance as compared with matrix
multiplication using DGEMM

5.4 Proto Efficiency

We examine the effectiveness of Proto in terms of two of its three design principles: ex-
pressiveness and performance. The matter of portability is beyond the scope of the current
study.

Performance

We examine the speed of Proto by comparing the performance of a test problem including
both stencil and pointwise operations in Proto with the performance of a benchmark that
multiplies two NxN matrices using DGEMM as a triply-nested for-loop. The Proto test
problem is

1
L 5A©0), (5.1)
2
O <+ ¢+L—R4h—D, (5.2)

where L, ¢, and R are N® sized arrays. Equation (5.1)) utilizes Proto’s stencil operator and
Equation uses FORALL. This test problem consists of 15N? Flops which is comparable
to the 2?3 Flops of the DGEMM computation. These problems are also comparable because
the stride-one access for both are of length N, so the degree of vectorization is also equivalent.
This is also the reason why we have implemented DGEMM as a nested for-loop even though
there are more efficient configurations for implementing matrix multiplication.

Table summarizes the results of this test. The comparison was executed on an Apple
MacBook Pro equipped with a 3.1 Ghz Intel Core i7 processor. Both examples were compiled
using clang++ with -O3 optimization.

We note that the results are at worst within a factor of 2 of each other. The Proto result
even appears to do better than DGEMM for larger problems. This is partially because the
Proto test problem has a higher arithmetic intensity and also due to the fact that for larger
problem sizes the matrices used in the DGEMM problem cease to fit in the L3 cache. We
should not examine these results too rigorously; the major takeaway is that Proto shows
similar performance to DGEMM when solving a roughly comparable problem.

1
2
3
1

19

CHAPTER 5. PROTO 41

Expressiveness

As a case study, we present Listing an implementation of the STEP method from the
fourth-order Euler solver used in [31]. The corresponding mathematical specification of the
algorithm is given by Equations (12) through (20) in [31].

Listing 5.4 Proto implementation of the calculation of an explicit right-hand side for a
fourth-order accurate method for Euler’s equations

namespace Euler
{
void step(BoxData<double, NUMCOMPS>& a_rhs,
const BoxData<double, NUMCOMPS>& a_U)
{
a_rhs.setVal(0.0);
auto W_bar = forall<double, NUMCOMPS>
(f_consToPrim, a_U, s_gamma);
auto U = m_deconvolve(a_U);
auto W forall<double, NUMCOMPS>
(f_constToPrim, U, s_gamma);
auto W_ave = m_laplacian(W_bar, 1.0/24.0);
W_ave += W;
for (int d

0; d < DIM; d++)

{
auto W_ave_f = m_interp[d](W_ave);
auto F_bar_f = forall<double, NUMCOMPS>
(f_getFlux, W_ave_f, d, s_gamma);
F_ave_f += m_laplacian_f[d](F_bar_f, 1.0/24.0);
a_rhs += m_divergence[d] (F_ave_f);
}

a_rhs *= -1.0/s_dx;
} // close step
} // close namespace

Using Proto, we are able to represent 9 lines of mathematics in just 24 lines of code broken
into 11 statements and a for-loop. Even if we ignore the implementation of the function
inputs in the calls to FORALL, the equivalent Fortran would require an order of magnitude
more lines of code. This is because in Fortran, the programmer needs to explicitly compute
loop bounds and write loops themselves. In the case of writing an implementation for GPUs
using CUDA, the necessary code increases by yet another order of magnitude.

This example reveals the utility of a few other aspects of Proto which have not yet been
discussed. Proto implements domain inference for both pointwise operators and stencils.

CHAPTER 5. PROTO 42

This optimization automatically computes the maximum appropriate range that an operator
can produce given the combined domains of the inputs. Domain inference obviates the need
for many lines of code which would otherwise be required to define these ranges. Like
most of the automated functionalities of Proto, domain inference is optional and can be
overridden by the application developer if necessary. Proto also takes advantage of C++11
move-semantics which allow the programmer to make use of the assignment (=) operator
for BOXDATA objects without having to worry about losing efficiency to unnecessary data
copying.

Lastly, we note that many of the stencil operations used in this implementation are
common across a wide array of structured grid applications. The 2N + 1 point Laplacian
operator is a good example of a function that is used in a myriad of contexts. Stencils of
this variety are included in the implementation of Proto as a library of operators which is
constantly growing over time. This study has made its own contribution to Proto’s stencil
library in the form of the various fourth-order operators described in Chapter [3]

43

Chapter 6

Results

The sections to follow demonstrate the effectiveness of the all-speed projection algorithm
with AMR and FAS-multigrid. All computations in this chapter are performed in serial on a
3.5 Ghz Intel Core i5 processor running Ubuntu 18.08 and compiled using g+ version 7.5.0.
We will show good agreement with the known behavior of canonical problems and showcase
the power of AMR when applied to a problem with multiple length scales that differ by
orders of magnitude.

For these problems, we specialize to the case of a polytropic gas. The equation of state

in Equation (2.4]) simplifies to

and the speed of sound is
=22 (6.2)

6.1 Vortex in Stratified Flow

For our initial validation, we examine the well known vortex in a box problem. Our version,

v, = U sin® (1) sin(my) cos(ry), (6.3)
v, = —ug sin’(ry) sin(rx) cos(rx), (6.4)
p=po [1 — etanh (y _50'5)] : (6.5)
P = Do, (6.6)
ph = Wpo_vy (6.7)

includes density stratification in the vertical direction, but since we have neglected gravi-
tational effects there is no restoring force to maintain stability and our initial condition is
expected to simply advect with the flow.

CHAPTER 6. RESULTS 44

The domain is z,y € [0, 1] and the parameters are pg = ug = 1, € = 0.1, and § = 0.1. pg
is used to control M, and we examine the problem for values of py ranging from 10 to 10°.
The boundary conditions are solid walls in the y-direction and periodic in the x-direction.
Figure shows what this initial condition looks like for the horizontal velocity and density.

Pseudocolor
Var: var_2

Pseudocolor
Var: var_0

1.1
—0.50 -:I.O
0. 0.8
0.0 1.0
.:-0,50 ‘0-95
.\.1,0 lo.9o
Max: 1.0 Max: 1.1
Min: -1.0 Min: 0.90
o 0.
0. 0.4
0. 0.2
(a) Horizontal velocity (v;) (b) Density (p)

Figure 6.1: This is the initial condition for the stratified vortex problem. The black line
designates the region of refinement.

Here we will show second-order accuracy of the algorithm. Though the original goal was
to show fourth-order accuracy, progress on the algorithm has not reached that point at the
time of writing. Because of the extensible nature of the implementation, there is no reason
to believe that high-order accuracy is not possible. Tables and summarize the error in
each state variable in both the L; and L., norms and the convergence behavior respectively
for the low-Mach case (M = 0.004). Clearly we do not observe anything resembling conver-
gence when it comes to the acoustic variables, but we also do not expect to. The domain
of this problem is far too small to resolve any possible long wavelength acoustics. However
we do observe good convergence for the advective variables, specifically the divergence-free
velocity and the density.

As an additional performance check, we observe the qualitative behavior of our outputs
as compared to those in . Figures and compare the solutions for the density,
divergence-free velocity, and vorticity respectively. The agreement is good, though the peak-
values are different as we would expect considering the single-level method is fourth-order
while the AMR method is only second-order.

CHAPTER 6. RESULTS

H Variable Name |

Richardson Error

Variable L, Coarse L; Fine L., Coarse L., Fine
Uy 3.75x 107" [3.72x 107* | 1.64 x 1072 | 9.69 x 10~*
vy 3.38x107* | 3.04 x 107* | 1.25 x 1072 | 9.75 x 10~*
Vi 2.77x 107 | 7.59 x 107 | 1.26 x 107 | 4.08 x 107*
Vdy 2.14x107* | 6.57x 107 | 1.17 x 1073 | 3.09 x 10~*
Vp.a 2.15x 107" | 3.67 x 107* | 6.98 x 10~* | 9.06 x 10~*
Vpy 1.82 x 107* | 2.76 x 107* | 5.58 x 107* | 9.32 x 1074
p 1.23 x 107 | 3.23 x 1076 | 3.72 x 107° | 1.46 x 107°
D 426 x 1072 | 3.73x 1072 | 1.91 x 10~ | 1.20 x 10~*
ph 1.49 x 107" | 1.31 x 107 | 6.65 x 107" | 4.21 x 107!

Table 6.1: Low Mach error for the stratified vortex problem. (M = 0.004)

H Variable Name |

Richardson Convergence

H

Variable L, Convergence | L., Convergence

Vg 0.01 0.76

Uy 0.15 0.36
Vd.z 1.86 1.62
Uy 1.70 1.90
Up.» -0.77 -0.38
Up.y -0.60 -0.74

p 1.92 1.35

P 0.19 0.67

ph 0.19 0.66

Table 6.2: Low Mach Convergence for the stratified vortex problem. (M = 0.004)

CHAPTER 6. RESULTS 46

1.0
Pseudocolor
Pseudocolor
Var: density Var: var_2
1.100 . L1
—1.050 - L1
0.
1.000 Lo
0.9500 0.95
0.9000 Max 1'7190
Max: 1.100 : 1.
Min: 0.5000 Min: 0.90
w
-
» %
k- T
< 05 i
>

0.2

0.0
0.0 0.5 1.0
X-Axis

(a) Single level data (p) (b) AMR data (p)

Figure 6.2: Comparision of density fields between the single level algorithm in 1@/ and the
AMR algorithm.

1.0
Pseudocolor
Var: vd_0
0.9457
- 0.4674
0.01087
0.4892
0.9674
Max: 0.9457
Min: -0.9674
% os
>
0.0
0.0 0.5 1.0 0.2 0.4 0.6 0.8
X-Axis X-Axis
(a) Single level data (vq) (b) AMR data (vq).

Figure 6.3: Comparision of divergence-free velocity fields between the single level algorithm
mn @ and the AMR algorithm.

CHAPTER 6. RESULTS 47

6.2 Shear Layer

Pseudocolor

Pseudocolor
Var: var_0

Var: var_0
0.3618

—-3.606 —-3.619

0.8 0.8
-7.573 -7.581

—-11.54

l-ISS

.50
Max: 0.3416
Min: -15.50
0.

—11.54

-15.51
Max: 0.3618
Min: -15.51
0.6

———

3
5 e
v e 4

0.4

0.2 0.2

(a) Shear layer vorticity initial condition. (b) Shear layer vorticity at t =5

Figure 6.4: Computation of vorticity roll-up in a lightly perturbed shear layer.

We now turn our attention to the problem of a slightly perturbed shear layer. Unlike the
stratified vortex, this problem actually leverages local refinement in a useful way by refining
the region of concentrated vorticity. The initial condition is

vy = up tanh (y — O'5> , (6.8)
01
_0F)2
vy, = updy sin(kmx) exp [—W] , (6.9)
1
p = po, (6.10)
Doy

= (6.12)

The domain is z,y € [0, 1] and the parameters are py = uo = 1, §; = 1.0/30, and d, = 0.05.
Po is again used to control Ma, and we examine the same values as we did for the stratified
vortex problem. We also reuse the boundary conditions: periodic in the x-direction and solid
walls in the y-direction.

As before, we examine the convergence of the second-order algorithm. Here we observe
reasonable convergence results for the non-acoustic variables in the low-Mach case for both

CHAPTER 6. RESULTS

H Variable Name |

Richardson Error

Variable L, Coarse L, Fine L., Coarse L, Fine
Uy 1.14 x 107* [3.96 x 107 | 7.19 x 10~* | 1.90 x 10~*
vy 144 x107* | 241 x 107° | 879 x 107* | 1.29 x 10~*
Vi, 1.17 x 107* | 2.60 x 1075 | 7.34 x 10~* | 1.88 x 10~*
Vdy 144 x 107* | 217 x107° | 8.72x 107* | 1.28 x 10~*
Vp.a 6.01 x 1079 | 2.13 x 107® | 1.69 x 10~° | 6.60 x 107
Vpy 1.07x107% | 543 x 1075 | 743 x 1076 | 1.92 x 10°°
p 4.36 x 107% | 2.62 x 1076 | 2.08 x 107° | 9.91 x 107°
P 1.04 x 107* | 3.40 x 107 | 3.73x 107* | 1.17 x 1073
ph 2.13x 107! | 1.29 x 107! 1.02 4.90 x 1071

Table 6.3: Low Mach error for shear layer: Ma = 0.004

H Variable Name |

Richardson Convergence

H

Variable L, Convergence | L., Convergence

Vg 1.52 1.92

Uy 2.57 2.77
Vd.z 2.18 1.97
Uy 2.73 2.77
Up.a -1.82 -1.97
Up.y -2.34 -1.37

p 0.73 1.07

P -1.71 -1.64

ph 0.72 1.05

Table 6.4: Low Mach Convergence for shear layer: Ma = 0.004

48

norms. Again, we do not observe convergence for the acoustic variables and we do not expect
to for the same reasons as the previous problem. Here we do not observe convergence for
the density, but that is because the initial density field is constant and any perturbations
are the result of acoustic effects. By contrast, the stratified vortex initial condition has a
non-trivial density distribution.

6.3 Sound Generation From a Vortex Pair

Now that we have established the baseline effectiveness of the algorithm, we can demonstrate
its power by applying it to a problem that would not be reasonably possible to solve without

CHAPTER 6. RESULTS 49

left + right;

V = Vo

g = 0.25

Figure 6.5: A description of the dual vortex initial condition and relevant parameters. v,
1s plotted as a function of x in the cross section of the two vortices.

AMR. Namely, we examine the generation of acoustic waves from pair of corotating vortices.
This problem has well documented behavior (see e.g. [34]) which we seek to replicate.
We initialize each vortex as

Vg = —Uogﬂ(r)a o
To
T
vy = vo—n(r), (6.14)
To
1 if r<mrg
) ’ 6.15
n(r) {(%0)2 otherwise, o

which is a constant, circular patch of vorticity with radius 79. The quantity r? = 2% 4 2 is
the squared distance from the center of the vortex. As before, vy = pg = 1.0 and the enthalpy

CHAPTER 6. RESULTS 50

Pseudocolor
Var: var_3

._5.000“0
4.728

- 4.456

.:4.]64

3912

Max: 5.000 100

Min: 3.912

120

Y-Axis

20 40 &0 80 100 120 140
X-Axis

Figure 6.6: Vortex pair pressure initial condition. Black outlines designate coarse-fine
boundaries between the 4 levels of AMR refinement.

is ph = poy/(y — 1). The background pressure is py = 5 corresponding to M = 0.43. We
initialize the problem with two such vortices of radius ry = 0.25 with separation 2R = 1.0.
It has been shown in e.g. that for ro/R < 0.59, a pair of constant vorticity, co-rotating
vortices will not merge but will rather orbit each other at a tangential velocity v, = voro/2R.
The half period of the orbit is 7 = 7R /v, = 21 R? /voro. The wavelength A of emitted sound
is et = mR/M, where M, is the Mach number based on the orbit speed M, = v,/c. For our
choice of parameters we have

v, =025 76 M,~0.1 A\=16.

See Figure for a graphical depiction of these parameters.

CHAPTER 6. RESULTS o1

Pseudocolor
ar: var_3
5.001 140

.: 5.001

—5.000

5.0015]

5.0010]
20
4999

4.999
Max: 5.0 5.0005]

03
Min: 4.226 100

5.0000-]
80

Y-Axis
Y-Axis

60 4.9995

4.9990]

40

4.9985]

20

T T T T T T T T
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160

Figure 6.7: Pressure distribution of the emitted sound wave at t = 41. The left figure is
the 2-dimensional distribution and the right figure is the cross section y = 80. Note that in
the 1-dimensional cross section, the deep pressure well at the center has been thresholded for
clarity.

Pseudocolor 9o
ar: v

4.957
—4.905
[4.653 85
4.800
Max: 5.005
Min: 4.096

Figure 6.8: Pressure distribution of the emitted sound wave att = 27/3. Waves can clearly
be seen reflecting off the coarse-fine boundary.

CHAPTER 6. RESULTS 52

Sound Generation Results

The initial condition on pressure is shown in Figure [6.60 The domain z,y € [0,160] has
4 levels of AMR refinement the finest of which covers only 1.56% of the total domain and
contains the initial vortex pair. Figure demonstrates how the resulting sound wave has
propagated at t = 47. The predicted pressure quadrupole is obviously present and the
wavelength A measured qualitatively as peak-to-peak distance is 15, a result in very good
agreement with [34].

This problem does an excellent job of showcasing the power of AMR. to solve the equiv-
alent problem on a single level would require 4096 data points. The AMR implementation
uses only 4 x 64° data points, a factor of 16” fewer.

Unfortunately we do observe some spurious behavior in the refined regions. Figure
serves to elucidate the situation. Clearly there is some amount of non-physical wave reflection
occurring at the coarse-fine boundaries. This is similar to phenomena noted in [13] wherein
electromagnetic waves are observed to reflect off of refinement boundaries in locally refined
grids. In that study, a sponge layer was employed to fix the problem. We attempted a
version of this solution but the results were not good, either resulting in unstable behavior
or wave trapping near the coarse-fine boundaries.

We believe that the difficulties described above may be the result of either our staggered
discretization or the fact that our current version of the algorithm is only second-order.
Resolving these problems is a short term goal of future work on this algorithm.

53

Chapter 7

Conclusions and Future Work

In this study we have extended the all-speed projection algorithm discussed in [12] to the
case of block-structured locally-refined grids. In the all-speed projection algorithm redundant
equations are introduced to model the stiff acoustic dynamics. These redundant equations
lead to an implicit solve for the stiff variables that takes the form of a well-behaved elliptic
Helmholtz equation. The system is integrated semi-implicitly using a method of lines for-
mulation and an implicit-explicit additive Runge-Kutta method. Treating the stiff variables
implicitly eliminates the acoustic CFL as a constraint on the time step, allowing the advec-
tive time step to be used instead. The resulting method captures the M — 0 limit and is
valid for all Mach numbers in the absence of shocks. This method is based on a systematic
finite-volume discretization that easily extends to high order.

Our contribution was to extend this algorithm to use AMR. This undertaking presented
a number of challenges. Previous AMR multigrid methods took advantage of special dis-
cretizations at coarse-fine boundaries in order to use residual-correction multigrid solvers
[33] [27]. It is unclear if such approaches are possible for the operators used in this algo-
rithm, particularly at high order. Instead, we abandoned the residual-correction form and
implemented our iterative solver using Full Approximation Scheme (FAS) multigrid. The
resulting algorithm is considerably more flexible than the previous one. We have demon-
strated that the AMR FAS implementation leads to a multigrid method that has the same
convergence properties as the residual-correction form. The algorithm reduces the residual
by about an order of magnitude with each v-cycle iteration and the number of iterations
required to converge is independent of the grid spacing even for fourth-order discretizations
of elliptic problems.

Our implementation also represents a new direction in the high-level software develop-
ment of AMR frameworks. Previous AMR frameworks are based on two layers of abstraction.
These frameworks contain one layer encoding distributed memory parallelism on a union
of rectangular patches through a C++ interface and another layer encoding patch-scope
problem-specific physics through Fortran callbacks. This approach is unproductive because
of the limitations of mixed-language programming and the limited expressiveness of Fortran
in particular. This strategy also does not scale well with current trends in high performance

CHAPTER 7. CONCLUSIONS AND FUTURE WORK o4

computing which promise a combinatorial increase in complexity when programming for
performance at such a low level. In light of these observations, we have instead implemented
problem specific physics using Proto. Proto has provided a substantial increase in produc-
tivity, and it is unlikely that a project of this scope would have been feasible by one person
in the given time-frame without it.

We have demonstrated the efficacy of the AMR algorithm by applying it in two settings.
We have shown that we recover the incompressible limit by simulating stratified vortical flow
as well as a canonical shear layer. In both of these applications we observe stable behav-
ior, and second-order accuracy in the divergence-free velocity and advected quantities. We
have also successfully computed low-amplitude, long-wavelength acoustic waves generated
by small scale vorticity. This problem would not have been economical in the previous, non-
adaptive version of the all-speed algorithm, nor is it possible at all for a zero-Mach method
which eliminates these effects.

There is still much work to be done with regards to the all-speed projection algorithm. In
the short term are a number of relatively easy tasks: fourth-order accuracy, three-dimensional
simulation, dynamic adaptivity, and complex physics. We are undeterred by both higher or-
der and higher dimensionality because the framework is specifically designed to be extensible
in these parameters. We also do not expect dynamic adaptivity to be a problem because the
all-speed formulation lacks the difficulties associated with differential/algebraic systems that
arise in zero-Mach formulations. Likewise, extending our algorithm to account for viscosity,
reactions, and heat transfer is not expected to be to be prohibitively challenging due to the
convenient abstractions furnished by Proto.

We are also interested in integrating more sophisticated AMR functionality into all-
speed. Chiefly among these considerations is AMR refinement in time. This is another
setting where zero-Mach methods have difficulty because of the need to provide boundary
conditions in intermediate, fine time steps. Doing this is straightforward for Runge-Kutta
methods using dense representation to compute coarse grid solutions at intermediate times.
This was done in [31]; extending this idea to an ARK method is more complicated, but
should be straightforward.

The matter of the spurious reflections at coarse-fine boundaries is also an open question
that needs further study. This problem has been observed before in [13] in the context of
a fourth-order electromagnetic simulation with state variables collocated at cell centers. In
that study, the reflected waves were mitigated through the use of a sponge layer or high-order
linear damping. It is possible that extending these ideas to our staggered grid formulation
may resolve the issue.

Implementing the all-speed algorithm in tandem with AMR FAS-multigrid mostly from
scratch represented a relatively large software undertaking. Proto’s expressiveness went a
long way to making this project tractable. However, there is room for improvement in Proto
as well. Attempting to interface Proto’s single-patch scope with the existing distributed
parallelism abstractions available in Chombo has been anything but productive. The chief
difficulty here is the aliasing of different data containers with slightly different semantics.
This is especially true in the case of data discretized on finite-volume faces. In light of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 55

these observations, Proto’s scope should be extended to encapsulate distributed memory
parallelism on unions of rectangles and better support face-centered discretizations. Doing so
will allow AMR applications to use a single type of data container at all scopes, dramatically
simplifying the implementation of the AMR framework and streamlining the API.

Physical systems which include fast (stiff) and slow (non-stiff) variables for which the fast
dynamics can be expressed as a redundant system of equations are not unique to low-Mach
fluid dynamics. This configuration is also observed in the case of fast magnetosonic waves
in magnetohydrodynamics, gravity waves in atmospheres and oceans [18], and stiff dielectric
relaxation effects in charged fluid models of plasma [15]. In all of these cases, stiff scales
impose a large cost by restricting the stable time step, and methods for working around
this impediment have been largely ad-hoc, especially for AMR. The all-speed projection
formulation provides a systematic way of designing methods to efficiently represent stiff
dynamics in these settings.

56

Bibliography

Mark Adams et al. Chombo Software Package for AMR Applications. Tech. rep. 2015.
URL: https://escholarship.org/content/qt5csbdlsq/qt5csbdlsq. pdf.

Ann S. Almgren, John B. Bell, and William G. Szymczak. “A numerical method for
the incompressible Navier-Stokes equations based on an approximate projection’. In:
SIAM Journal of Scientific Computing 17.2 (1996), pp. 358-369. 1SSN: 10648275. DOTI:
10.1137/S1064827593244213. URL: http://www.siam.org/journals/sinum/41-
3/39628.html.

Ann S. Almgren, Thomas Buttke, and Phillip Colella. “A Fast Adaptive Vortex Method
in Three Dimensions”. In: Journal of Computational Physics 113 (1994), pp. 177-200.
DOI: 10 .1006/ jcph. 1994 . 1129. URL: http://crd. 1bl. gov/assets/pubs{_
Ypresos/AMCS/ANAG/A124 . pdf

Ann S. Almgren et al. “A Conservative Adaptive Projection Method for the Vari-
able Density Incompressible Navier-Stokes Equations”. In: Journal of Computational
Physics 142.1 (1998), pp. 1-46. 1sSN: 00219991. DOT: 10.1006/jcph.1998.5890.

Ann S. Almgren et al. “Low Mach Number Modeling of Type Ia Supernovae. I. Hydro-
dynamics”. In: The Astrophysical Journal 637.2 (2006), pp. 922-936. 1SSN: 0004-637X.
DOI: 10.1086/498426. URL: https://iopscience. iop.org/article/10.1086/
498426.

Uri M. Ascher and Linda R. Petzold. |Computer Methods for Ordinary Differential
FEquations and Differential-Algebraic Equations. Philadelphia: Society for Industrial
and Applied Mathematics Publications, 1997. 1SBN: 9781611971392. URL: https://
books.google.com/books?id=2iXovtfcL74C.

Michael Barad and Phillip Colella. “A fourth-order accurate local refinement method
for Poisson’s Equation”. In: (2005). DOI: 10.1016/j . jcp.2005.02.027. URL: Www .
elsevier.com/locate/jcp.

John B. Bell, Phillip Colella, and Harland M Glaz. “A second-order projection method
for the incompressible navier-stokes equations’. In: Journal of Computational Physics
85.2 (1989), pp. 257-283. 1SSN: 00219991. DOI: 10.1016/0021-9991(89) 90151 -4.
URL: http://www.sciencedirect.com/science/article/pii/0021999189901514.

https://escholarship.org/content/qt5cs5d1sq/qt5cs5d1sq.pdf
https://escholarship.org/content/qt5cs5d1sq/qt5cs5d1sq.pdf
http://www.doi.org/10.1137/S1064827593244213
http://www.doi.org/10.1137/S1064827593244213
https://doi.org/10.1137/S1064827593244213
http://www.siam.org/journals/sinum/41-3/39628.html
http://www.siam.org/journals/sinum/41-3/39628.html
http://www.doi.org/10.1006/jcph.1994.1129
http://www.doi.org/10.1006/jcph.1994.1129
https://doi.org/10.1006/jcph.1994.1129
http://crd.lbl.gov/assets/pubs{_}presos/AMCS/ANAG/A124.pdf
http://crd.lbl.gov/assets/pubs{_}presos/AMCS/ANAG/A124.pdf
http://www.doi.org/10.1006/jcph.1998.5890
http://www.doi.org/10.1006/jcph.1998.5890
https://doi.org/10.1006/jcph.1998.5890
http://www.doi.org/10.1086/498426
http://www.doi.org/10.1086/498426
https://doi.org/10.1086/498426
https://iopscience.iop.org/article/10.1086/498426
https://iopscience.iop.org/article/10.1086/498426
https://books.google.com/books?id=2iXovtfcL74C
https://books.google.com/books?id=2iXovtfcL74C
https://books.google.com/books?id=2iXovtfcL74C
https://books.google.com/books?id=2iXovtfcL74C
http://www.doi.org/10.1016/j.jcp.2005.02.027
http://www.doi.org/10.1016/j.jcp.2005.02.027
https://doi.org/10.1016/j.jcp.2005.02.027
www.elsevier.com/locate/jcp
www.elsevier.com/locate/jcp
http://www.doi.org/10.1016/0021-9991(89)90151-4
http://www.doi.org/10.1016/0021-9991(89)90151-4
https://doi.org/10.1016/0021-9991(89)90151-4
http://www.sciencedirect.com/science/article/pii/0021999189901514

BIBLIOGRAPHY 57

[9] Marsha J Berger and Phillip Colella. Local Adaptive Mesh Refinement for Shock Hy-
drodynamics. Tech. rep. 1989, pp. 64-84. DOI: 10.1016/0021-9991 (89)90035-1.

[10] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold. |[Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Fquations. Philadelphia: So-
ciety for Industrial and Applied Mathematics Publications, 1996. por1: [10.1137/1.
9781611971224.

[11] William Briggs, Henson Van Emden, and Steve McCormick. A Multigrid Tutorial,
2nd Fdition. Society for Industrial and Applied Mathematics Publications, 2000. ISBN:
978-0-89871-462-3. URL: https://www.doi.org/10.1137/1.9780898719505.

[12] Christopher M Chaplin. “An improved all-speed projection algorithm for low Mach
number flows”. PhD thesis. University of California: Berkeley, 2018. URL: https://
escholarship.org/content/qtObf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846
pdf7t=phm4bu.

[13] Sven Chilton. “A Fourth-Order Adaptive Mesh Refinement Solver for Maxwell’s Equa-
tions”. PhD thesis. University of California, Berkeley, 2013. 1SBN: 9788578110796.
arXiv:arXiv:1011.1669v3. URL: https://escholarship.org/content/qt1vp1238g/
qtlvpl1238g.pdf.

[14] Alexandre Joel Chorin. “Numerical Solution of the Navier-Stokes Equations’. PhD
thesis. New York University, 1968. DOI: 10.1090/S0025-5718-1968-0242392-2

[15] Phillip Colella, Milo R. Dorr, and Daniel D Wake. Numerical Solution of Plasma Fluid
FEquations Using Locally Refined Grids. Tech. rep. 1999, pp. 550-583. DOI: [10.1006/
jcph.1999.6245. URL: http://www.idealibrary.comon.

[16] Phillip Colella and Karen Pao. “A Projection Method for Low Speed Flows”. In: Jour-
nal of Computational Physics 149 (1999), pp. 245-269. DOI: 10.1006/ jcph . 1998 .
6152,

[17) Marc S. Day and John B. Bell. “Numerical simulation of laminar reacting flows with
complex chemistry”. In: Combustion Theory and Modelling 4.4 (2000), pp. 535-556.
1SSN: 13647830. DOI:10.1088/1364-7830/4/4/309. URL: https://www.tandfonline.
com/action/journalInformation?journalCode=tctm20.

[18] Caroline Gatti-Bono and Phillip Colella. “An anelastic allspeed projection method for
gravitationally stratified flows”. In: Journal of Computational Physics 216.2 (2006),
pp. 589-615. 1sSN: 00219991. DOI: 10.1016/j.jcp.2005.12.017. URL: http://www.
sciencedirect.com/science/article/pii/S0021999106000027.

[19] David J. Griffiths. Introduction to Electrodynamics. 4th ed. Illinois: Pearson Education
Inc., 2013. 1SBN: 9781108357142. DO1: 10.1119/1.4766311.

[20] Christopher A Kennedy and Mark H Carpenter. Additive Runge-Kutta Schemes for
Convection-Diffusion-Reaction FEquations. Tech. rep. 2001. por: 10 . 1016 /S0168 -
9274(02)00138-1. URL: http://www.sti.nasa.gov.

http://doi.org/10.1016/0021-9991(89)90035-1
http://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
http://www.doi.org/10.1137/1.9781611971224
http://www.doi.org/10.1137/1.9781611971224
https://doi.org/10.1137/1.9781611971224
https://doi.org/10.1137/1.9781611971224
https://www.doi.org/10.1137/1.9780898719505
https://www.doi.org/10.1137/1.9780898719505
https://www.doi.org/10.1137/1.9780898719505
https://escholarship.org/content/qt0bf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846842d990e9da.pdf?t=phm4bu
https://escholarship.org/content/qt0bf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846842d990e9da.pdf?t=phm4bu
https://escholarship.org/content/qt0bf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846842d990e9da.pdf?t=phm4bu
https://escholarship.org/content/qt0bf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846842d990e9da.pdf?t=phm4bu
https://escholarship.org/content/qt0bf8314r/qt0bf8314r{_}noSplash{_}336930618952346fc7846842d990e9da.pdf?t=phm4bu
https://escholarship.org/content/qt1vp1238g/qt1vp1238g.pdf
https://escholarship.org/content/qt1vp1238g/qt1vp1238g.pdf
http://arxiv.org/abs/arXiv:1011.1669v3
https://escholarship.org/content/qt1vp1238g/qt1vp1238g.pdf
https://escholarship.org/content/qt1vp1238g/qt1vp1238g.pdf
http://www.doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1090/S0025-5718-1968-0242392-2
http://www.doi.org/10.1006/jcph.1999.6245
http://www.doi.org/10.1006/jcph.1999.6245
https://doi.org/10.1006/jcph.1999.6245
https://doi.org/10.1006/jcph.1999.6245
http://www.idealibrary.comon
http://www.doi.org/10.1006/jcph.1998.6152
https://doi.org/10.1006/jcph.1998.6152
https://doi.org/10.1006/jcph.1998.6152
http://www.doi.org/10.1088/1364-7830/4/4/309
http://www.doi.org/10.1088/1364-7830/4/4/309
https://doi.org/10.1088/1364-7830/4/4/309
https://www.tandfonline.com/action/journalInformation?journalCode=tctm20
https://www.tandfonline.com/action/journalInformation?journalCode=tctm20
http://www.doi.org/10.1016/j.jcp.2005.12.017
http://www.doi.org/10.1016/j.jcp.2005.12.017
https://doi.org/10.1016/j.jcp.2005.12.017
http://www.sciencedirect.com/science/article/pii/S0021999106000027
http://www.sciencedirect.com/science/article/pii/S0021999106000027
http://www.doi.org/10.1119/1.4766311
https://doi.org/10.1119/1.4766311
http://www.doi.org/10.1016/S0168-9274(02)00138-1
http://www.doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
http://www.sti.nasa.gov

BIBLIOGRAPHY 58

[21] Marcin Krotkiewski and Marcin Dabrowski. “Efficient 3D stencil computations using
CUDA”. In: Parallel Computing 39.10 (2013), pp. 533-548. 1ssN: 01678191. DoOI: 10.
1016/ .parco.2013.08.002.

[22] Mindy Lai, John B. Bell, and Phillip Colella. “A projection method for combustion
in the zero mach number limit”. In: 7171th Computational Fluid Dynamics Conference,
1993. American Institute of Aeronautics and Astronautics Inc, AIAA, 1993, pp. 776—
783. DOI: 10.2514/6.1993-3369. URL: http://arc.aiaa.org.

[23] Mindy F. Lai. “A Projection Method for Reacting Flow in the Zero Mach Number
Limit”. PhD thesis. University of California, Berkeley, 1993. URL: https : //www .
proquest . com/openview/fadb819ac2975cab7b45£092fd5a81cd/17pg-origsite=
gscholar{\&}cb1=18750{\&}diss=y.

[24] Hans Petter Langtangen and Xing Cai. “On the Efficiency of Python for High-Performance
Computing: A Case Study Involving Stencil Updates for Partial Differential Equa-
tions”. In: Modeling, Simulation and Optimization of Complex Processes. Springer
Berlin Heidelberg, 2008, pp. 337-357. DOI: 10.1007/978-3-540-79409-7_23. URL:
https://link.springer.com/chapter/10.1007/978-3-540-79409-7{_}23.

[25] Bryan N. Lawrence et al. “Crossing the Chasm: How to develop weather and climate
models for next generation computers?” In: Geoscientific Model Development Discus-
sions September (2017), pp. 1-36. 1SSN: 1991-962X. DOI: [10.5194/gmd-2017 - 186.
URL: https://www.geosci-model-dev-discuss.net/gmd-2017-186/gmd-2017-
186.pdf{\%}0Ahttps://www.geosci-model-dev-discuss.net/gmd-2017-186/.

[26] Andrew Majda and James Sethian. “The derivation and numerical solution of the
equations for zero mach number combustion”. In: Combustion Science and Technol-
ogy 42.3-4 (1985), pp. 185-205. 1SSN: 1563521X. DOI: 10.1080/00102208508960376.
URL: https://www.tandfonline.com/action/journalInformation?journalCode=
gcst20.

[27] Daniel F. Martin and Keith L. Cartwright. Solving Poisson’s Equations Using Adaptive
Mesh Refinement. Tech. rep. 1996. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.52.3056{\&}rep=repl{\&}type=pdf.

[28] Daniel F. Martin and Phillip Colella. “A Cell-Centered Adaptive Projection Method
for the Incompressible Euler Equations”. In: Journal of Computational Physics 163.2
(2000), pp. 271-312. 18SN: 00219991. DOI: |10 . 1006/ jcph . 2000 . 6575, URL: http:
//www.sciencedirect.com/science/article/pii/S0021999100965756.

[29] Daniel F. Martin, Phillip Colella, and Daniel T. Graves. “A cell-centered adaptive
projection method for the incompressible NavierStokes equations in three dimensions’.
In: Journal of Computational Physics 227.3 (2008), pp. 1863-1886. 1SSN: 00219991.
DOI: 10.1016/j . jcp . 2007 . 09 . 032. URL: http://www . sciencedirect . com/
science/article/pii/S0021999107004366.

http://www.doi.org/10.1016/j.parco.2013.08.002
http://www.doi.org/10.1016/j.parco.2013.08.002
https://doi.org/10.1016/j.parco.2013.08.002
https://doi.org/10.1016/j.parco.2013.08.002
http://www.doi.org/10.2514/6.1993-3369
http://www.doi.org/10.2514/6.1993-3369
https://doi.org/10.2514/6.1993-3369
http://arc.aiaa.org
https://www.proquest.com/openview/fad5819ac2975cab7b45f092fd5a81cd/1?pq-origsite=gscholar{&}cbl=18750{&}diss=y
https://www.proquest.com/openview/fad5819ac2975cab7b45f092fd5a81cd/1?pq-origsite=gscholar{&}cbl=18750{&}diss=y
https://www.proquest.com/openview/fad5819ac2975cab7b45f092fd5a81cd/1?pq-origsite=gscholar{\&}cbl=18750{\&}diss=y
https://www.proquest.com/openview/fad5819ac2975cab7b45f092fd5a81cd/1?pq-origsite=gscholar{\&}cbl=18750{\&}diss=y
https://www.proquest.com/openview/fad5819ac2975cab7b45f092fd5a81cd/1?pq-origsite=gscholar{\&}cbl=18750{\&}diss=y
http://www.doi.org/10.1007/978-3-540-79409-7_23
http://www.doi.org/10.1007/978-3-540-79409-7_23
http://www.doi.org/10.1007/978-3-540-79409-7_23
https://doi.org/10.1007/978-3-540-79409-7_23
https://link.springer.com/chapter/10.1007/978-3-540-79409-7{_}23
http://www.doi.org/10.5194/gmd-2017-186
http://www.doi.org/10.5194/gmd-2017-186
https://doi.org/10.5194/gmd-2017-186
https://www.geosci-model-dev-discuss.net/gmd-2017-186/gmd-2017-186.pdf{\%}0Ahttps://www.geosci-model-dev-discuss.net/gmd-2017-186/
https://www.geosci-model-dev-discuss.net/gmd-2017-186/gmd-2017-186.pdf{\%}0Ahttps://www.geosci-model-dev-discuss.net/gmd-2017-186/
http://www.doi.org/10.1080/00102208508960376
http://www.doi.org/10.1080/00102208508960376
https://doi.org/10.1080/00102208508960376
https://www.tandfonline.com/action/journalInformation?journalCode=gcst20
https://www.tandfonline.com/action/journalInformation?journalCode=gcst20
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3056{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3056{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3056{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3056{\&}rep=rep1{\&}type=pdf
http://www.sciencedirect.com/science/article/pii/S0021999100965756
http://www.sciencedirect.com/science/article/pii/S0021999100965756
https://doi.org/10.1006/jcph.2000.6575
http://www.sciencedirect.com/science/article/pii/S0021999100965756
http://www.sciencedirect.com/science/article/pii/S0021999100965756
http://www.doi.org/10.1016/j.jcp.2007.09.032
http://www.doi.org/10.1016/j.jcp.2007.09.032
https://doi.org/10.1016/j.jcp.2007.09.032
http://www.sciencedirect.com/science/article/pii/S0021999107004366
http://www.sciencedirect.com/science/article/pii/S0021999107004366

BIBLIOGRAPHY 59

[30] Morgan McCorkle. ORNL Launches Summit Supercomputer. 2018. URL: https: //
www.ornl.gov/news/ornl-launches-summit-supercomputer.

[31] Peter W. McCorquodale and Phillip Colella. “A High-Order Finite-Volume Method
For Conservation Laws on Locally Refined Grids”. In: Communications in Applied
Mathematics and Computational Science 6.1 (2011). DOI:|10.2140/camcos.2011.6.1.

[32] Mogens V. Melander, Norman J. Zabusky, and James C. McWilliams. “Symmetric
vortex merger in two dimensions: Causes and conditions”. In: Journal of Fluid Me-
chanics 195 (1988), pp. 303-340. 1sSN: 14697645. DOI: |10.1017/50022112088002435.
URL: https://doi.org/10.1017/S0022112088002435.

[33] Michael L Minion. On the Stability of Godunov-Projection Methods for Incompressible
Flow. Tech. rep. 1996, pp. 435-449. DOTI: 10.1006/jcph.1996.0035.

[34] Brian E. Mitchell, Sanjiva K. Lele, and Parviz Moin. “Direct computation of the
sound from a compressible co-rotating vortex pair”. In: Journal of Fluid Mechanics
285 (1995), pp. 181-202. 1sSN: 14697645. DOI: [10.1017/S0022112095000504.

[35] Yoshio Oyanagi. “Future of supercomputing’. In: Journal of Computational and Ap-
plied Mathematics 149.1 (2002), pp. 147-153. 1sSN: 03770427. DOIL: 10.1016/S0377-
0427 (02)00526-5.

[36] Richard B. Pember et al. “An Adaptive Projection Method for Unsteady, Low-Mach
Number Combustion”. In: Combustion Science and Technology 140.1-6 (1998), pp. 123—
168. 18SN: 00102202. DO1: 10.1080/00102209808915770. URL: https://www.tandfonline.
com/action/journalInformation?journalCode=gcst20.

[37] Linda Petzold. “Differential/Algebraic Equations are not ODEs”. In: SIAM Journal
on Scientific and Statistical Computing 3.3 (1982), pp. 367-384. 1sSN: 0196-5204. DOI:
10.1137/0903023.

[38] William H. Press et al. Numerical Recipes in C. 2nd ed. Cambridge University Press,
1988. 1SBN: 0521431085. URL: http://www.nr.com.

[39] Jonathan Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Par-
allelism, Locality, and Recomputation in Image Processing Pipelines. Tech. rep. 2013.
DOI: 10.1145/2499370.2462176.

[40] Ronald Rehm and Howard Baum. “The equations of motion for thermally driven,
buoyant flows”. In: Journal of Research of the National Bureau of Standards 83.3
(1978), pp. 297-308. URL: https : / /nvlpubs . nist . gov /nistpubs/ jres /83 /
jresv83n3p297{_}Alb.pdfl

[41] Erich Strohmaier et al. Top 500 List. 2021. URL: https://www.top500.o0org/lists/
top500/.

[42] Mark C. Thompson and Joel H. Ferziger. An Adaptive Multigrid Technique for the
Incompressible Navier-Stokes FEquations. Tech. rep. 1989, p. 94121. po1: 10. 1016/
0021-9991(89)90037-5.

https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
http://www.doi.org/10.2140/camcos.2011.6.1
http://www.doi.org/10.2140/camcos.2011.6.1
https://doi.org/10.2140/camcos.2011.6.1
http://www.doi.org/10.1017/S0022112088002435
http://www.doi.org/10.1017/S0022112088002435
https://doi.org/10.1017/S0022112088002435
https://doi.org/10.1017/S0022112088002435
http://www.doi.org/10.1006/jcph.1996.0035
http://www.doi.org/10.1006/jcph.1996.0035
https://doi.org/10.1006/jcph.1996.0035
http://www.doi.org/10.1017/S0022112095000504
http://www.doi.org/10.1017/S0022112095000504
https://doi.org/10.1017/S0022112095000504
http://www.doi.org/10.1016/S0377-0427(02)00526-5
https://doi.org/10.1016/S0377-0427(02)00526-5
https://doi.org/10.1016/S0377-0427(02)00526-5
http://www.doi.org/10.1080/00102209808915770
http://www.doi.org/10.1080/00102209808915770
https://doi.org/10.1080/00102209808915770
https://www.tandfonline.com/action/journalInformation?journalCode=gcst20
https://www.tandfonline.com/action/journalInformation?journalCode=gcst20
http://www.doi.org/10.1137/0903023
https://doi.org/10.1137/0903023
http://www.nr.com
http://www.nr.com
http://www.doi.org/10.1145/2499370.2462176
http://www.doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://nvlpubs.nist.gov/nistpubs/jres/83/jresv83n3p297{_}A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/83/jresv83n3p297{_}A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/83/jresv83n3p297{_}A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/83/jresv83n3p297{_}A1b.pdf
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
http://www.doi.org/10.1016/0021-9991(89)90037-5
http://www.doi.org/10.1016/0021-9991(89)90037-5
https://doi.org/10.1016/0021-9991(89)90037-5
https://doi.org/10.1016/0021-9991(89)90037-5

Appendix A

Definitions

60

APPENDIX A. DEFINITIONS

H Variable Name Variable Definition H

D Number of dimensions

d Coordinate direction (e.g. X, vy, z)

n Normal direction

h Uniform grid spacing

l AMR or Multigrid level

Q Region of space in Z”

r Grid associated with an AMR or Multigrid level
7 A point in ZP

ey Unit vector in the coordinate direction d

e The vector [1,1,1,...,1]

* Partial sum of stage-k Runge-Kutta method
a, b, c Runge-Kutta butcher tableau coefficients

Table A.1: Symbols related to discretization and local refinement.

Variable Name Variable Definition

Ztace Cell average to cell face interpolation

Teenl Cell face to cell average interpolation

7. Cell average to cell face interpolation with upwinding
70 Piecewise constant interpolation between levels
Ihe High order boundary value interpolation between levels
C Cell centered convolution operator

Ce Face centered convolution operator

A, Average down between levels refined by r

Dy Cell-to-face derivative operator in direction d
g Gradient operator
D Divergence operator
L A general level operator used in AMR or multigrid
J A level agnostic operator used in the definition of £
F The flux component of J

S The source component of [J
T The diagonal component of J
15} Scaling coefficients of J
Q=VvVAhHv. Potential projection
P=I1-Q Solenoidal / divergence-free projection

Table A.2: Operators

61

APPENDIX A. DEFINITIONS

Variable Name Variable Definition
x Position vector in RP™
p Density
v Total velocity
v, = Q(v) Potential / acoustic velocity
vy = P(v) Solenoidal / advective / divergence-free velocity
P Total pressure
h Specific enthalpy
v=C,/C, Heat capacity ratio
U Vector of evolved state variables
G Right-hand side forcing
R Residual vector of U
E Error vector in U
0,0,u General scalar or vector quantities

Table A.3: Physical quantities

	Contents
	List of Figures
	List of Tables
	Introduction
	All-Speed Projection Formulation
	All-Speed Equations of Motion
	Acoustic Equations
	Low-Mach Methods

	Single Level Discretization
	Finite Volume Discretization
	Time Discretization
	Spatial Discretization
	Solvers
	Operator Definitions

	AMR and Multigrid
	Terminology for Multi-Level Algorithms
	Multi Level Discretization
	AMR Operators
	Multigrid
	AMR Algorithms
	A Review of High-Order AMR Finite-Volume Methods

	Proto
	Trends in High Performance Computing
	Proto Design and Goals
	Proto Syntax
	Proto Efficiency

	Results
	Vortex in Stratified Flow
	Shear Layer
	Sound Generation From a Vortex Pair

	Conclusions and Future Work
	Bibliography
	Definitions

