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Abstract. We theoretically study the loading of a two-species Bose–Einstein
condensate to an optical lattice in a tightly confined one-dimensional trap. Due
to quantum fluctuations, the relative inter- and intra-species phase coherence
between the atoms and the on-site atom number fluctuations are reduced in the
miscible regime. For the immiscible case the fluctuations are enhanced and the
atoms form metastable interleaved spatially separated domains where the domain
length and its fluctuations are affected by quantum fluctuations.
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1. Introduction

Two-species atomic Bose–Einstein condensates (BECs) exhibit notably richer dynamical
phenomena than single-species BECs. The inter-species interactions between the two
components affect the nonlinear dynamics of the individual BECs and the two-species mixture
may be in a miscible or immiscible phase [1–8], exhibiting, e.g., spin [9] and shock waves [10],
vector solitons [10–18] and other topological defects and textures [19]. In optical lattices
a bosonic two-component mixture has attracted increasing experimental interest, e.g. in
controlled collisions and multi-particle entanglement [20], in the mixing of 87Rb and 41K
in three-dimensional (3D) lattices [21], in super-exchange interactions [22], in spin-gradient
thermometry [23] and in sub-shot-noise quantum interferometry [24].

In this paper, we study both numerically and analytically the effects of quantum and
thermal fluctuations on a two-species BEC when the condensates are confined in an optical
lattice in a highly elongated 1D trap and the lattice potential is slowly turned up. In single-
species bosonic atomic gases the interplay between enhanced quantum fluctuations in an optical
lattice and the repulsive inter-atomic interactions has experimentally been shown to result
in strongly reduced atom number fluctuations and the loss of phase coherence between the
atoms in different lattice sites [25–33]. The reduction in atom number fluctuations has been
exploited in the preparation of spin-squeezed states [29] that are suitable for quantum-enhanced
interferometry. The phase separation dynamics of a two-species harmonically trapped BEC
was experimentally observed in two immiscible hyperfine components of 87Rb [1], due to
the long lifetimes of the two-fluid system that results from a fortuitous cancellation of the
scattering lengths [34]. Controllable spatial separation dynamics has recently been observed in a
mixture of 85Rb and 87Rb atomic BECs by tuning the inter-species interactions with a magnetic
Feshbach resonance [2] and by introducing a linear electromagnetic coupling between the two
internal states [35] that creates an effective dressed state description of the two components
[36, 37].
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In our simulations the atoms are initially confined in a shallow lattice and we continuously
turn up the lattice potential. The enhanced effective interactions result from the reduced hopping
amplitude of the atoms along the lattice, and quantum fluctuations become more dominant
in a deep lattice. We calculate the on-site atom number fluctuations in individual lattice sites
and the inter- and intra-species relative phase coherence between the atoms in different sites.
The numerical results are compared with the analytically calculated values that we derive in
the appendix using the Bogoliubov theory. Even in the miscible regime of the two-species BEC
system, quantum fluctuations eventually destroy the long-range coherence of the atoms along
the lattice, fragmenting the condensates. The inter- and intra-species relative phase coherence
between the atoms even in the adjacent sites is notably reduced in deep lattices, but the
inter-species coherence remains higher close to the onset of the phase separation instability.
We find that the repulsive inter-species interactions increase the inter-species relative phase
coherence, but have only a weak effect on the intra-species coherence and the on-site atom
number fluctuations. The coherence typically stabilizes to a non-vanishing finite value after
the lattice ramping and we evaluate its spatial dependence along the lattice, demonstrating a
clearly reduced spatial coherence length of the system. In the dynamically unstable regime we
find considerably enhanced atom number fluctuations, stronger loss of phase coherence and the
spontaneous formation of metastable configurations of interleaved domains of the two spatially
separated components. We calculate quantum mechanical expectation values and uncertainties
of the domain length and find that they depend on the strength of quantum fluctuations, deviating
from the classical mean-field values.

The experimentally observed phase separation dynamics of [2] in the uniform space was
theoretically studied using the classical mean-field theory in [38]. A multiorbital wavefunction
analysis was employed in [39] to demonstrate that stronger inter-species interactions lead
to a shorter domain length. There has been increasing interest in the experimental studies
of spontaneous symmetry breaking and pattern formation also in other ultra-cold atomic
systems [40, 41] and the two-species condensate with a coupling between the two internal
states [35] has been proposed as a system to study the Kibble–Zurek defect formation
mechanism in phase transitions [42, 43].

In order to perform efficiently the numerical simulations in a lattice, we develop an
approximate method to describe the non-equilibrium dynamics of a two-species condensate
mixture that is based on the truncated Wigner approximation (TWA) [44–50] of the
stochastic phase space dynamics. The two-species BEC equilibrium state is solved within
the classical Bogoliubov approximation where the excitations are evaluated in the tight-
binding approximation of the uniform two-species lattice Hamiltonian. The amplitudes of
the Bogoliubov phonon modes are then stochastically sampled according to a probability
distribution given by the Wigner distributions of the ideal harmonic oscillators, as in the single-
component TWA approaches [47]. Each stochastic realization of the initial state is propagated
in time according to the classical mean-field dynamics, so that individual stochastic trajectories
represent potential outcomes of single experimental runs and quantum mechanical expectation
values and fluctuations are calculated from the ensemble averages of the stochastic dynamics.
One of the advantages of the approximate two-species model is its simplicity and the possibility
to calculate analytic solutions to the initial state mode functions. The analytic approach to
linearized excitations can also be used to calculate approximate ground state properties of the
two-species system. We use this in the appendix to evaluate the intra-species relative phase
coherence and the on-site atom number fluctuations.

New Journal of Physics 14 (2012) 043037 (http://www.njp.org/)

http://www.njp.org/


4

2. Theoretical model

2.1. Classical mean-field equation

We assume that a two-species BEC is in a tightly confined highly elongated 1D trap, so that any
density fluctuations along the radial direction perpendicular to the trap axis can approximately
be ignored. Along the axial direction the atoms experience an optical lattice potential that is
deep enough so that the atoms can be described in the tight-binding approximation in which
case one trap mode per lattice site is included in the dynamics. The classical mean-field model
then follows our previous descriptions [8, 16] and the equation that governs the dynamics of two
component BEC is the two-component discrete nonlinear Schrödinger equation (TCDNLSE),

i
d

dt
ψ ( j)

n = −J j(ψ
( j)
n+1 +ψ ( j)

n−1)+
2∑

k=1

χ jk|ψ
(k)
n |

2ψ ( j)
n , (1)

where J j (J j > 0) and ψ ( j)
n denote the nearest-neighbour hopping amplitudes and the wave-

function amplitude at the lattice site n of the atoms of species j ( j = 1, 2), respectively. The
nonlinearities are given by the interaction coefficients χ jk( j, k = 1, 2), which are proportional
to the on-site atom–atom interaction strengths and to the overlap of the lowest vibrational state
wave functions φ( j)

n (the Wannier functions) of the two species in a given lattice site, i.e.

χ j j '
4π h̄N ja j j

m j

∫
d3

Er |φ( j)
n (Er)|4 (2)

and

χ jk '
2π h̄

√
Ni N ja jk

µ

∫
d3

Er |φ( j)
n (Er)|2|φ(k)n (Er)|2 (3)

for j 6= k. The inter- and intra-species scattering lengths are denoted by a jk and a j j , respectively,
and N j is the atom number of the species j . Here the reduced atomic mass µ is given in terms
of the atomic mass of the j th component m j as

µ=
m1m2

(m1 + m2)
. (4)

Since the number of atoms in each species is a conserved quantity, in the following we use the
normalization

L∑
n=1

|ψ ( j)
n |

2
= 1, (5)

where L denotes the number of lattice sites.

2.2. Parameter regimes of the simulations

We study the quantum dynamics of a two-species BEC in an optical lattice. The initial state
of the TWA simulations is generated by calculating the classical Bogoliubov modes whose
amplitudes are sampled stochastically. The time evolution for each stochastic realization then
follows TCDNLSE of equation (1). The simulations involve a large parameter space. There
are three nonlinearities χ11, χ22 and χ12 in equation (1) and the hopping amplitudes Jk for the
two species may differ. In addition, the two components can be moving with different carrier
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momenta pk . The stochastic initial state fixes the atom numbers N1 and N2 (for given χ11, χ22)
and we can also vary the number of lattice sites L . The lattice potentials of the two components
may be shifted with respect to each other and the two species could also experience different
radial confinements. In the finite-temperature examples, we also vary the initial temperature T .
In the following, we will demonstrate how a simple analytic description of the initial state of
the TWA simulations in terms of the Bogoliubov modes may be obtained whenever the two
atom currents are equal, i.e. for J1 sin(p1)= J2 sin(p2). In order to demonstrate some basic
effects of the two-species quantum dynamics in a lattice, we concentrate on a simple set of
parameter values for which the mode functions have especially compact analytic expressions.
In all the numerical simulations we consider condensates with zero centre-of-mass momenta
p1 = p2 = 0 and

J1 = J2, χ11 = χ22, N1 = N2. (6)

We show that the particular choice of the set of parameters is by no means necessary, however,
and that the general formalism with the analytic initial state derivation is more general. For
the selected parameter set we may investigate the main physical phenomena of the two-species
lattice dynamics: the effect of the phase separation dynamics can be controlled by the ratio
χ12/χ11, quantum fluctuations and nonlinearity by χ11/N 2

1 and χ11/J1.

2.3. Classical Bogoliubov theory and stability analysis

We can find steady-state solutions to the TCDNLSE (1) that represent propagating plane
waves [8, 16]

ψ ( j)
n =

1
√

L
ei(p j n−ω j t), (7)

where ω j is given by

ω j = −2J j cos p j +
2∑

k=1

1 jk, 1 jk ≡
χ jk

L
. (8)

The carrier wave momenta, p j , are quantized according to p j = Pj
2π
L where Pj is an integer

that takes value in the interval [− L
2 ,

L
2 ).

The linear stability analysis of the steady-state solution was performed in [8] using the
classical Bogoliubov expansion. In the Bogoliubov approach, the wavefunctions for each
component in equation (1) are written as

ψ ( j)
n =

1
√

L

(
1 + u( j)

q eiqn
−
[
v( j)

q

]∗
e−iqn

)
ei(p j n−ω j t). (9)

In the limit of weak perturbations, the system of equations for u( j)
q and v( j)

q may be expressed as
an eigenvalue problem

i
d

dt
ξq = σMqξq, ξq =


u(1)q

v(1)q

u(2)q

v(2)q

 , σ =

(
σz 0
0 σz

)
, (10)
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where σz denotes the 2 × 2 Pauli spin matrix. The elements of the 4 × 4 matrix Mq are
obtained from the Bogoliubov linearization procedure [8]. The quasimomenta q =

2πQ
L may be

defined such that Q takes integer values except zero in the range [− L
2 ,

L
2 ). The eigenvalues

of Mq correspond to the normal mode (excitation) frequencies �q of the system that have
simple analytic expressions when two BECs have the same atomic currents [8] (J1 sin(p1)=

J2 sin(p2)). In that case we obtain [8, 16]

�q = t1 ±

√
1
2(t2 ± t3), (11)

where

t1 = 2J1 sin(p1) sin(q) (12)

represents a Doppler shift term of the excitation frequencies due to the superfluid flow,

t2 = ν2
1,q + ν2

2,q, (13)

t3 =

√
(ν2

1,q − ν2
2,q)

2 + 16ε1,qε2,q1
2
12 cos p1 cos p2 (14)

are defined in terms of the single-condensate normal mode frequencies ν j,q ,

ν2
j,q = ε j,q cos(p j)[ε j,q cos(p j)+ 21 j j ], (15)

and

ε j,q = 4J j sin2(q/2), (16)

is the spectrum of an ideal, non-moving BEC. The flow is stable if the frequencies in
equation (11) are real for all q 6= 0; otherwise there are small excitations in the system that grow
exponentially in time. In these equations the normal mode frequencies of the two condensate
species are coupled by the inter-species interactions and in the absence of the inter-species
term, χ12 = 0, we have two decoupled condensate spectra equation (20). The simplest case is
obtained when both BECs are in the normal dispersion regime with p1, p2 < π/2 and χ jk > 0.
In that case the instability condition for the modes q reads [8]

χ2
12 > χ11χ22 + q2L ( j2χ11 + j1χ22) /2 + q4L2 j1 j2/4, (17)

where jk = Jk cos pk . In the normal dispersion regime the instability first sets in for the modes
for which |q| is small and therefore q2L ∝ 1/L . In the limit of a large lattice L → ∞, we then
obtain the criterion for instability

χ2
12 & χ11χ22. (18)

This stability condition is notably altered if one of the BECs exhibits anomalous dispersion due
to superfluid flow [8]. If the interaction strengths in equation (17) are tuned in such a way that
the instability is characterized by a single unstable mode, the two-component system can also be
found in a state that is no longer dynamically stable but does not undergo a phase separation [16].
Instead, the two-species mixture exhibits a periodically appearing and disappearing vector
soliton structure.

In this paper, we only consider initially stationary BECs with the vanishing condensate
momenta p1 = p2 = 0. We also assume that the hopping amplitudes for the two BECs are
equal: J1 = J2 = J and ε1,q = ε2,q ≡ εq = 4J sin2(q/2). This simplifies the stability analysis.
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The eigenvalue system for the linear stability analysis in equation (10) can then be expressed as
Mq , given by

Mq =


η1,q −111 112 −112

−111 η1,q −112 112

112 −112 η2,q −122

−112 112 −122 η2,q

 , (19)

with the definition η j,q = U j j + εq . The system exhibits two physical normal mode frequencies

�±

q ≡

√
1
2(t2 ± t3). (20)

For a positive definite Mq these are real, indicating dynamical stability of the system.
The corresponding dynamically stable eigenvectors ξq satisfy the normalization condition
ξ †

qσξq = 1. The eigenvalues −�±

q of equation (10) represent unphysical solutions with the
corresponding eigenvectors satisfying the negative normalization ξ †

qσξq = −1.
The BEC system becomes dynamically unstable when the normal mode frequencies exhibit

nonvanishing imaginary parts, indicating perturbations that grow exponentially in time. The
corresponding eigenvectors satisfy ξ †

qσξq = 0. The rate at which the instability sets in depends
on the magnitude of the imaginary part of the eigenfrequency.

We can solve the eigenvectors of equation (10) analytically. The expressions for the mode
functions notably simplify when we consider the case χ11 = χ22. We then obtain (for χ12 6= 0)

�±

q =
√
εq(εq + 2111)± 2εq112, (21)

u(1)q,± =
4112�

±

q + (�+
q)

2
− (�−

q )
2

4
√

2112�±
q

[
(�+

q)
2 − (�−

q )
2
] , (22)

v
(1)
q,± =

4112�
±

q + (�−

q )
2
− (�+

q)
2

4
√

2112�±
q

[
(�+

q)
2 − (�−

q )
2
] (23)

and u(2)q,± = ±u(1)q,±, v(2)q,± = ±v
(1)
q,±. Here, we have assumed, for notational simplicity, that

112 > 0. In TWA simulation, we generate the initial state noise for the configuration that is
dynamically stable (we specifically consider thermal equilibrium states). For such states the
normal mode frequencies are all real and the eigenmodes satisfy the normalization condition

ξ †
qσξq = [u(1)q,±]2

− [v(1)q,±]2 + [u(2)q,±]2
− [v(2)q,±]2

= 1. (24)

The two-species BEC normal modes describe the dynamics of mixing between the two
components as well as excitations of the total density in the system. In the nonlinear regime,
we have χ j j � J . If we also have χ2

12 ' χ11χ22, one of the frequencies approaches zero
corresponding to the phase separation instability equation (18). We obtain in that case �2

q,+ '

ν2
1,q + ν2

2,q and �2
q,− � ν2

1,q, ν
2
2,q . The low-energy excitations then correspond to the mixing of

the two species with only a weak variation in the total density of the two-species condensate.
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In both stable and unstable regimes of the two-species mixture we can investigate the
degree of overlap between the two species. We define the overlap integral of the wavefunctions
for the mixture as

κ(t)=

∣∣∣∑
n

[
ψ (1)

n (t)
]∗
ψ (2)

n (t)
∣∣∣2. (25)

In the stable regime, equation (25) describes the spin excitations of the two-component system.
When the two-species interaction strengths satisfy the condition equation (17), the two-species
system is dynamically unstable and undergoes phase separation, resulting in strongly reduced
overlap integral values. A measure that can particularly well identify the phase separation of the
densities of the two species may be calculated from the sum

τ(t)=

∑
n

|ψ (1)
n (t)|2|ψ (2)

n (t)|2. (26)

2.4. Truncated Wigner approximation

In the TWA simulations, we calculate ensemble averages of stochastic trajectories for which
the time evolution follows the classical mean-field theory, but in each realization the initial
state is stochastically sampled from a Wigner distribution that approximately synthesizes the
quantum statistical correlations of the initial state. Approaches introduced in the TWA initial
state generation in single-component BECs involve evaluating the initial state correlations
within the Bogoliubov approximation [47, 51] or by solving the ground state and the excited
state populations self-consistently within the Hartree–Fock–Bogoliubov approximation [33].

In order to implement the TWA phase-space model in a two-component BEC system we
similarly assume that the two-component stochastic fields ψ̄ ( j) obey the classical field equations
similar to the TCDNLSE (equation (1))

i
d

dt
ψ̄ ( j)

n = −J
(
ψ̄
( j)
n+1 + ψ̄ ( j)

n−1

)
+

2∑
k=1

χ jk|ψ̄
(k)
n |

2ψ̄ ( j)
n . (27)

For the stochastic initial state generation, we introduce an approximate model based on the
classical Bogoliubov theory, described in the previous section, that provides simple analytically
solvable mode functions. We write both the components j = 1, 2 as√

N j ψ̄
( j)
n = φ( j)

n α
( j)
0 + ¯δψ

( j)
n , (28)

where φ( j)
n denotes the normalized ground state solution of the BEC component j and the

excited-state fluctuations are given by

¯δψ
( j)
n =

1
√

L

∑
q 6=0,η=±

(
u( j)

q,ηα
( j)
q,ηe

iqn
− [v( j)

q,η]
∗[α( j)

q,η]
∗e−iqn

)
. (29)

Here the eigenmodes (q,±) correspond to the eigenfrequencies �±

q of equation (20). The

mode amplitudes α( j)
0 , α( j)

q,η are stochastically sampled from the Wigner distribution of harmonic
oscillators as explained below. We consider a two-species system with equal populations
N1 = N2 ≡ N , with the interaction strengths satisfying χ11 = χ22. In that case the modes u( j)

q,η

and v( j)
q,η are given by equations (22) and (23).
Using the field decomposition equation (28) and the mode functions, equations (22)

and (23), we then stochastically sample the amplitudes of the mode functions by treating them
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as ideal harmonic oscillators whose distributions are determined by the corresponding Gaussian
Wigner function [52]

W
(
α
( j)
q,±,

[
α
( j)
q,±

]∗)
=

2

π
tanh

(
ξ±

q

)
exp

[
−2

∣∣∣α( j)
q,±

∣∣∣2 tanh
(
ξ±

q

)]
, (30)

where ξ±

q ≡�±

q /2kBT . The stochastic mode function amplitudes α( j)
q,ν produce the ensemble

averages 〈[
α
( j)
q,±

]∗

α
( j)
q,±

〉
W

= n̄q,± + 1
2 , (31)

where

n̄q,± =
1

exp(�±
q /kBT )− 1

(32)

is the usual Bose–Einstein distribution function. The factor 1/2 in equation (31) results from
the Wigner distribution that returns symmetrically ordered expectation values, providing the
vacuum noise in each mode. For each stochastic realization the total number of excited-state
atoms varies according to

N ( j)
e =

∑
q 6=0,ν=±

[(∣∣u( j)
q,ν

∣∣2 +
∣∣v( j)

q,ν

∣∣2)([α( j)
q,ν

]∗
α( j)

q,ν −
1

2

)
+
∣∣v( j)

q,ν

∣∣2] (33)

with the average number given by

〈N ( j)
e 〉 =

∑
q 6=0,ν=±

[(∣∣u( j)
q,ν

∣∣2 +
∣∣v( j)

q,ν

∣∣2) n̄q,ν +
∣∣v( j)

q,ν

∣∣2] . (34)

The ground state amplitudes α( j)
0 fluctuate in each stochastic realization [50, 53]. The ground-

state atom number is then obtained from the fixed total atom number N in each atomic species,

so that in each stochastic realization N ( j)
c = N − N ( j)

e and we set α( j)
0 =

√
N ( j)

c + 1/2.

3. Numerical results

3.1. Turning up the optical lattice

We solve the stochastic dynamics during the turning up of the lattice potential for given initial
conditions. We study the response of the system to the ramping so that both the tunnelling
coefficients and nonlinearity are time dependent. We assume that at all times J1 = J2 = J and
χ11 = χ22. For simplicity, we consider a situation where both the species have an equal mass m,
so that the recoil frequencies ωR are equal and are given by

ωR =
h̄π2

2md2
, (35)

where d denotes the lattice spacing. In a deep lattice the hopping amplitude J is then
approximately given by [54]

J =
4 e−2

√
ss3/4

√
π

ωR. (36)
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Here s denotes the lattice height in units of the lattice photon recoil energy. In a tightly confined
elongated 1D trap the atoms are assumed to be confined in the radial vibrational ground state.
If the radial confinement is the same for both the species, we obtain

χi j '

√
2Ni N j

π

�⊥ai j

ls
'
√

2πNi N j
�⊥ai j s1/4

d
, (37)

where�⊥ denotes the trapping frequency of the radial confinement and ls = (h̄/m�s)
1/2, where

�s ' 2 s1/2ωR is the axial trap frequency at the lattice site minimum.
In our simulations we numerically solve the time evolution using the split-step method [55].

As the lattice is turned up the hopping amplitude J rapidly decreases according to equation (36)
and the interaction strength χi j slowly increases according to equation (37), due to the stronger
confinement of atoms in individual sites. We increase the lattice height linearly at the rate δ, so
that the lattice height satisfies s(t)= si + δt , where si denotes the initial height. We choose
δ = 2 × 10−3ωR and si = 2, resulting in the initial value of J ' 0.22ωR. Unless it is stated
explicitly, the length of the lattice is L = 64 and the number of atoms in each species in
each run is taken to be N/L = 40. In most cases we choose the initial value for the intra-
species interaction strengths χ11 = χ22 ' 0.60ωR, resulting in �⊥a j j/d ' 7.9 × 10−5ωR. The
initial state fluctuations are evaluated within the Bogoliubov approximation and the interaction
strengths are selected in such a way that the excited state population remains low. For χ11 =

χ22 ' 0.60ωR and χ12/χ11 = 0.1 at T = 0, the number of atoms initially depleted from the
ground state due to quantum fluctuations 〈N (1)

e 〉 = 〈N (2)
e 〉 ' 70 (corresponding to 2.7% depleted

fraction). All the presented simulation results are for T = 0, except the finite-temperature cases
studied in section 3.2.4.

We study the effect of ramping of the lattice in both the stable (χ12 .
√
χ11χ22) and

the unstable (χ12 &
√
χ11χ22) regime and write the inter-species interaction strength χi j (for

i 6= j) as

χi j = γ
√
χi iχ j j . (38)

The nonlinearity corresponding to the inter-species interactions is tuned by varying the
parameter γ in equation (38). Here γ . 1 corresponds to the stable regime while γ & 1
implies the dynamical phase-separation instability. In the cases where we study the two-species
system in the unstable phase separation regime, we use the initial two-species mixture that is
dynamically stable, but change the value of γ from the stable to the unstable regime immediately
after the lattice ramp.

For a fixed nonlinearity, quantum fluctuations are enhanced by reducing the atom number
(and correspondingly increasing the scattering length). For large atom numbers and in shallow
optical lattices, quantum effects are weak and the system can be accurately described by
classical mean-field theory. As the lattice is turned up, the effective interactions become stronger
and quantum fluctuations are enhanced.

The ramping of the lattice is adiabatic if the rate of change in the parameters in the
Hamiltonian is slow compared to the lowest collective excitation frequency [47, 56]. The fastest
varying parameter during the ramping is the hopping amplitude and we require for an adiabatic
ramp

ζ(t)≡

∣∣∣ 1

J (t)

∂ J (t)

∂t

∣∣∣.min[�q(t)]. (39)

If this condition is not satisfied, the system can be excited from its ground state during the
turning up process of the lattice.
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3.1.1. Validity of the parameter regimes. Our chosen set of parameters, explained in
section 2.2, captures the essential features of the condensate fragmentation, reduced atom
number fluctuations and the domain formation. For the phase separation dynamics, the
important condition is that of the dynamical instability χ2

12 & χ11χ22 and the precise ratio
χ11/χ22 is less relevant. Experimentally, the interaction strengths χi j can be controlled using
two-species Feshbach resonances [2] or by introducing a linear electromagnetic coupling
between the two internal states [35]. The interaction parameter χi j incorporates the atom
numbers and the ratio χ11/χ22 may also be tuned by changing the relative atom population of
the two condensate components. The intra-species interaction strength χ12 can be controlled in
a spin-dependent optical lattice [20] by changing the relative lattice positions of the two species
and therefore modifying the spatial overlap integral between the lattice site wavefunctions.

The two-species condensate system may be realized by using two different hyperfine levels
of the same atom [1, 2] or by trapping two entirely different atoms, e.g. a 41K–87Rb mixture [21].
In the case of a far-detuned optical lattice, the potential experienced by the atoms in two different
hyperfine levels of the same atom is typically the same, resulting in identical values for the
hopping amplitudes.

The atom dynamics can be described by a 1D model if the frequency of the radial trapping
potential �⊥ is larger than the chemical potential of the atoms ω j in equation (8) and the
thermal energy kBT . The typical values used in the numerics are χ11 = χ22 ' 0.60ωR at s = 2,
corresponding to χ11 ' 1.3ωR at s = 40 and �⊥a11/d ' 7.9 × 10−5ωR. We therefore obtain
for the requirement of the 1D dynamic description �⊥ & 1.3ωR/L and d/a11 & 250. The first
expression yields in terms of the lattice spacing d & 0.3l⊥ where l⊥ =

√
h̄/(m�⊥) denotes the

radial width of the lattice site mode function. For the scattering length a11 ' 5nm we obtain from
the second inequality d & 1.3µm. In 1D lattices the lattice spacing can be easily controlled by
adjusting the angle between the counter-propagating lasers that form the standing-wave pattern,
so that d = π/[k sin(θ/2)] for the intersection angle θ and wavenumber k. In the simulations
we assume 40 atoms per site and we require that the atom density is sufficiently low so that the
inelastic atom losses remain weak. The three-body loss rate of the atoms at the site l may be
approximated by

dnl

dt
= −0n3

l , 0 ' K3

∫
d3

Er |φ
( j)
l (Er)|6 '

K3
√

sm2�2
⊥

3
√

3πd2h̄2
, (40)

where K3 denotes the three-body recombination rate. In order to have a weak three-body loss
rate n3

l0/ωR � 1, the radial trap frequency should be sufficiently weak. The parameters depend
on the particular atom and the hyperfine state. For instance, for 87Rb in the |F = 1,m F = −1〉

state we have K3 ' 5.8 × 10−30 cm6 s−1 [57] and we obtain for the condition of the three-body
loss rate to be weak �⊥ � 1.2 × 105 s−1. This condition can be satisfied when the system
dynamics is strictly the 1D. It should also be noted, however, that even in elongated traps that
are not tightly confined, 1D numerical model can provide a good qualitative description of the
atom dynamics in the lattice [33].

In the tight-binding approximation we assume that only the lowest energy band is occupied
and one mode function per lattice site is sufficient to represent the dynamics. This approximation
becomes better in deeper lattices and provides a reasonable description for s & 2 [54]. We also
require that the nonlinearity be smaller than the energy gap between the lowest two energy bands
∼ h̄�s = 2

√
s h̄ωR, so that the higher bands are not occupied. This yields 2

√
sωR & χi j/L ,

which is well satisfied for all the studied lattice heights.
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Experimentally, the atoms are trapped in a combined optical lattice and a harmonic trap.
The harmonic potential introduces a non-uniform atom density. This influences the phase
separation dynamics; the condensate component with a weaker nonlinearity energetically
favours higher density regions close to the centre of the trap [1]. The phase coherence and
number fluctuations in a harmonic trap depend on the spatial location with quantum and thermal
fluctuations stronger close to the edge of the atom cloud [33]. Some other possible effects on the
phase coherence are addressed in section 3.2.1. A lattice with a uniform density and periodic
boundary conditions may be realized in a toroidal trap with an optical lattice formed by the
interference of two counter-rotating Laguerre–Gaussian laser beams [58].

3.2. Dynamically stable regime

We first consider the two-species BEC dynamics in an optical lattice in the dynamically stable
regime of the spatially overlapping condensate mixture for γ < 1. This corresponds to the
situation where the inter-species interaction is not strong enough to cause the phase separation
of the two components and all the normal mode frequencies in equation (11) are real.

3.2.1. Condensate fragmentation and phase coherence. The atoms are initially confined in
a shallow lattice and we continuously turn up the lattice potential. The effect of quantum
fluctuations on atom dynamics in the lattice can be studied by calculating the phase coherence
between the atoms in different lattice sites. When the lattice is turned up the hopping amplitude
of atoms between adjacent sites rapidly decreases, resulting in the reduction of kinetic energy
of the atoms and hence stronger effective interactions. Quantum fluctuations in the system are
enhanced and the phase coherence between the atoms in different sites is destroyed as the
condensates undergo fragmentation. We evaluate the loss of phase coherence by calculating
the absolute value of the normalized relative intra-species phase coherence between the atoms
in different sites,

Ck−l =
〈ψ∗

k
( j)ψ

( j)
l 〉√

〈ψ
( j)
k 〉 〈ψ

( j)
l 〉

( j = 1, 2), (41)

between the atoms of the same species j in sites k and l. Since we choose N1 = N2 = N and
χ11 = χ22, the two species have identical nonlinear properties that are spontaneously broken
only due to nonlinear interactions, e.g. in the phase separation. We describe the relative phase
coherence between the atoms in the two different species by

C (12)
k−l =

〈ψ∗

k
(1)ψ

(2)
l 〉√

〈ψ
(1)
k 〉 〈ψ

(2)
l 〉

. (42)

In figure 1 we show the relative intra-species phase coherence between the atoms in
two adjacent sites C1 during and after the turning up of the lattice potential. The different
curves correspond to different values of the final lattice height s = 10, 20, 30 and 40. The
displayed cases have the inter-species interaction strength γ = 0.1 and γ = 0.5, defined by
equation (38). We also show the corresponding stationary (averaged) values of the coherence
C1 that are obtained after the turning up of the lattice potential. These demonstrate how the
intra-species coherence rapidly decreases as the lattice becomes deeper, indicating an increasing
degree of fragmentation of the BEC as a function of the final lattice height. We only find a
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Figure 1. Relative phase coherence between the atoms in the same atomic
species at two adjacent sites C1 (left) during and after the turning up of the lattice
potential for different final lattice heights s = 10, 20, 30, 40 (curves from top to
bottom) with inter-species nonlinear parameter γ = 0.1 (top row) and γ = 0.5
(bottom row). In all the cases the lattice is turned up at the same rate and the
end of the ramping times are marked on the x-axis using the same colours as
in the corresponding curves. The corresponding stationary (averaged) values
of the coherence C1 (right) as a function of lattice height. The coherence C1

monotonically decreases as the lattice is ramped up. The initial lattice height is
si = 2 and the corresponding nonlinear interaction parameter is χ11 = 0.60ωR.

very weak dependence of the intra-species relative phase coherence C1 on the inter-species
interaction strength γ for the values of γ in the stable regime we considered in the simulations
(from γ = 0.1 to 0.95). In [21] the presence of 41K was found to lead to lower visibility of
the interference fringes of the 87Rb in the two-species mixture in an optical lattice. In the
experiment, however, the interactions increased the atom density of 87Rb close to the trap centre
due to the inhomogeneous trapping potential and drove the system closer to the onset of the
Mott insulator transition, as also demonstrated in [59] where the adiabaticity and the visibility
of interference fringes in the loading of a bosonic mixture to an optical lattice was studied using
the Gutzwiller mean-field method.

The intra-species long-range spatial coherence is shown in figure 2. We display the relative
phase coherence C10 between the atoms in one of the sites and in its tenth nearest-neighbour
site. This decays notably faster than the coherence C1 between the atoms in the adjacent sites in
figure 1. The spatial dependence of the relative phase coherence along the lattice is also shown
in figure 2. We calculated the stationary, averaged values of C j for different j when the value of
the coherence was stabilized after the end of the lattice ramp. The graphs show the decay of the
spatial coherence along the lattice. The coherence exhibits a very slow decay for large values of
j and remains high for the case of shallow lattices.

The numerically calculated values of the intra-species relative phase coherence may
be compared to the analytic estimates obtained for the ground state of the optical lattice
system in the appendix. The results for the nearest-neighbour phase coherence for the
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Figure 2. Relative phase coherence between the atoms separated by ten lattice
sites and belonging to the same atomic species C10 (left) for different final lattice
heights s = 10, 20, 30, 40 (curves from the top to the bottom) with inter-species
nonlinear parameter γ = 0.5. The end of the ramping times are marked on the
x-axis. The corresponding stationary (averaged) values of C10 (middle) as a
function of lattice height. The spatial dependence of the relative phase coherence
along the lattice between the atoms in the same species, displaying the stationary
(averaged) values of C j as a function of the relative lattice position j (right).
We specifically show C j for j = 1, 5, 10, 15, 20, 25, 30 for different cases of the
final lattice height s = 10, 20, 30, 40 (curves from the top to the bottom). The
coherence C10 decreases notably more rapidly than the coherence C1 between
the atoms in adjacent sites as a function of the lattice height. As in the case of
C1, we find that C10 depends only weakly on γ in the stable regime for the values
we studied from γ = 0.1 to 0.75.

linearized Bogoliubov theory of the fluctuations in the ground state, displayed in figure A.1 of
the appendix, provide good agreement with those obtained in the numerical TWA simulations,
shown in figure 1. The long-range coherence along the lattice in the TWA numerics, however,
decays more rapidly as a function of the spatial separation than in the case of the ground-state
calculation.

The inter-species coherence C (12)
1 is shown in figure 3 for different final lattice heights

and for different values of inter-species interactions, γ = 0.1, 0.25, 0.5 and 0.75. Although the
intra-species coherence C1 is not strongly affected by the inter-species interaction strength γ ,
the inter-species coherence C (12)

1 is very sensitive to γ even when the two-species mixture is
miscible. In particular, the relative inter-species coherence C (12)

1 is enhanced due to the inter-
species interactions when χ12 is increased. C (12)

1 becomes high as the system approaches the
onset of the phase separation instability, as shown in stationary averaged values of figure 4 that
are calculated after the turning up of the lattice. This is because the effective interactions in
a perfectly overlapping two-species mixture are almost completely cancelled out immediately
below the onset of the instability for χ11 ' χ22 ' χ12. We also show the decay of the spatial
coherence along the lattice by displaying C (12)

j for different values of j in figure 4 (right). The
stationary, averaged values for the coherence are calculated after the end of the ramp when the
coherence has stabilized.

3.2.2. Atom number fluctuations. The stochastic simulations in the Wigner representation
yield expectation values for the operators that are symmetrically ordered. These can be trans-
formed to normally ordered expectation values of the atoms in each lattice site. For instance,
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Figure 3. Relative phase coherence between the atoms in different atomic species
at two adjacent sites C (12)

1 for different final lattice heights s = 10, 20, 30, 40
(curves from the top to the bottom) in the stable regime with inter-species
nonlinear parameter γ = 0.1, 0.25, 0.5 and 0.75. The other parameters are the
same as in figure 1.
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Figure 4. The stationary averaged values of the relative inter-species phase
coherence C (12)

1 as a function of the inter-species interaction strength γ (left) for
different values of the final lattice height s = 10, 20, 30, 40 (curves from the top
to the bottom) and as a function of the lattice height (middle) for different values
of the inter-species interaction strength γ = 0.1, 0.25, 0.5, 0.75. The stationary
values are obtained after the phase coherence is stabilized after the end of the
ramping. C (12)

1 increases as the inter-species interaction strength increases in
the miscible regime. The spatial dependence of the inter-species relative phase
coherence along the lattice, displaying the stationary (averaged) values of C (12)

j

as a function of the relative lattice position j (right). We show C (12)
j for j =

1, 5, 10, 15, 20 for different cases of the final lattice height s = 10, 20, 30, 40
(curves from the top to the bottom).
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and after the turning up of the lattice for different values of the inter-species
nonlinearity γ = 0.1 and 0.75. The other parameters are the same as those in
figure 1. Due to the symmetry χ11 = χ22 the average atom number fluctuations
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the atom number expectation values and fluctuations are obtained from

〈n( j)
l 〉 = 〈[ψ ( j)

l ]∗ψ ( j)
l 〉 −

1
2 , (43)

1n( j)
l =

√
〈([ψ ( j)

l ]∗ψ ( j)
l )2〉 − 〈[ψ ( j)

l ]∗ψ ( j)
l 〉2 −

1
4 (44)

for each species j at the lattice site l.
It is useful to scale the atom number fluctuations to those obtained in the Poissonian limit

that correspond to the fluctuations resulting in an instantaneous splitting or in the splitting of a
non-interacting gas

n( j)
sqz =

1n( j)√
〈n( j)〉

, (45)

so that the values n( j)
sqz < 1 indicate reduced on-site atom number fluctuations. The on-site and

the relative atom number fluctuations between the atoms in different lattice sites were calculated
within TWA for a single-species BEC and compared with experimental observations in [33],
providing good qualitative agreement.

In figure 5, we show the scaled on-site atom number fluctuations nsqz in one of the sites
for different interaction strengths. The stationary averaged values of atom number fluctuations
are shown in figure 6. We show both the dependence of the fluctuations on the lattice height as
well as on the inter-species interactions. The atom number fluctuations are strongly reduced as
the final lattice height is increased. Strong suppression on number fluctuations for deep lattices
is associated with the enhanced phase fluctuations and the condensate fragmentation, and the
reduced atom number fluctuations correlate with the previously calculated values of the loss
of phase coherence. We also find that the inter-species interactions generally enhance the atom
number fluctuations.

The non-equilibrium dynamics of the TWA simulations may again be compared to the
analytic estimates obtained for the ground state of the optical lattice system in the appendix.
The agreement between the linearized ground-state results of figure A.1 in the appendix and the
TWA results of figures 5 and 6 are very good, indicating that the effects of nonadiabaticity in
the lattice ramping on the on-site atom number fluctuations are weak.
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Figure 6. The stationary averaged values of the scaled on-site atom number
fluctuations n( j)

sqz as a function of lattice heights s (left) for different values of
inter-species nonlinearity γ = 0.1, 0.75 and as a function of the inter-species
interaction strength γ (right) for different lattice final heights s = 10, 20, 30, 40
(curves from the top to the bottom). The parameters are the same as in figure 5.
The number fluctuations are strongly reduced as a function of the final lattice
height, but the dependence of the number fluctuations on the inter-species
interactions is less significant.

3.2.3. Adiabaticity and excitations of relative atom populations. In figure 7, we show the
population of the first five lowest momentum Fourier modes for the inter-species interaction
strength γ = 0.1 as a function of time and a snapshot momentum distribution of all the modes.
The four figures correspond to the value of lattice height s = 10, 20, 30, 40. Turning up of the
lattice potential results in a decrease in the lowest mode population. The effect is stronger when
the lattice becomes deeper, indicating breakdown of the adiabaticity in the turning up of the
lattice. Consequently, the deeper the lattice, the larger the depletion in the lowest mode. The
breakdown of the adiabaticity in deep lattices may be understood from equation (39) since the
frequency of the lowest phonon mode is reduced as the lattice becomes deeper, and it becomes
progressively more difficult to turn up the lattice adiabatically.

We may estimate the adiabaticity of the turning up of the lattice potential using the
expression equation (39). In the TWA simulations the lattice is turned up at the rate s(t)=

si + δt , with si = 2. For γ = 0.1 and δ = 2.0 × 10−3ωR we obtain �min
q (t)/ζ(t)' 10 at s = 2

and 0.7 at the end of the deep lattice ramp s = 40. The condition �min
q (t)/ζ(t)' 1 is reached at

about s ' 34. The adiabaticity condition is much easier to violate close to the onset of the phase
separation. For γ = 0.95 and δ = 2.0 × 10−3ωR we obtain �min

q (t)/ζ(t)' 4 at s = 2, reducing
to 1 at s ' 12, and to 0.2 at s = 40.

In figure 8, we show the relative phase coherence between the atoms in the adjacent lattice
sites and the on-site atom number fluctuations for three different speeds of the lattice ramp,
representing δ = 2.0 × 10−3ωR, 1.0 × 10−3ωR and 0.67 × 10−3ωR. For γ = 0.1 and the two
slowest ramp cases the condition �min

q (t)/ζ(t)' 1 is never reached during the turning up of
the lattice potential. For 0.67 × 10−3ωR the initial value �min

q (t)/ζ(t)' 29 at s = 2 is reduced
to about 2.1 at s = 40 for γ = 0.1 and from about 12 at s = 2 to about 0.5 at s = 40 for γ = 0.95
(�min

q (t)/ζ(t)' 1 is reached at about s ' 29).
Despite the improvement in the adiabaticity condition between the three different ramps,

there are very small changes in figure 8, especially in atom number fluctuations. Reaching the
limit where the ratio�min

q (t)/ζ(t)� 1 is both numerically and experimentally demanding in the
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Figure 7. The population of the first five lowest momentum Fourier modes
during the turning up of the lattice potential for different final lattice heights
s = 10, 20, 30, 40 (top two rows). Here γ = 0.1. The lowest mode is initially
occupied, while the population of the higher modes is negligible. In the case
of a deep lattice the population of excited modes is increased, indicating non-
adiabatic turning up of the lattice potential. The ensemble-averaged populations
of all the momentum modes at t = 20 000/ωR (bottom row). Only the lowest
momentum modes are occupied.

case of optical lattices with large occupation numbers and a large number of sites. For instance,
with the present parameter values, maintaining �min

q (t)/ζ(t)& 10 during the entire ramp to
s = 40 for γ = 0.95 would already require a very slow ramp speed of δ ' 0.2 × 10−3ωR. The
difficulty of adiabatically turning up a lattice potential in the experiments can severely limit
possibilities to reach the superfluid Mott-insulator transition in the case of large occupation
numbers [47]. Achieving a strong reduction in atom number fluctuations in the case of many
atoms has been experimentally challenging even in the lattice systems of only a few sites [29].

The excitation of higher modes (figure 7) induced during the ramping process indicate
a non-adiabatic turning up of the lattice. The lattice-induced excitations are also reflected in
relative atom populations between the two species (spin-1/2 waves). We show such excitations in
the stable regime γ < 1 in figure 9 by displaying the overlap integral, defined by equation (25),
between the wave functions of two atomic species for various values of inter-species nonlinear
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Figure 8. The relative phase coherence between the atoms in the adjacent lattice
sites C1 and the on-site atom number fluctuations for three different lattice ramp
speeds δ = 2.0 × 10−3ωR, 1.0 × 10−3ωR and 0.67 × 10−3ωR. The lattice is turned
up according to s(t)= si + δt . We show two different cases of γ = 0.1 (top row)
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number fluctuations n( j)

sqz as a function of temperature, corresponding to figure 10.

parameter γ = 0.1, 0.25, 0.5, 0.75. In deeper lattices the population difference is clearly
increased. The effect of interactions, however, is again reduced as γ → 1.

3.2.4. Effects of temperature. Finite temperature in non-equilibrium quantum dynamics
introduces additional noise into the system, increasing the atom number fluctuations. In
experiments on atom number squeezing and reduced on-site atom number fluctuations in
optical lattices the finite temperature has been an important factor limiting the achievable spin
squeezing and the suppression of the atom number fluctuations [29, 33]. Here we demonstrate
the effects of the initial temperature of the atoms on the coherence properties of the two-
species system as the lattice potential is turned up. The temperature can be incorporated into
the stochastic sampling of mode populations according to equation (32) in which case the
width of the Gaussian stochastic distribution for the sampling of the initial state is increased
due to thermal population of each phonon mode. In figure 10, we show the effect of variation
of temperature on the relative intra-species phase coherence between the atoms in different
lattice sites and on the on-site atom number fluctuations. The inter-species interaction parameter
γ = 0.5. The corresponding stationary averaged values of atom number fluctuations n( j)

sqz and
the relative intra-species phase coherence between the atoms in the adjacent lattice sites C1 are
shown in figure 11.
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3.3. Unstable regime

In the previous section, we considered a two-species condensate mixture in the regime where
the spatial overlap of the two species is dynamically stable, corresponding to the values of the
inter-species interaction strength γ . 1. When the parameter γ is increased the system becomes
dynamically unstable and the normal mode frequencies of equation (11) exhibit non-vanishing
imaginary parts, indicating perturbations that grow exponentially in time. The instability criteria
in different regimes for static and moving condensates were analysed in detail in [8, 16] and also
the effects of matter-wave grating of the other species [60] have been studied. Phase separation
is a generic phenomenon that occurs in different forms of matter. The phase separation
instability condition for a two-species BEC in a lattice is analogous to the phase separation
instability criterion of the two BEC components that occurs in free space when the square
of the inter-species interaction coefficient exceeds the product of the intra-species interaction
coefficients.

Here we consider the unstable regime of (γ > 1) by first evaluating the thermal equilibrium
state of the atoms in the initial state for some value of γ < 1 corresponding to a stable
regime of an overlapping two-species mixture. Stable initial ground-state configuration allows
us to evaluate the statistical noise for the initial state of the TWA simulations within the
Bogoliubov approximation. We then continuously turn up the optical lattice potential as
in the dynamically stable case and immediately after the final lattice height is reached
we change the inter-species interaction γ to the unstable regime. Varying the final lattice
height and the atom number then provides information about the dependence of the phase
separation dynamics on the lattice parameters and on quantum fluctuations. Experimentally,
the manipulation of the scattering lengths for BECs in order to drive the system from the stable
to unstable regime has been realized for an 85Rb–87Rb condensate mixture using a Feshbach
resonance [2]. Related experiments on single-component BECs by rapidly changing the
scattering length from the stable positive to unstable negative value have generated a condensate
collapse and the formation of bright solitons [61–63]. In two-species condensates the effective
interaction strengths have been manipulated between stable and unstable regimes using dressed
atomic states by electromagnetically induced Raman transitions between the internal atomic
states [35].

3.3.1. Domain formation. The system develops instability when the inter-species interaction
exceeds a threshold γ ' 1 determined by the intra-species interactions. After the interaction
parameters are switched to the unstable regime at the end of the lattice ramping the atom
densities of the two BECs show violent phase separation dynamics and individual sites become
dominantly occupied by a single species alone. In the ground-state configurations of phase-
separated systems one species typically forms a shell around the other, minimizing the surface
area between the two components [38]. In an optical lattice system we consider, quantum
noise and the nonlinear interactions spontaneously break the symmetry of the uniform spatial
configurations of the two species. Individual stochastic realizations of the TWA dynamics that
represent possible outcomes of individual experimental runs show density domain formations
of the two species. The system settles down to a metastable configuration of several interleaved
spatially separated density domains of the two species where the entire system may consist
of multiple domain boundaries along the lattice. Individual sites are typically dominantly
occupied by one atomic species alone, except close to the domain boundaries for the case
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Figure 12. Representative individual stochastic realizations of the atom density
distributions for the two-species condensates in the dynamically unstable phase
separation regime that represent possible outcomes of single experimental runs.
The two curves correspond to the densities of the two atomic species. The
different figures correspond to different final lattice heights s = 5, 10, 15, 20
after the system has reached a metastable density configuration. The initial value
of the interspecies interaction parameter during the turning up of the lattice
potential is in the stable regime with γ = 0.95. After the ramping up of the
potential it is changed to the unstable value γ = 1.1. The unstable dynamics
results in the spatial phase separation pattern of interleaved density domains.
Here the lattice size L = 128.

of large domain length. In figure 12, we show typical single realization results for the atom
density distribution for lattice heights s = 5, 10, 15, 20 after the system has phase-separated.
The number of domains increases as the lattice height increases.

The observed phenomenon is related to the experiments on a harmonically trapped
85Rb–87Rb condensate mixture in the absence of a lattice [2] in which case one of the species
was found to split into multiple separated atom cloudlets that appeared as distinct holes in
the density distribution of the other species. The condensation experiment was theoretically
analysed in [38] and it was demonstrated how the dynamics leads to continuous separation of
the two species into smaller and smaller domains. As shown in [16], the formation of only a few
density spikes and holes in the phase separation dynamics can be identified as a spontaneous
generation of bound pairs of dark and bright solitons [12]. The phase separation provides a
mechanism for the background of a dark soliton (density hole) in one species to stabilize a
bright soliton (density spike) in the other species due to an effective trap that results from the
repulsion between the two species [13]. In the present system, the stabilization of the small
domains is similar to the stabilization in energetically metastable particle-like solitons [13] and
results in metastable configurations that are not necessarily energetically close to the ground
state. The formation of the metastable states is a non-equilibrium process and the interleaved
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Figure 13. Domain length calculated from equation (46) with l ∼ 1/|qmax| for
different values of the nonlinearity 111 =122. The curves from the top to
the bottom represent the values 111 = 2.8 × 10−3, 1.4 × 10−3, 0.7 × 10−3 and
3.5 × 10−4 ωR at the lattice height s = 2. The corresponding domain length
values for deeper lattices are obtained from the value at s = 2 by changing
1i j = χi j/L and J in equation (46) as a function of the lattice height, as in
equations (36) and (37). The different curves can be considered to represent
either different atom densities or different interaction strengths. The values of
the inter-species interaction parameter γ = 1.5 (left) and 1.1 (right).

pattern does not represent a thermal state. One should compare the observed phase-separated
state to the ground state that is a maximally phase-separated state and minimizes the surface area
between the two components by forcing them to the opposite sides of the trap (one component
to the right and the other one to the left).

In the spontaneous pattern formation, due to an instantaneous switch of the interaction
strengths, the domain length is expected to be approximately determined by the wavelength of
the phonon mode with the largest imaginary part of the eigenfrequency, since this corresponds
to the unstable eigenmode that grows most rapidly (provided that the perturbation is strong
enough to populate this mode). We can calculate the wavenumber of the mode qmax analytically
from the expressions of �q . The value of qmax represents the fastest growing mode and gives an
order-of-magnitude estimate for the domain length by l ∼ 1/|qmax|. For J1 = J2, we obtain for
the phase separation domain length

|qmax| = | cos−1 θ |, θ = max(−1, β),

β ≡
4J +111 +122 −

√
(111 −122)2 + 412

12

4J
=

2J +111 − |112|

2J
, (46)

where 12
12 >111122 (where 1i j is defined in equation (8)) and the latter equality is valid

for 111 =122. The domain length from equation (46) depends on the lattice height that
modifies the dispersion relation. In deep lattices and with stronger interactions the domain length
becomes shorter according to equation (46), as also numerically demonstrated in [39]. Note that
reaching the ground state of the maximally phase-separated state would require a very slow
transition to the unstable regime so that only the lowest energy unstable mode is seeded in the
process.

In figure 13, we show the classical field-theory estimates for the domain lengths obtained
from equation (46) with l ∼ 1/|qmax| for different values of the nonlinearity as a function of the
final lattice depth. The domain length rapidly decreases as the lattice becomes deeper, eventually
saturating due to the finite range of available q values in the lowest-energy band.
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Figure 14. Quantum mechanical expectation values and uncertainties for the
number of domains in the dynamically unstable regime of the two-species
condensate in phase separation. We vary the number of atoms per lattice site
n = N/L by changing the value of the parameter �⊥a j j/(Nd) while keeping
the nonlinear interaction strengths χi j constant. The limit n → ∞ corresponds to
the classical mean-field result, while quantum fluctuations become progressively
stronger as n is reduced. We find that quantum fluctuations increase the number
of domains and the fluctuations in the number of domains. The initial value of the
inter-species interaction parameter during the turning up of the lattice potential
is in the stable regime with γ = 0.95. After the ramping up of the potential it
is changed to the unstable value of γ = 1.5. Here L = 128 and the final lattice
height s = 15.

In order to study the effect of quantum fluctuations of the atoms on the domain formation
we vary the strength of quantum fluctuations in the simulations. We may continuously
interpolate from the regime of strong quantum fluctuations to the classical mean-field limit by
keeping the nonlinear interaction strengths χi j constant, but varying the atom number [64].
This is done by changing the parameter �⊥a j j/(Nd) for constant χi j . In the Bogoliubov
approximation the nonlinearities χi j fix the number of excited-state atoms depleted from the
ground state, so varying the total atom number changes the depleted fraction due to quantum
fluctuations.

We show in figure 14 the quantum mechanical expectation value of the number of domains
and the corresponding quantum mechanical uncertainty, obtained by the ensemble-averaging
stochastic phase-space simulations. The two-species mixture is miscible with γ = 0.95 during
the turning up of the lattice potential from si = 2 to s = 15, after which the system is switched
to the unstable regime by changing the parameter value to γ = 1.5. The initial nonlinearity
χ j j = 0.60ωR, but the number of atoms per site n = N/L in one of the species is varied from 20
to 1000, with L = 128. The limit n → ∞ corresponds to the classical mean-field limit. We find
that both the number of domains and the fluctuations in the number of domains are increased
due to quantum fluctuations.

The domain boundaries between the two species may be viewed as defects and
by introducing an electromagnetic coupling between the two components that mixes the
atom populations provides a phase-separation scheme suitable for testing the Kibble–Zurek
mechanism for defect formation in phase transitions [42, 43]. Changing the value of the
interaction parameter through the phase transition point spontaneously breaks the symmetry
of the system in which case the formation of the defects is expected to depend on the timescale
of the transition, providing an interesting link to condensed matter physics and cosmology.
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Figure 15. On-site atom number fluctuations (left column) and the relative intra-
species phase coherence between the atoms in adjacent sites (right column) for
one of the atomic species in the unstable regime for different values of the final
lattice height s = 10, 20, 30, 40 during and after the turning up of the lattice.
The initial value of the inter-species interaction parameter during the turning up
of the lattice potential is in the stable regime with γ = 0.95. After the ramping
up of the potential it is changed to the unstable value of γ = 1.5 (top row) and
γ = 2.0 (bottom row).
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Figure 16. Stationary values of fluctuations and the density overlap between
the two BEC components. The averaged stationary values of the relative intra-
species phase coherence between the atoms in adjacent sites (left) and the on-site
atom number fluctuations (middle) in the unstable regime as a function of the
final lattice height, obtained from the results of figure 15. The density overlap
integral between the two BEC components τ(t), defined by equation (26), for
different values of the inter-species interaction strength γ . The value depends on
the ratio between the interaction strengths χ11/χ12.

3.3.2. Relative phase coherence and number fluctuations. In the unstable regime, there is a
dramatic loss in the relative phase coherence between the atoms in different lattice sites and
the growth of on-site atom number fluctuations. The enhanced on-site atom number fluctuations
may be understood in terms of the domain formation where the spatial location of the domain
boundaries fluctuates from one stochastic realization to another. In figure 15, we show the atom
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Figure 17. Occupations of the lowest five momentum states corresponding to the
Fourier modes for different values of the final lattice height s = 10, 20, 30, 40 in
the unstable regime for γ = 1.1, as in figure 15. We also show a snapshot image
of the occupations of all the momentum components both for a single stochastic
realization (middle row) and for the ensemble average over many realizations
(bottom row).

number fluctuations in one lattice site for one of the atomic species (left column) and the relative
intra-species phase coherence between the atoms in adjacent sites (right column) for different
lattice heights s = 10, 20, 30, 40 and different inter-species interactions γ = 1.5 (top row) and
γ = 2.0 (bottom row). Even though there is a rapid loss of phase coherence due to the dynamical
instability, the non-vanishing value of C1 indicates that even the dynamically unstable system
exhibits non-vanishing phase coherence. The loss of phase coherence is much faster due to
dynamical instability than due to the ramping of the lattice. The stationary averaged values as a
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function of the lattice height after the system has reached a metastable configuration are shown
in figure 16. We also display in figure 16 the density overlap integral between the two BEC
components τ(t) (equation (26)) for different values of the inter-species interaction strength γ
that indicates the degree of spatial phase separation between the components.

In figure 17, we show the populations in the lowest five momentum modes in the unstable
regime. The decay of population in the ground state is fast due to the dynamical instability.
The rapid decay of the population is a characteristic feature of the instability. We also show the
populations of all the momentum states at a given time (t = 20 000/ωR and γ = 1.1) for a single
stochastic realization and for an ensemble average over many realizations.

4. Concluding remarks

We have demonstrated via numerical simulations how a simple approximate stochastic phase-
space method can provide valuable information about a two-species superfluid system in
the presence of significant quantum fluctuations. We identified the contributions of quantum
fluctuations in the pattern formation of the two-species system that results from the modulational
instability of dynamically unstable excitations. The parameter space of the two-component
condensate system in the lattice is especially large. Although the essential effects of the phase
separation dynamics, the loss of the relative phase coherence between the atoms and the reduced
atom number fluctuations were captured by the selected parameter regimes, the parameter space
could be explored in more detail. In particular, novel phenomena would be observed in the case
of moving condensates. The centre-of-mass motion of the atoms results in dissipative transport
properties [64, 65]. The stability criteria are also changed when the velocities of the two BECs
are different and one of the BECs is not in the normal dispersion regime [8].

Moving condensates may be experimentally studied in a combined optical lattice and
a harmonic trap by suddenly displacing the harmonic trap, e.g. by using a magnetic field
gradient in which case the displacement excites dipolar oscillations of atoms along the lattice
direction [65]. The other alternatives to create an analogous effect, for example, are to use a
moving-standing wave, so that the atoms experience a moving optical lattice potential [66],
introduce a phase shift for the hopping amplitudes of the atoms between adjacent sites or to
make the hopping amplitudes time dependent by a periodically pulsating lattice.

It would be particularly interesting to investigate soliton structures in a two-species
BEC. Modifying the ratio χ22/χ11 [16], for example, by unbalanced relative populations or
inducing flow instabilities [17, 67], would lead to the emergence of vector solitons. The
solitons can be persistent (metastable) or pulsating. Another potential application follows from
the observation that repulsive interactions and quantum fluctuations lead to suppressed atom
number fluctuations in the lattice. Two-species systems have already been used in experimental
realizations of spin-squeezed atom interferometry [24], and squeezing can be employed in
interferometers to achieve sub-shot-noise accuracies that are not achievable using classical
interferometers limited by the standard quantum limit [68–71].
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Appendix. Analytic estimates of the atom number and relative phase fluctuations

Here we provide analytic estimates for the fluctuations of the intra-species on-site atom number
and the relative phase between the atoms in different lattice sites in the ground state of an
optical lattice. We introduce the atom number and phase operators for each site as in [47]. In the
calculations we use the classical Bogoliubov mode functions for the two-species BEC that are
employed in the initial state decomposition of the stochastic field in the TWA simulations. By
means of replacing the stochastic mode amplitudes α( j)

q,± in equation (29) by the annihilation and
creation operators (α̂( j)

q,±, [α̂( j)
q,±]†), so that α( j)

q,± → α̂
( j)
q,± and [α( j)

q,±]∗ → [α̂( j)
q,±]†, we may obtain

analytic estimates for the ground-state properties, provided that the inter-species correlations
can be ignored.

We may derive the atom number operator n̂( j)
l at the site l of the species j by expanding the

atom population n( j)
l of the species j in the site l to first order in fluctuation terms. We obtain

n( j)
l =

(√
n( j)

gr + ˆδψ
( j)

l

)(√
n( j)

gr + [ ˆδψ
( j)

l ]†

)
' n( j)

gr + n̂( j)
l , (A.1)

where

n̂( j)
l =

√
n( j)

gr

(
ˆδψ
( j)

l +
[

ˆδψ
( j)

l

]†
)

=

√
n( j)

gr

∑
q,η=±

(
w( j)

q,ηα̂
( j)
q,η eiql + H.c.

)
, (A.2)

n( j)
gr ' N j/L denotes the ground state atom number per site of the species j and w( j)

q,η ≡

u( j)
q,η − v( j)

q,η.
We may introduce the corresponding phase operator at the site l as

ϕ̂
( j)
l = −

i

2
√

N j

∑
q,η=±

(
r ( j)

q,ηα̂
( j)
q,η eiql

− H.c.
)
, (A.3)

for which the commutator [n̂( j)
l , ϕ̂

( j)
l ] = i and we have defined r ( j)

q,η ≡ u( j)
q,η + v( j)

q,η. Then the on-

site atom number fluctuations in the lth site (1n( j)
l )

2 and the relative phase fluctuations between
the atoms in the kth and lth sites (1ϕ( j)

kl )
2, respectively, read(

1n( j)
l

)2
=

〈[
n̂( j)

l

]2
〉
−

〈
n̂( j)

l

〉2
=

n( j)
gr

L

∑
q,η=±

∣∣w( j)
q,η

∣∣2 (2n̄q,η + 1)

=
n( j)

gr

L

∑
q

εq

2

(
2n̄q,− + 1

�−
q

+
2n̄q,+ + 1

�+
q

)
, (A.4)

(
1ϕ

( j)
kl

)2
≡

〈(
ϕ̂
( j)
k − ϕ̂

( j)
l

)2
〉
=

1

N j

∑
q,η=±

∣∣r ( j)
q,η

∣∣2 sin2

[
q(k − l)

2

]
(2n̄q,η + 1)

=
1

N j

∑
q

1

2εq

[
(2n̄q,− + 1)�−

q + (2n̄q,+ + 1)�+
q

]
sin2

[
q(k − l)

2

]
, (A.5)

where n̄q,± is the thermal population of the phonon mode (q,±) in the lattice given in
equation (32). In the second line of equations (A.4) and (A.5), we have used the specific
relations for u( j)

q,η, v
( j)
q,η and �±

q given by equations (21)–(23), respectively. These were obtained
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by choosing a particular set of parameter values (χ11 = χ22, J1 = J2 = J , N1 = N2, etc). The
single-particle energy εq = 4J sin2(q/2).

At T = 0 we have n̄q,η = 0 and we can evaluate the expressions analytically by replacing
in the continuum limit the momentum sums by integrals

1

L

∑
q

→
1

2π

∫ π

−π

dq.

For the atom number fluctuations we obtain(
1n( j)

l

)2
=

n( j)
gr

π

[
arctan (λ+)+ arctan ( λ−)

]
, (A.6)

where (111 =122 >112 > 0; 1i j is defined in equation (8))

λ± =

√
2J

111 ±112
. (A.7)

In the nonlinear limit of (111 ±112)� J this simplifies to(
1n( j)

l

)2
'

n( j)
gr

√
2J

π

(
1

√
111 +112

+
1

√
111 −112

)
. (A.8)

Similarly, for the relative phase fluctuations between the atoms in the adjacent sites (k − l = 1),
we obtain(
1ϕ

( j)
l,l+1

)2
=

1

2n( j)
gr π

[
1

λ+
+

1

λ−

+

(
1

λ2
+

+ 1

)
arctan(λ+)+

(
1

λ2
−

+ 1

)
arctan(λ−)

]
. (A.9)

In the nonlinear case (111 ±112)� J , this reads(
1ϕ

( j)
l,l+1

)2
=

1

n( j)
gr π

√
2J

(√
111 +112 +

√
111 −112

)
. (A.10)

Similar relationships to equation (A.9) may also be calculated for different values of k in
(1ϕ

( j)
l,k )

2 in the continuum limit.
The analytic expression (A.9) for the relative phase fluctuations can be used to evaluate

C ′

l =
〈
exp

[
i
(
ϕ̂k+l − ϕ̂k

)]〉
' exp

[
−
〈
(ϕ̂k+l − ϕ̂k)

2
〉
/2
]
, (A.11)

as displayed in figure A.1 in which case we show the relative phase coherence between the
atoms in the adjacent sites C ′

1 together with the on-site atom number fluctuations. We also use
the continuum limit approximation to calculate

〈
(ϕ̂k+ j − ϕ̂k)

2
〉
for different values of j in order to

obtain the coherence along the lattice C ′

j as a function of the site separation j . The parameters
of figure A.1 are the same as those used in the TWA simulations for the dynamically stable
T = 0 cases, with the dependence of the hopping amplitude J and the nonlinearity χ11 = χ22 on
the lattice height determined by equations (36) and (37), respectively, where we set the value
χ11 = 0.6ωR at s = 2. The atom number N = 2560 and the number of sites L = 64.

In figure A.1, the relative phase coherence between the atoms in the adjacent sites decreases
rapidly as a function of the lattice depth and increases as the inter-species interaction strength
γ is increased closer to the onset of the phase-separation instability. The numerical values of
the nearest-neighbour coherence are very close to those of the TWA simulations in figure A.1,
but the long-range coherence values are higher than in the TWA case (figure 2). One should
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Figure A.1. The analytic estimates of the ground-state fluctuations. On the left,
the scaled on-site atom number fluctuations n(1)sqz = (1n( j)

l )/
√

nl in one of the
lattice sites are shown, obtained from equation (A.6). In the middle, the relative
phase coherence between the atoms in the adjacent sites C ′

1, calculated from
equation (A.11), is shown. In both the cases the upper curve corresponds to γ =

0.9 and the lower curve to γ = 0.1. On the right, we show the phase coherence
C ′

j along the lattice as a function of the lattice site separation j , calculated
from equation (A.11). The curves from the top represent (s = 20, γ = 0.1),
(s = 30, γ = 0.1), (s = 40, γ = 0.9) and (s = 40, γ = 0.1).

note, however, that C ′

1 does not include the atom number contributions incorporated in to the
definition of C1 (equation (41)) which is used in analysing the relative phase coherence in the
TWA numerics.

We can implement a nonlinear least-square fit for the coherence along the lattice C ′

j using
a trial function

C ′

x = a1 exp(−a2xa3)+ a4, (A.12)

and determine the coefficients ai . An accurate fit for the calculated values in figure A.1
with γ = 0.1 is obtained for (a1, a2, a3, a4)= (0.11, 0.55, 0.16, 0.92) for s = 20 and
(0.24, 0.44, 0.38, 0.77) for s = 40. These indicate asymptotic values for the coherence for
large spatial separations 0.92 and 0.77, respectively.

The on-site atom number fluctuations from the analytic estimates in figure A.1 are also
very close to the numerical TWA simulation results of figures 5 and 6. The on-site atom number
fluctuations are enhanced as the inter-species interaction strength increases.
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[29] Estéve J, Gross C, Weller A, Giovanazzi S and Oberthaler M K 2008 Nature 455 1216
[30] Gemelke N, Zhang X, Hung C-L and Chin C 2009 Nature 460 995
[31] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Fólling S, Pollet L and Greiner M 2009 Science
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